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I A
FOREWORD

This report presents a summary of work performed for the Air Force Flight

Dynamics Laboratory, Air Force Systems Command, funded under Contract

F33615-72-C-1429. The work was performed by the Aerodynamics Research

Department of the Northrop Corporation, Aircraft Division, Hawthorne, California.

This report is divided into two volumes. Volume I discusses the theory and

the application, and presents comparisons of the numerical results with experi-

mental data. Volume IT discusses the details of the computer programs and how

to operate them. For internal control purposes, this report has been assigned

the Northrop report number, NOR 72-87.

The work reported herein was begun on December 1, 1971, and the final, opera-

tional computer programs were delivered and demonstrated in the period of .June

14-16, 1972. In addition to the two authors, Mr. Joe Der, Jr., also of the Aero-

dynamics Research Department, made significant contributions to this work

through his knowledge of computing and computing machinery. Mr. Henry Ziegler

did a fine job in the preparation of the final report, and Miss Alberta Hansen made

all the line drawings.

Mr. A. B. Lewis was the Air Force Project Engineer. He also made very

important contributions to the program, and much of the credit for the back-to.-

back operation of the two programs must go to him for his suggestions and gui-

dance.

This technical report was submitted by the authors in July 3972, and has been

reviewed and approved.

• Philw P. Antonatos

Ch't,, Flight Mechanics Division
Air Force Flight Dynamics Laboratory
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SECTION I

INTRODUCTION I

The inviscid flow field programs contained within the combined viscid-inviscid

flow field program described in Reference 1 have been separated from the overall

program, revised extensively and improved in many respects. The logic of these

programs has been greatly simplified; unused variables and unnecessary blocks

of logic have been removed, and many new developments added. As a result, two

computer programs are now available for calculating the inviscid supersonic/hyper-

sonic flow over three-dimensional bodies at angles of attack with a high degree of

accuracy and for a modest expenditure of computer time.

The resulting new programs are the Initial Value Surface Program and the

Three-Dimensional Method of Characteristics Program. Both are based on the

use of an ideal gas with a constant ratio of specific heats. Both programs have

been designed to require a minimum of input and to be extremely flexible to use.

All development decisions were based on the use of both programs by the Air Force

Flight Dynamics Laboratory on the Wright-Patterson Air Force Base CDC 6600

computer; use on other macidnes may result in some compromises.

The bodies which may be .reated must have spherical noses and no slope dis-

continuities, but may have upper and lower flat sections (for example, a slab delta

wing). Any angle of attack for which the subsonic region does not extend beyond

the spherical nose can be handled.

Volume I discusses the theoretical found-"'^'-" tnd the numerical methods

while Volume II describes the computer programs and how to use them. The

original methods were given in Reference 1; a complete, up-to-date discussion of

the basic formulation and the numerical methods is presented here.

*



SECTION II

BODY DESCRIPTION

Figure 1 shows a complex body shape having a spherical nose and upper and

lower flats. In a right-handed coordinate system, the Y-axis is aligned with the

body axis. The Z-axis is up and the X-ax.is spanwise. The nose of the body need

not coincide with the origin of the coordinate system.

Three lines serve to define this body shape:

(1) The outer limit of the upper flat

(2) The maximum width line

(3) The outer limit of the lower flat.

In cross section, an ellipse is fitted between line (1) and (2), and another

ellipse between (2) and (3). For the case of a blunted cone, (or ellipse) the outer

limits of the upper and lower flats lie in the plane of symmetry X - 0.

Each line is described by two functions of Y.

A, " Y + Qo + S-IR, Y'SY+T

X,- P4 Y + 0 4 + Sr 4 1JR.Yz + $Y + T,

Z 2 - P2Y +Q 2 ÷S+-92 VR2 YV+ S3Y+T T2

X2 - qy +Q5  S63j RY 3 + -5 Y+/r
Z5 = PSY +03 +-%3VRY4 ~.T
X3= Py + Qr + S r,,rY + ¥ sy+"r

Here P, Q, R, S and T are coefficients of the general conic sections and SG is the

sign of the square root. Methods for evaluation of these coefficients are discussed

in Appendix I.

No slope discontinuities are permitted in the present program. Since each

line may be described by several segments, this slope smoothness requirement

translates into:

2
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ta2
everywhere continuous

I I dX I
IdXY, everywhere continuous

(dZ~s everywhere continuous'

However, dgX C and AMP are not required to be continuous.

Two examples of this body description method are given in Appendix II.

itI
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SECTION III

THE INITIAL VALUE SURFACE

The function of the Initial Value Surface (IVS) Program is to provide sufficient

data to start the Three-Dimensional Method of Characteristics Program calculation

of the supersonic flow field. For reasons of economy, this IVS should be as far

downstream as possible in order to compute the largest possible portion of the

flow field by means of a rotationally symmetric method. This, of course, implies

a minimization of the total computing time required for the total solution.

The present IVS program is a greatly modified version of the old IVS program

from Reference 1. Figure 2 compares the old and new approaches.

Since a sphere has no preferential direction, the solution for a sphere at angle

of attack can be obtained by rotating the solution for a sphere at zero angle of

attack. The old IVS was obtained by calculating a zero angle of attack blunt body

solution, forming an initial value line (IVL), calculating the supersonic flow field

up to the outgoing characteristic from the foot of the IV L, rotating this limiting

characteristic around the free stream velocity vector, and pitching over to the

correct angle of attack.

The new IVW program works in a similar manner up through the generation of

the IVL. After the IVL is generated, the Rotationally Symmetric Method of Char-

acteristics solution is carried sufficiently far around the sphere so that data along

a series of lines (one line for each meridian plane) can be determined by interpo-

lation; these lines are then rotated around the freestream vector and the resulting

plane pitched over by the angle of attack. The resulting plane is now perpendicular

to the body axis and situated at the sphere-body juncture (see Figure 2). In theory,

the shaded region shown in Figure 2 could also be calculated by rotationally syrnmet-

nic means but the resulting surface geometry is too complex to permit general use.

"Therefore, the constant body station IVS represents a good compromise, and is a

great improvement over the previous program.

The IVS program consists of four separate programs, all connected together

through an OVERLAY sequence. These programs are:

5
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(1) Blunt Body Program

(2) Initial Value Line Interpolation Program

(3) Rotationally Symmetric Method of Characteristics Program

(4) Initial Value Surface Interpolation Program

The Blunt Body Program determines the subsonic through slightly supersonic
flow over the blunted nose. The Initial Value Line Interpolation Program inter-

polates in the Blunt Body Program data to develop a start line for the Rotationally

Symmetric Method of Characteristics Program. This latter program calculates

the required remaining supersonic flow field over the nose. The Initial Value

Surface Interpolation Program interpolates in the RSMoC-generated data to deter-

mine properties on a plane normal to the body axis, given the number of data rings

and the number of meridian planes. Each of these programs is discussed below.

1. BLUNT BODY PROGRAM

The theoretical foundations of this program were discussed in Reference 1. No
significant logic changes were made to the program, and so the following discussion

is essentially a summary of the approach.

The flow field behind the detached bow shock wave of the spherical nose is cal-

culated by an extension of Van Dyke's method (Reference 2), and is an indirect one
(i. e., the calculation proceeds from a specified shock to an unknown body). The

shape of this unknown body is compared with that of the desired body, and appropri-

ate changes are made in the shock wave shape until the difference between calcula-
ted and desired bodies is acceptable.

The calculation is carried out in a curvilinear orthogonal coordinate system

based on the assumed shock wave. The shock wave is taken as a general conic

I 'J2RX- BX (1)

where X and Y are the usual Cartesian coordinates, R is the radius of curvature of
the shock wave at the origin, and B is the "bluntness." The shock is hyperbolic for

B<O, parabolic for B=O, and elliptic for B>O. By comparing Equation (1) with the
standard form of the conic equation, it can be seen that for B>0, B =b2/a2 ; where

b is the semi-axis In the Y direction, and a the semi-axis in the X direction. There-

fore, B=1 corresponds to a circle or a sphere.

7



A curvilinear orthogonal coordinate system, , r•, based on the shock wave

shape of Equation (1) then can be erected. The relationship between the Cartesian

and curvilinear coordinates can be shown to be

R B[ EL' 12(JB+ (2)

and

whryteshc (3)

where the shock wave corresponds to 1? = 1. Figure 3 illustrates this coordinate

system.

= 3

×4

FIGURE 3. CURVILINEAR COORDINATE SYSTEM

To circumvent certain singularities in the governing gas system of dynamics

equations, the first I used by the finite-difference solution is taken to be -§/2;

for succeeding values, gn " n-i + A . Note that the body will not corres-

pond to a constant 1Z surface.

By introducing a Stokes' stream function, *,

P/v f = (4)

8
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the governing gas dynamics equations can be shown to be

P(Cg +.?a + iBh(aSi Isg) V2
[c •' P8c /PJI

2- 1
1-.Bek • 4..... + -+ ,,~ _ _ 23., . (C.-+.B-+->,+2) ,--I-

and (5)

and

, (CB2t.Ž 0  , ,_______

4.2  + ( SYR2 l~) P1  9P

C- +B,.2 + 77 ____•

(5)

Note that, while Pr• is a function of •tj, •, V , andP ~P, ll is a
function of lf, •t, •V p| , and p17 " Therefore Equation (5) must be
evaluated to provide PTq for Equation (6).

4. 1

and[



d(Sji)
In Equations (5) and (6), S'/R denotes j (since S is only a function of .

in the fluid mechanics sense). For an ideal gas, the entropy derivatives reduce to:

' I Ip -- - 6 -•

( ~_1 J()) - . L (8)
7Y/P)-P Y-P

and

d(SI/R) ..L f' (9)

where Pl = f.

The computation scheme is as follows:

1. On the shock, determine all properties at a series of evenly spaced points.

2. Determine the • derivatives.

3. Determine tir PR and W values from Equations (5) and (6).

4. Integrate into the field one Mr? step by using the following:

P2 Pt (- 7 P (10)

lt =- ()

and

W2~ W-J 2' 1 .~ (12)

5. Knowing P and IV at the new 12 coordinate, evaluate all the necessary

properties.

6. By numerical means, determine the g derivatives of P, W, Pt , ,

and W at the new coordinate line.

7. CalchdIate P-q and at the new coordinate line, using Equations (5)

and (6).

10



8. Determine the appropriate physical properties at the new coordinate line,

by an "external iteration" on the pressure through the following equation:
I

a ~P I -U + P7 2) (13)j

Note that P is used only to evaluate the flow field properties at the new point, I
and not to reevaluate pq or l .

9. Thus the properties and derivatives at the new coordinate line are known,

and this line then may be used as a base from which another new coordi-

nate line can be calculated.

10. This scheme is continued until negative values of the stream function are

obtained. The body location is found by extrapolating data from the last

three surfaces having V>O to determine where 'IV= 0.

Using the marching technique previously outlined in steps 1-10, the flow

field from the shock to the body can be determined. The actual calculation of the

body, however, requires special techniques. The marching technique is used

until values of NV less than zero appear. It has been found that Pq, , and

W1.p all change drastically inside the body, and cannot be used to determine the

body location by interpolation. Therefore, data from the last three t = constant

lines are used to extrapolate to the = 0 point to determine the body. For each

12 = constant line, 1flbody' P, I and ;/#? also are extrapolated as a func-

tion of 72 to ?• body' Since the entropy at the body surface is equal to that behind

a normal shock, all properties at the body surface can be determined.

Figure 4 illustrates a complete solution for M 8. 8 in air. Note that each

AT? step requires the dropping of six end points from the analysis. This is a

result of using the finite-difference differentiation technique. To determine

three points on either side must be used. Hence, the last 1f that can be de'er-

mined is the fourth from the end of the I? = constant line. After the first forward

integration has occurred, P1 on the new line must be determined; again, the last

three points are required to determine the value for the fourth from the end. Thus

a total of six points must be dropped for every step taken into the flow field.

The determination of the body shape is based on the assumption that a conic

shock will yield a conic body. Hence the body equation can be written as:
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Y = 2R8( 8 d Of(X-e) (14)

where RB = radius of curvature of the body at the origin, referenced to R
of the shock wave

B = body bluntness

A = shock stand-off distance, referenced to R of the shock wave

To determine the best values for RB, BB, and A for the N body points deter-
B9 B1

mined by the program, the following set of simultaneous equations (which represent

the least-square solution to the body description equation with an off-set axis) must

be solved for OL, (0, and Y:

OLN 4 P_ UXI EV 4,- (15)

E 0 X_2x + E xý + ,x E X.4 (E X2

* =Zx¢ j 5 +x * Zx 1  = (17)

where denotes summation from i I to N, and Xi Y. are the Cartesian coordi-

nates of the body points.

The body parameters then are determined from the following functions of M•,
f•and V:

anK -"'A(21 +B 3 A) (18)

•= 2(•R + BSA) (19)

S' -- BB (20)

The summations Indicated in Equations (15), (16), and (17) include only subsonic

body points. It has been found that the supersonic body points tend to deviate from

a conic section rapidly, and that a more consistent body description can be obtained

by excluding them. Similarly, it has been found that if the body point data are ob-

taied from one or more 4q steps, a poor body description results. This diffi-

culty can be eliminated by providing a means for incompassing all the body points

with one &Wt step. Thfs is not to say that by arranging for a one-4f-.step body the A

accuracy is increased. What is obtained is a smoother, more uniform variation

13



of B with B, which permits the use of an automated itt.ration.
B

Let the AlZ step from the shock to the body stagnation point be &q stag' the

An step from the body stagnation point to the body seoic point be AV1 B' and the

ratio of AM s for successive steps be G (a constant). -lementary series summa-

tion analysis then shows chat if n is the number of steps to the body1 the following

equation can be used to determine G:

Knowing Alstag and M?, and specifying n, Equation (21) may be solved by

Newton's method for G. The initial value of A1(--'?) is determined by:

--'- c1 . + 6 - (22)

In practice, Aqstag and 6 1 B are unknown initially. A first problem is cal-

culated with G = 1.0 and Al = I = 0.02 to determine where the body lies. Using

data from this run, and extrapolating for the body sonic point if necessary, a first

approximation for ?tg and can be obtained. With each successive cal-
vstag A?

culation, new values of the increments are calculated so as to provide the best

possible fit to the body.

Certain safety factors are built into the computer program to ensure that all

body points lie in the same Al? step. The 1l1 step to the stagnation point is

reduced by two percent, and the distance to the sonic point increased by 30 percent.

Hence:

0.(O 98 (23)

and
4te = (10 - 04'lsiag - )?sonic. 1.30 (24)

These safety factors are not optimum; they merely work.

'Note that if n is the number of steps from the shock to the body, there will be n+1
constanm I? lines plus the body, or n+2 series of data.

14



The overall iteration scheme for determining the shock wave corresponding

to a given body is based on the fact that BB is a monotonically increasing function

of B, as shown in Figure 5.

B B
DESIRED BODY BLUNTNESS

B

FIGURE 5. BODY BLUNTNESS AS FUNCTION OF SHOCK BLUNTNESS

The iteration process takes the first computed body bluntness and compares

it with the desired bluntness. If the calculated bluntness is not sufficiently close

to the desired value the shock bluntness is adjusted, for the first pass only, by

the following:

B2 (25)

For succeeding calculations the present and past (B, BB) pairs are retained

and the new B determined by:

B, Ba:3I Bj2 4,B (26)BJB2 BBil h an..

The value of BB, as determined by a least squares curve fit, is a weak function of

the number of points used in the curve fit. During the iteration process, successive

body descriptions differ in the number of body points obtained until convergence is

near. As a result, there are a number of essentially parallel curves in Figure 5,

one for each different number of body points. In passing from one curve to another,

the quantity (B2 -Bl)/(BB 2 - BB), the calculated local slope, may be negative.

15
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In this case, the iteration process governed by Equation (26) no longer provides a

rational answer. When the quantity 6B/ABB is negative, the calculation procedure

then merely adds an increment to the existing value of B equivalent to that used in

the last pass:

43 BI ÷ BI B2I (27)

This permits the iteration procese to continue, and provides a chance for the nat-

ural convergence process to come into play.

As noted above, a first problem is run to determine the location of the body.

The B for this run is calculated by an approximate curve fit to the data given in

Reference 2.

B 05 - 0.559 (MI.O)-1. 9  (28)

After the first problem is run with a G = 1.0, a second is run with a calculated G

but the same B. Thereafter, the iteration process discussed above takes over.

The blunt body computer program is subject to certain limitations which are

described below:

1. The number of shock points is limited to 100.

2. The number of steps to the body is limited to less than 10 but more than 2.

3. A limit of 9 overall calculations is imposed on each run, due to instability

of the method. For normal use, 6 is recommended.

4. For shock waves with B>0, [(r-J)AJ]z- must be less than

(Mzl-1)/[(M•- I)B ÷ |]. At this point the shock wave has degenerated

into a Mach wave, and further shock angle decay is forbidden. If this

occurs, the program automatically reduces the value of 6• (normally

equal to 0.02) to accommodate the desired number of points. In such

cases it is recommended that the number of shock points be reduced to

maintain &JIM0.02.

5. In the supersonic region of the flow field, the denominator of Equation (5),
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eventually goes down to zero. If this occurs within the region of calcu-
lation, the data beyond this point are meaningless and are, therefore,

dropped. This will cause the program occasionally to drop more than I

6 points on a given line. :

2. INITIAL VALUE LINE INTERPOLATION PROGRAM I ]
Upon completion of the flow field evaluation portion of the Blunt Body Program•

all of the flow field data points are available on TAPE 4 for use in determining the
IVL. Using these data, this program will 'determine data on a straight line from
the body to the shock such that the characteristic directions at every point lie on
the downstream side of the IVL.

One significant change was worked into the 1VL program. In the earlier pro-
gram, a value of 1.05 was specified internally for Mbod, the Mach number on the
body at the foot of the IVL. This quantity is now an input variable'. A value of
1.05 is recommended for all Mach numbers greater than 2.5, and a v'alue of 1.10
for Mach numbers less than 2. 5. The large b at the lower Mach numbers

body
is due to the poor definition of the flow properties by the Blunt Body Program in
the very low transonic range.

The sonic line on a rotationally symmetric blunt body takes one of two basic
shapes, depending on whether the freestream Mach number is greater or less
than approximately 5.0. These shapes are illustrated in Figure 6.

I]

1

4F1
SONIC LI NE

SOI L!NE

":s • BODY "'"BODYY

LOW MACH NUMBER HIGH MACH NUMBER

FIGURE 6. SONIC LINE SHAPES
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The IVL program examines the first supersonic point on each of the "shock-

like" coordinates and determines which of these will minimize the slope (which is
negative) of a line between each of these points and the center of the body. The
program then determines the approximate slope of the sonic line at the body by

* :using the location of the body sonic point and the sonic point in the field nearest to

the body. If this latter slope is more positive than the previously discussed slope,

a high Mach number configuration exists; if the latter slope is the more negative

of the two, a low Mach number configuration exists.

For the high Mach number case, the line from the center of the body passing

through the point on the body where M = Mbody is chosen as the IVL; the data

interpolation takes place along this line.

For the low Mach number case, the sonic line is highly curved and is actually

made up of the outer portion of the right-running limiting characteristic and the

inner portion of the left-running limiting characteristic. In this situation, if the

high Mach number method of determining the IVL were to be used, the IVL would

pass through the subsonic region. Thus, a data line with a different slope and a

different intercept point on the body is needed. This slope is obtained by taking
the slope of the innermost segment of the sonic line (the calculation of which has

* been discussed above) and rotating it five degrees clockwise.

A table of body point coordinates and associated left-running characteristic

-angles, 6 + AA (where 6 is the local flow angle and u. the Mach angle), is prepared
to go from the body point data and an interpolation performed to determine the
location of the body point whose left-running characteristic direction corresponds
to the IVL slope. Having thus defined a point on the IVL and its slope, the inter-

polation for the data points throughout the flow field can be carried out. However,
the body point determined by this method is not used as a point on the IVL. Due to
the drastic increase in error in calculating the local flow angles near the body for

low Mach numbers, it has been found that better downstream calculations are
obtained if the solution goes directly from the first field point to the body, thus

ignoring the IVL body point.

As a final step, the freestream quantities, the body geometric quantities (RB,

BB1 4), the location and flow properties of each point on the 1VL, and the mass-
entropy table are printed and stored on tape for the Rotationally Symmetric

.Method of Characteristics Program.
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The mass-entropy table is a listing of shock ordinate values and the associated

total pressure ratio (or downstream entropy), starting at the stagnation line and

including as the last point the shock point of the IVL. This table is used with a

characteristics prograr" to ensure an exact determination of the local total pressure

(or entropy) in rotational method of characteristics procedures (Reference 3).

Zigure 7 shows the body location and s.-e, and the interpolated sonic line and

initial value line for the sphere solution shown earlier in Figure 4. In the final

output, after convergence, all the blunt body data are normalized by Rbody; there-

fore the body radius is here found to be 1.0.

3. ROTATIONALLY SYMMETRIC METHOD OF CHARACTERISTICS PROGRAM

Using the initial value line as starting data the Rotationally Symmetric Method

of Characteristics (RSMoC) program calculates the supersonic flow over the sphere-

cone body. These supersonic calculations are carried out along characteristics

starting at the shock wave and traveling in toward the body as well as downstream.

The calculation continues until there are at least two data points on each character-

istic downstream of the limit line, and one shock point is downstream of the limit

line. The limit line is a line whose slope is tan ( fr- OL ) and which passes a dis-

tance of (1-sin#i upstream of the center of the sphere (see following section on

the IVS).

The present RSMoC program represents a considerable modification of the

previous RSMoC program described in Reference 1. Some of the major changes

are:

(1) A mesh control scheme has been added to permit the calculation of charac-

teristics emanating from shock points and to control the step size achieved
on the body.

(2) A shock point routine using shock segments as prescribed by the mesh

control program.

(3) Inclusion of the limit line to terminate tho. construction of characteristics.

(4) A body point routine.

The basic numerical methods are discussed below:
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a. Field Point

The field point solution in the rotationally symmetric method of characteristics

procedure determines the properties at the intersection of two characteristics of
opposite families, using the mass-entropy method (Reference 3). A schematic of
two characteristics is shown in Figure 8.

A

FIGURE 8. FIELD POINT CALCULATION

Points A and B in Figure 8 are known points in the flow field, and point C is to be
determined. The characteristics connecting the "base points" (points A and B)

with the unknown field point are approximated by straight lines having a slope
determined by averaging the characteristic direction at the known base point with

the best available value at the unknown field point. To start the process, the
properties at C are assumed to be an average of those at A and B. Let point B be
the point situated on the right-running characteristic which lies in the b-A direc-
tion ( 6 is the local flow direction and ,u is the local Mach angle), and let A be

the point on the left-running characteristic which lies in the 6+,-. direction.

The characteristic passing through B can be approximated by

Xe_, tanlA-VC)aT (29)
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where

(~36B' -A + 6c -,uc)

and the characteristic passing through A can be approximated by

XC - t U (30)

The intersection then is defined by eliminating YC from Equations (29) and (30):

X - YA- YX -(XATA -XBTS) (31)
To -TA

Equation (31), however, cannot provide accurate answers when either TA or TB,

or both, become very large. In these cases, Equations (29) and (30) can be re-

written to use the cotangent function instead of the large values of the tangent, and

the equivalent of Equation (31) can be derived.

The compatibility equation (Reference 4) can be written as:

d0IYP d6 + I 0 on 6-)A (32)
YV sinu cosu C0o6 Y

and

_d d + C1o6 + sinb Aj- M. 0 on 6*÷ (33)
V .51")A GOSAL Go'Sf Y (3

where dL 1 is a distance along the ( A --) characteristic and dL2 is a distance

along the ( 6 +;.) characteristic. Equations (32) and (33) can then be written in

finite-difference form as:

At (TUrS)C-SS + sCi 0 (34)

V £rnAL C.OS.L C.O6XLc

and

AnP/PA) + bco- 6A + S - 0 (35)
Sin'..Lco$ji CO5)!1C
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where AL9 (x- - .

a LAC = (XA-xC A

"Solving Equations (34) and (35) for b:,

'. ,tlA-naZv w+i

(36) o

Similarly, solving for In PC,

be •P - 14 +S Z + V+ 6A - + -

__ _ _ L., 4!.L /ii LmZ", 4

(37)

ac lcomputation sequence is as follows:

S1. The properties at point C are set equal to averages of those at points

A and B.
2. The intersection of the approximations to the characteristics is obtained

from Equation (31) or its equivalent.
3. bT is obtained from Equation (36). i

4. Both sider of Equation (37) are evaluated, and the difference between

left and right sides is taken as a residual. If the absolute value of this

residual is less thi n a prescribed amount, the solution is acceptable.

Otherwise the iteration is continued.

5. If the solution is not acceptable, the new value of P0 is obtained from

Equation (37).
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The program retains corresponding values of PC and its associated residual

for the most recent positiveo and negative residual; a linear interpolation is car-

ried out for the value of PC corresponding to a zero residual. This process has

been found to speed up the convergence process.

b. Shock Point

The calculation of the extension to the bow shock wave uses the shock point and

the interpolated field point on the previously calculated characteristic, as shown

in Figure 9.

C

S~AFiE
iB

ID

FIGURE 9. SHOCK POINT CALCULATION

The equation of the shock wave is approximated locally by:

YQ -)A = an (e0A-+ec) tan(I (38)
XC- XA

The properties at point C are evaluated using the local slope of the shock wave,

tan 8C. The point B along the characteristic A-D is determined by the intersection
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of the 6 t characteristic passing through point A and the 6 + M characteristic

passing through point C. This process is identical to the field point solution dis-

cussed previously except that the properties at B are determined by interpolation

using points E and F. Thus the process is iterative in nature. Once the properties

at B are determined, the compatibility equation, Equation (35), is evaluated along

3R-C and the residual determined. Another shock angle, k, is chosen and the pro-

cess repeated. Given the two residuals and the two shock wave angles, an inter-
polation can easily be set up to determine the shock angle for a zero residual.
Using this shock angle, the corresponding residual is calculated and these shock

angles and residuals are used to generate yet another shock angle. This process

continues until the residual is less than lxlO-6.
A

Since such iterative calculations are usually oscillatory and the first few oscil-
lations may be quite wild, the first shock angle used is the shock angle that gener-

ates sonic flow behind the shock. The second approximation is taken to be the pre-

vious shock angle IA. These two values suffice to start the iteration.

c. Body Point

The body point solution musL satisfy both a geometrical equation and the con

patibility equation. As shown in Figure 10, let point A be a field or shock point

and point C be the associated body point.

A

FIGURE 10. BODY POINT CALCULATION

The line connecting A and C is described by

-• -Y n (X - XA) (39)
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For a blunt general conic nose, located as shown in Figure 11, the equation is:

y' ZR (X(+A) - B(X+&)' (40)

where A is the displacement of the nose, positive when the displacement is to the

left of the origin.

yl

FIGURE 11. BLUNT BODY GEOMETRY

Combining Equations (39) and (40) shows that:

AA (41)

where
AA- BE-r

BB 2 [M (YA-mXA) -R + B]

CC - ('A-mXA•) + ,('Ba-2R)

For the case of a body segment described by a general cubic equation I
Y - 4(x-X , CI(.X-Xo)l + 4(X-4)o + C4  (42)

an iterative solution is obtained by using the standard Newtonian method:

XW C-A YC•-_ - (X - XA)4 -

(dY"/dg)c - m (43)
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Starting with an approximate value of XC, values of YC and (dY/dX)c are deter-

mined, and used in Equation (43) to obtain a better value of X . This process

continues until no further significant change occurs in the value of 1C.

The compatibility equation applied between A and C is

N (t - 6.,A $|fl6np. 5 - ) AL c 0 (44)

For the first approximation, the residual of Equation (44) is evaluated as written

and then Equation (44) is solved for PC" This new value for PC now determines

a new residual. By interpolating, always using the two latest new values for P

and the associated residuals, a satisfactorily small residual can be easily deter-
mined in an iteration loop. :

d. Mesh Control

The method of characteristics program calculates along right running charac-

toristics, i.e., those that originate at the shock wave and propagate downstream I
toward the body. The X distance between successive intersections of these char-

acteristics and the body surface is defined as the step size of the solution. The
4step size is then a function of the length of shock increment used to generate new

characteristics. Subroutine MESH both tests the step size to ascertain its correct-

ness and adjusts the shock wave step size so that the desired body increment is ob-

tained. Upon completion of a characteristic, MESH is used to accept or reject t

the characteristic, depending on whether the size criterion is satisfied or not.

By adjusting the step size, MESH also makes certain that there is a characteristic

that terminates at the sphere-cone juncture. j
This characteristics program has two distinct modes of operation in determin-

ing the step size: normal operation and juncture point operation. The program

switches automatically from one mode to the other, as required. The specified

body step size is given the name XSTARB. For both the normal and juncture point

operation modes, MESH first calculates the step size, using the body point just

determined, and the body point on the previously accepted characteristic. This

candidate step size is stored as DXSTAR, as shown in Figure 12.
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FIGURE 12. SHOCK AND BODY STEP SIZES

For positive values of DXSTAR, the program checks to see if DXSTAR is more

than half but less than the full value of XSTARB. If DXSTAR satisfies these cri-

teria, the complete characteristic is acceptable. This is the normal operation.

For juncture point operation, the program chek'-, to see whether the distance be-

tween the laot body point and the juncture point is greater than 1. 2(XSTARb,. If the

distance is greater, the program returns control to the main program, after ad-

justing the shock segment length to provide a step size of 0. 7(XSTARB). If the

distance is not greater than 1. 2(XSTARB), the juncture point operation will occur

for the next characteristic. Initially, the shock wave segment length is adjusted

by multiplying present shock segment length by the ratio of the desired body step

size to that achieved using present shock segment length:

new =c A Sshocklst [ X bodyjuncture point (45)
new X bodylast

On the successive iterative passes through MESH, which occur upon the completion

of a new complete characteristic, a linear interpolation is performed to determine

the shock wave step size required to place the by'dy point on the juncture point:
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LA!Sshockj - &Sshocko ~~dJtp

ar~shocki+l U iSshocko + A Xbody I-AXbdyjC~yntp -AXb~dy0

(46)

When the program starts calculations from an initial value line (IVL), the IVL

itself sets its own mesh size. There is no connection between mesh size in the

IVL region and that requested by the user for the segment of the body downstream

of the IVL. After the IVL has been used to generate a complete characteristic, the

final step size in the IVL region is compared with that requested for the appropriate

body segment. If the requested step size is larger than that generated in the IVL

region, the rate of growth of the body step size is limited to a factor of 2.0.

e. Sample Results

Figure 13 shows a rotationally symmetric method of characteristics calculation

carried downstream from the IVL given in Figure 7. Each point on the IVL gene-

rates a characteristit which moves inwards and downstream until it terminates on

the body. After completing the IVL-spawned characteristics, the mesh control

option is brought into play. Under this option the bow shock wave is extended and

a characteristic generated to provide the desired step size along the body.

These calculations are carried downstream until two points on a characteristic

lie beyond the limit line, which is the sphere-body juncture rotated clockwise about

the center of the sphere by an angle equal to the angle of attack.

After passing this limit line, another mode of operation comes into play. This

mode takes the final shock wave increment used to calculate a characteristic ter-

minating on the body, and increases it by 10% for each subsequent characteristic.

Each of these characteristics now terminates with a field point when two field points

lie downstream of the limit line. This mode continues until a shock point is calcu-

lated which lies downstream of the limit line. This process can be traced in

Figure 13.
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4. INITIAL VALUE SURFACE INTERPOLATION PROGRAM

Having calculated the complete flow field about the spherically capped, cone in a

wind-axis system in interpolation is carried out along specific lines to estermine

the properties in each meridian plane in a body-axis system. Each line represents

the sphere-body juncture rotated clockwise about the center of the sphere by an

angle jS which is a function of the desired meridian angle and the angle of attack.

When these interpolation lines are rotated about the wind axis, -they will form a,

plane normal to the body axis.

Figure 14 shows the constant body station plane oriented by a&wind-axis system

at an angle of attack, O. A meridian plane is located by the angle WP in the. wind'-

axis system. From the geometry it can be shown that:

"Cos" i _____- (47)

sirt I -=Wlanoaeos (48)

where • will vary between the, limits of -:CC. Note that the angle • is measured

away from the vertical axis in the wind-axis system.,

In Figure 13, the interpolation lines are shown for seven meridian plaýes. The

flow properties are determined by linear interpolation at the intersection of each

line and each characteristic. From Figure 13 it is seen that different lines end up,

with different numbe. -s of interpolated points. Using these interpolated data, a

second interpolation is carried out to provide the same number of points on each

line, the number being the number of rings specified- by the user. The geometry

of the resulting surface for the case shown in Figure 13 is shown in Figure 15,

where the number of rings specified was' ive. This initial value surface can be

used for a blunted cone of 25 half-angle or a slab delta wing with 65 sweep, at a

Mach number of 8.8 and an angle of attack of 150.' Figure 16 shows anothbr solu-

tion, this time for a blunted, cone at Mach 14. 9 in helium at 200 angle bf attack.

The interpolation lines for 11 meridian planes are shown in this figure, and the re-

suiting geometry is shown in Figure 17.

3I1
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SECTION IV

THE THREE-DIMENSIONAL METHOD OF CHARACTERISTICS

The original three-dimensional method of characteristics has been revised ex-

tensively. Many new approaches and procedures were used and included (Refs 5,6).

An up-to-date description of the method and computer program is presented here.

A
1. EQUATIONS AND ANALYSIS

The general compatibility relation for three-dimensional steady flow of a real

gas in equilibrium is derived from the fundamental flow equations. In terms of

pressure and flow direction angles, this relation applies to both isoenergetic and

nonisoenergetic flow.
|I

a. Fundamental Equations

The equations for steady inviscid flow are

S÷ Vp = o (49)

+.VP - 0 (50)

- 0 (51)

where 4 is the velocity, (3 the density, P Lhe pressure and s the specific entropy.

The gas-dynamic equation,

alv - 0 (52)

where a is the speed of sound, is not restricted to isoenergetic flow; however,

since it is sometimes derived for a uniform freestream (isoenergetic flow) only,

a general derivation is given below.
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Consider P=P(p, 8); since VP= (OP/Op),vP + (OP/OS)evs we have

q.vP - a2 'q.vp - o (53)

where

at (P/p)s

by virtue of Equation (51). Substitution of Equations (49) and (50), and the

identity

vq = (,vx ') x +v (q2/z)

into Equation (53) leads to the gas-dynamic equation (52). In rectangular coordi-

nates Equations (52) and (50) are

(u 2- a') u, + (vW- a') vy + (w -a) wz +

UV (VX u+LY) + VW(Wy+VX) + WU (UzWx) + O 0

UUX + vuy + wu + Px/P -0 (54)

UVx + VVy + WVI P•/P o

tWx + VWy + WWI + Pt/p -o

where subscripts x, y, z denote partial differentiation.

b. Derivation of Compatibility Relations

A characteristic surface allows possible discontinuities of the first derivatives 1

of flow variables in the direction of its normals. Given initial data on such a sur-

face, the normal derivatives of flow variables are not uniquely determined by

Equation (54). Applying the methods of Reference 7 by setting the x and y axes

tangent to a characteristic surface at the origin and solving for wz in terms of u,

v, w, P, and their derivatives with respect to x and y, we obtain w =det[NI/det[D]

where
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Iu v (a W-U)U.x * (a1-v 1)vy - LLV(uxw.vx+uy) -W(UWV+VWY)

det[N] - 1 0 -U.*1 x VUy -"c/p

0 1 -UVx - VVy -PY/P

ar

U. V W -'8

det [D] 1 0 0

0 1 0

Since the x and y axes are set tangent to a characteristic surface, the derivative w

is indeterminate. A necessary and sufficient condition for the indeterminacy of w
zis det[D] =0 and det[N] =0. The first leads to w = :ka (the usual Mach cone), where-

as the second yields the compatibility relation, where w is replaced by k a

a&u. + a"vz (vFa wy+u,) + (vPy 4. uP)/() 0 (55)

When the y-axis is chosen to coincide with a generatrix of the Mach cone (a bichar-

acteristic), u vanishes and Equation (55) reduces to

a8uLx + avVy * avwy + vPy/e = 0

or

Ux + Vy * co wy + g coSpy (56)
pa: az

Equation (56) is written in a local, characteristic-oriented coordinate system.

For computational purposes, it is practical to relate it to a fixed spherical coordi-

nate system, as shown in Figuro 18. The y-axis is replaced by the L-axis in a

bicharactertstic direction; the x and z axes, by two orthogonal axes N and M, re-

spectively. For a small, but arbitrary, change of velocity (&q, &G, &Y') the cor-

responding change of velocity components Au, Av, and Aw along the N, L, and

M axes is, to the first order of Aq, 6#, and AVI:
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au qsin6t•# c+ snecosbraV

& V =cosA A q - qc 6sin)jLa# + qstrnGsin6siniu~ av

&wu *stflAA&q qc* 6cw e * s~moAa

The partial derivatives of u, v, w with respect to N or L have the same forms as

given above; hence

LLO= qsinbG. + qsmn.cos6 V,,

VL -CO5$qLcj, - qcosb6sifuL..& + qsnsnsnLI (57)

WL = 6I•nAqt. qcosbcosukLQ L qstnesin 6 cosu...1P•

Substituting Equation (57) into Equation (56), we finally obtain

si;AosA iflco5p. COSA

(58)

where subscripts L, N denote partial differentiation; a is the speed of sound, (0 the J

density, Au the Mach angle, and 6 is defined in Figure 18. Equation (49) is valid
for either isoenergetic or nonisoenergetic flow; the difference is the constants of

the Bernoulli equation. For the present application, air is assumed to be a perfect

gas for which 01 is equal to vP, where V is the ratio of the specific heats.

Equation (58) and the Bernoulli equation are used to determine the supersonic

flow field. A number of numerical schemes have been proposed for solving Equa-

tion (58). It can be shown that many of these schemes introduce difficulties into the

solution by their methods of approximating Equation (58) in finite-difference form

(Reference 8). However, in this work a simple form of the generalized finite-

difference approximation presented in Reference 8 is used.
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c. Field Point Solution

This simple form of the generalized finite-difference approximation is illustra- I
ted by the field point solution shown in Figure 19. A field point is an interior point

away from the boundaries. At such a point, given an initial value surface, Equa-

tion (58) in finite-difference form along three bicharacteristics passing through
this point can be solved for P, 19, and Vp; however, in the present formulation,

one more bicharacteristic is added for accuracy and numerical stability, as shown

in Figure 19.

Thus, in finite-difference form, Equation (58) can be written

AiP* + BIG* + CiV = Di {L i.4} (59)

where
A- a in~l cosXL/Cw'P)

Ci sing sin b,.

Di " AiPt + BjOi + Ci"4i - (Sinbij", + sinrco4i. WN) slnjALL

and the double summation convention is not used in Di. The barred quantities are

average properties between points i and 0, and Li is the distance between points

I and 0; 61 is calculated using the average flow direction between points I and 0

(see discussion in subsection 2. c). As in Reference 8 we define a residual function
4j

n I(AiPo Bi* + C1 - A)"

and seek a solution for PO, 60, and V. that minimizes the residual function 1 .

Differentiating 1 2 with respect to P., 8, and •, and setting the results equal

to zero yields
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4 4 4 4
PotAiBi + joB•j' + V oEBCL E -• D (60)

Jai jal 1i it
4 4 4 4 3

POE AjC + 80EBjQ + Voc0 - 0ADL
tat ai- tat i-t

which can then be solved for P., #o, and Vo.

d. Body Point Solution

A body point is a point on the surface of the fuselage. At such a point, as shown

in Figure 20. the flow must be tangent to the surface; hence at the new body point 0

fbSMGooCOS5V + Mbcoso +11b sifnlo5•inf = 0 (61)

where ( 1b, mb, nb) are the direction cosines of the normal vector to the surface

at the new point. Since the tangency condition (61) relates the flow angles 0o and

V0, two bicharacteristics are sufficient for determining P., Go, and fo. However,

INITIAL-VALUE
SURFACE
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it is apparent from Figure 20 that three bicharacteristics are available and the

choice of a specific pair will have a strong influence on the results; thus the addi-

tion of a third bicharacteristic is both natural and desirable.

This then becomes an c-'rtremal problem with the tangency condition (61) as a

constraint. The original procedure was to differentiate the residual function 11,

with respect to PO and YO, considering t% as an implicit function of *0 through

Equation (61), and then set the results to zero. This led to a transcendental equa-

tion which had to be solved by an iterative process. In the early stage of revision

St of the 3DMoC program, this process occasionally led to an unwanted root. This

difficulty was circumvented by a new approach which, in effect, reduces the non-
linear equations to linear ones. Indeed, if we consider the special case mb , we

obtain the desired solution. 0 = I" 2 from Equation (61) immediately. The finite-

difference forms of Equation (58) -long three bicharacteristics are then

I

and the minimization of the residual function

jutj

leads to the following equations which are linear in P. and *0:

b!

R A1'A 4 V. E A. C. ~AiD1 -i t

3 3
1PO~ii 'P.LUCL = E CiUI Ej1 jC%
Sje Lal

These can readily be solved for P. and IP.. For the general case, mb =1, the samebI
analysis applies after rotating the local coordinates2 to make mb = 1. After the so-

lution is obtained in terms of the velocity components u, v, w, and the pressure P,

the solution is rotated back into the original coordinate system.

2 Since Equation (50) relates the pressure P to the local flow angles # and V, it can
be solved using any suitably chosen local coordinates.
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e. Shock Point Solution

While the field or body point is calculated along a streamline, the shock point
3Iis calculated along a two-dimensional-shock line3 , as shown in Figure 21. At a

point on the shock, the flow must satisfy the oblique shock relation

tan = ÷ - (t-O J (62)

where A0 is the flow deflection angle across the shock wave and L=PO/16 is re.-

lated to and V through

s 5 sin0 o cos V + ?no cos 1. V+ . rn 9in =o COS Ao (63)

where (I, m, ns) are the direction cosines of the freestream velocity vector.

This again is an extremal problem with a constraint C (Pe, , VO) = 0, given

parametrically by Equations (62) and (63). In the original program the usual pro-

cedure of minimizing the residual function led to simultaneous nonlinear equations

which were difficult to solve, even numerically. However, by applying the same

technique of choosing appropriate coordinates, the set of simultaneous nonlinear

equations can be reduced to a single transcendental equation, as is shown below.

When the angle of attack is -zero, the freestream direction is aligned with the

Y-axis. In this special case, ms = 1, and 00= ,& is the desired solution of

Equation (63); the constraint red-ices to

t G. to ) [ 2YM2+- (t - (+ lto (64)

relating t,= PO/P1 to B only. Three bicharacteristics are used for twe shock

point solution, as shown in Figure 21, and Equation (58) assumes the finite-

difference form

'A plane that contains the freestream velocity vector and the downstream velocity
vector at a shock point is called a "two-dimensional-shock plane." (Figure 21b).
On the shock surface, a line that is everywhere tangent to the two-dimensional-
shock planes is called a "two-dimensional-shock line".
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FIGURE 21. TWO-DIMENSIONAL-SHOCK PLANE AND SHOCK POINT

COMPUTATION
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Ai. + ¢B1#0.o = {o Di in 1.3}

where AV, B1 , C, and Di are given in Equation (50). Again we minimize the resi-

dual function

3

by differentiating it with respect to Pe and V0, considering # as a function of P.

through Equation (64), and setting the results to zero to obtain

3

(CAi + Bi NO/P) (AiP+ ÷Bio + C -AL) - 0 (65)
Liat

3 3 a 3 *1

P. E Ai CL + 0 .±E(SA + V.LA4L L i Dt 0 (66)
LIRS in1 1.1Le

Equations (64), (65), (66) are solved for P6, k, and 7%; substitution of Equations

(64) and (66) into (65) leads to a transcendental equation for Pe alone, which is then

solved by the Newton-Raphson method. When the angle of attack is not zero. the

coordinates are rotated until the local Y-axis is aligned with the freestream velocity.

This makes m. = 1 and the same analysis holds. After the solution has been obtained

in terms of the velocity components u, v, w, and the pressure P, the solution is

simply rotated back into the original coordinate system.

2. NUMERICAL PROCEDURES

a. Constant Body Station Data Surfaces

In the original program, conputation proceeded along outgoing bicharacteristics

and streamlines. One drawback of such a characteristic network is that the data

surfaces become more and more distorted as tha computation proceeds downstream.

Eventually the distortion (or warping) of the data surfaces makes their use imprac-

tical. This happens much sooner in highly three-dimensional flows. These warped

surfaces also make the interpolation of data or rearrangement of data points fairly

complicated, as many interpolative operations in three dimensions must be made.
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In the new program, constant body station data surfaces (Y=constant) are used.

Each data surface consists of a number of data rings, with the first data ring on the

body and the last Jata ring on the shock. All data rings have the same number of

data points.

The advantages of the new network are:

1. Data interpolation is simple and two-dimensional.

2. Rearrangement of data points (which is essential even in moderately three-

dimensional flow) becomes practical because of simpler interpolation.

3. The Courant-Friedrichs-Lewy (CFL) stability condition can be readily

applied because the network is two-dimensional and more regular.

4. The extent of flow field to be computed can be easily determined; one does

not have to figure out where to begin the right running characteristics or

how far a particular characteristic will reach.

5. The mesh size is more uniform, unlike in the old program where the dis-

tance between two adjacent data points may become urnsually large because

of warping of the characteristic network.

6. The geometric normal to the shock surface is simple to compute and this

makes the important shock drift control practical.

b. Base Point Location

Referring to Figure 19, points 1 to 5 are the data points to be used for compu-

ting point 0 on the new data surface. Points 1' to 4' are the base points, which are

the intersections of the backward-facing Mach conoid with the data lines. To find

the location of a base point is one of the basic operations of the 3DMoC program.

The location of a base point was an involved and sometimes troublesome opera-

tion in the original program. The coordinates were rotated to a local system before

the intersections of the data lines with the Mach cone were determined. The cor-

rect choice of one intersection was made and the coordinates were rotated back to

the original system. No general logic was available to guide the choice of the in-

tersection, which sometimes caused trouble. The new method described below

has made possible a simple, direct, and unequivocal determination of the base

point location in the new program.

Figure 22 shows data points 1, 2, 4, and 5 in the upstream surface, and the

new point being calculated, denoted by 0. The vector from 5 to 2 is " and the
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vector from 5 to the unknown base point 2' is 3t. Point 5 is the origin of the stream-

line through point 0, and is called the hub point in the following discussion.

4

5
ab

2 q

FIGURE 22. GEOMETRY FOR BASE POINT SOLUTION

Let e Lfa, where L =x/a is an unknown to be determined. In Figure 22 the
vector c7 is defined by

(67)

Let q be the unit vector in the average flow direction and 1 be the average Mach

angle between points 2' and 0; then

cc'q f (-a. (68)

or

(b'-Z~*�'L. .+ a z)cos'A. - (S .q(69)

which is the same as

ALO-2BL +C - 0 (70)

where
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-AA = a2cos' - (a'.-)

C V cos2 A - (;.')2

The roots are

L 1 (71)

The following is a summary of the logic for the choice of the correct root.

I. If A>0, the vector defined by -aintersects both sides of the forward-facing

Mach cone. Two subcases must be considered.
(1) If C<0, the hub point (point 5 in Figure 22) lies inside the Mach cone. The

positive root is the desired one, and corresponds to the use of the nega-

tive sign in the expression above.

(2) If C >0, the hub point lies outside the Mach cone, and two subcases are

possible.

(a) If B<0, there are two negative roots. The larger root is the desired

one, and corresponds to the use of the negative sign.

(b) If B>0, there are two positive roots. Again the larger root is the

desired one, and therefore the negative sign is used.

II. If A<0, the vector defined by Tintersects one side of the forward-facing Mach

cone and other side of the backward-facing Mach cone. Two subcases exist.

(1) If C< 0, the hub point lies inside Mach cone, and two subcases must be

considered.

(a) If B<0, there are two positive roots. The smaller root is wanted.

Therefore the negative sign is used.

(b) If B>0, there are two negative roots. Neither root is acceptable.

A failure message should be printed and the calculation terminated.

(2) If C>0, the hub point lies outside the Mach cone. There are two sub-

cases.

(a) If B<O, the negative root is wanted. Therefore the negative sign is

used.

(b) If B>O, neither root is acceptable. A failure message should be

printed and the calculation terminated.

49



___ 7 7. .. .. _7 .-. ,T

III. If A = 0, the vector defined by Tintersects only one side of the forward Mach

cone. The same subcases exist as in II (i. e., take the negative sign) with

the exception that there is only one root.

Therefore, except when A<0 and B>O (which requires the selection of another data

line), the negative sign is always used. Extrapolation occurs when L is not in the

point is simple. For instance, the pressure P2 , at point 2' is given by

SP. + L (P.L - P5 ) (72)

c. Basic Solution Procedure

The numerical solution is carried out in a series of data surfaces which are

perpendicular to the Y-axis. Given an initial value surface, flow properties are

computed at points on the next surface through an iterative procedure, following

streamlines for the body and field points or following two-dimensional-shock lines

for the shock points.

This procedure is illustrated by the field point computation. Referring to

Figure 19, the location of the new field point, point 0, is determined by use of the

average flow direction between point 0 and the field point on the previous data sur-

face, point 5. In the first iteration, the properties at point 0 are assumed to be

the same as those at point 5. Then the location of the base points 11 to 4' and the

flow properties at these points are determined by the procedure described in the

preceding subsection 2. b.

After the four base points are located, corresponding to assumed properties

at the new point 0, the coefficients A., B., C., and D. in Equation (59) are evalu-

ated. The angle bi (see Figure 18) is determined by

A A A (73)
cosbi - !x (IQi 'N) (73)

_A -,*

where N = x L ; sinb. is given by

5in b - d (6L C=5 60)12 (74)

which takes the same sign as that of L. (qI xi). The derivatives NW and V. are
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obtained from

v',4 -v

The computation of 170 and VI can be illustrated by evaluating V# for the first

bicharacteristic. We note that

#..O " -X2Xa 4 (YO-Yi) + 2.

•o- •, -• X-XV,) + •(Yo -y',) + '6(Zo-Z1,) (5ax a

whic are soXve (Xr Xd.) + d8 Y'

which are solved for and d., the three components of V 0.
dK' dYf dl'

Having evaluated the coefficients Ai, Bi, Ci, and D. we solve Equation (60)
for the properties Po, 0o, and "VO, which are then used to relocate the new field
point and the corresponding base points for restarting the iteration. This process
is repeated until the difference between two successive iterations is less than a
specified value for each of the quantities P., 0., and ?#o. Body points and shock

points are computed in an analogous way.

d. Interpolation of Data at a Base Point

In the original program, a second order Lagrange interpolation was used to

determine the flow properties at a base point. At an inflection point on a plot of

a certain property versus distance, such an interpolation procedure leads to dif-
ferenc values of the property at the same abscissa, depending upon the trio of
base points used, as shown in Figure 23.

In Figure 23, it can be easily seen that the different values PP and PP2 are
obtained by interpolating, using three points centered on point 01 in one case, and
on point 02 in the other. This discrepancy was responsible for some of the troubles

encountered in the original program. In the new program, linear interpolation is
used to determine the properties at a base point. Comparison of numerical results

with experimental data has shown that this simple interpolation is satisfactory.
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FIGURE 23. INFLECTION POINT IN THE DATA

Accuracy can be improved by decreasing the mesh size. Since a great number
of iterations for properties at the base points are required in the flow field compu-

tation, the increase in computing time due to the increased number of data points

is offset by the decrease in computing time due to the simplicity of interpolation.

e. bcep Size Control

The Courant-Friedrichs-Lewy (C FL) stability condition, which states that the

domain of dependence of the difference equation must contain the domain of depen-

dence of the differential equation, is generally used in numerical integration of

hyperbolic equations. Since the data surface will be flat and the network fairly

regular, the C FL condition can be applied easily. In the base point computation

the position of each base point will be checked for satisfaction of the C FL condition.

This is simply done by noting whether the factor L (see base point computation) is

less than 1/%1f2 -0. 7, If this co-4ition is satisfied at every base point on the data

surface, the step size will be increased by 5%; otherwise, the step size will be

decreased by 10%.

The new program also allows changes in the grid size by assigning different

numbers of data points in different flow regions. The total number of data points

per data ring can be assigned for data surfaces between two Y values. In addition,

the lateral grid size can be halved between two assigned data points along a data

ring. It was found very useful to halve the grid size in regions of high lateral

gradients, or high rates of change of gradients, such as the region near the leading

edge of a wing.
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Notice that the longitudinal step size is influenced by the lateral grid size

through the C FL condition. Therefore, by assigning the number of data points

and the use of the half-size grid, the downstream step size can be controlled in-

directly.

f. Respacing of Data Points
Since the network of data points is built up following streamlines, and stream-

lines tend to converge on the lee side of bodies, the data points tend to crowd to-

gether in the same region after a number of steps. Since the CFL condition has to

be satisfied everywhere, this region determines the step size. Even in a moder-

ately three-dimensional flow, the step size may be seriously reduced after a cer-

tain number of steps, and a rearrangement of data points becomes necessary. In

the new program, the flat data surfac( makes rearranging data points practical.

Cubic spline interpolation is used to rearrange the data points twice: once along

the data ring (i.e., in the circumferential direction), and once across the data

rings (i. e., in the radial direction). Rearranging data points helps in the numeri-

cal stability of the computation, and also results in a more even distribution of

Iidata points and hence better accuracy.

As the distance between the shock and the body increases, the distance between

two data rings becomes much greater than the distance between two data points.

When this condition prevails at every shock point, the program will automatically

introduce an additional data ring as the data points are being respaced.

g. Shock Point Drift Control

In three-dimensional supersonic inviscid flow compvt-tions the shock wave is a

free boundary to be determined during the computation. As such, it is subject to

drifting. Experience has shown that, as the number of steps increases, the shock

normal determined from the local flow properties gradually deviates from the geo-

metric shock normal until a failure occurs. This shock point drift is shown

schematically in Figure 24.

In the new program, subroutine HARNES is used to control the shock point

drift. After a shock ring has been calculated, the shock normals determined from

the flow properties are averaged with the geometric shock normals at every shock

point. The average normals are then used to recompute the flow properties at the

shock points. Experience has shown that, although the average normal differs
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FIGURE 24. SHOCK POINT DRIFTj4

only slightly from either of the normals (which justifies the use of the average

normal), the shock point drift is effectively checked.

h. Calculation of tN and 1 for the Field Point

In the original program, a least squares process was used to obtain the average

gradients for 0 and VP, using the values of 0 and V at all four base points and

the new point. The quantities ON and Y at each base point were then evaluated
using these average gradients. Since, ideally, the local gradients of 0 and V', av-

eraged along a given bicharacteristic, should be used to evaluate ON and V, the
process using only one set of average gradients for the entire Mach cone is inaccu-

rate. In the new program, the local gradients of 6 and V are obtained using only

three of the base points and the new point for each bicharacteristic, as illustrated

by Equation (75). Thus each bicharacteristic has its own 7 and 7V values to be

used in forming 0p and 'P
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i. Treatment of Undefined 6 and

The direction of the local velocity is defined by the angles 0 and V, while the

direction of a bicharacteristic is defined by the angle 6 (see Figure 18). The

angles b and V become undefined when the local velocity vector is aligned with

the Y-axis (i. e., 6 = 0 ).

In the original program for computing the flow field over a slab delta wing, this

occurred on the flat surface at the plane of symmetry and was "fixed" by replacing

thp. flat center section by a wedge slope of 0.010. While this fix was satisfactory

for the slab delta wing, it was not a general solution to the problem. In the new
program, a built-in logic package rotates the X and Y axes counter clockwise

around the Z-axis through 0.1 radian when the program detects a small value of

The rotation could be repeated, when called forth by a small value of 0, as many

as 16 times. This device has worked very well.

i5
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SECTION V

RESULTS

Both the IVS program and the 3DMoC program have been tested on a number of

flow field computations. The results of two test cases are presented here. The
0

first case is the flow of helium over a blunted con- of 15 half-angle at Mach 14. 9

and 200 angle of attack. The second case is the flow field about a slab delta wing

of 700 sweep at Mach 9.6 and 150 angle of attack. In both cases, good agreement
between computed results and available experimental data was obtained.

1. BLUNTED CONE AT LARGE ANGLE OF ATTACK

To test the program's ability to handle large angles of attack, the first test
0case is the flow over a blunted cone of 150 half-angle at 20 angle of attack. The

freestream Mach number is 14.9 and the medium is helium, which has a ratio of

specific heats of 1. 6667. This is a severe test case, since the lee side of the cone

lies completely in the shadow region of the freestream.

The body description of a cone is very simple. Since the cone is a slab delta

wing without the flat sections, the same body description subroutine was used.

About six minutes of CPU time were needed on the CDC 6600 computer for calcu-

lating the flow field to 75 nose radii downstream.

The computed shock shape is shown in Figure 25, and is compared with the

experimental data of Reference 9. The agreement is very good. Reference 9 also

presents the flow field calculations of Reference 10 which failed at about 10 nose

radii downstream. Envelope shocks may occur on the lee side, but in this case

they are apparently very weak and the present method is capable of calculating

right through them without special treatment. Figure 26 is a comparison of the

calculated pressure with both experimental data (Rp.ference 9) and other calcu-

lated data (Reference 10). No essential disagraement exist between the two

methods up to 10 nose radii downstream, as both agree quite well u ith the experi-

mental data. However, on the lee side, the present method is not restricted in its

downstream extent.
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2. SLAB DELTA WING AT ANGLE OF ATTACK
0

The second test case Is the flow field around a spherically-capped 700 sweep

slab delta wing with cylindrical leading edges atMach 9.6 and 150 angle of attack.

The computation was carried out to 12. 5 nose radii, downstream, with a CPU time

requirement of about three minutes on the'CDC 6600 computer. Experimental data

were obtained from Bertram's work (Reference 11) 'for M = 9.6 in air., Figure 27.

shows the profile and the front views of the calculated bow shock supported by the

slab delta wing. The cross section is smooth and cbnvex everywhere. Figure 28

shows the plan view of the shock surface. Note that the shock wave has a point of

inflection near the last calculated station. This means that, somewhat further

downstream, the bow shock will bend away from the leading edge. This phenome-

non can be seen in Schlieren photographs of Reference 11.

The centerline pressure distribution or. the windward surface is compared with

experime&•0al data in Figure 29. The agreement is very good. Figure 30:compares

pressure distributions along planes normal to the wing's leading edge with experi-

mental data. The abEcissa is the, ratio'of distance along the surface to wing thick-

ness. The positive values of S/t refer to the windward side; the negative values,

to the lee side. Very good agreement is seen, although the 4uality :begins to decay

on the expansion surface near the leading edge toward tile end of the wing. This

could be due to viscous effects. Nevertheless, fairly good pgressuro data agreement

is obtained on the lee side of the wilug (negative S/t),, even thbugh the priesent numer-

ical method does not account for vortices which exist in the real flow.
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SECTION VI

CONCLUSION

A new version of the three-dimensional method c" characteristics has been de-

veloped to calculate the steady supersonic inviscid flow arouid smooth three-dimen-

sional bodies at general angles of attack. Many new approaches and procedures

have been devised and incorporated to improve the numerical method and the com-

puter program. Flow fields over various body shapes under different freestream

conditions have been calculated. The computed results were compared with avail-

able experimental data with good agreement as exemplified by the two test cases
presented in this report.

It has been proven that the new three-dimensional method of characteristics,

which is efficient, accurate, and versatile, is an important tool for flow field anal-

ysis and vehicle design. Possible extensions include the treatment of bodies with

surface slope discontinuities, su;n as the compression or expansion corners, and
the calculation of embedded shocks resulting from fins and canopies. The basic

schemes for calculating the embedded ihocks have been conceived and are ready

for development.
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APPENDIX I

EVALUATION OF THE COEFFICIENTS FOR A CONIC SECTION

The general equatior, of a conic is

aY 2÷ bXY + cX 2 + ziY + cX + f no (1)

This can be Arranged into a more suitable form

YM PX . RxZ4Sx'T (2) i!

By factoring Equation (1), the following combination of linear equations can be

derived:

K Y - tntX -hXY- M3X- H3) + (Y - mzX - hj)(- m4% - h4) =0 i

(3)

where m1 , m2 , --- , h4 , and K.are constants to be evaluated. Note that Equation (2)
has five coefficients. Thus, a general conic can be passed through any five points
not lying on a straight line; in some cases the results will be two branches of a

hyperbola. Therefore, given five points in a plane, as shown in the sketch below,
the first four can be connected by straight lines. These lives are defined by the

slopes, mi, and the constants, hi, and these are evaluated using the ordinates and

abscissas of the four points.

~m, oh,
L i

x
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If point 1 is substituted into Equation (3), the result is identically zero, since

point 1 was used to evaluate the coefficients m1 , h1, mi2 , and h The same argu-

ment holds for point 2, 3, and 4.

The value of K can be established by evaluating Equation (3) at point 5 to obtain

the following result

(K =mXs - - m4 X5 -hg)
( Y5 - m X5 - ht) ( YS - mSXS - hs)

By expanding Equation (3) and collecting like powers, it can be shown that

Pm -B/2A

Q - -D/2A

R = Pa- C/A
5 = -PD/A - E/A.

"T= •= F/A

where

A- K+I

B - - [K(m.+ r'n,) + m., +m41

C= Kmims + mtm4

D" -(K(h, + h3 ) + hz + h4 ]

E =K(m-h + msht) + m2 hg1 + m 4 h2

F - Khth + hS h4

and the sign of the radical must be determined by evaluation.
To determine the coefficients when four points and one slope are given, let the lo-

cation of points 1 and 2 coincide, with m 2 being the given slope. The remainder of

the analysis follows identically.

For three points and two slopes, let points I and 2 coincide and points 3 and 4 co-

incide, with the given slopes being mi2 and m4 . T'he rest of the analysis is the

same.
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Two special forms are worth noting:

A straight line has the coefficients

P- slope

Q - conrtant

R-S-T-O

A circle with its center at the point (X0o Yo), has the coefficients i

P-o

Q" XH
R--1

S5= 2Yo
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APPENDIX II

SAMPLE BODY DESCRIPTIONS

1, SLAB DELTA WING WITH 70 SWEEP

SIDE VIEW
z

Line (

Line 7

LineO I
III III

TOP VIEW

x 10
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LINE)-

[ eRegions I and I: 05Y<1

€+~~ 7 -0

I -

U 
i "

*Region Ill: 1 ig Y 9 7

x- (tanZO),Y (-ta.20)

LINE (9)

eRegion I: O'< Y< (1-sin200)

Z"0

*RegionsIIand II: (1-sin20°);5Y-7

0!

- (tan20°)Y +(cos2o°- tan20 tan2O0 rn O2)

LflJE 0!

0 Regions I and II: 0Y< 1

13 0

eRegion Ill 1: y;5

X3 - (tan O') + (-tan o2)
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Thus, the coefficients P, Q, R, S, and T are as follows

9 Region I O~gY< (I -en2O 0 )

.04-

pi0 as=- 0 S3 2 T3- 0

P4 = Q04=0 R4 4= 4= m

3M 0= 0 RS=- 0 S6 a Ts =0 SGSin.0P6 M 0 Qi 0 (

P' 00 R5 = 0 85= 0 T S 5

oRegionliH (1 -sin 2O0())5Y< 1

change to the following

PS- (tanuu ZV -5 ucOSMwIanT tanZ018flZ)

R•_=0 55 0 ii0

oRegioni111 1;9Y 97

change to the following

SReM 0 Qo I R0 - 0 St 0 T-i- I° f ,0

" M Q3 = IR 3 =0 S 0 T3 = wmmmm

P4 -0(tan26) Q4" tan " 0 R " 0 0 mT4  n0

=-(tan2T) G,= 0 =(-tan2Z0) F 0 6 6* 0 m6( l

Ps=o--o s -o r-tgm:=,••

"RWhen the numerical value of the square root is identicaly zero, it is best to
assign +1 to T and 0 to SG, so that the SQRT function will not generate an
error message.
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2. BLUNTED 15° CONE

I -

Y

Region-i I

SIDE VIEW

Note that for the blunted cone, lines ® and ® both lie ini the plane of symmetry.

LINE 

I0 Region 1: 0_ OY< (1-sin150 )

a -Y

,Xi= 0

0 Region II : G 1sin 150) _9 Y_ 5

a ,(tan 15")Y + (cos J50 - tan 15 + tanr5sinl5°)

X-0

LINE ()

a RegionT: 0 ; Y< (1-sin150 )

270
X2 +. ya2Y
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eRegion i: (1 - sin 15 0 ) 9 Y;9 5

Z"0

X- (tan 150)Y + (cos t15 - tan15D + tanlsnt5°)

LINE q)

*Region I: 0 fY< (1- sin 15°)

4 .- jY + 7_7

e Region : (1 -sin 15 0 ) - Y 95

Z - (-tantI5)Y - (cost5°- tans1÷ +tan isrnW5)

X3 " 0

Thus, the coefficients P, Q, R, S, and T are as follows:

*Region 1: 0_ 9Y< (1-sin150 )

P,= 0 Qia" 0 Ri- -4 St" 2 T1 = 0 , = +1

PW= 0 Q,- 0 Rz= 0 52- 0 T2  I SG 2 = 0

P3 - 0 aQ- 0 R3 = -1 S3 = 2 T-= 0 SZ,3 = -I
P4 - 0 Q4 - 0 R 4  0 54 0 14 - I SG= 0

PS 0 Q=- 0 R5 =-t 5S= 2 TS- I s- +1

P6 0 Q6= 0 R(,= 0 6= 0 T(- ^( 0

*Region II: (1 -sin15°) Y9 5

change to the following
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P1 (tan 1501) Q1 -(co615 - anI5 + tanl5ssn15O)

'Ri 0 u 0 Ttu 56 G= 0

P3 - (-an IV) Qs- -(Cos150 -tan 150 + tan150sin 15)
RS1 O S3- o T 3 - SG5 =0

P5 -(tan is) Qs- (coe,15*- WnlW + tant5.si 00)
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