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ABSTRACT

A method of analyzing laminated-composite, linear-elastic plate and
shell structures has been developed based on the hybrid stress finite-element
model. Flat-plate elements are used for both plate and shell structures.
Three quadrilateral elements designated by ELEMl, ELEMZ, and ELEMR, all with
linear in-plane boundary displacement and linear in-plane stress assumptions,
are chosen for use. Transverse shear deformation effects and rotary as well
as in-plane inertia are included in all of these elements. The ELEMl element
can be applied to single-layer thin or moderately thick plates and shells.

The ELEMR element can be applied to multilayer thin plates and shells, and the
ELEMZ element may be used to analyze single-layer or multilayer, thin or thick

plates and shells.

The stiffness matrix, mass matrix, and equivalent thermal loading vector
of these elements that are used in static, vibration, and thermal stress
analyses, respectively, are developed and applied to analyze various plate and
shell problems. Comparisons of resuits are made, whenever possible, with other
existing solutions. This present method of analysis provides accurate, effi-
cient predictions of (a) displacements and stresses under static or thermal
loading and (b) natural frequencies under free vibration. The method developed
in this study can be v.sed as a reliable tool in structural analysis and design;
it can also be applied to explore material property characterizations and

selections for laminated composite materials.
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" SECTION 1 '

INTRDDUCTION

1.1 Purpose of the Study
¥

In the uesign of structures consistiné of 'layered-fiber reinforced com~'
pcsite materials, a wesigner is often faced with the problem of a complex,
structure subjected to complex loading conditions. The §trpcture is usually
in the form of combined shells and/or plates. The loadihgs may include static,
vibratory, and/or transient mechanical loading a5 well as thermal loads. 'In
order to assure that the structure can sustain various loéding conditions
without inducing failure of }ts normal functions, the desiyrer muﬁt choose the
most appropriate composite mﬁteriél, and ﬁetcrmine the appropriate dimensions
and configuration of the layered composite material. Therefore, reliable
analytical tools are neéded {1) to predict the behavior of a tents -ive degign'
and (2) to improve, if necessary, a.tentative design based on detaileq anélysis.:
More specifically, the designer should be able to predict (1) the stress and/or
strain distribution at any point within the layered composite and (2) defleg-
tions of the structure, so that the failute or safety of the structure can be
predicted (a) by comparing the stress or strain against an appropriaie strength-
failure criterion and/or (b) by comﬁaring the calculatedldeflection againsF
vpecified deflection limits. If the te5t;tive design is.not satisfactory,
then the analysis will point cut the weak.points of t@e structure and suggest
changes in the desiyn, which coﬁld mean both a change in dimension and in !

orientation of the fibcr directions of the composite.
' H

The main objective of this project:is to develop aﬁpropria§e structural
analysis tools to assist the designer in material selection and material cﬁuracf
terization. In particular, it is interded that these analysis tools Jhen ade-
yuately developed and validated be employed to make a realistic assessment of
the types and values of composite materials/structures properties that will
provide "optinum" resistance to the transient mechanical and/or thermal loads
experienced by the structure. Because of the complex nature of the problem,

the finite-element method is selected as an appropriate and versatile




mathematical model to cope with the complex structure and loading conditions.
Because transverse shear deformation effects are known to be important in
lapinated composites [1,2,3,4)*, the usual classical {Kirchhoff) thin plate

. and shell theory cannot be used directly; accordingly, the finite-element
;model developed and utilized in the present study includes transverse shear
deformation effects. Since the couventional displacement finite-element

, mgthod, when applied to relatively thick laminated plates, either has failed

to predict accurately the local deformations and stresses of a plate under
7 " bending [5] or is too expensive to use because too many degrees-of-freedom
%re involved for even relatively simple problems [6), the hybrid stress

finite-element model pioneered by Pian [7] provides a promising alternative.

. The hybrid stress model of the finite-element analysis is characterized

(. by an assumed Stress field in the interior of the element as well as an

1agssumed displacement field along the boundary of the element. Since a stress

i field is directly assumed. the prediction of stresses in a given problem is

b generally more accurate than that of the conventional assumed-displacement

k ! . model where only the displacement field is assumed for both *he interior and

élong the boundary of the element. Also great flexibility in terms of the
formulation and the selection of element features is achieved because the
assumed interior stress distribution and the assumed boundary displacement
distribution functional can be selected independent of each other. The com~-
‘patibility of the interelement displacements is easily satisfied, since only
the boundary displacement is assumed, while in the conventional-displacement
model the satisfaction of compatibility usually poses a difficult problem.

. More important is the fact that transverse shear deformation effects, which
cannot be neglected in many laminated composite plate and shell problems, can
be‘easily taken into account by the hybrid stress model without an increase in
the nuhber of element degrees-of-freedom, as indicated in Ref. 8. Because of
transverse shear deformation effects, thick laminated plates may have different
croés-sectional rotations for each layer. Thus, a severe warping of the

‘oriéinal plane section of the whole laminate develops under certain loading

®
| References are denoted by numbers in square [ ] brackets.
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conditions. This phenomenon can be closely modeled by the hybrid stress model

with ease as will bhe seen later in this report.

Structures of prime interest for future analysis and design include,
among others, aerospace vehicles in the shape of a low-aspect~ratio lifting
pbody, irregular shaped shells, and/or axisymmetric shapes. Cutouts, branches,
stiffeners, etc. may be present. Layered anisotropic construction may comprise

a significant portion of the structure.

For the analysis of curved shells, much recent finite-element work has
been carried out using curved finite triangular and/or quadrilateral elements
for cylindrical shells [9~11], conical shells (1l2], and shells of revoluticn
[13,14]. These finite elements are convenient if the structure is smooth and
regular since they can mode) the actual structure faithfully geometrically:
however, these elements are not suitable or conveniexnt for analyzing shells
of irregular shape (irregular boundaries, arbitrarily-oriented cutouts,
arbitrarily curved snape; ... ) Also, it should be noted that curved-shell
elements are developed for some specific restricted geometry and hence when
used for modeling irregular curved shells would entail significant geometric
modeling errors unless the element size were very small) compared with the main
dimensions of the shell. Further, if the element size must necessarily be
very small, it would be adeguate to model the curved-shell structure by

flat~plate elements. In this case the analyst enjoys the advantages of ({a)

simplicity in element stiffness derivation amd computation and (b) great
computer program versatility in being able to treat a wide variety of irregu-
larly~-shaped structures with relatively simple computer program logic and com-
putations since the element compatibility condiuions and the transformations
from local element coordinates to a global coordinate system for the entire

structure are handlea in a uniform fashion.

Flat-plate elements based upon the assumed displacement approach have
been used to analyze curved shells [15]. Recently, Wolf {16) used flat-plate
hybrid stress finite elements to analyze the "pinched cylindrical shell"; his
predicticus compare favorably with an independent solution obtained with
assumexd displacement-type curved finite elements [(13]. Further, the assumed

stress hybrid model nas been shown to Le applicable readily to plates which
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involve transverse shear deformation andfor thermal ivading [g).

Based upon the above considerxrations and especially its relevance to the
present objectives of tihis project, the hybrid-stress finite-element model has
been selectea for use in this study. In particular, flat-plate elements are

developed for botnh plate and shell problems.

Before any problems invelving complex transient loading conditions can
be solved, it is esse.tial to develop and establish the reliability of the
pertinent finite elements under static loading conditions. Like conventional
displacement finite-element models, the hybrid stress model for static analysis
is also characterized by a stiffness matrix. Once the stiffness matrix of an
element is proved to be suitable for use, then dynamic problems can be vursued
by develsaing a mass matrix and by first applying it to vibration analyses to

establish the reliability of tne mass marrix.

As for thermal prunlems, the most importart task is to develop an eguiva-

lent loadiny vector corresponding to a given temperature distribution.

Therefrze, in the past twelve-month period, effort has been concentrated
on the sclection and verification of the behavior of selected finite elements
under static loadinyg conditions, on the development and verification of the
mass matrix of each of several finite elements, and on an equivalent thermal

loading vector,

1.2 Synopsis of the Investigation

A method of analyzing plate and shell structures built with layered-
fiber-reinforced composite materials has been developed. The work done in the
pasi Lwelve month :ribed in the feollowing sectinns of this report.

% 1
s 15 described in the fello wine

In Section 2, the static analysis aspect is described. It begins with
a derivation of the stiffness matrix for single-layer flat-plate elements.
Then, several candidate elements are studied and compared against each other
on two test examples. It is found that triangular-based quadrilateral elements
are inferior to "basic" gquadrilateral elements; therefore, a basic type of

quadrilateral element is selected as the "best" element to be used in this

study. This single-layer element is extended to a multilayer element in
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Subsection 2.3 which also includes a general derxivation of the stiffness matrix
for a multilayer element. Both single-layer and multilayer elements are tested
on plate problems in Subsection 2.4. Example problems include single~layer
isotropic plate problems. Both thin plates and thick plates are included. In
Subsection 2.%, the flat-plate elements are applied to shell problems, in-
cluding shells of revolution. The necessary transformation for single-laycr
and multilayer flat-plate elements, when applied to shell geometries, are
developed in Subsections 2.5.1 and 2.5.2, respectively. Example problems are
discussed in Subsection 2.6, where problems of thin cylindrical sihells and
conical shelis of different thicknesses aré treated. In both the plate and
shell examples, comparisons are made with exact elasticity solutions or other
approximate solutions whenever possible. Excellent accuracy is observed. Pre-
dicted stresses are shown to be within 2% of the exact elasticity solution in

one case. These examples are discussed in Subsection 2.7.

Section 3 begins with a discussion on the variational basis for selecting
a mass matrix in the hybrid stress model. Then a hybrid-rational mass matrix as
well as a lumped mass matrix is developed and compared. It is found that the
hybrid-rational mass matrix is slightly better than the lumped mass matrix for
thin plate vibrations. Since it is expected that the former will be much better
than the latter for thicker plate vibration analyses, the hybrid-rational mass
matrix is used thereafter throughout this study. Example problems of plate and
shell vibration are given at the end of Section 3. The predictions for the
lowest and next higher mode frequencies are compared with other solution method

predictions and are found to be very accurate.

strece analysis is described in Section 4. For given tempera-
ture distributions, an approximation of the temperature within an element is
first established. Then an equivalent loading vector is calculated based on
this approximate representation ot the actual temperature distribution. Since
numerical exammples of thermal stress analysis do not appear frequently in the
literature, in nost of the cxawples given 1n this section, comparisons cannot

be made. However, the equivalent loading vector is verified through simple

examples.




A summary of the work for this period of study and concluding remarks
are yiven in Section 5. This report ends with an appendix on the programming

aspect of the present finite-element analysis.




TR Ty T

T T e T oo e T ¥ TCTFPR Soooerey s e L TR . I S ETETS APT i o e e

SLECTION 2

STATIC ALALYSIG

L.l Formulation of Single-layer Flat-Plate Llements

2.1.1 Dberivation of Element Stiffness Matrices

Tne formulation of the element stiffness matrix by the hybrid stress
model is based on the Principle of Minimum Complementary kEnergy (Ref. 7).
Along each boundary of the element, an assumed ulsplacement distribution is
selected; these element-boundary displacenents are then expressed in terms of
the nodal displacements q. ilekt, an assumcd stress distribution in terms of
undetermined stress parameters  is chosen taroughout the interior of the ele-
ment; this same distribution function, if desired, may also be used to approxi-
mate tne prescribed surface tractions., In terms of these distribution func-
tiuns and associated unknowns q and E. one may write an expression for the
complenentary energy HC. By setting Unc/3§ = U to minimize the complementary
energy, one obtains an approximale solution for [ in terms of q. This enables
one to evaluate the internal strain energy U entirely in terms of the gen-
eralized nodal displacement unknowns 4. ‘Then, by recognizing that the stiff-
ness matrix k appears in the following form for U as U = 1/2 g? X 9. one there-
by identifies k in the hybrid stress model formulation. This procedure is

presented in detail in the Ffollowing.

The total complementary eneryy of one finite element is given by

— 1 :
I, = -E‘ij Sijer Oij Tug dV '_[.1 T U, dA (2.1}
where

Sijkkz compliance constants of the material

.. = stresses

1]
v = volume
A = boundary area
T = surface traction

u. = prescribed boundary displacement




The functional nc 1s a minimum when the stresses satisfy the eguilibrium con-

dition.

For convenience, consider a statically loaded continuum which is repra-
sented by a single finite element. In deriving the element stiffness matrix,
the displacements along each boundary of the finite element are expressed in

terms of the nodal displacements q and certain interpolation functions L,

e

such that the displacement compatibility conditions with the neighboring ele-
ments (when one models the continuum with a number of finite elements) are

satisfied,
U=1L% (2.2)

The element stresses in the interior of tihie element are then expanded in terms

of a finite number of stress paramcters [3

g=PpP8 (2.3
where P is chosen to satisfy the homogeneous equilibrium equations. The

surface tractions can then be written in the form of

T=R8 (2.4)

where R 1s obtained by applying the element boundary conditions to P.

Substituting Egs. 2.2 to 2.4 in Eq. 2.1, one obtains,

Moo=z 87(f, FSPdvIf ~B(f RTLIA)E

(2.5)
By aefining

H = J’v P'S Pdv (2.6)

G =J,R'LdA

bg. 2.5 becomes
M= EHE-FG ¢ (2.7

ine best approximate solution forlg for the problem is obtained by setting

bﬂc/dg_to zero, ‘The result is




T

ﬂQ—C«,‘5=o (2.4)

o~

from which,

p=H'G 6 (2.9)

o~

The first term in Eq. 2.7 for nc is the total strain energy U in the element.

By substituting Eg. 2.9 into U one obtains
— TAT, 4
U=3F§6GHGE (2.10)
By <efinition

U:

where k is the element stiffness matrix.

8k % (2.11)

L

.

Thus, by the hybrid stress model, the element stiffness matrix is given

by

oD

— T -l
L<, - ,Cf’_ ;Zf_ (2.12)

-

2.1.2 Material, Stress, and Lisplacement Assumptions

The matrix 5 in Eq. 2.6 is the compliance matrix that relates stresses

g to strains e:

€ = ég (2.13)

~

In this stuay, the following square symmetric material properties are

assuwied for each layer of the composite material:

N 1 ).
e 0 W Hra . 5P

Lo o _ Kk _  vI3
X Ey E; Ej
e _ M i _ Va3 gy
4 E E; = 0
V3 Vn / G
e R I z
£ E, E; Ea 4

{2.14a)
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with li.‘.2 = E;' \J12 = \Jl3, le = \)31, v23 = ij' (;13 = (112, and "1" being the

longitudinal fiber direction.

In case the material axes do not coincide with the element coordinate

axes (see Fig. la), the following transformed E is used:

, ™
S, Mt S, Mt
+(23,g*5”)mlﬂ‘
\ ~
Samfen)s g méis mt syn,
(Sn 3,2~ Sss )it *{ﬁn*ss}mz
— \.
5= oS
Sﬂm"? 523711 Sun +525m S}J
™.
™~ (1
Is) O Q 5“7"11‘-5“7?
™.
o ¢] O (S45-SaadMn “SunSeent
(252 5;1“515)’”3" (2547 sz'SM)fm US;%) P o ™~ 46 12 ¥y 25 )i
C -
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where m = ¢cos G, n = sin @, anu sij = the corresponding constants in Eg. 2.14b.

T in- interi d t i P
he in-plane interior (and boundary} stress field £

for c ,0 , and O
Xy X

consists of a stretching part _I_’_s and a bending part gb:

f', = Pay) + Py (x.y.2)

(2.15a)

In this study, Es is assumed to be linear in x and y, and Eb is either linear

in x and y or guadratic in x and y. The out-of-plane stress field 22 for

ze. Uyz' and Uz is determined from the eguilibrium equations of elasticit).

The matrix P in Eq. 2.3 consists of P, and P . Different assumptions for

1 2
different elements are summarized in Table 1 and a detailed description can be

found in Subsection 2.2.




T T S N R o L T PN T T K TR e Niclanl

Alony element boundaries (Fig. 1L}, the following displacement ficld

is assumed, for a typical side 1-2 of an element:

U — uj(,,s)”(zs+z[9wu-s)+eﬂs]
Vo=, (175) 4y 5 =2 [ €y (175)+ Ox2 5]

W= W (1-5)+W:5 (2.16)

where s 1s the coordinate measured along the side 1-2, and nodal displacements
U, Vv, W, Bx' and Uy are defined in Fig. lb. In other words, the in-plane dis-
placements u and v are linear in both z and s, while the transverse displace-
wment w is linear in s but is independent of zZ. The number of degrees of free-~
dom per node is 5. Both gquadrilateral* and triangular elements are considered
in this study (Figs. lc and 1ld); therefore, the total degrees of freedown per

element is, respectively, either 20 or 15.

Variations of Eq. 2.16 can be obtained by adding a mid-point node and

changing tne linear functions of s in Eg. 2.16 to quadratic functions.

Based on the assumed interior {and boundary) stress field P§ in Eq. 2,15
and the assumed element boundary displacement field Lg in Eq. 2.16, the element
stiffness matrix k can be obtained by carrying ocut the appropriate integration

of Eg. 2.6 and substituting into Eg. 2.12.

It should be noted that shear deformation effects are taken into account
in Eq. 2.16, where Dx and Uy are the rotations of the normal element of a plate;
these quantities are not to be identified with the slopes w'y and W’x of the
middle surface. 1In other words, the normal to the undeformed middle surface
dues uol gemdin normal to tne deformed middie surtace. Also, in the evaluation

of i by Eg. 2.6, the transverse shear energy terms are included.

Various elements with different assumed P3 and Lq are studied and the

results are described in the following subsection.

2.2 Parametric Study and Selection of single-Layer Elements

Since the stress field of an element can be assumed independently of the

boundary displacement fleld, it is possible to match different pairs of

L ]
Included are square, rectangular, and irregular quadrilateral geometries.

1l
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assumptions and to select those elements with the better convergence behavior,

] The stresses in an individual lamina may he considered as the combina-
tion of the stretching and bending components as saown in Eq. 2.15. When the
stretching component is represented by a complete linear expansion in x and y,
while the bending component is represented by a complete quadratic expansion
in X and y, the stress field can be represented by 34 independent stress

parameters as follows:

1 P 2345 678901 2BBISKLITIZYDPBURILNIBY N A
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{2.17}

In constructing the various models, one of the fmllowing three differ-

ent stress fields is used in a given model:

{a) Type (L.L-}: This corresponds to celumns 1-9, 10, 11, 12, 15,
16, 19, and 20 of the matrix in Eq. 2.17, with a total of 16 [i's.
The designation (L,L-J stands for a complete linear expansion in
x and y for the stretching component and an incomplete linear ex-

pansion in x and y for the bending component.

(b} Type (L,L}): This corresponds to ¢olunns 1-20, with a total of
20 p's. The designation (L,L) stands for a complete linear
expansion in x and y for botin the stretching and the benling

component.

12
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{(¢) Type (L,Q): This corresponds to columns 1-34, with a total of

34 i's. 'The Jdesignation (L,Q) stands [or a complete linear ex-

FETRW R Wi

pansion in the stretching components and a complete quadratic

expansion in bending.

Three types of element-boundary displucement fields (along side 1-2,

for example) are used:
ta) Type (L): This corresponds to the following:
; U = Ll, (f‘-s)'i'uzs+Z[9‘W(I‘S)+QJZS]
(2.18)
V= Vi U-S)+ 1S ~Z[ 8 (1-5)+0x25]

W = W {I=5}t+ wpS

where s 1s the coordinate along one side of the element. The

designation (L) stands for a complete linear expansion in s.

{b) Type {(Q): This corresponds to the following:

u: u; (f"‘S)'*'qu"f"iuTu(“S)S '1‘2{93‘({-—5)4_9#25]

V=V, =8y + V514V (1-5)5~Z[ By (1-5)t 6,,5] (2.19)

W= W, 0-5)FW:5*4Wmn(i-5)5

The subscript m stands for the mid-point side node. The designa-
tion (0) stands for a complete quadratic expansinn far the die-

placements.
{c) Typ:z (Q_): This corresponds to the following:
W= U@-3)+ts +E{Hyu-S)+ By; 5]

V= U, (1-5)t Va5 -2 8y (1-9) + B8] T

W= WiU"S)'PW,S“’(Qﬂgﬂen,)(f‘S)Sﬂ/.?
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where Un is the rotation alung the element side and is a function of Ux and U

The designation (Q_) stands for a quadratic expansion for w only. If type (Q)

is used on certain sides aud type (L) is used on the remainder, then the
designation is (L,Q).

Because shear deformation effects are of major concern in this study,

the seclected elements should be able to converge rapidly both for thin and

thick plates. Therecfore, two extreme test problems are used to evaluate ‘ari-

ous elements in order {9 select the wost suitable clements for future use. One

is a simply-supported square thin plate with a thickness-to-side ratic of 1:100,
and the other is a simply-supported square thick plate with a thickness-to-
side ratio of 1:4.

loaded.

Tne former is centrally loaded and the latter is uniformly

A brief description of the elements studied and the associated example-

problem solutions are swumarized in Table 1 and in Figs. 2 and 3. Not every

result is plotted in Figs. 2 and 3 because some are far helow or above the

range of the plots. A total of nine elements has been tried; these are

described in the following, together with brief assessment-type comncnts:

(a) ELE!L:

General quadrilateral element with stress type (L.L), displace-
ment type (L).

This element if suitable for problems of plates or shells of revolution.

Convergence is fast and computation of the k matrix is inexpensive. The

total vegrees-of-freedom per element is 20.
(b) LLEMA: Triangular element with stress type (L,L) and displacement type (L)
This element does not converge to correct answers within reasonal:le mesh
refinement limits.

This elemznt is too "stiff" and is rejected.

{c) ELEMB: Triangular element with stress type {(L,L) and displacement type

(L,Q)

T'o improve LLEMA, a midpoint node is added to the interior boundary (see

Table 1). The improvement is not enough. This elecment is still too

stiff and is rejccted.




(d) EIEMC: Triangular element with stress ype (Lol and splasckgnt type (4

— T

To make ELEMB more flexible, midpoint1nudes are added to every bowmndary.
Unfortunately, tne stiffness matrix becornes sinqulér even after the
usual boundary constraining. This is due to the fact that the number of
unwanted displacoinent modes whichlinduce no ergqseﬁ within the clement
{these modes are called kinematic modes) are too m&ny {4 for bending
only) to be completely suppreséed by the imposed bound&zy corqitions: l ;

{Ref. 17}. This element is rejected.

(e) ELEMD: friangular clement with stress type (L,L ) and displacement type (L.)

Another way of making an element more flexible is.to reduce the number of
B's. From ELEMB, the number of £'s is reduced to 16. This eclement con~
verges rapidly as can be seen in Figs. 2 and 3. Howévef, its applicétion
to future thermal analysis is limited because its stress field is too sim-

ple. Therefore, it is rejected. ) :

(f) ELEME: Triangular element with stress type (L,Q) and dJi EP.]'?‘.CP.'“PE. t type _5,__)__

To suppress the unwanted modes of ELEMC, o complete quadratic bending

stress fielu is used. Due to, the increase in the nunber of stress
1) 4
parameters i, it is too stiff and is rejected.

(g)  ELEMF: ‘Iriangular element with stress type (L,Q) ~nd displacement type (L)

Midpoint nodes are addeu to ELEME to make it more flexible. It turns out
that ELEMF is good for thin plates but is too flexible tor thick plates

- . L
as can be scen from Figs. 2 and 3.

(1) ELEMG: Triangular element with stress type (L,Q) and displacement type (Q )
This elewent has the advantage ob increasing tie nrhcr of wogithoul incleas-
ing the number of deqreeé—of-freedom per node. The convergence is moderate.
Since only w is yuadratic, this clement is not suitable for dhell hroblémsi

where u, v, and w shoule be consistent. Therefore, 1t is rejected.

(1) klEd2: Four triangular elements with stress type (L,Q) and displacement
type (L.Q) ,
Four triangular elements assembled into ong guadrilateral clement.  fhe
converyence for a thick plate. is very rapid ana the converygyence for a

thin plate is falrly rapid. This element can be used for general shell

problems.
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Note that for solution, one quarter of the plate was modeled by uniform-sized
finite elements. The number of degrees of frecedow, DOF, indicated in Figs. 2

and 3 denotes the DOF's for the quarter plate.

Out of the nine elements tested (see Table 1), only two of them show
fast convergence. The triangular-based quadrilateral element, ELEM2, is more
sophisticated than the gyadrilateral ELEMl. Consequently, more computing time
is needed to calculate the stiftness matrix of ELEM2. Since ELEM2 shows no
improv?ment over ELEMl, ELEXl is used hereinafter throughout this study. 1In

the foilowing, ELEM] is extended to represent a multilayer element.

2.3 Formulation for Multilayer Flat-Plate Elements

2.3.1 Derivation of Elenent Stiffness Matrices

In the present formulation of stiffness matrices for laminated plate
finite elements, the self-equilibrating stresses for each lamina are initially
assuped independently. The stress equilibrium conditions for the stresses at
the interlamina boundaries are Lhen introduced as a finite number of conditions

of constraint

"Ag =20 (2.21)

'Using the method of Lagrange Multipliers, the complementary energy functional

of Eq., 2.7 is modified to

T, =£‘ET':‘@‘“ET§$.* NAR (2.22)

Again, by setting avc'/aﬁ=0 for each (3, one obtains

HE-GF tA™A=0 (2.23)

from which

E = t{"é&-ﬁ"A’ (2.24)

P

Substituting into Eg. 2.21, results in

AHGE - AHAX=0 (2.25

1o




Qor
A= (AHAY (aHG }) (2.26)

Substituting A from Eq. 2.26 into Eq. 2.24 and then substituting the resulting

8 into the strain energy U, one obtains

=1 - A,
U=z8 (QH'G-GHA(ARHA AR 7 § (2.27)
Thus, the stiffness matrix is given by
k= G"HG -GTHA(AHTA)AH™G (2.28)

2.3.2 Stress and Displacement Assumptions

Multilayer laminated thick plates often exhibit a severe warping of
the cross section as a result of the transverse shear deformation effects and

tiie discontinuous material properties from layer to layer (Refs. 1, 2, 3, 4).

To model this warping phenomenon closely, the rotational degrees-of-freedom §

and 0y siould be assumed to be different for each layer. Within each layer,

Ox and By are still assumed to be a constant in the transverse direction; thus,
Bx and BY can be represented by the inplane displacements u and v at the ipper
and lower surface of that layer (Fig. 4). The transverse displacement w is
still assumed to be a constant in the transverse direction for all layers.
Therefore, the total deygrees~of-freedom at a node consists of one w and (n+l)
inplane displacements u and v, with n Being the number of layvrs. The number

of degrees-of~-freedom per node is then 2{n*1)+1.

For a typical layer i, the displacements aleng side 1-2 are:

{{) (ir) ) () (i)
e = k(U U )Lt +i )5+ RIS PETA 24)s)

(i4r) i}

(M) (i i ‘ ey (0
VO 2 L sy L s f 0 -0 203

= 1‘;"' {I-8) + Wzs (2.29)




For stress distributions, an independent set of B_Qi {the same as that
1
used for ELEM1) should alwo be assured for each layer. The interface ecqui-

librium is achieved by demanding that

(0 6y,.G;) at the top of the ith layer

— (¢ at the bottom of the (itl)}th

( 2'63’!'6""') layer (2.30)
Equation 2,30 constitutes a constraint on the stress parameters B and can be
arranged in tae form of Egq. 2.21. Then the stiffness matrix of a multilayer

clement can be computed using Eg. 2.28, This new element is designed as
ELEMZ .,

For relatively thin laminated plates and shells, the warping phenomenon
is not severe and the usual assumption that a plane cross section remains
plane is still applicable. The corresponding change in the element stiffness
matzix can be easily achieved by demanding that the nodal displacements u and
v be linear in the transversc direcition and be replaced by,respectively,{}y
and Gx just as in Eq. 2.1G. Then the total number of degrees-of-frecdonm per

node is back to 5 again and tihis reduced multilayer clement will be designated
as LELEMR.

2.4 Flat-Plate Evaluaticn Examples

Several plate problems nave been solved and a comparison of results is
made with respect to exact solutions or other anproximate solutions. In all
but two examples, convergence studies arc made to establish the reliability
of the elemecnts ELEM1, ELEMR, and ELEMZ. Problem descriptions and the finite-
clement modeclings ussd are given in Tables 2, 3, und 4 for, ruspeclively, single-

layer plates and three-layer plates.

2.4.1 single-Layer Iscotropic Yiotes

(a) Simply-Supported Square Thin Plate (fable 2, Fig. 2)

This is a problem used in the selection of elements. The errors
of the predicted central transverse displaccments W for elements

1, 2, A, U, and F arec plotted for different rneshes in a quarter of




(L)

(c)

Lt

Gkl

(d)

(e)

tne plate; advantage is taken of symnetry so that only one-quarter
of the plate 15 odeled by equal-sized quadrilateral cloements.  Tae
rereentage errors are calculated by comparison with tne exact solu-
tion of Kei. lg. From I'ig, 2, it is scen that the crror diminishes
very rapiuly anu tinat ELEML provides sowrewndt supcerior results.,

Qai_nr_v_d_;:;_cw_x_'i__‘i'_hin Blate ('1'.'.11)1_(2__2, Fig., 5}

To sce whether or not woundary conditions sffect the convergence
of LLEMl predictions, a clamped-plate problem is solved. A plot
similar to that of Filg. 2 is presented as Fig. 3 and shows fast

convergence. Conparison is Lased on tie exact solution of Ref. 1d.

Clamped Rectangular Thin Plate (Table 2, Fig. ©)

3oth a square eleouent and a rectangular element {1:2 aspect ratio)
for ELEI] are used to sce the ecffects of a4 large aspect ratio of

the elewment. The results are compared with the exact solution of
Ref. ld. From FPiq. 6, it is obsecrved that in both cases the con-

vergence is fast although the pattern of convergence is reverseu.

Skewed Simply-Supported Thin Plate (Table 2, Tig. 7)

Since ELEML is a general quadrilateral elewment, it is not re-
stricted to rectangular plate prollenms. Various sclutions {19,20,21]
of tihe skewed plate problem identified in Table 2 were collected in
Ref. 10 and are reproauced here in Fig. 7 together witn the present
LLEM1 solutions. It is scen that the present simple elament provides
solution accuracy and efificiency comparable to other higner-order
elenents even thougn the free traction condition at the ecdyge 1s not
enforced in the present selutions (tnis enforcement would reguire

a special elencent).

Simply-Supported Syuare Taick Plate (Table ¢, Fig. 3

Phis is also o prolilem used in the selection ©of elements.  Con-
parisen of toe predicted central Jdisplacement is made with the
cract solution of Mef., 22, IL is seen titat LLIDIL converdgoes ovein

raster i tning case.  This is expected since BLENL 1s designed to




cope with shear deformation and in this problem the shear de-
formation is indeed important (about 25% of the total deforma-

tion).

The results of the above examples demonstrate tne reliability of KLEML
for isotropic j:lates. Since the present stuuay is mainly intended for com-
posite plates, the above results can only be regarded as a yood start, and

furtner evaluations nave been carried out as discussed in the following.

2,4.2 ‘Two-Layer Plates

Four problemns of two-layer plates are solved. The ELEMR element is
uswd for the first three, since they involve very tinin plates with negliyible

warping. For the last one, which is a thick plate problem, ELENZ is used.

() SlampcdiCuass-Ply Rectangitien hmniolake (oable 5. B0 B

A clamped-edge rectangular plate consisting eof two layers of
fiber-reinforced composite naterials with orientations of 0°/90°
with respect to the positive x-axis is uniforwly loaded. The
central deflection is calculated using ELEME for the same plate
with or witnout the assumption of negligible shear deformation
effects; since the plate is indeed very thin {(with a side-tn-
thickness ratio of 1:100), the two present deflection predictions
differ by only 1% and are both very close to but siightly larger
than tihe CPT (classical laminated plate theory) approximate solu-

tions of Ref. 23.

(b) Clamped Cross-Fly Scquare Thin Plate (Tahla 3. Fig. 9)

As indicated in Fig. 9, chis problen is solved twice using ELENR.
In the first seclution, the wnole plate is oriented in the usual
way, but in the second solution, it 1is rotated 45° so that tne
material axes are no  longer parallel to the reference coordinate
axes. The purposce 1s to make sure that the transformation of the
compliance matrix nas heen correctly programmed, since both solu-
tions shoulu be tie sane if the transformation is correct., Indeed,

these two solutions are identical amd converge very rapldly in




comparison witn the CPT solution of Ref. 23.
() Clamped Angle-Fly Sguare Thin Plate (Table 3, Fig. 10)

The problem considered 15 similar to the previous one Lut the
fiber oricntations are + 45°. Aqgain, the two solutions of
LLE{IR are identical and converge rapidly, that is, to within 5%
of the CPT solution of Ref. 23. It should be noted that the
CPT solution tends to give less accurate predictions for
angle-ply problems because tne distortion of the plate is more
severe than that of the cross—ply problems. Hence, the 5% dif-
ference here can be attributed largely to the error of the CPT

solution.

{d) Simply-Supported Angle-Ply Square Thick Plate (Table 3, Fig, 11)

To investigate the shear deformation effects, a thick-plate prob-

lem is solved using ELEMZ for different orientations of the two-

layer angle-ply. The present solutions differ from the approximate
solutions of Ref. 24, Again, the Jdifference can be attributed to
the error of the approximate solution since other cases tested in
Ref, 24 are also less accurate for thick laminated plates. Because
of the shear defornration effects, the central deflections are
approximately Jdoubled conpared with that for the case of zero
transverse shear dJdeformation. It should Le pointed out that

;tudics of this kind will assist the designer in the seclection

of the appropriate waterial orientations to fulfill certain specific

e s A
eSSyl Lijudtives.

2.4.3 Three-layer Plates

{a) Infinite Cross-Ply Plate with Sianusoidal lLoading

(lable 4, Figs, 12a-12d)

The problem of an infinitely long tinick plate leoaded sinusoldally
i the short direction and simply-supported along the two cdges is

a two-dimensional planc-strain problem and can he solved exactly

aceording to elasticity theory as shown in Bet. 1. Using the




present finite-elemeont method and ELEMZ, this problem is solved by
putting a uniform mesh in one strip in the short direction since

the selutions are independent ©of the lony-direction coordinate.

s The dJdispiacenent and stress predictions are very close to those

of the exact solution as can be seen in Figs. 12a through 12a. It
is observed that tie other assumed displacement finite-element so-
lution (Ref. 5), wihich also takes transverse shear deforimation ef-
fects into account: (1) does not give accurate detailed predictions,
but only average values of cross-section rotation and normal
stresses, and (2) is very close to the CPT solution, which does not

take shear effects into account at all.

(b} Simply-Supported Cruss-Ply Plate (Tables 4 and 5, Fig. 13)
This finite-dimension problem is solvea exactly in Ref. 2,
Two examples with different aspect ratio and thickness ratio

are iven here (Table 4, cases bl and b2; both are solved using

T

DLEMZ. The first one is a moderaltely thick rectangular plate

under bending; the maximum displacement and stress components

predicted by the metiod are within 2% of the exact solution [2]
as can be seen in Table 5. The second example is a thick square

plate under bending; the stress and displacement distributions

at crucial sections are plotted in Fig. 13. Alsc plotted are
solutions obtained by using a 3-dimensional assumed-displacewment

finite element [6]; it is seen that the present method gives prac-

tically the same accuracy with many fewer degyrres-of freedom

(225 DOF vs. 990 DOF).

2.5 hApplication to Shell Problems

2.5.1 Transformation for Single-Layer Elements

In the application of flat-platc elements to shell problems, it is
necessary to transform the element nodal degrees-cf-freedom, which are in
element coordinates, to a common or glohal nodal deyree-of-freedom system., As

discussed in Ref. 29, the transfermation can bhe exrressed in the following forn:




oy - _ _ N[0
u Cos(X.X) Cos (X.F) (os(X.Z) u
- — _ (} v
v Cos(r X) Cos(Y,Y) tos(Y.2) W
{wh= | Cos(Z.X)Gs(2,Y) Gs(2,Z) le
& Cos(X.X) (oS T) Cos (X.Z) 9’
X
y
6 0 @s(r.%) G50 Y) GstxZ) | g
v S
ELEMENT ]
(2.31a)
or —
ﬁ = ISX& ﬁ
= (2.31b)

where the "barred" system is the common {global) nodal system,

1f the z-axis of the common nocdal coordinate systcm is chosen to be in
the direction of the outer normal of the shell surface (Ref. 15), then the
contributions of cos{x,z) and cos (y,;) in the last column are small comﬁ)ared
with other terms and can be neglected. The resulting transformation is a 5x5

transformation and the nodal degrees-cof-freedom consist of only u, v, w, 0 ,

and 0 :
y
() [ costx.x) Cos(x.7) Cos X.2) u)
v Cos (Y, X) Gos(Y. 1) Cos(Y.2) 0 1%
Wh=1 Cos@ %) Gs(L.Y) Gs(Z.2) CWe
0, i Cos (X.X) Cosx )| | B,
U
93‘ Cos (Y. X) Cos (Y.Y) 9;'
ELEMENT - NODE (5 394
or
E - 15‘5 «8, (2.32b)
The correspoiviing element stiffness matrix is
R=TkT (2.33)

~ P

Once ,l-‘c—‘ is obtained from Eg. 2.33, this transformed element stiffness
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matrix can be assembled into a system stiffness matrix X, as usual, and the

remaining procedure is the same as that for plate problems.
: The above transformation is applicable to ELEMl and ELEMR.

2,5.2 Transformation for Multilayer Elements

Since the nodal displacements of a multilayer element are completely
represented by the interlayer displacements u, v, and transverse displacement w,
instead of u, v, w, ﬂx, and Oy, the former should be expressed in terms of the
latter before a transformation can be carried out. This is accomplished by

defining an equivalent set of nodal deyrees-cf-freedom, which consists of the

AW R T

displacements u, v, and w at the nodal mid-thickness station of an element and

the rotations (Ox)i and (By)i of each layer of the element at a nodal station
(see Fig. 14}.

YT T

] The relation between this new set of degrees-of-freedom and the old one

can be put in matrix form as

i I
1] W
Ua i
Vi 2
< = 'r%g < ;3'L
v o
p;‘ X By » (2.34a)
or v g
%= Iig e (2.34b)

For a typiral three-laver case z= shown

£

; the o LLixn T is
gl
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Then the transformation of this new local system to the common (global)

system is

3 -

u

w == =

or

14 T;xa |

N

(2.36Ga)

(2.236b)
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? where the submatrices 33x3 and 32x3 are the submatrices °f.35x6 of Eq. 2.31.

The overall transformation matrix is found by combining Bg. 2.34 and

Eg. 2.36:

E=Te08 = TaeTof &

or _
§= Tt &
— _ (2.37)
153 = Tgo Tog _
The transformed element stiffness matrix‘ﬁ is then
—_— - T
K= Teg K Ts1 (2.38)

The above transformation is applicable to ELEMZ.

2.6 Shell Evaluation Examples

Thin cylindrical shell problems are solved first, Then conical shel s

3 of various thickness are solved to demonstrate the effect of transverse shear

deformation. The problem data and the finite-element modeling employed are

given in Tables 6 and 7.

2.6,1 Thin Cylindrical Shells

{a) Pinched Cylindrical Shell (Table 6, case (a); Fig. 15)

Both analytical and finite-element solutions [16,20,26] are
available for this problem and are collected by Wolf in Ref. 16.
Although the present solution using ELEM1 does not enforee the
free traction condition on the simply-supported edges, its ac-
curacy is still comparable to other solutions as can be seen in

Fig. 15.

(b) Cylindrical Shell under Ring Load (Table 6 casz (b); Fig. 16)

An analytical solution for this problem is given in Ref. 27.
Since the ring load is axisymmetriz, this problem can be re-
duced to a one-dimensional problem and an extensive convergence
study can be performed thriftily. It is seen in Fig. 16 that the
deflection under the ring load as proedicted with ELEM]1 flat-plate

elements converges rapidly to within %% of that of the analytical




solution. An increase in the number of elements eventually

further reduces the error to within 2%.

2.6.2 Conical Shells

To investigate the transverse shear deformation effects on a shell,
several conical shell problems are solved with ELE!Ml and ELEMR flat-plate ele-
nents. They all have the same loading and geometry, except that they differ
in the thickness and material constituents. The chosen loading is axisymmetric

in order to minimize the computing cost.

{(a) Isotropic Conical Shells (Table 7, Case (a); Figs. 17 to 20)

First, a shell with thickness = 0.025 in. is solved. Com-—
parisons of displacement and moment distributions are made

in Figs. 17a and 17b with those predicted by another higher-
order finite-element solution (SABOR 4, Ref. 28). In usging

45 elements along the meridian, the present scolution is, within
plotting accuracy, the same as that of SABOR 4. The latter does
not take transverse shear deformation effects into account.
Next, the thickness is increased to 0.1 in, (Figs.l1l8a and 1lsb)
and then to 0.5 in. (Figs. 19 and 20). There are still noc ap-
parent transverse shear deformation effects. However, when

the thickness is increasei to 1 inch, which corresponds to a
thickness~to-radius ratio = 1:15, pronounced transverse shear
deformation effects, reflected by the difference between the
present solutions of ELEML and those of the SABOR 4, are ob-
served as is evident from Figs. 19 and 20. For a thicker
shell, it can be -oncluded that transverse shear deformation
effects must be taken into account in order to obtain any

weaningful answer.

{b) Sandwich Conical Shell (Table 7, Case (b); Fig. 21)

Since no other solutions have been found for comparison, only a
displacement «distribution is presented for this example. The

sandwich snell is treazed as a three-layer shell, and ELEMR is

used., The displavemont plot in Fig. 21 shows a rapid die-out of
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the loading effect. A comparison with Fig. 17b shows that the
edge deflection of the ¢andwich shell is smaller than that of

an isotropic shell, which uses roughly the same amount of materi-
al as is used for the skin of the sandwich shell (0.025 in.

thick vs. 0.02 in. thick}. This clearly demonstrates the effec-
tiveness of the sandwich structure in increasing the stiffness

of the shell.

(¢) Two-Layer Conical Shell (Table 7, Case (c); Figs. 20 and 22a-22b)

To simulate some missile-type structures, a glass-phenolic coating
layer is placed on top of an aluminum base layer and this two-layer
shell is analyzed using ELEMR. The normal displacement of this
two-layer shell is plotted in Fig. 20 together with solutions for
other similar conical shells. Since the coating layer is rela-
tively soft, the deflection is larger than that of a similar but
isotropic shell of 1-in. thiclkaess. The maximum meridional normal
stresses in both layers are plotted in Fig. 22a. As expected, the
maximum stresses occur at the two outer surfaces of the shell.

The maximum circumferential normal stresses are plotted in Fig. 22b.
They occur at the interlayer surface and at the inner surface of the
shell. The maximum stress in the base material is more than three
times that of the coating material, due to the larger stiffness of

the base.

It is clear that such a detailed description of the stress distributions

will be of definite value to a designer who needs this basic information to de-

2.7 Summary and Comments

A method of analyzing fiber-reinforced laminated plate and shell struc-
tures under static loading has heen developed. The hybrid stress finite-element
nethod has been chosen as the mathematical model to analyze this complex problem.
Because of the versatiliry of the hybrid stress method, problems like transverse

shear deformation effects wnd multilayer lawinates are Jdealt with casily.

28
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The development of this basic analfsis tocol has been carried out ste} .
by step. First, several candidate single-layer-plate elehents have been
studied. Based on two test probleﬁs, a quadrilateral eclement {ELEM1) has heen
chosen for later use. 'Then, an extension to multilayer elements (ELEMB and
ELEMZ) has been madc, and various plale probl;ms have been solved to eétablish

the reliability cf the present method.

Applieation to she}l problems is achieved, through a coordirate trans-
formation. Then several shell problems have been solved to demonstraté theé
validity of this transformation and to study transverse shear deformation ef-

feets on shells.

In addition to the three eiements selected for use as described 'in this
section, another similar element designated as EQEM3 was déveloped in the re-
seareh eftort under this eontract and is described in another report [29]*.

That element is designed for thin multilayer.laminated plates. The only differ-
ence between ELEM3 and ELEMR is that the former has'a single set 6f stress
assumptions for tne wihole flat plate element reyardless of the nunber of layers,
wihile the latter has an independent stress assumption for each layer of the
flat-plate element. Studies reported in Ref. 29 show that %or multilayer’plaQes
with thickness-to-side ratios ranging from 0.0l to 0.25, ELEM3 provides better
results than does ELFi.R. 'The errors of the results obtained by usiné ELEM3 are
uniformly less than those of ELLMR. However, ig should be stressed that'for
thick laminates with a typical thiekness-to-éide ratio equal to ;r greater than
about 0.1, the multilayer:element ELEMZ shoulﬁ be-used to avoid excessive

error; for such thickness ratios; ELEX3 and ELEMR are both deficient.

*
In Ref. 29, both ELEMl and LLEMR of this report are referred to as ELEM],
since they nave the same number of degrees-of-freedom per element.
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SECTION 3

VIBRATION ANALYSIS

3.1 Vvibration Analysis by tihe Hybrid Stress Model

As is seen in the previous secetion, the statie nybrid stress finite-
element analysis takes the same form as does the displacement finite-element
analysis; tnat is, each element. is represented by an element stiffness matrix
and the final unknown parameters are the element nodal generalized displace-

ments. In other words, the hybrid stress model can be viewed as just an alter-

' native way of deriving a stiffness matrix. Along this line of +hinking, it seems

that analogous with, but somewhat different from the consistent mass matrix
approach used in the displacement finite element dynamic analysis, a mass
matrix for the hybrid stress model can be constructed by using a displacement
field for the interior of an element based on a suitable interpolation of the
as;umed boundary displacements of thie hybrid stress element, and by evaluating
the corresponding kinetie energy of the element in texrms of the generalized
nédal #eloeities, therecby identifying the associated mass matrix. This was
done by Dungar, Severn, and Taylor [30] for a general triangular flat-plate
clement and a right-angled triangular flat-plate element, and later by Dungar
and Severn [31] for a triangular plate element with variable thickness. Numeri-
cal examples in both Ref. 30 and Ref. 31 showed convergence of the predicted
n&;ural frequencies. This approach was extended to treat a cylindriecal shell

clement by Henshell, Neale, and Warbuton [32], and to aecommodate a triangular

flat-plate element and a rectangular flat-plate element by teale, Henshell and

. 1Edwards (33].

An alternative approach is provided by Tabarrok [34,35] who formulates
the vibration problem aceording to Toupin's Principle {36) with the impulse
tensor and velocities as field variables. This formulation is consistent with
the hybrid stress model; accurate freguency predictions are obtained by
Sakaguchi for plate vibration problems [37]. Unfortunately, this approach pro-
duces neither a mass matrix nor a stiffness natrix, but rather a frecquency

matrix; the zeros of its determinant are the frequencies of a system. As a

30
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result, this approach is not applicable to transient dynamic problens.

Recently, efforts have peen made to develop a4 variational principle to
justify tiie approach of interpolating boundary displacements of au elenent as
a legitimate way of obtalning a mass matrix [(35,39] so that the conventional
3 formulation for stiffness and mass matrices can be safely adopted in a hybrid
stress finite-element dynamic analysis. In the followirg, a brief description

of the derivation of a mass matrix from a variational principle for the hybrid

stress model is given.

Consider a functional in the form of a modified Reissner principle

.
3
3
=

[39,4¢ for the free vibration of a continuum,

- T(u‘-ui)dA}

IV (3.1)

where an refers to the boundary of the region Vn, Uij and u, are defined
within the interior volume Vn of the element and on an, and Ti and Ei are
the boundary traction and boundary displacements, respectively. One can

recognize that one of the equations obtained by sectting ﬁﬂmR = 0 is that

6ij v (3.2)
along the element boundary Dvn, where vj is the direction cosine on an. Thus,

if Ti in Eg. 3.1 is replaced by Oijvj and integration by parts is carried out

for the term 1/2cij(ui .o+ ou, i), the following functional is obtained:

[ r

—_ r

- f | . .
i = -1
mR 2:1‘“1/ I.Jl'fG‘LJGq g,‘;u ‘Zf'u‘l& dv*%vo-g U dA (3.3)
Note that only three field variables arc involved: Oij and U, in Vn, and ﬁi
on dv_.
I

Assumc that the stress distribution in the interior of the element

may be written as

c=pP3 {3.4a)

- e
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and that the displacements along the boundaries of the element are assumed to

be expressed as

Q: L & {3.4b)

~

- as before, and represent the displacement field u in the interior of the

clement by
(Y}
U=KET (3.5)
where N is a "suitable" interpolation function which relates u to the nodal
generalized displacements g. Substituting Egs. 3.4 and 3.5 into Eq. 3.3 re-

sults in

—

L™ )L[ ,@THﬁ -8D§- :?.Lé. ﬁ p'ag) (3.6)

where 1l and G arc the same as defined in Eq. 2.6, and
' \T
D =JV (P')'NAV
= fy, eN'N AV

with P' representlng the derivatives of £,(C'lj J).
r

with respect to variations of B then

3 (3.7)

1 The stationary conditions of “mR

yield
"EQ +(9—P)§-=0 (3.8)

By solving for_g from Eq. 3.8 and substituting intc¢ Egq. 3.6, one obtains

Tfma=>;(%f!£§‘:{'5fl"$) (3.9)

where
™ ol
K = (‘_CV-R) t_‘f (—C\T-E) = clement stiffness matrix
{3.10}
T " . : 1 .

and m = JV ¢N N dv = "hybrid-ratinnal" mass matrix

~ n o ot

If tiie stress function P is chesen such that
0ij,j = 0 (3.11)

then D is zero and the element stiffness matrix k in Eg. 3.10 reduces to

(3.17)
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which is the stiffness matrix of the hybrid stress model. From bg. 3.9, the

following equation is obtained by taking 6"mR = 0 sincc Sq is arbitrary:

L(lxgrmil=o0 (3.13)
The element nodal generalized displaccments g can be connected to the
gleial generalized displacements q* by

§ =Igg* %* (3.14a)

—

tote also that

. T o ek
= 3.14b
§=T34" G (3.14b)
where qu* is a transformation matrix relating q to g*.

Applying Eqs. 3.14a and 3.14b to Eq. 3.13, the following equations of
dynamic equilibrium of the non-forced complete assembled discretized structure

is obtained:

e R x
ME“LE&:O (3.15)

—

where ¥ and K represent, respectively, thc mass matrix and the stiffpess matrix

for the complete assembled discretized structure referrcd to the global system.

It is seen that the final governing equations of free vibration analysis
are of tne same form for both the displacement and the hybrid stress finite-
element model. For fre.- vibration analysis, one may assume that

3 2.k
f = -w§g (3.16)

where w is the natural freguency of the system. Thus, the following familiar

eir]enval\ e :pl_rr_'_\hle!_n rasnlts from i'fq. 3.15:

X 3.17
(25-_ uflﬁg) ﬁi =0 ( )

3.2 Mass Matrices for an Elcment

By resorting to the modificd Reissner principle cxpresscd by Eg. 3.1,
the procedure explained in Subsection 3.1 shows how onc may obtain both the
hybrid-stress stiffness matrix and a "hybrid rational” element nass matrix.
Although this mass matrix is "rational®, it is not consistent in the sense
widely understood in connection with the finite element assumecd displacement

mothod. In the latter, the assumed displacement field is used to obtain the

13




element stiffness matrix, and a velocity field consistent with the assumed
displacement field is used to represent the kinetic energy of the system there-
by identifying a consistent mass matrix. In the hybrid stress model on the
other hand, the displacement field utilized for constructing the kinetic energy
to identify a rational mass matrix is not employed in any sense in the de-

termination of the element stiffness matrix given by Egq. 3.12.

In addition to the "rational element mass matrix procedure" explained
in Subsection 3.1, one may also censtruct a lumped mass matrix by commonly
used procedures, or from a special case of the present procedure. For ex-
ample, { the displacement field interpolation function ¥ of Eg. 3.5 were
assumed to be such that the displacements within the tributary region of a
particular node are identical to the displacements of that node, then the so-
called lumped mass matrix [4l] results. For the quadrilateral element con-
sidered in this study, the tributery region may be defined, for simplicity, as
one-fourth of the total plane-area of the element regardless of the shape of

the quadrilateral element. Then, for the single-layer element ELEM1, the

following diagonal-lumped mass matrix m L is obtained:
=y
uEA
i [
_E‘_'r.a_. o ||
5@ | Al
n, = i 148
= 4 s I Es
= = e &
{ O I C! g
I A L“’.ﬂ
(3.18)
. T i S
where A = plane area, p = density, (q.,) = (ui'vi'wiexi'eyi) 1 =12, ... 4,
andlithe Wigdgenal torms ER & gweoo (B a0 DR R CHLN wdikh Me = (h/2 49
bl I s U T L Jdpre

Next, consider the development of a hybrid-rational mass matrix for
ELEMl. Since the element boundary displacements are assumed to be linear for

ELEMl, a convenient and suitable interpolation for N would be a bilinear ex-

pansion in terms of a pair of transformed coordinates (£,n):




FS

u=, ’ [(L{L'*'ZQ;“}N[]
=
2
vV = % [(Vi-26x)N]
w = ¢ (W N;)
1= (3.19)
where
N, = (U=-g)>(i-7)
N= (I-7)%&
Ny= &7
Ng= (1-2)7 (3.20)

The relations between the original coordinates (x,y) and the transformed co-

ordinates (f,n) are (see Fig. 23):

x = i X Ni
o (3.21)

H = 31”1

Having Eg. 3.19% (which is the equivalent of Eq. 3.5), the mass matrix of ELEML
can be obtained by substituting Eg. 3.19 into Eg. 3.7 and performing the neces-

sary integrations. The resulting mass matrix will be designated as M) 4R and

will be called a hybrid-rational (HR) mass matrix in the sense that the inter-
polated displacements within the element conform with the element bhoundary

displacements and is derived from an established variational principle.

- R k] . . = et w e - m amew v g 3
To derive luwuped and IR wasds ieliices for the waltilayer clement ELEMZ,

it is only necessary to note that for each layer the above-derived mass matrices

mL and M 4R 3Fe applicable. tlowever, the following transformation
u) fos o o5 o 0 {ug)
V., 0o 05 © 05 Oy,
wirl=fle o© o o | { ui“?
Oy 0 h O W oo Vi
i 93'&' :'/h; © %'i o O |w |

i=1, 2, «.. D (3.22}
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Ee = Iez ?@z (3.23)

is needed to transform the nodal displacements of ELEM] to that of ELEMZ.
Then the complcte mass matrix of ELEMZ can be obtained by summing the trans-

formed lumped or HR mass matrix T for each layer through the thickness

1. T
-6z 1 ez
in the same way as individual element stiffness matrices are asscmbled into a

system matrix. The corresponding mass matrics for ELEMZ will be Jdesignated

as m and n r ectively.
S g1, @0 oy cspectively

'

As for the reduced multilayer clement ELEMR, the corresponding mass

matrices T R-L and‘TR—HR can be obtained by reducing m,_p °F M, _uR in the

-~

same way as its stiffness matrix is reduced from that of ELEMZ (see Sub-

section 2.3.1).

3.3 Plate and Shell Evaluation Examples

To test the reliability of the above-developed mass matrices, several
examples have been solved and the results compared with other known solutions.
A computational scheme making use of the Sturm sequence property [42,43,44] has
been adopted to solve the eigenvalue problem of Eg. 3.17. The computer program
developed is capable of finding vibration frequencies and mode shapes for any
number of vibration modes. A brief description of the solution scheme is con-

tained in the Appendix at the end of this report.

3.3.1 Single-Layer Thin Plates

Both the lumped mass matrix m and the hybrid-rational mass matrix

~l=L

n, _,p ©f the single-layer element ELEM] are used in solving the following two

e

problems of classical thin plate vibrations:

{a) Simply-Supported Square Thin Isotropic Plate (Table 8, Fig. 24)

The dimensions and material properties of the plate can be found in

Table 8, together with the numerical results. The single-layer ele-

ment LLE!ll is used and the lowest frequency found by using ml R and
") nR is plotted in Fig. 24 for various finite-element modelings with

uniform neshes up to 6x8 in a quarter of the plate; shown is the per-

centage error for each of the present predictions of the lowest

36
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frequency in comparison with the exact values reported in Ref. 45.
For this problem, the lumped and the hybrid-rational mass matrices
give almost the same degree of accuracy, except that the errors are

opposite in siun.

(b) _Clamped Rectangular Thin Isotropic Plate (Table 9, Fig. 25)

A clamped rectangular plate of aspect ratio 1:2 with the material

7 properties the same as that of the previous example has been

1 analyzed. Again, both lumped and HR mass matrices have been tested;
21 the results for the lowest predicted freguency are plotted in Fig. 25
1 and also are contained in Table 2. C(Comparisons are made with the

:? exact solution of Ref, 45. It is shown in Fig. 25 that for a given

h nuimber of degrees of freedom (DOF), the HR mass prediction is

superior to that obtained by using the lumped mass matrix.

Since by using the present solution scheme, the computing effort for a
| system with a diagonal mass matrix is not very much reduced when compared
with one which uses a mass matrix which has non-diagonal terms, in subse-

quent calculations only the HR mass matrices will be used so that better ac-

curacy can be obtained.

In the examples presented thus far, only the lowest fredquency has been

computed. To test the ability of the solution scheme for higher modes, the

following problem has been solwved:

(c) Simply-Supported Rectangular Thin Isotropic Plate (Table 10)

A simply-supported rectanqular plate of the same dimensions and
material properties as that of example (b) has been analyzed for
symmetrical modes of vibration. A quarter of the plate was
analyzed by applying ELEM1 (with the [IR mass matrix' to two differ-
ent uniform meshes 6x12 and #x8. The first seven frequencies of
symmetric nodes of vibration computed and the errors calculated by
: comparing with the exact solution [45] are shown in Table 10. As

can be seen in Table 10, better predictions are obtained for the

lower frequencies. This js expected since the accuracy depends

on the ability of the elements to wodel the proper Jdeformed
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shape of thc structure, and higher nodes involvc higher wavc numbers
of deformation; i.e., worc complicatcd mode shapes. Thus, better
modeling is provided by thc 6x12 mesh than by tue 3x8 mesh for the
mode designated by 5-1 in Table 10, for exaumplc, Lcecausc wore elc-
ments are put in the direction which has a wave uumber equal to 5
(that is, along the loug side). "The opposite is true for mode 1-3
in Table 10 since aiglcr wave numbcrs now appcar in the othcr (short

siac) direction.

In suwmary, tie better solutions of thc two wcshes for the first Ffive
syrmuietric iodes produce no error in predictcd frequency larger than 4%. For

higher modcs, apparc.itly, morc elements are necded.

3.3.2 Two-Layer Thin and Thick Platcs

Since two-layer laminates are usually "unbalanced", Liie extensional
modc and bending mode of vibration are coupled. The following two problems
arc chosen to demonstrate thc ability of :ne present finitc-elcment mcthod to

prcdict the lowest frequcncy of vibration of unbalanced plates.

{a) Clamped Cross-Ply Squarc Thin Plate (Table 11, Fig, 26)

For thin multilayer platc problems, ELEIR can bc uscd. The proscnt
problem is described in Table 11, together with the results of the
lowest predicted frcquecncy for cach of various modcling nieshes. Con-
parisons arc made with the CPT solution of Ref. 22 which does not
includc transverse shear Jcformation effects. Thc prescnt finitce-
clesent solution converyes very rapidly and the small discrcpancy
Letwcen the two solutions may be attributcd to tiic transvcrse shear

dcfornrnation effccts.

tb)  Simply-Supported Infinite Strip (Table 12, Fig. 27}

In Rcf. 46, exact clasticity solutions are obtaincd for two-layer

cross-ply infinite strips of various thickness-to-span ratios.

For thc finite-element analysis, only one row of cleuwents arrangcd
in thc short-span direction is nceded. In fact, only eight LELLZ

clements are uscd along the half span becausc of symmctry. Since a

3y




coilsiderable amount of local deformaetion of the plate eross scction
is expected, the wwo=-layer thickness is divided into four sublayers.
Even s¢, tine finite elewent predictions of tiie lowest frequency for
cae algher thickness-to-span ratio still are about 20% hilgher than
the exact values, llowever, as can be secen in Fig. 27, great improve-
ment is obtalinecd by the present (ELEMZ, HR-mass) finite-element solu-
tion over (1) the c¢lassical solutions and (2} solutions which in-
clude rotary irvertia and in-plane mass inertia but neglect the local

deformation caused by transverse shear deformation.,

3.3.3 A Simply-Supported Three-Laycr Squarc Plate

The exact vibration analysis of a three-layer square plate, with each
layer being isotropie has becen done in Ref. 47. Thae present finite-element
solution uses, ELEMZ the HR mass matrix, and a 4x4 wesh in a quarter of the
plate. o subdivision of eaeh layer is necded. The prodicted lowest fre-
quencies show cxcellent aecuracy, as can be seen in Table 13 for various combi-
nations of density ratios and shear modulus ratios. Also included in Table 13
are predictions by the classical plate theory which neglects transverse shear
deforiation; the latter, obviously does not yield accurate resalts cven for

only moderately thick plates (total tnickness = 0.1 side length).

3.3.4 A simply-Supworted Three-layer Cross-Ply Cylindrical Shell

Humerical solutions for botn cxact and approximate vibration analyses
of a tiirce-layer cylindrical shell siunply supported at both ¢nds have been ob-
tained by other authors [47,48). The material properties arc given in Table 14.
In tne present investigation, only the lowest [reguency of the axisymetric mede
is explored in order to restrict the present computational effort. As in the
vrevious example, only cight clements in a half span are used, Both ELEMZ
ad sLEIR are used and the transformations described in Subsections 2.5.1 and
2.5.2 are utilizcod to transform tae flat-plate nodal displacewents of ELENZ
and ELENMR into comnon shell nodal displacements. The results for various
tnichness-to-length ratios, together with classical (CsT, Ref. 49}, exact (LT,
kef. 47), and ap ~wxinate (W7, Ref. 16} sclutions are listed in Table 15.

Lxcellent accuracy is obserwved for DLLIG conpared witih tiae Ref. 47 solution.
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Lven ELEMR, which neylects the local warpiung of the shell cross section, yields

fair recsults -- comparable to thosc of the so-called refined shell theory.

3.4  Summary
Both lumped and hybrid-rational mass matriccs for elements LLDM1, ELEMR,
and ELEMZ have bcen developed. Because of their better accuracy as evidenced

by the precsent studies of natural frequencies of vibration for various plates,

the hybrid-ratioaal mass matrices are chosen for future use.

Frequency analysis of thin plates shows that FE predictions for lowcr
modes of vibration are bctter than those for higher modes, mainly becausc the
finite-element discretization crployed models the lower modes more closely;
finer meshing is needed to improve frequency predictions for thec highner
modes -- a commonly notcd fact. The samec phenomenon exists for Raylcigin-Ritz

approxinatc analysis.

For very thick plates (whosc thickness-to-side ratio is in the order of

one) supdivision of each layer is needed to model the local deformation closcly.

Analyses of a three-laycr plate and of a thrce-laycr cylindrical shell

in the prescent study show excellent accuracy of the nultilayer clement ELEMZ,

The prcsent formulation provides a dependable HR mass matrix which can

be confidently applied to transiert dynamic analysis.
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SECTION 4

THEBEMAL STRESS ANALYSIS

Since aerodynamic heating and/or other sources of heating may produce
elevated nonuniform temperatures in aerospace structures, the analysis of the
attendant effects such as thermally~-induced distortions and stresses is of
interest. Accordingly the present section pertains to the analysis of thermal
stresses and deformations in the context of applying the hybrid-stress finite-
element wodel and method. This analysis is developed and applied to several
simple thermal/structural problems involving either isotropic or anisotropic

materials in single-layer or multilayer configurations.

It is assumed that a steady-state vype of nonuniform temperature dis-
tribution is known; the attendant static thermal stresses and distortions are
then analyzed. In other words, the temperature problem and the elasticity

problem are considered to be uncoupled.

4.1 Thermal Stress Analysis by the Hybrid Stress~Model

For a given temperature dictribution, the thermal stress analysis of
an elastic body by the displacement finite-element model is quite straight-
forward. The thermal loading can be transformed into a set of equivalent
nodal forces by an initial-strain approach [51,52). For a hybrid-stress model,

equivalent nodal forces ca. also be obtained by an initial-strain approacn [8].

Consider a single element. The complementary energy functional to be
minimized in the presence of a temperature distribution over the entire element
is shown in Ref. 8 to be

nc:f(if Sijig 0ij Oug + Eoij 61j)dv = [ T; u; dA (4.1)

where Eoij is the initial strain obtainable by the following formula:
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(4.2)

In Eq. 4.2, a., ., and a_ are the coefficients of linear therinal expansion

in the respeciivezthree piincipal directions of the material. AT is the tem-
perature 1ise from a stress-free temperature state, and £ and m are the plane
direction cosines between the material axes and the element axes. In short,
Eq. 4.2 is nothing but a strain transformation formula that relates the initial

strains in the material axes to chose with respect to the element axes.

The stress-strain relation in the presence of thermal initial strain is
E.,',J' = Ghu Sijkf + EG{J. (4.3)

The inversion of Eq. 4.3 leads to the following expression for the stress oij

which corresponds to the toiual strain Eij:

r

0y = Gyj + Ooiy (4.4)

where
00ij= Cijug Eonp '4.5)

Here ooij is the stress corresponuing to the initial strain and oij is the
actual stress.Since usually a linear distribution of Uij in the transverse
direction can be assumed for plate or shell structures, it follows that Oij is
linear in the transverce direction. The actual stress Uij' however, may not be

linear in the transverse direction, since ﬂoij may not be linear:

mj = 6‘,:} - 62"’_}' {(4.6)
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In the following, equivalent nodal forces will be derived for the multi- .

layer element ELEMZ. The equlvalent nodal forces for ELEMR and LLEMl can be

¥

obtained directly from those of ELEMZ by appropriate redu&tlors of Lhe nodal

degrees of freedom.

;! For the stress field, one may assume that
.-: - H . .
i Q_=E@+ﬁ,@t_',ﬁ§o : ' (4.7)

for each layer, where PB is the part of ! i that has unknown parametcrs B,
Etét is the part of Ui] that is necessary to balance the initial stress P B ‘
s0 that all together the actual stress § satisfies the equilibrium equatlons

of elasticity.

Hote that one could make Etgt id?ntiéal toggogo' Then the resulting
stresses Uij would be represented cnly by gg, wliose in-plane stresses are
linear in 2. Since, in general, the actual in-plane stresses’ may not be
linear in z, this would be too restrictive.i Thus gtgt is not made equal to
Bo&c’ as will be seen later. -

For the boundary displacements, one may assume that

U =L 3 , ’ {4.8)

la S Ty

as before, The functional of Eq. 4.l becomes, in matrix notation,

Te = [ (5 Stjen 04 Gag + Sijut 0% Goeg )4V ~f T; Ui IA

=Sz (RB*Ab-REYSKPE+RA-FpI 2RAYY
~S(REYRG-RBTLEA |
= J 1z 877 sp8+ EPSALrz ARSRE RS (I

- e

TIFTPTRT PR e

(4.9
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In Eq. 4.9, the matrices R, Bt' and Eb are obtained by specifying boundary

coordinates in the function P, Pt' and Eo' respectively, of Eq. 4.7.

By expressing

H=Jp'spdv {4.10a)
| @ = J RTLdA

as before, and defining

Hy =J PSP av
C:lt =J Bl.:r,l; dA {4.10b)
" Go=J RoLdA

the functional in Eq. 4.9 becomes

R =a-_ll PHE-¢6% +0'H, ,@t'ﬁr@tﬁ i 67603

e

i . {4.11)

T T T.T
g. 4. t o
In Eq. 4.11, the constant terms [Pt P §gt§t dv and Igo--o Egogo dv are

dropped, since tney have no contribution upon taking v .riations of O

Since a multilayer element is being considered, the interlayer equilibrium

. of stresses will lead to a set of constraint on 8 (see Subsection 2.3.1):
AL=8B (4.12)

Upon introducing the Lagrange multiplier A, a new functional is formed by
~ combining Eq. 4.11 and Eq. 4.12:

f
i
P ' -
i M, =M X (ﬁe é) (4.13)
! Taking the variation of né with recspect o E. e ubidins
P .
!
: Hﬁ"’c‘lﬁ"!‘Htﬁ;"'AT =0
! ~ - -~
b or
3 -l T
. £ = H(GF-Hebr -ATN) (3.14)
Substituting B of Eq. 4.14 into Eg. 4.12, one obtains




or
No= (A U-,(ﬁ’i’flg‘ﬁﬂmt,@t -B) (4.15)

Substituting B and A back into Eg. 4.13, the new functional ﬂ'c now contains

only q:

(4.16)

Again, a constant term in ﬂé has been dropped. Finally, by taking the varia-

tion of ﬂé with respect to g, one obtains

{4.17)

Thus, the element stiffness matrix E.QE Eq. 2.2B remains valid and an equiva-

lent element nodal thermal force vector:

7 PR o -1 -
f= GTH'ﬂt@’GH'{’fMﬁg) (B+AHH, 6, ) + E{o?g' %TEF (4.18)

~ A A A - e T O P

is obtained.

4.2 Modeling of a Temperature Distribution

The equivalent thermal loading vector derived in Subsection 4.1 depends
on the temperature distribution of an element. In theory, any given function
of temperature distribution can be used in Eq. 4.2 to yield a vector of initial
strain and eventually the vector POBO in Eq. 4.7. That, however, would intro-

duce difficulties in evaluating Eg. 4.10b. Since the basic stress distribution
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represented by P8 in Eq. 4.7 is only linear in x and y (see Subsection 2.3.2),
higher-order descriptions of temperature for the equivalent nodal force calcu-
lation may be essentially futile unless higher-order stress-distribution
functions are used in developing the hybrid stress finite-element properties.
Therefore, the following simplification in temperature-distribution representa=-
tion is adopted in this study. A given arbitrary temperature distribution
ATo(x,y,z) for any one layer of an element is modeled by a simple distribution

ATi{x,y,2):

AT (x.y.2) = T+ Tax+Tsy +2{ T + Ty X+ Tg¥)

+Z.2(T'7 +Tgx + Tgy) (4.19)

which is parabolic in z and linear in x and y. The coefficients Tl' T2, - T9

are determined by minimizing the square errors of surface-fitting AT at the

12 corner points of that layer of an element (Fig. 2Ba).

Equation 4.19 can also be expressed in terms of temperatures in the

bottom (Tb), middle (Tm), and top (Tt) surface of that layer (see Fig. 2Bb):

TATX+T37 = Ton + Tz X + Tyng ¥
Ta+Tyx+Tey= ]I; COTy=To )+ (Tpg-Tp2) X +( T3=Ti3) ]
T+ TgX+Tey= -ﬁ;((Tu'Tu = 2T ) (T2~ To2 2Tz ) X

+( Tez— T3 -ZTM;)Y]

{4.20)

where h is the thickness of that particular layer.

Thus, the minimization of errors in AT{x,y,z) can be carried out for the
three surfaces separately. Denote by Toi the actual temperatures at the four
corner points for any one of the three surfaces calculated from the original
ATo(x,y,z), and denote by Ti the approximate values calculated from Eq. 4.19

and Eg. 4.20. Then the square error Er of the temperature description for that
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surface 1s

l=’ (d-2l}
and
—_ = X L
TL TSI s Xe +T53y‘ s =D, orm, or t (4.22)
where X, and y, are the corner coordinates of the element,
To minimize Er:
ok =
9k ;(-2)("&-'&) =0
E
2 — (T T = 0
JdEr _ —— =y —
S — g}(zmmi— T)=o
(4.23)

After rearranging the terms in Eq. 4.23, and using Eq. 4.22, the following

equations are obtained:

v
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e
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(4.24)

T T ., T T
hen T s2' 's3

points Toi' and the modeling of the temperature distribution ATO(X.Y:Z) by

can be solved easily in terms of temperatures at corner

AT (x,y,2) is completed upon substituting the expressions in Eq. 4.20 into
Eq. 4.19.
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4.3 Stress Assumptions in an Element

The actual stress J consists of three parts: PB, ?-tt-j-t' and Eog-o as
can be seen in Eq. 4.7. For each layer of a multilayer element, B is the

same as that of ELEM1, and E:o@o can be calculated from

'O'oxw ,Cu\ (z C3 o © C!(:W ffor i Tox |
Coy \Cn\ Cizs o © Ca| Loy oy
Pobo = | Coz | — ‘C;;\ o o (% ) 12 =) Gz T
Toyz Cu Gs o |8 |©
Gons Sym. o o iy f
%) L Ul =) |
(4.25)

where the matrix C is the elastic matrix and can be obtained by inverting the
compliance matrix S of Eq. 2.14; the initial strain vector is obtained from
Eq. 4.2. Since PJ satisfies the three equilibrium equations of elasticity
identically, it is now necessary to derive Btﬁt such that (’P’t-@t - P Bo) will
satisfy the equilibrium equations identically. Substituting fogo of Eq. 4.25

into the following equilibrium equations

(GOX"S‘t‘l ),1 +( 0_017'0-{)(,)’1 -+ <'—6.t)(2);2 = ¢
(Gﬂiﬂqiy);r*’((}_’y'{rﬁy),y + (_G't_‘lz):?, = g

Opyg dox + (= Ctyzdy 1(-Cg)z = 0
(4.26)

and integratinyg, one finds the following for ’Etﬁt:
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(4.27)

; Thus, the stresses of any layer of an element consist of P of ELEMI,
P . 4. P . 4.27.
~o§o of Eq. 4.25 and ~t§t of Eq. 4.27

The interiayer equilibrium conditions impose constraints on Uz, cyz'

The equilibrium of g, is automatically satisfied,

i i = + - = . 4.27. i-
since Gz of ?@ is zero and Oz o ctz ooz O by Eg. 4.27 The equi

and cxz (see Eg. 2.30}.

librium of ¢ and ¢ leads to
XZ vz

((ze_cﬂ)offe +(0}z.5‘>f23°fﬂ@] at the top of the ith layer
{4.28)

= [ (632.0y,) of P 4 Gy Gy )0f B) at the bottom of the (i+1)™
layer

since Pogo does not contain nonzero transverse shear stresses. In Eg. 4.28,

the part of P yields the (same) coefficient matrix A of [ in Eg. 21 of
= o

ELEMZ, and the parc of gtgt yields constant terms which constitute the vector

§ in the constraint equation

—~— e

AB=8B (4.29)

l Thus, all of the ingredieats needed to calculate the equivalent nodal forces
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are now available. In summary, the equivalent nodal forces can be obtained

from Eq. 4.18, in which the matrices gvg'and A are the same as defined for
ELEMZ before, the vectorslgtﬁt and Etgt are obtained by using Eg, 4.10 and
Eq. 4.27, the vector Eo?go is obtained from Eq. 4.10 and Eg. 4.25, and the
vector B is cbtained from Egs. 4.27 and 4.28.

4.4 Plate and Shell “valuation Examples

4.4.1 In-Plane Espansion of a Free Single-Layer Thin

Isotropic Rectangular Plate

To test the accuracy of the equivalent thermal loading represe- tatica,
a problem for which both experimental and approximate-theoretical (53] thermal
stress data are available is chosen as a test problem. It is a free single-
layer thin rectangular isotropic plate heated linearly in the plate plane and
uniforml - across the plate thickness direction as illustrated in Fig. 29; other
pertinent data for this problem are given in Table 16. Because of the sym-
metry ol the plate and the temperature distribution, only a quarter of the
plate is used in the analysis and only the in-piane displacements and stresses

need to be considered.

The in-plane displacement pattern calculated by the present finite-
element method using a 5x4 mesh is plotted in Fig. 30. In Figs. 3la, 31b, and
3lc, the in-plane stresses O r oy' and ny, respectively, are plotted against
both experimental and theoretical results of Ref. 53. It is seen that the
direct stresses (0x and Uy) calculated by using the present finite-element
method agree very well with both results; the shear stress (oxy} prediction
is also very good, except near the edges, because the free traction edge con-
dition is satisfied only in an average sense in the preccnt finits elemeal
modeling. It should be mentioned that the theoretical results of Ref. 53 are
only approximate; the direct stress ox is first assumed according to a dis-
tribution which is exact for an infinite strip under thermal loading and the
other stresses are then determined acccrding to the Principle of Complementary
Energy. Also, as mentioned in Ref. 53, the temperature control to give the
temperature distribution of Fig. 29 for the experiment is not perfect. There~

fore, some slight discrepancies between the theoretical and experimental
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results are expected. However, the present prediction agrees very well with
both of the comparison results. ‘This demonstrates the accuracy of the present

equivalent thermal lcading calculation and the associated FE analysis.

4.4.2 Bending of a Clamped Thin Isotropic Rectangular Flate

Subjected to Nonuniform Temperature

The dimensions and properties of the plate under consideration are
listed in Table 17. For a thin rectangular isotropic plate under thermal
loading and having all four sides i :ally clamped, the thermal stress problems
can be solved by recognizing that the governing egquations on the transverse
displacements are identical to those of the same plate under distributed
static lateral loading. In Ref. 54, it is shown that this equivalent static

load, denoted by p* is

P*=";_’—y {szt) {4.230)
where

h/2 4
M, = “Ejh/)_ Lo (4.31)

where v is the Poisson ratio, E is Young's modulus, o is the linear thermal
expansion coefficient, and T is the temperature distribution. 1In the present
example, a temperature distribution constant in x, parabolic in y, and linear
in z is assumed (see Fig. 32a). Thus, the results calculated by the present
hybrid-stress FE appreoach can be compared with that of the classical solution
[18] for a clamped rectangular plate under uniform loading. The displacements
along the central lines of the plate, obtained by the present method with an
8x3 uniform mesh in a quarter of the plate are plotted in Figs. 32b and 32c,
together with the central deflection predicted by the classical solution for
static bending ([18]. The present prediction for the central deflection is

almost identical to the classical exact solution of Ref. 18.

4.4.3 Simply-Supported, Infinitely-lLong, Two-layer, Cross-Ply

{0°/90°) Thin Strip Subjected to a Uniform Temperature

Distribution

The material properties and dimensions of the thin flat strip are de-

scribed in Table 18; the pertinent coordinates and geometry are depicted in
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Fig. 33a. Since this laminated plate is not balanced in the sense that the
expansion properties are not symmetric in z, even a uniform temperature will
cause a transverse displacement as can be seen in Fig., 33b. Also, thermal
stresses are induced, Plotted in Figs. 33c through 33f are the in-plane
stresses and interlaminar shear stresses. No other sclutions are available
at present for this problem; ‘herefore, no comparisons can be made. From
Figs. 33c¢c and 334 it is seen that the maximum g, occurs near the simply-
supported edges (x = + 8 in.) in the lower layer because the lower layer has
a larger elastic constant E:1 in che x-direction. The maximum interlaminar

shear stress sz (Fig. 33e) occurs at the supported edge and the OY stress

is almost constant alung the x-direction.

4.4.4 Simply-Supported, Three-Layer, Cross-Ply (0°/90°/0°),

Thick, Cylindrical Shell Subjected to a Uniform

Temperature Distribution

A uniform temperature is applied to a thre=z-layer cylindrical shell of
finite length, simply supported at each end. The material properties and the
dimensiops of the shell are described in Table 19. Since this is an axisym-
metric problem, only one strip of the shell is needed in the finite-element
modeling. In fact, only half a strip is used because of symmetry in the axial
direction alsc. The calculated radial displacements resulting from the applied
temperature are plotted in Fig. 34a. It is interesting to note that the maxi-
mum radial deflection deoes not occur at the cer “ral section but at a place near
the center section. However, this phenomenon is a result of the particular
combination of the length, thickness, and radius ratics used in this example
and should not be regarded as a general result. In Fig. 34b, the axial dis-
placements of six representative sections are plotted. The distortion from
the original plane section is most severe at the supported edge but dies out
gradually toward the central section. A reverse of the direction of rotation
of the cross section occurs near the central section (x=7}. This is consistent
with the small decrease of radial displacement near the central section

{Fig. 34a).




4.5 Sumnary

Candelit A

The thermal-stress analysis by the present hybrid-stress finite-
clement method is shown to be equivalent to a static analysis (as is well
known to be true also for other types of thermal analyses). The equivalent

thermal loading vector for a hybrid stress model is derived using an initial-

strain approach. Arbitrary temperature distributions on any element are ap-

proximated by simple functions: linear in x and y, and parabolic in z. The

el atabht ininl

accuracy of the present method is demonstrated in two simple problems: (1)
in-plane plate expansion and {2) thermal-induced bending of a plate; good
agreement is observed for both displacement and stress predictions. Two

other problems, a two-layer plate and a three-layer cylindrical snell, each

FTIROR MY S R e

under a uniform temperature distribution, are also solved and the results are

discussed.

53

AT T o T T e Raaird T -~ v T T T T i e R Ty g



SECTION &

SUMMARY AND CONCLUSIONS

5.1 Summary

This study has been devoted to the development and evaluation of hybrid
stress flat-plate finite elements for use in analyzing laminated plate and
shell structures. Transverse shear deformation effects as well as in-plane
and rotary inertia for vibration analysis are included. The plate and shell
structures under consideration ranye from very thin to very thick. According
to the loading conditions applied to the structure, this study can be divided
into three categories: static analysis, vibration analysis, and thermal stress

analysis.

These three types of loading conditions are discussed since they repre-
sent the basic leoading environment that many structures, particularly aero-
nautical and aerospace structures, may encounter. Tnese basic analyses serve

as the foundation for future studies on transient dynamic and other compli-

cated loading conditions. Also, they are necessary aspects in the evaluation
of the properties of certain finite elements developed so that tne reliubility
and limitations of these finite elements can be assessed before these finite

elements are applied to practical structural analysis and design.

In static finite-element analysis, the basic task is to develop reliable
stif{fness matrices that converge rapidly Lo correct seolutions, with a “minimum"
nunber cf dngrees of freedom, To achieve this goal, studies were mude first on
single~layey clements. An outline of the derivation of single-layexr flat-
plate elements by the hybrid stress mouel 1s gilven amnd u ividal ol niue eletonts
witn different stress and Loundary displacement assumptions werce tested on a
very thin tlat plate as wcll as on a very thick fiat plate. Amony these nine
finite elements, a guadrilateral element designated as ELEML {with linear boundary
displacements and linear in-plane stress assumptions) is cnosen for usc because

of its fast convergence, excellent ac:iuracy, and simplicity.

Tren tne derivation of the stiffness matrix for a multilayer element
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was carried out by extending tie basic single-layer flat-plate elewent ELEML
to a multilayer element (designated by ELEMZ) which has independent boundary
displacements that can wodel the local deformatic of each layer of a hiate
or shell closely. For relatively thin multilayer plates or shells, an ele-
went designated by ELEMR is obtained by reducing the nodal degrees-of-freedom

of ELEMNZ.

Two transformation formulas are given for single-layer and multilayer
fiat-plate elements so that thelr appl..ation can be broadened to include

curved-snell problems.,

Various static~plate and curved-shell problems, including both thin and
thick, single-layer, two-layer, and three-layer problems, nave been solved
using the three elements developed in this study, and comparisons have been
made witii other existing solutions. It is found that these elements are indeed
very effective in predicting both displacements anu stresses of plate and shell

structures under static loading.

For vibration analyses using the hybrid-stress model, a brief discussion
of the variational basis of the derivation of a wmass matrix is given, followed
hy the developwent of lumped and hybrid-rational mass matrices for the three
eiements mentioned earlier. Based on the results of test problems, the less
accurate lumped-mass approach was discarded, and the superior hybrid-rational
mass approiach was adopted for subsequent use. Several example problems were
solved. Frequency predictions were comrared with other existing solutilons,

and good accuracy of the present predicticns is observed in general.

The steady-state thermal stress analysis carried out by the hybrid-stress
finite-clement model is characterized by *i.e development of an equivalent thermal
loading vector; the analysis is otierwise ¢imilar to a static enalysis. The
temperature distribution wi.aln an eicment is modeled for convenience in the
present study by a linear approximation in the vlane surface and by a parabolic
Eit in the transversc direction. Then initial strains and their correspondi g
stresses are computed based on these temperature distributions; the total stress

assumptions are wsuch that they satisfy the equilibriuwm conditions of elasticity.

Tihe equivalent thermal loading vector is ootalned through the application of a




variational principle that includes the temperature effects as initial strains.

Problems involving in-plane expansion and transverse bending induced by
temperature were solved. Because of the limited number of existing numerical
solutions on thermal stress problems, only two of the example problems were
compared to other solutions; they show very good accuracy for displacement and

stress predictions.

In sumnmary, three quadrilateral flat-plate elements: ELEM1, ELEMR, and
ELEMZ were developed and verified to provide reasonably accurate and reliable
predictions for static, vibration, and thermal stress problems. They 311 have
similar assumptions on stresses and boundary displacements but differ in their
applicability to (1} thin or thick and (2) single-layer or multilayer plate

and/or shell problems.

5.2 Conclusions

Based upon the results of various numerical verificacions included in

thie study, the following conclusions may be stated:

{a) The present finite-element methiod is reasonably efficient
and accurate for predicting stress and displacement re-
sponses to static or thermal loadings and natural fre-

quencies for free vibrations of plate and shell structures.

{b) For single-layer problems, ELEM] is recommended for use,
However, if the tihickness becomes large (for thickness-
to-side ratio h/f greater thran about 0.1), it is advisable
to subdivide the single-layer into sublayers and use ELEMZ

to model the local deformation more clousely.

{(c) For relatively thin multilayer plates or shells with h/%
or h/R (R = radius) smaller than 0.1, the ELEMR element
can be used. It has been pointed out in Subsectioun 2.7 that
the element reported in Ref. 29 is a better choice for this

range of application.
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(d) TFor (i) relatively tpick plates or shells or (2) laminates
that have _elatively low shear moduli and/or a 'high ratio of
elastic constants in different directions, the ELEMZ multilayer
element should be used so that local deformations and stresses

arc predicted accufately.'

(e} Predictions or the lowest natural frequency are usually
accurate even when a small number of elgments is used,
» 1

but more elements are needed for suitably accurate predic-

tions of the higher frequencies. : ' ) o

(£} Comparisons of predictions from using two assumed-displace-
ment finite elements for thick laminated plates on Static

4 problems snowed that the present hfbrid-strgss element

ELEMZ provides wore accuraté predictions for a given number

of unknowns (and herce is less exp-onsive).:

1 {g) Thermal effects are acCuratelf accounted for through the

computation of an enquivalent thermal loading vector in

the present hybrid-stress formulation. The limitations '

on the present finite~element methods die in the fact that
the normal stress Oz ;s assumed to be zero and the transverse
displacement w is assumed to be constant throughout the

whole thickness of an clement. While errors inlthe bz or the
w prediction are usually negligible, these restrictive as-
sumptions do have some:effect on the other stress predictions.
The present approach always yields symmetric results with re-
spect to the middle surface of an element if the laminate is
symmatric; however, the actual results mdy involve some devi-

ation from symmetry because the load may aclL on only one sur-

face of the laminate. Fortunately, such deviation is usually
negligible except for very thick plates, for example, for h/¢

greater than about 0.25 [2].

In general, tne stiffness metrices, mi.ss matrices, and the equivalent
thermal loadinyg vectors developed in this study are very cffective. They ca-

be used for detailed displaccient and stress analysis. Also they constitute a

by
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sound foundation for transient dynamic analysis.

5.3 Suygestions for Future Research

A direct and useful extension of the present work would be the study of
the résponse of layered structures under transient dynamic loadings. Since
the ﬁasic stiffness matrix and the mass matrix are already developed, in theory
it ié necessary only to select an efficient timewise numerical integration
scheme [55] to solwve the transient equations of motion if damping can be neg-

lected. OQtherwise, a damping matrix will have to be developed.

The geometric stiffness matrix needed in a buckling analysis could be
developed in a2 manner similar to the treatment used in the derivation of a
mass matrix by the hybrid stress model. In fact, the derivation of a geometric
stiffness matrix based on a mixed variational principle has already been reported
by Allman [56]; even earlier Lundgren [57] obtained a geometric stiffness matrix
fof laminated plates by independently-assumed displacement functions. Thus, the
extension of the present work to a linear buckling analysis including thermal

buckling seems to be quite feasible.

Another area of interest is the nonlinear analysis of plates and shells.
Both geometric and material nonlinearities could be considered. For geo-
wetrically nonlinear problems, the incremental approach [58] seems to be the
most direct solution. However, some modifications of the present finite-element
models would be needed since the present quadrilateral flat-plate element will
not fit the deformed shape of a plate or a shell. For elastic-plastic-type
macerial properties, some progress has been made recently [59] for hybrid
stress finite-element models. The inclusion of elastic-plastic behavior in
this hybrld—stress tinite-element countext may turn out not to be as ditftrcult
as “he treatment of geometrically nonlinear problems. These nonlinear effects,
of course, have been accommodated in assumed-displacement finite-element, finite-

difference, and other methods for isotropic single-layer and/or multilayer

structures.
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TABLE 1

IDFNTIFICATION OF THE VARIQUS TYPES OF HYBRID-STRESS
FLAT-PLATE FINITE ELEMENTS EVALUATLD

] TYPE STRESS DISPLACEMENT DOF COMMENTS
Goad
ELEM1 L, L L 20  {Element
§ ELEMA ! S S L, L L 20 |Too Stiff
ELEMB & L, L L.Q 20* |Too Stiff
IELEMC & L, L Q 32* ISingular
(~) Fair but
ELEMD L, L L, Q 20* |stress Field
toc Simple
ELEME 7 \ L, Q L 20 |Too Stiff
ELEMF & L, Q Q 32* |[Too Flexible
- Good but Use
ELEMG L, @ Q 20 |is Limited
to Flat
Plates
' Good but
ELEMZ L, @ L, Q <0 lcomplex

*
nfter static condensaticon

O = Element corner node

= Element side mid-point node
L,L- = Respectively, complete and incomplete linear functions of x and y
Q,Q- = Respectively, complete and incomplete quadratic functions of x and y

Ga




TABLE 2

DATA FOR SINGLE~LAYER ISOTROPIC PLATES*

{(a) Simply-Supporied Thin Plate
Loading: Concentrate Central Loadiay
Aspect Ratio = 1:1
Thickness—~to-siae Ratio = 1:100
Boundary Condition: Simply-Supported, no tangential rotation

Finite Element Breakdown: Uniform mesh in a quarter

{b} Clamped Square Thin Plate

Loading: Concentrate Central Loading
Aspect Ratio = 1:1

Thickness~to-sid: Ratio = 1:100
Boundary Condition: Clamped

Finite Element Breakdown: Uniform mesh in a quarter

(c) Clamped Rectangular Plate
Loading: Uniform Load
Aspect Ratio = 1l:2
Thickness-to-short-side Ratio = 1:100
poundary Condition: Clamped
Finite Element Breakdown: Uniform mesh in a quarter with

element aspect ratio 1l:1 and 1:2

{(d) Skewed Simply-Supported Thin Plate
Loadiny: Uniform Load, p(psi)
Aspect Ratio = 1:1

Thickness~to-side Ratio = 1:100 3o

Length of each side = a
soundary Condition = Simply-Supported, tangential rotation allowed

Finite Element Breakdown: Uniform mesh for the whole plate

(e) Siwply-Supported Square Thick Plate
Loading: Uniform
Aspect Ratio = 1:1
Thickness~Lto~side Ratio = 1:4
Boundary Condition: Simply-Supported, no tangential rotation

Finite~Element Breakdown: Uniform mesh in a quarter

7 3 3 2
E =10 psi, v = 0.3 for all cases; D = Eh,’ﬂ2(l -V ﬂ. h = plate thickness
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TABLE 3

DATA FOR TWO-LAYLR PLATES

(a) Clamped Cross-Ply Rectangular Thin Plate
Loadinyg: Uniform

Aspect Ratio = l:2 h Z

| 515

Thickness~to-side Ratio = 1:100 i

Boundary Condition: Clamped

Finite Element Breakdown: Uniform mesh in a guartcr, squarc elements

Material: L1/52 = 40, (312/15:2 = 0.5, vl?_ = 0.25

Orientation: 0°/90°
(b} Clamped Cross~Ply Square Thin Plate

Samc as in {a), except Aspect Ratio = 1l:1

(¢} Clamped Anglc-Ply Sguarc Thin Plate

fame as in (b}, except fiber orientation = + 45°

(4} Simply-Supported 2.gle-Ply Squarc Thick Plate
Loading: qo sin({nx/a) sin({ny/a)
Aspect Ratio = 1:1

Thickness~to=-side Ratio = 1:0

Bounuary Condition: Simply-Supported, frce in tangential direction,

no normal displacement
Finite Llcment Breakdown: Uniform mesh for the whole plate
M i : B /E. = S = 0.6 3 .= 0.5 = 0.
atcrial Ll/ 5 40, G12/L2 0.6, 523/L2 0.5, v 0.25

iz
Orientation: & varies
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Cross-Ply Long Strip:

TABLE 4

OATA FOR THREE-LAYER PLATES
1z.w

Loading: 9, sin{nx/a)

Aspect Ratio = 1:®

Thickness~to-short-side Ratio = 1:4

Boundary Condition: Simply-Supported, no tangential rotation
Finite Element Breakdown: Uniform mesh in half a strip in x-direction

Material: El = 25 x 106 psi, E_ = 106 psi, G,, = 0.5 x 106 psi

2
6 . _ _
623 0.2 x 10" psi, U12 = U23 = 0.25
Orientation: 0°/90"/0°
Nondimensionalized quantities: u = ETu(O,z)/(hqo)

o, = Ox(2/2.z)/q0- Iog = ze\O,ZJ/q

- 3
w = 100 - Ef w(2/2,0)/(qo - £7)

Cross—-Ply Plates

Loading: 9, sinfAx/a) sin(mwy/b)

Boundary Condition: Same as in {a)

Finite Element Breakdown: Uniform mesh in a quarter

Material: same as in {a)

Orientation: Same as in (a)

{1) Aspect Ratio = 3: b = Ja
Thickness—-to-short~-side Ratio h/a = 1/10

{2) Aspect Ratio: a/b = 1
Thickness-to-side Ratic h/a = 1/4

Nondimensionalized Quantities

u = ula/2, 0,2) E/(q a’/nd)
— . 2
S X g A et
Txy Xy r r A qO
5., =9 (a2, 0, 2)/iq_a/h)

il

L8 e A e o o S
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TABLE 6

DATA FOR THIN CYLINDRICAL SHELLS

{a, Pinched Cylindrical Shell P
Loading: Pinch Load, P (lbs)
Radius: a = 10 in.
Length £ = 31.42 in.
Thickness: h = 0.1 in.
Boundary Conditions: Simply-Supported, no tangential rotation
Finite Element Breakdown: Uniform mesh in one-eighth

Material: Isotropic, F = 1.0 psi, v = 0.28

(b) Ring~Loaded Cyliidrical Shell
Loading: Axisymmetric Ring Leoad of Q = 1.0 1b/in
Radius: a = 10 in.
Length: £ = 31.42 in.

Thickness: h = 0.1 in.

Bounaary Conditions: Free edge
Finite Element Breakdown: Uniform mesh in one strip

Material: Isotropic, E = 1.0 psi, v = 0.28
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TABLE 7
DATA FOR CONICAL. SHELLS

{a) Isotropic Single-Layer Conical Shell
Loading: Axisymmetric Ring Loads near free end, @

Radius at smaller end = 10 in,

Radius al larger end = 15 in. ' ;

Length of meridian = 10 in
Semi-angle of cone = 30° . :
Thickness = 0.025 in., 0.1 in., 0.5 in., 1.0 in. : B
Boundaiy Condition: Clapped at smaller end, free at larger end
Material = Isotropic, E = 107 psi, v= 0.3
Finite Element Breakdown: 20 elements in the fairst 2 inches

from the free end, 15 zlements in the next 3 inches, and

10 elements in the last 5 inches
1]

I, 1 ' ' Ring Loading @ at s
T ; % (lb/in) ' {in)
I"““hs -
wry : 1.0 0
: 0.75 0.3
15
i 1014 0.50 0.6
0.9

_l B __—.__. —1 | o.2§

{b) Sandwich Conical Shell
Same as in fa), except
Tnickness: 0.Cl in. for top and bottom layer and 0.08 in. for
the core '

. 1 , , .
Material: E = 10 psi, ¥ = 0.3, isotropic for cover lavers. and

n

E 104 psi, v = (.3, g = lO6 psi for the core

(c) Twoe-Layer Conical Shell
Same as in (a), except
Thickness: 0.5 in. for cover material and 0.5 in. for base material
Material: Glass Phenolic cover, E = 106 psi, v = 0.3,:i50tropic

7 . . .
Aluminum base, £ = 10 psi, Vv = 0.3 1sotropic
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TABLE 8
PERCENTAGE £RROR OF THE LOWEST FREQUENCY PREDICTED FOR
A SIMPLY-SUPPOFTED SQUARE THIN PLATE USING ELEM1

W - w

(——a——e'- 1) x 100
[#]

+
IMESH DOF LUMPED MASS HR MASS

. 2x2 27 - 5.2 5.1

. 4x4 g - 1.3 1.2
; 6x6 147 - 0.6 0.6
8x8 243 -0.4 0.2

Thickness = 0.1 in., Side length = 20 in., E =1 psi, v = 0.3, p = 1(1b—sec2)/in4
w, = Exact Lowest Frequency (Ref. 40) = 0.00149 rad/sec

+ . Lo
Uniform mesh in a quarter of the plate

TABLE 9
PERCENTAGE ERROR OF THE LOWEST FREQUENCY PREDICTED FOR
A CLAMPED RECTANGULAR THIN PLATE USING ELEM1

Ww-=-uw

(]
{ " 1) x 100
O
+
MESH DOF | LUMPED MASS | HR MASS
2x2 27 - 7.1 4,0
4x4 75 - 2.0 1.1
6x6 147 - 1.0 2.3
R 243 - G.7 .0
i

Thickness = 0.1 in., Short-side length = 20 in., Long-side length = 40 in.,
E=1psi, v=0.3; p-= l(lb—sec2)/1n4
mo = Exact Lowest Frequency (Ref. 40} = 0.00187 rad/sec

+ o
Uniform mesh in a gquarter of the plate.
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’ TABLE 10

i FREQUENCY PREDICTIONS FOR THE FIRST SEVEN SYMMETRIC [MODES OF VIBRATION
OF A SIMPLY-SUPPORTED RECTANGULAR THIN PLATE USING ELEM1 AND THE
HYBRID-RATIONAL MASS MATRIX

E MODE* | EXACT** 6x12 MESH' axs MEsH’

L m-n w W Error (%) W RROR (%)

a 1.25 | 1.2565 0.52 l1.2540] 0.32

3-1 3.25 3.2863 1.12 3.3340| 2.58

' (51 | 7.25 | 7.5021 3,78 [7.9220| 9.27

(1-3 | 9.25 Toe.7807 | s5.74 |9.s108] z.92

: 3-3 | 11.25 [11.7754 |  4.40 [11.5685| 2.83 |

3 [7-1 | "13.25 |14.2323 | 7.41 {e.0343| z21.01
5-3 | 15.25 |15.9259 a.43 l6.545 [ 5.28

*
Mode Shape: sin(mfF/ad sin {n7n/b)
*k 2
Ref. 40 exact solution: w = 11'2 ¥D/eh (mz/a2 + n2/b Ji a = 2bh;
= y 3 2
norimalized w = (mz/el + nz); D= Eh /[12(1 -~ v'}].

LY
"Results of a €xZ uniform mesh in a quarter of the plate (6 in the long

dimension); total DOF = 273; total comouting time on iIBM 370/155 = 5.9 min.

++
Resuits of an 8x8 uniform mesh in a quarter of tha plate; total DOF = 243;

total ceomputing time on IBM 370/155 = &.6 min.




TABLE 11

PERCENTAGE ERROR OF THE LOWEST FREQUENCY PREDICTED FOR A
TWO-LAYER CROSS-PLY (0°/90°) SQUARE THIN PLATE USING
ELEMR AND THE HR MASS MATRIX

w - w
('—7;——— - 1) x 100
MESH DOF HR MASS
2x2 45 3.0
4x4 125 - 0.5
6x6 | 245| - u.13]
Bx8 405 - 0.16
El/E = 40, GlZ/E2 = 0.5, v12 = 0,25, p=1
_ wo = Lowest frequency calculated in Ref. 22 = 0.00614 rad/sec
TABLE 12

DATA FOR THE VIBRATION ANALYSIS OF A SIMPLY-SUPPORTED TWO-LAYER
CROSS-PLY (0°/90°) INFINITE STRIP

{a) Material Properties

- = = - = 41, = ) . = .2, - =
Bottom-Layer E1 1.0922, Ez 41.983, Vlz 0.00520 V23 0.2, G G 1

Top-Layer = E, = 43.516, E_ = 1.0455, v__ = 0.208l2, V

1 2 ' Y12 23

f “
h/2

- = T

(b) Finite-Element Dis<retization

Eight ELEMZ element: in half strip (L/2)and two sublayers for each layer;

i.e., treating the two-layer plate as a four-layer plate.
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TABLE 13

COMPARISON OF PREDICTIONS FOP THE LOWEST FREQUENCIES OF 3-LAYER

SIMPLY-SUPPORTED SQUAPE PLATES

FREQUENCY (A) F-ERROR %
CASE dl/d2 01/02 CPT ELEMZ+ EXACT CPT ELEMZ
1 1 1 0.077054 0.07533 0.0745 3.4 1.1
2 1 2 0.093994 0.090973| 0.089986) 4.5 £.1
3| 1 | 5 | 0.13239 | 0.12437 | 0.123072] 7.6 l""ITE T
4 1 15 0.215642 G.1ly529 0.183664)17.4 ' 0.9
5 2 15 0.196852 0.16897 0.167574(17.5 0.8
6 3 15 0.18225 0.15633 0.15508h 17.5 0.8
Isotropic, vl = Uz = v3 = 0.3, Gl = 63' d = Mass Density, dl = d3
hl/a = O.gl, hz/a = 0.08, hl = h3
A= w(d2h2/02)1/2, w = angular frequency (rad/sec)

CPT = classical plate theory, Ref. 42
EXACT = Ref. 42

Finite-Element Discretization = uniform 4x4 mesh ir a guarter of the plate

"ELEMZ with the HR Mass Matrix




TABLE 14
PROPERTIES OF A THREE~IAYER CYLINDRICAL SHELI.

r LaYER | mHICKNESS | € * [ Cp, | 4y | €y s 1% | S | Cos | S
{(in.} i
Inside 0.2 33.03 13.032 | 33.32 {0.3998 | 10.03 | 1.03| 1.154 | 1.154 |%.154
Middle | 0.5 | 33.02 |3.032 | 33.32 |0.3998 |10.03 | 1.03 [11.54 | 0.1154 0.1154
outside | 0.3 | 33.02 | 3.032 |33.32 |0.3998 | 10.03 | 1.03| 1.154 | 1.154 [1.154

*®
Elastic constants Cii defined by Oi =C,,E.,i,3=1, 2 ,..,6 (units in 106 psi}

TABLE 15

COMPARISON OF PREDICTIONS FOR THE LOWEST FREQUENCIES OF J-LAYLR
SIMPLY-SUPPORTED CYLINDRICAL SHELLS IN AXISYMMETRIC VISRATION

+
a FREQUENCY (RAD/SEC) ERROR' %)
/4 | (in) [ CST RST ELEMR® | ELEMZ+ ET CST | TST |ELEMR |ELENMZ

0.01§ 0.5 171.65 171.654 172.91 172.91 171.65 0.0 0.0 0.7 0.7
0.05] 0.5 177.54 177.28 177.37 177.35 177.35 0.1 0.0 0.0 0.0
0.101 0.1 | 233.14 228.15 230.10 229.11 228.63 2.0 |- 0.2 0.6 0.2

0.20 .05 ; 647.82 560.22 593.67 574.00 568.52 7£3.7 - 1.6 4.4 0.9

0.40 | .025 2502.9 | 1607.8 | 1874.2 1728.5 J-1704'4 46.8 |- 5.7| 9.9 1.4
0.60| .olel 5620.8 | 2751.2 | 3411.4 | 3099.1 | 3052.3 | 4.1 |- 9.9| 11.7 ] 1.5
0.80| .0129989.3 | 3886.9 | 5003.0 | 4557.3 | 4495.2 | 122.2 |-13.5| 11.3 | 1.4

1.00 .01 {15607.C 5005.5 | 6593.2 6062.4 5991.7 160.5 | -16.5| 10.0 1.2

TS AT

H/Rf =Thickness-to-length ratio, Mean Radius R = 10 in. H =lin.
a = Width of flat-plate element

CST = Classical Shell Theory, Ref. 50, ]

RGT = Refinad Chell Theory, Bef. 49, R—szfﬁé}FdFd‘\
Bzl

ET = Elasticity Theory, Ref. 48 H

The HR mass matrix is employed

++ C i
ERROR = Compared with the Elasticity Solution of Ref. 48.
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(a)

; (b)

{c)

(d)

Gl

{a)

(b)

(c}

(d)

TABLE 16

DATA FOR A FREE SINGLU-LAYER ISOTROPIC THIN RECTANGULAR
PLATE SUBJECTEL TO THERMAI LOADING

Material Properties:

=6 L
E = 10.4 x lU6 psi, v = 0.3, a = 12.7 % 1¢ in/in-°F

Dimensions:
Rectangular plate witn long-side lengti. = 2a = 36 in, short-side

lenguin = 2b = 24 in, and thickness = 0.25 in

Temperature Distribution
Linear variation in the short-span direction and constant
in the long-span direction. Maximum temperature rise T

1
is 150 °F (see Fig. 28b)

Finite Element Discretization:

Uniform 5x4 wmesh in a quarter of the plate with ELEMZ

"degeneralized” for this single-layer problem

TABLE 17

DATA FOR A CLAMPEL RECTANGULAR SINGLE-LAYER ISOTROPIC THIN PLATE
SUBJECTED TO THERM:AL LOADING

Haterial Properties:

-6, .
E=1.0psi, v= 0.3, a= 1.0 x 10 in/in-°F

Dimensions:
Rectangular plate with long-side length = 32 in, sbort-side length

= 16 in and thickness = 0.i% in

Temperacure Distribution: o
Parabolic in the short-span directiun and constant in the

long-span direction (see Fig. lial

Finite~Element Discretization:
Uniform 8x8 mesh in a quarter of the plate with ELEMZ

"deyeneralized" for this single-layer problem




{a)

(L)

{c)

(d)

{e)

TABLE 138

DATA FOR A SIMPLY-SUPPORTED TWO-LAYER CROSS-PLY (0°/90°)
INFINITELY-LONG THIN STRIP

Material Properties:
- o = O = S = = =
Ll/L2 25, G12/E}2 0.5, G23/L2 0.2, Ul2 v23 0.25,
E.z = 1 psi (Longitudinal Q) /Transverse Q) = 1/3,

Longirudinal & = 1.0 x 10°° in/in-°F

Dimensions:
Short-span length = 16 in, Thickness = 0.16 in (0.08 in. for

each layer)

Temperature Distribution:

1 °F uniformly distributed over the entire strip

Finite-Element Discretization:

Eight ELEMZ elements in a half span

Boundary Condition: only transverse displacements along

the supported edges(x = + 8 in.) are constrained.

8




T

(a)

(b)

{c)

(d)

(e}

TABLE i9

DATA FOR A SIMPLY~-SUPPORTED THREE~-LAYER CRUOSS-PLY (0°/90°/0°)
CYLINDRICAL SHELL SUBJECTED TO THERMAL LOADING

Material Properties:
e = = 5. 3 = = =
bl/E2 25, Glz/E2 O.J,G23/E2 0.2, le v23 0.25,

E2 = 1 psi (Longitudinal a)/(Transverse Q) 1/3, Longi-

tudinal o = 1,0 x 10_6 in/in=°F

1

Dimensions:
Mean Radius = 20 in., Thickness = 1 in. (0.2 in. for inside
layer, U.5 in. for middle layer and 0.3 in. for outside

layer). Total length = 16 in.

Temperature Distribution:

1 °F uniformly distributed over the entire shell

Finite-Element Discretization:

Eignt ELEMZ elements in half strip

Boundary Conditions: only radial displacements along the

supported edges are constrained.




Fibar Direction

{a) Fiber Orientation

:;ODAL DISPLACEMENTS

Geometry, Coordinate, and Displacement Nomenclature

NOMENCLATURE FOR COMPOSITE FLAT--PLATE FINITE ELEMENTS
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F1G, 9 CENTRAL DEFLECTION OF A CLAMPED, TWO-LAYER, SQUARE, CROSS-PLY
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FIG., 12 DISPLACEMENT AND STRESS SOLUTIONS FOR AN INFINITE THREE-LAYER
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SINUSOI DAL LOADING
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SINGLE-LAYER, CONICAL SHELL UNDER RING LOADS
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FIG. 33 DIMENSIONS, COORDINATE SYSTEM, DEFLECTIONS, AND STRESSES OF
AN INFINITE TWO-LAYER CROSS-PLY THIN PLATE SIMPLY SUPPORTED
ALONG EDGES AND SUBJECTED TO UNIFORM TEMPERATURE

112




T P o e ke b b RO T —

P5SI
x )
-

L
-

L

—
[=]

0 | | | | | | 1
0 1 2 3 4 5 6 7 B
DISTANCE, x (IN)

NORMAL STRESS, O
(¥, ]

{d) Normal Stresses, Ox {(Zx0)

(PSI)

SHEAR S5TRESS, O

DISTANCE, x (IN)

(e) Transverse Shear Stresses, ze {Z=0)

(PSI)

=10 — =

|
L
o

|
]

NORMAL STRESS O

1
Ly
=]

DISTANCE, z {IN)

{(f) Normal Stresses, Oy (ZAm0)

FIG. 33 CONCLUDED

113




5 E 30 | I | | | !
¢ T _I
i 3 20
' L ELEMZ
’ e
5 10
o I I ] | | |
4 1] 1 2 3 4 5 6 7 8
: DISTANCE FROM THE EDGE, x (IN)
: (a) Radial Deflections, w
1.0x10 "IN
_ fler
,
L w 1
0.3 I8 \ - - - H
N o518 |~ - N |
o.2a8 L N I ]
x={ Xu2 x=4 X=6 X=7 A=8

FIG. 34 RADIAL AND AXIAL DEFLECTION OF A
CROSS-PLY CYLINDRICAL SHELL Susg

(b} Axjal Deflections, u (IN)

SIMPLY~-SUPPORTED THREE-LAYER
ECTED TO UNIFORM TEMPERATURE




APPENDI X

COMPUTATIONAL SCHEMES FOR STATIC AND VIBRATION ANALYSIS

Since the purpose of this study is to develop and evaluate new useful
finite elements, example problems chosen are often relatively simple in geo-
metry so that results can be compared with those of other existing solutions
and computation can be completed economic¢ally. Consequently, the computa~-
tional schemes chosen for use in this study are suitable for medium-sized prob-~

lems with total degrees-of-freedom no more than about 1000.

A thermal stress analysis, as shown in Section 4, can be reduced to a
static analysis by transforming the initial thermal strains into an eguivalent
loadin. vector. Thus, for both static and thermal stress analyses, the system

2quations to be solved may be represented by

K 8*=_E (A.1)

e

where K is the system stiffness matrix, g* is the unknown nodal displacement
vector, and F is the force vector. To solve Eq. A.l the method of triangular

factorization is used. The K matrix is decomposed into three matrices:
T
K=LDBL (A.2)
where L is a lower triangular matrix with zeroc elements in the upper triangle
and unity on the diagonal, and D is a diagonal matrix. Note that the decom-
position is easily achieved by successive substitution starting from the first
row-and-column element of K. Combining Eq. A.l1 and Eq. A.2, one obtains

EQE’@"#E (A.3)

B

Defining a new unknown vector

¥ (A.4)

one obtains

(A.5)
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Now Eq. A.5 can be solved readily for Y since L is a lower triangular matrix;

the solution of ¥ can be obtained by successive substitution starting from the
first unknown. Once Y is obtained, S* can be obtained similarly from Eq. A.4
by noting that Q,QF is «n upper triangular matrix. Thus, two steps a.- *n-
volved in the solution of Eq. A.l: {a) decomposition, which also involves only
successive substitution, and (b) successive substitution to obtain Y and then
a:.

For vibration analysis, a system mass matrix is added and the system

equations are, from Eg. 3.15,
*
l —
(K~w'M)g=0 (a.6)
where W is the natural frequency to be determined.

Many eigenvalue schemes can be used to solve Eq. A.6, but it is con~
venient in programming to make use of the triangular factorization scheme of
the static analysis. Thus, the eigenvalue solution using the Sturm~sequence
method [42,43,44) is selected for this study. The Sturm seguence property,
when applied to Eq. A.6, states that for any given value of w, the number of
successive sign changes in the determinants of the leading minors of matrix
K - mzﬂl equals the number of eigenvalues that are less than w. Obviously,
this property can be utilized to locate or "bracket" any eigenvalue by simply
assuming a series of w's and counting the numﬁer of sign changes in the de-

terminants.

An important observation from the decomposition

(K-wM)=10DL" (A.7)

P ]

is that the number of sign changes ~f the determinant of the leading minors
equals the number of negative values in the diagonal of D. Therefore, it is a
simple task to determine the number of eigenvalues less than a given W once the

decomposition of Eq. A.7 is complete.

Using the above procedure, any eigenvalue can be isolated, and lower and

upper bounds can be established. But for accurate determination,it is necessary

to use an interpolation scheme to reduce further the bracket interval of an




o

r———— N T e

eigenvalue to desirable accuracy. In this study, a parabolic curve of w vs.
the detexrminant of (X - m%g) is fitted between the bounds of an eigenvalue,
and the interpolated value of w is the estimated eigenvalue. This interpola-
tion process is continued until changes in w is within a certain prescribed

amount of tolerance (for example, 1/100 of the calculated ).

Once an eigenvalue is obtained, the corresponding eigenvector is ob-

tained by solving Eq. A.6 with one of the degrees-of-freedom constrained.
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