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ELASTIC STRESS ANALYSIS OF AN ADHESIVE LAP JOINT
SUBJECTED TO TENSION, SHEAR FORCE AND BENDING MOMENTS

Murlidhar H. Pahoja, Ph.D.
Department of Theoretical and Applied Mechanics
University of Illinois at Urbana-Champaign, 1972
A stress analysis of the lap joint is presented treating the problem as one of
plane strain. The joint is subjected to a general loading, consisting of tension, shear
force and bending moments. The variation in the material properties and thickness
of the two adherends is considered. The displacement field in the adhesive layer 1s
expressed in series form and the compatibility condition at the interface is used to
express the displacement field in the adherends. The potential energy of the joint is
calculated and minimized to obtain linear, ordinary differential equations and boundary
conditions. The differential equations are solved on the computer.
Photoelasticity is used to confirm the theory. Two specimens of lap joint using
a 1/4 in. layer of a photoelastic plastic simulating the adhesive, are tested photoelas-
tically. The agreement between the theoretical and the experimental results is found
to be good.
Design recommendations for the lap joint are made based on the results of this

investigation.
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1. INTRODUCTION

In the last two decades, adhesive bonding has become more and more common
in engineering structures, The advantages of the adhesive joint over the conventional
mechanical fasteners are, savings in weight and cost and elimination of holes which
can cause excessive stress concentration,

The commonest type of joint in use today, is the lap joint where two adherends
overlap and are fixed together by a layer of adhesive between them (Fig. la). The
main advantage of this joint is its simplicity in design, Further, where the surfaces
need chemical preparation, the adherends are easy to handle. Itis also a simple
type of joint to cure, The chief disadvantage of this type of joint is that when loaded
in tension, varying shearing and tearing stresses are produced in the adhesive as well
as the adherends, and very high peak stresses are prcduced at or very near the ends
of the overlap,

Failure in a joint may occur either in the adherend or in the adhesive or at
the interface, A failure at the interface 1s termed as 'adhesive, ' since it involves
the failuxe of the bond between the adhesive and the adkerend., When the fracture
occurs either inside the adhesive or inside the adherend, the failure is then termed

as 'cohesive.' In a cohesive failure, the material at the two fracture surfaces is the
same, The interfacial adhesion of modern adhesives is high so that failure mostly
occurs either in the adhesive as in the case of metal to metal joints, or in the ad-
herends as happens with wood joints,

The stress in the adhesive layer is deper.dent on the geometrical proportions
and the elastic constants of the materials of the jcint, and on the nature of the forces
acting on the joint, When loaded in tension, non-uniform shear and tearing stresses

are developed in the adhesive layer., The shear stress is parallel to the interface

ket e vawleant S e e Ve et -
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vhile the tearing stresses are normal tc the sn e _face. It has been predicted theoret:-
cally and confirmed expérimentally that the pe. .. shear.and tearing stresses occur at
‘he two ends of the overlap, This concentrau?n of stresses at the ends of the cverlap
1s due to two main causes, namely to the differen.ial strain of the adherends and their
be:ding,

Fig. la shows a lap jc')int loaded in tension. Each adherend bears the full load
P just before the joint and transmit it graduaily to the other through the adhesive,

Thus the stress in adherend (I) will be the highest at A and gradually dxlmmlsh towards
B wl :re it will be zero. On the contrary the stress in adherend (Ii) will be the highest
at B ond diminish to zero at A, The adherends (I) and (1I) will develop tensile strains
proportional to the stresses resulting in the deformation as shown 1n Fig. 1b, The dis-
placement is the highest at the two ends of the overlap and-therefore the highest sheax
stress in the adhesive can be e)'{pected to occur at these two points.

As can be seen in Fig, lal, the two eq'ual and opposite tensile forces acting on
the joint are not colinear, and the joint therefore, 1s not 1n equlhbrlum. In order to
overcome this difficulty, it is generally assumed that the line of action of the two
forces is oblique and passes thrcugh the midpoint of the joint, This 1s equivalent to
the addition of a shear force V (Fig. 2) so that the moment ‘due to P 1s balanced by
the moment due to V, This cenfiguration of forces produces bending along the joint.
The stresses developing in this way are normal to the interface, and are called “tearing”
stresses; they are highest at the areas adjoining the ends ot thé overlap.

The earliest theoretical analysis of lap joints is that done by Volkersen (1),
in which the stresses arising from the differential straining are considered but the
tearing stresses are ignored. The next analysis is that of Goland and Reissner (2)
who took the bending deformatio. of the adherends 1nto account as well as the tearing

stresses in the adhesive, Subseq.ent modifications to the theories of Volkexsen and
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Goland and Reissner have been made by Plantema (3) and Kelsey and Bensoa (£). These
theories are reviewed and discussed in Cetail in Chapter IL

The results from these theories indicate a2 non-uniform distribubion of shear
stress with peaks at the cuds 0l the overlap. While in a qualitative sense this distri-
bution 1s 1n agreement with what has been observed experimemntally, the magnitude of
the shear stress in the vicimty of the ends of the overlap is found to be in exror, This
is"a serious shortcoming since the highest stxesses occur in the same area, This
1maccuracy is mainly due to the assumption made in these analvses that the stresses
do not vary in the direction of the thickness of the adhesive, Irrespective of how small
the thickness of the adhesive layer may be, it has to be taken under consideration for
the stress distribution 1n the areas distant by the same oxrder of magmtude from the
edge. Anctner important iimitation of the above theories is that the joint is considered

to be loaded in tension only. In a general case, the lap joint could be subject to shear

forces and bending me.ments as shown in Fig. 3, the only restriction being that the ex-

ternai forces and bending moments be in equilibrium,

The objective of the present work is to analyze the lap joint when subjected
to the general loading (Fig. 3) and to predict the stresses more accurately by allowing
them to vary through the thickness of the adhesive layer. The analysis does not put
any restriction on the thickness of the adiesive and 1s therefore, valid for thin as well
as thick adhesives. The thickness of the adhesive however, is required to be much
smaller than the length of the overlap which of course, is realistic. One major limi-
tation of the previous theories as well as the present analysis is the assumption that
the adhesive is 1sotropic and linearly elastic., The behavior of most adhesives 1s visco-
elastic depending on time, temperature and previous history, Even when an adhesive
can be considered to be elastic, 1t is more likely that the stress-strain curve 1s a non

linear one. Furthermore, as the adhesive sets 1n between the adherends, 1t may do
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so in an uneven fashion so that it would be strictly inadmissible to consider the adhesive
layer as homogeneous and isotropic. The nature of such variations is however, uncer-
tain and any attempt to incorporate the viscoelasticity or the non-homogeneity of the
adhesive into the analysis would rendex the analysis extremely complicated., Further,
any plastic flow of the adhesive would have a relieving effect on the peak stresses in the
adhesive and an elastic analysis would therefore, provide a built-in factor of safety.

It 1s felt that once a reasonable analysis based on linear elasticity of the adhesive is
available for comparison, it would then be possible to use such tools as finite element
analysis to incorporate the non-linear elastic or plastic behavior of the adhesive,

As regards the adherends, they are assumed to behave as beams or in other
words the lateral stress Gy in the adherends is considered negligible and their mechani-
cal behavior is assumed to be isotropic and linearly elastic. Wiile in the case of
metal adherends this assumption holds good, it is not strictly valid for wood and plastic
adherends, Wood, although linearly elastic, is anisotropic and its mechanical prop-
erties vary with the direction relative to the grain and the way of loading. Yet for the
relative comparison between similar joints the theoretical results are expected to be
sufficient, since the nature and directions of the developing stresses do not vary con-
siderably from joint to joint, In the case of adherends which exhibit plastic behavior,
the theoretical results may not be applicable since the yield in the adherends will
greatly increase the differential strain and consequently the shear stress in the ad-
hesive layer,

The analysis is based on the theory of elasticity treating the joint as a plane
strain problem and therefore, it goes without saying that the results are valid only
for small deformations, and for joints with sufficiently large widths,

The experimental part of the present investigation is designed to check and con-

firm the theoretical results, both along the length of the overlap as well as through the
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thickness of the adhesive. The stresses in the adhesive layer are determined photo-

elastically since the photoelastic methods provide a simple and effective means for

handling plane problems such as the one under consideration,
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2. REVIEW OF PREVIOUS THEORETICAL AND EXPERIMENTAL WORK

2.1 Introduction

Several papers have been published analyzing stresses in various types of
adhesive joints, In the case of double lap joints and scarf joints the analysis 1s rela-
tively simple because of the inherent symmetry of the joints. The single lap joint
presents a special case where the eccentricity in loading produces a bending moment
which has to be accounted for in the stress analysis., Theories specifically dealing
with the single lap joint will therefore, be reviewed here, Theories dealing with joints
such as double lap joint, scarf joint, butt joint or tubular joints will not be included 1n
the review,

Experimental works have been published describing tests to determine the
strength of lap joints, Such works will be referred to when useful 1n demonstrating
a point in relation to a theory., Of greater interest are experimental works where the
main interest is the distribution stresses in the joint. These works will be reviewed

in some detail.

2.2 Volkersen's Theory

The simplest approximate theory is that attributed to Volkersen (1), This

analysis is concerned only with the stresses arising from the diffexential straining

p5.
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in lap joints and does not examine the tearing stresses resulting from the bending of
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the adherends. The bonded members are assumed to be 1n pure tension and the clon
, ‘ gation of the adherends ¢, and the shear deformations of the adhesive ny are taken
: ; into account as in shear lag problems, It is further assumed that ey in the adhesive
is zero so that the shear stress Txy is constant over the thickness of the adhesive

layer. The results indicate a non-uniform distribution of shear stress with peaks at

the ends of the overlap, Volkersen compared the maximum shearing stress dat the end
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of the overlap with the mean stress and evaluated the stress concentration factor 1,

which is given by,

_VI -1+ cosh NDW.
sinh NDW

n = ND/W

where,

_ a2

W = (Bt + Eyt,) /By

Herxe Elt1

For identical adherends W reduces to 2 and the factor of stress con.entration

> E2t2 , and the maximum stress occurs at the interface with adherend (1I),

can be written as,
n = ND/2 coth ND/2

Thus it 1s seen that for identical adherends the factor N of stress concentration is a
function of a single dimensionless coefficient D,

In the case of a joint between adherends that are not identical, the values of
D and W are different at the two interfaces, At the interface with an adherend of
higher rigidity, D is smaller and W larger than the corresponding values of D and
W at the interface with less rigid member. Mylonas and deBruyne (S) show in the
form of a graph the variation of Volkersen's stress concentration factor N in terms
of D for various values of W, It can be readily seen from this graph that n 1s smaller
for lower values of D and higher values of W, Thus the stress concentration would be
higher at the interface with the less rigid member, The same result 1s shown by

Greenwood (6) by calculating the factors of stress concentration at the two interfaces

[P
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of a joint between steel ard rukber adherends. The conclusion then would be that it is
disadvantageous to have joints between adherends that greatly differ in rigidity since

this weuld result in a much greater stress concentration at one intexface,

Volkersen's theory, while it indicates in a general way the distribution of shear

stress in the adhesive layer and the importance of various parametexrs which have an

effect on this distribution, has the following shortcomings,

(1) Bending deformation of the adherends and the associated tearing stresses in

e

% the adhesive are ignored,

5 (2) The assumpti.on that the stress does not vary through the thickness of the
adhesive is shown to be untrue in the proximity of the ends of the overlap, by Mylouas (7)
and by Tuzi and Shimada (8) in their photoelastic experiments., This assumption results
in inaccurate prediction of stresses in the area where the maximum stress occurs, and
the factor of stress concentration obtained by this theory is therefore, unreliable,

(3) The analysis limits itself to the case when the members are subjected to

tensile loads only, Shear force and bending loads are not considered.

2,3 Theory of Goland and Reissner (2)

R —_—
TRy

This theory takes into account the bending deformation of the adherends and
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also the tearing stresses in the adhesive. The system considered is that shown in

Fig, 2a, The line of action of the tensile force R is assumed to pass through the mid-

point of the adhesive layer, This is equivalent to a system where a small shear force

V acts normal to P so that the couple due to P is balanced by the couple due to V.

The acherends are identical in terms of mechanical properties as well as geometry,
Goland and Reissner recognized that the bending of the adherends outside the

joint region has a pronounced effect vpon the stress distribution in the jount i1tself. This

cffect is expressed via their bending moment factor k which is obtained by treating the
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adherends as cylindrically bent plates. The value of k is given by:

2
_11.{ =1+ 242 tanh %Jéu-ul ) - P/(Ef)

The system can now be reduced to that shown in Fig, 2b whezre,

kPy
M = ——=

P=R

and

V = kpN3(1 - i)+ P/(EL)
Goland and Reissner considered two cases,

(1) In the first approximation, where t/t1 << E/E1 , the presence of the ad-
hesive layer is ignored and the joint is assumed to be a homogeneous 1sotropic rec-
tangular slab. The calculated stresses are those of the adherends along the glue line,
and are assumed to be equal to those of the adhesive layer., The values of the shear
stress 1 and the tearing stress o are given as converging series., The results show
that while the tearing stress is high at the edge of the joint, the shear stress is zero.
The shear stress however, rises rapidly to a maximum in close proximity to the edge.

{2) In the second case where t/ t1 >> E/E1 , the adhesive layer is considered
to be flexible so that the transverse normal strain and the shear strain in the adherends
may be neglected in comparison with the corresponding strains in the adhesive, In
this approximation the adhesive is assumed to behave like a system of infinitesimal
springs placed between two plates, The distributionsof shear stress 1 and the tearing

stress ¢ are obtained as follows:




N Gt ‘(""‘k SRS

D AR

SIS

o EAAMTIII0 i P T 3RS LAy Y N T £ ST AR G S SAC
R R PR S B A V‘,z’\‘;.:,'.‘,‘ P A TS

2Ax
a

)

10
h (Bx/t)
T a , _ 1 Ba cos 9 .
FC A [ 2, 130 - —grgamy YN
and
ICIR R.A2 . k/2 + Ak hA * cosh h (22%
_i’_(.fq_) == RyA - K/ ] * cos cosd) . cosh (— =)
27 2
. cos( ax) + (R« k/2 + Mk - sinhd - sind) - sinh(
. 2Ax
sin( 5 )}
where,
2 . o
Elt
6Et
A= __a_(____l__)%
2, Et

R, = coshA ¢« sinA + sinhA ° cosA

R2 = gsinhA * cosA - coshA . sinA

A = 3(sinh2XA + sin 2A)

k, = Va/(2Pt)

= P/
p P,t1
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The maximum values of T and ¢ are found at the edge of the joint and are given by,

T
. _i. =1 .& Ba -
mpax (tl) v 2t1 (1 + 3k) coth—-2tl + 3(1 k)]

and

T max 2 7\2k sinh2A - sin2X

C Ay = ] + Ak cosh2A + cos2A
P 2tl 2 sinh2A + sin2A 1 sinh2A + sin2A

The first expression gives the ratio of maximum shear stress to mean shear
stress which of course, is the factor of stress concentration, As is seen, this factor
is a function of Ba/2t1 and k., Comparing with the factor D of Volkersen's theory, it
can be readily seen that 8a/2t; = N'2D. As in Volkensen's analysis, the shear stress
distribution obtained through Goland and Reissiner's theory is uniform irrespective of
the value of D as long as this is smaller than about 0,1, but the stress concentration
increases rapidly for higher values of D and for D 2 2 becomes practically propor-
tional to N'D. This is because for large values of D, cothN2D approaches the value 1

and in fact the factor n of stress concentration can then by written as,
n=4%(1 + 3k)N2D + 3(1-k) /4

The bending of the members (k small) is seen to have a reducing effect on the highest
stresses, For small values of k, the shear stress distribution is of similar form to
that obtained by Volkensen, In the limiting case of k = 1 i,e., when the bending defor-
mation of the adherends is negligible, the Goland and Reissner theory yields n = N2D
coth N2D, whereas the Volkersen resul: was m = ND/2x cothND/2, For D22 i,e,
for long vverlaps, the stress concentration factor is therefore twice as large as pre-

dicted by Volkersen.
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The theory of Goland and Reissner, though an improvement over Volkersen's
analysis in that it takes into account the bending deformation of the adherends and the
tearing stresses in the adhesive, has certainlimitations whicli can be summarized as
follows.

(I)  This theoxy is valid only for adherends of the same material and of identical
length and thickness,

(2) The first case is valid for t/t:1 << E/E1 while the second case requires
the condition t/t1 >> E/E1 .

(3)  The joint edge loads are not in equilibrium except when k = 1.

(4) The stresses in the adhesive are not considered to vary through its thickness
which as in the case of Volkersen's theory, results in inaccurate prediction of stresses
in the area adjacent to the overlap edge,

(S)  The theory does not considex external shear force or bending loads.

2.4 Plantema's Modification

Plantema (3) has attempted to combine the Goland and Reissner theory with rhe
Volkersen theory, Volkersen's theory is employed to calculate the different:ai strain
of the members and the stress distribution at the edges of the overlap, The factor k
of Goland and Reissner theory is then introduced to calculate the differential strain
of the membexrs due to bending, The total strain of the members due to both tension

and bending is used for the correction of Volkersen's formula, The factor of stress

concentration is given by,

n = NDA+3k)/2 + coth ND(I+3k) /2

No calculation is made of the tearing stresses.
Myloras and deBruyne (5) show that for inflexible adherends (k = 1) and long

joints, Plantema's results approach those of Goland and Reissner whereas for flexible
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adherends (k << 1) Plantema's results are closer to those of Volkerscn.

2.5  Modification by Kelsey and Benson (4, 9)

Kelsey and Benson employ the complimentary energy method to determine the
shear and tearing stresses in a lap joint. In this method, the equilibrium is taken into

account, but the necessary compatibility is only approximately satisfied. Treatment

SRS

of the lap joint as a shear lag problem results in a second order differential equation,

A
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s PR

but allowance for the complimentary energy due to the tearing stresses inflates the

equation to one of fourth order, The boundary condition that the shear stress vanishes

TS
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at the two ends of the overlap is then applied. Thc expressions for shear and tearing

stress are obtainea as follows,

1 ,a m,a

k , (cosh mx) - (cosh ; ) - (cosh 21 ) » (cosh m,x)
5" : T = :‘;Pmlmza .
¢ m,a m,a m,a m,a
(m1 cosh T) * (sinh —7—) - (m2 sinh > ) - (cosh —?:-—)
and
r,a m,a m,a
| (mlsmh mlx) . (cosh—-——z—-) - (m2 cosh—T) » (sinh 5 )
g = —8—Pm1m2at-
m.a m,a ma m,a
(m1 cosh 5 )+ (sinh 5 ) - (mzsinh 5 ). (cosh——z—)
where,

e .. - e N - e PP
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The shear stress distribution shows no appreciable difference from that obtained
by Volkersen's analysis, except that at the two ends of the overlap it rapidly falis to
zero. This of course, because the boundary conditions used in the analysis require
that the shear stress be zero at these two points. Since the two end surfaces of the ad-
hesive are stress free, it is argued that for equilibrium, the shear stress must vanish
at the two ends. However, it should be noted that the lap joint has a discontinuity at
the two leading corners of the adhesive and the stress at these points can be expected
to be singular for an elastic analysis. There is no such discontinuity at the two trailing
corners howeves, aunu the shear stress at these two poiits can be expected to be zero.,
Since Kelsev and Benson do not allow the stresses to vary over the adhesive thickness,
the imposition of the boundary coudition that the shear stress be zero at the two ends
of the overlap only results in the shear stwess falling rapidly to zero at these two points,
The shear stress distribution cannot however, be considered an improvement over that
obtained by Volkersen,

The tearing stress distribution obtained by Kelsey and Benson shows these
stresses to be concentrated almost entirely at the twyo ends of the overlap. Through

most of the length of the overlap, this stress is almost zero.

2,6 Cornell's Modification (10)

The system considered by Cornell is shown in Fig. 4. This joint is fixed at one
end and it is some what different from the conventional lap joint. Cornell's interest
lay in brazed joints where a thin tab is brazed to a thick base bar. The base bar is
subjected to tension, bending moment and shear force. Cornell assumed that the two
adherends act like simple beams and the adhesive layer consists of an infinite number
of shear and tension springs. Differential equations for ¢ and v are conibined
into a tenth order linear differential equation in the transverse deflection of each ad-

herend. °’'he mathematicel analysis is fundamentally simple but the expressions involved
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are complicated. Results indicate a high concentration of shear and transverse tensile
stress in the vicinity of the joint edge.

Cornell has compared his theoretical results with the results of photoelastic and
brittle lacquer experiments and found them in good agreement, It should however, be
noted that the joints investigated by Cornell both theoretically and experimentally, are
brazed joints where the adhesive modulii are 1/3 to 1/2 as large as those of the ad-
herends, whereas in an adhesive joint the ratio might be 1/20 or smaller, The exror
in the predicted stresses due to the assumption that the stresses do not vary over the
chickness of the adhesive, may be more serious in the case of the adhesive joints than
it would be for brazed joints.

Cornell's theory applies to joints between adherends differing in material prop-
erties and thickness. Application of external shear f( :ce and bending loads are also
considered. The configuration considered by Cornell is however, of a special type

and the theory cannot be applied to a general case of lap joint,

2.7 Stepped Joint of Erdogan and Ratwani (11)

In this analysis a stepped joint between two plates is considered (Fig, 5).
Plate (1) is considered to be isotropic while Plate (2) is orthotropic. A uniform tensile
force P is applied to the plates away from the joint. The tensile stresses, ol(x) and
g (x), in the two plates and the shear stress, 71, at the interface are determined under
the following assumptions:

(1)  The thicknesses of the two plates are small compared to the other dimensions
of the composite structure so that the individual layers and the composite plate may be

considered to be under generalized plane stress (i,e, o, = = 0).

ly = 2y

(2)  The thickness variation of the stresses in the plates is neglected.

(3) Inthe z direction (Fig. 5a), it is assumed that either ¢, = or

1z €2z
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a_ =0, 62 being the average stress in the composite.
The results of this analysis are then applied to a speciai case of one single step

(Fig. 5b) which of course is a single lap joint., The shear stress in the adhesive laver is

given by,
PB . 2 cosh ax
T = ‘a sinhax + (1 - coshaa + ) ) -
sinh a a
where,
2
2 _ G - 8! L - Max uZz_l
a = E,t + E,_t
t 11 2x"2 :
2
G(l - u")
B=-—
Eltlt
For both plates isotropic and identical, :
1 - 2
o = 26 "
t Eltl
-
g = - ﬂz_
2
and
D~ cosh ax
T = - —:— sinh ax - (1 + coshaa)
sinh aa

This result is similar to that obtained by Volkersen. This theory assumes that the

tearing stresses are nonevistant in the adhesive layer.
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2,8 Finite Element Analysis

Probleins in structural mechamics can be mumerncally solved by wsiag the fimee
element meitod (12). Wooley 2ud Carver (13) heve zrzempied o 2pply s mettiod o the
case of 2 single lap joim, The lap joizi is loaded = tensroz and shear and teznag
stresses are deiermined. The zdhesive layer was divided 1t two equzl layers through
its thickness, giving an irdicatos of the variation of siresses ia the direcnioz normal
to the bordline, The soluwon is obeired by 2 plare siress analys:s, The shear aad
tearing stress distribution cbizized by iilns method 1s simelar to thai obtained by Goland
and Reissner. Wooley and Carver compare ifie siress concenirzio? factors wih ihose
obwzined by Golasd sud Reisseer theory, They are showm io compere favorzbly.

The joint comsidered by Wooley and Carver is lozded 1n teasion only., The fimiie
el-ment method is however, a promising oze a2id can be extended to 2 more genesal case

Another attempt to use the finite element anz2lysis in the case of zdhes;ve joinis
is tha* by Harrison and Harrison (14). It is assumed that the displacemen:s at ihe iwo
interfaces are known and are uniform. This is a very special case azd the ciosest
practical case would be one where the zdherends are ngid. It 1s furiner assumed tha:
in 2 region of the adhesive layer, away from the two ends, tlie stress field 1s uniform
This uniforn stress field is dztermuned from the kzovn displacement field at the two
interfaces I -nite element analvsis is then applied to determine stresses near the ends
of the adhesive jayer.

In practice, the relative displacements of the interfaces are not known, only
the externai loads ~re given, Furthermore, the displacements at the interfaces are
far from being uniform, especially at the ends of the joint. This method needs to be

further developed 1n order to be applicable to practical problems in adhesive joints.
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2.9 Experimental Stress Analysis

Several works have been published where the stress distribution was determined
experimentally, These works will be reviewed here briefly.
Unpublished extensometer tests made by Coppexr have been referred to by Mylonas

and deBruyne (5). In these tests, the shear stress developing at various points of the 3
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inch long overlap was estimatea from the relative displacement of the adherends meas-
ured by an optical lever. The load applied was tensile and was kept very low s¢ that
; Hooke's law could be assumed to hold even in the region of high stress. The stress

distribution so obtained was compared with the results of Volkersen's theory and also

with the results of Goland and Reissner theory. Experimental results were found to be

in better agreement with the theory of Goland and Reissner than with the theory of

3

&
£
.
£

Volkersen,

Mylonas (7) applied the method of photoelastic analysis to investigate the stresses
in a lap joint. The adherends were made of 3 in, square Bakelite bars reinforced
longitudinally with stainless steel studdings. The adherends were made practically
rigid, The adhesive used was an Araldite resin which is also a photoelastic material.
The thickness of the adhesive layer was appreciable,

The main purpose of Mylonas' work was to study the effect on the peak stress
of the shape of the free boundary of the adhesive at the edge of the overlap, Models
with concave edges with varying radii of curvature and with straight edges of various
inclinations were studied.

The practically infinite stiffness of the adherends in these experiments leads
theoretically to a uniform shear throughout the adhesive layer, For this reason Mylonas’
results are of limited intexest from the stress analysis point of view, The woxk 1s
however, of great importance as a pioneering work describing techmques for making

stress free adhesive joints to be used as models for photoelastic analysis,
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McLaren and MacInnes (15) studied the effect of bending of the adherends in their
photoelastic tests, Two series of tests were made, In the first, a lap joint consisting

of 4 in, thick adherends and an adhesive layer varying in thickness from zero to % in.

was simulated by a model cast whole in Araldite; in the second series of tests the ad-

herends had a Young's modulus twenty times greater than that of the adhesive layer, \
In the homogeneous models the ‘adhesive layer' was always rectangular and ;
ran the whole length of the overlap. In every case in which k > O the fringe pattern '
had the same general character: the order was a minimum at the center of the joint
and increased towards a maximum at the leading cornex. Change of the value k pro-
duced an approximately proportional change in the value of the peak fringe without
appearing to affect the order at the center. For negative k = - %), the fringe order
at the free end of the glue line reduced to a minimum, the fringe order was a maximum
at the center,
In composite models which wexe geometrically similar to the homogeneous ones,
similar fringe patterns were obtained, Foxr k > 0 the fringe order rose from a
minimum at the center of the adhesive layer to a maximum at the leading corner. The
high tensile stress in the free surface at the leading corner decreased on traversing
the end but gave way to slight compression at the other extreme, Increase in the value
of k again produced no change at the center but led to an increased fringe order at
the leading corner. When k was made sufficiently negative, it was found that the
highest-order fringe appeared at the center of the adhesive and then there was a fall
in order towards the free surfaces.
The main signi’icance of this work by McLaren and MacInnes is that it clarifies
the contribution made to the distribution of stress by the bending of adherends, The
results tend to support the Goland and Reissner theory,

Tuzi and Shimada (8) use both the adhesive and the adherends made of photo-
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elastic materials, The adherends are made of an epoxy resin while the adhesive is
made of epoxy rubber, The ratio of the Young's modulii for the two materials is 6.

The fringe pattern obtained for rectangular adhesive layer is similar to that obtained

SRS S A A R R SRy

% by Melaren and Maclnnes, Tuzi and Shimada study adhesive layers with concave and

;%‘ canvex ends and joints with a fillet at the leading cornexrs, The results indicate that

% ; convex ends tend to produce excessive stress concentration at the leading corner where-
g § as the use of a fillet tends to reduce the stress concentration considerably.

§ é The photoelastic investigations by Mylonas, McLaren and Maclnnes, and Tuzi

% E and Shimada, all show a significant variation of stress through the thickness of the

;;% L adhesive layer, especially in areas where the maximum stress occurs,

2,10  Conclusion

S

e
3

Amongst the theoretical works, Goland and Reissner's theory is the most
rigorous study of the stress distribution in lap joints and is in good agreement with
experimental results except at and near the two ends of the joint where the maximum
stress occurs, This error results mainly from the assumption that the sitress does
not vary through the thickness of the adhesive layer., In fact, photoelastic tests show
this variation to be quite significant especially in those areas where the maximum
stress occurs, Furthermore, the theoretical analyses consider the joint to be loaded
in tension alone and the effects of shear force and bending moment are not studied.
Photoelastic stress analysis by McLaren and MacInnes shows that application of shear
force and bending moment can be advantageous from the point of view of obtaining a
more uniform stress distribution along the overlap.

The objective of the present work is to analyze the lap joint subjected to a
generalized load configuration consisting of tensile and shear forces and bending
moments (Fig, 3). The stresses are allowed to vary through the thickness of the ad-

hesive layer. The analytical results are to be checked by meanc of photoelastic tests,
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3. ANALYSIS OF LAP JOINT

3.1 Problem

Given are two rectangular sheets of thickness Y and t, and of unit width, lap-

2
jointed over a length 'a' by means of an adhesive layer of thickness t (Fig. op). It
is assumed that the loads P, V, M1 , and M2 are given at the joint edges. The main

problem is the determination of the shear stress Txy , and the normal stresses Oy

and oy in the adhesive layer.

3,2  Assumptions

The following assumptions are made:

(1)  The adherend and the adhesive materials are isotropic and linearly elastic,

(2) The adherends behave according to simple beam theory, i.e. the lateral
stress in the adherends can be neglected, and plane sections remain plane,

(3) The adhesive thickness t is small compared to the overlap length a,

(4) The displacements in the joint are small, i.e, the strains are considerably
less than 1,

(5) The joint width is large compared to adherend and adhesive thicknesses,

so that this may be considered as a problem in plane strain,

3.3  Derivation of Differential Equations

The coordinate axes x and y are shown in Fig, 3, The x-axis 1s parallel to
the plane of the adhesive layer .nd passes through its center. The y-axis is normal
to the plane of the adhesive layer at the left edge of the joint,

Let u(x,y) and v(x,y) represent the displacements of the point (%, y) in the

adhesive, in the x and y direction respectively. Further, let

"MB

2 in
u(x,y) = u (%) + oy )+ yu, (x) + ety u (x) =

yJu. (x)
j J

0
(3.1)
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; and
i
S | 2 n .
% g V) = V0 + YV + YTV, )+ .t ' v = T vaj(x)
j=0
. (3.2)
e where m and n are integers.

A perfect solution would require m and n to approach infinity. However, since
the adhesive thickness t (dimension in the y-direction) is small compared to the over-
lap length a (dimension in x-direction), m and n could be terminated at values 2, 3,

or 4 and the results could be expected to be reasonably accurate,

P WY
Faze

The strains in the adhesive layer can nc¥ be written as,

:
I ‘ au(x, ) m i
- | & = T Z Y u; () (3.3)
|
e =2y o 5 0Dy (3,4)
: y 9y j=1 ]
;
N m
- oux,y) dv(X,y) . G-
Yoy = Lol + AL 2 0 Py fo Pvim o 6.9)

For the plane strain problem, the strain enexgy I0 of the adhesive is given by,

a t/2 2 2 G .2
1 = j; J Q/2) (e, + ef) + Aeye, + -7 | dydx
a t/2 m .
= j _ (.8_) B2 yJu ) + ( z jy(J -1)v.)2
o ~-t/2 = j=1 ]
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m . n - m - n -
- - .2
+A(Z y]u'.)( = jy(J 1)v.) + —g—( = jy(J l)u. + = y]vj) } dy dx
j:O J j:l ] j:l =0

t/2 m T4 r n i+j-
=fa J {(Q) : = Gty w o+ =z a2y

2

o “t/2 i=0 j=0 1 i=1 j=1 o
)
m e g s m m .
+A| = p> _]y(lﬂ—l)u'iv. +2£ = = 1Jy(1+J z)uiu.
i=0 j=1 L i=1 j=1 ]
i
!
| n n s m n -
i + Z p y(1+3)v'iv'.+2 = z iy(1+J l)u.v'. dy dx
i=C j=0 ] i=1 j=0 I
Integration over the thickness of the adhesive yields,
. a m m sy
=) Y+ =z =z (e v
0 i=0 j=0 LR
n n L m n . 7
+ = = ij(TZt—)H-J-l A R T, j(—zt-lﬂﬁi.u'_v.
i=1 j=1 Jrl i=0 j=1 jij
m m . . n n .
+ -gi py S ij(p Tt -1 b uwu + I = (?t-)lﬂ“ @ v
i=1 j=1 1] i=0 j=0 L
m n . .
r2 5 3 i) I gy dx (3,6)
i=0 j=0 U
where,
. = 1_(_1)1+J+1 o - 1_(_1)1-I~J . 1_(_1)14-‘]-1
ij i+j+1 ’ ij it ’ i) i+j-1

(3,7)
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The condition of compatibility at the two intexfaces can be used to determine the

displacement field and the strain energy of the two adherends.

Let U1 (x,y) and Vl (x,y) represent the displacements in the x and y direc-

tions respectively in adherend (I).

Since plane sections remain plane,

U]. (X,Y) = Ul (xt 'Qt—) - (Y -

LAY
5 5 %) (3.8)

Now, conditions for compatibility at the intexface are,

U ) = ulx )

and

vy (% —f,j) = V(% <)

N

Egs. (3. 8), (3.9) and (3.10) yield

U () = uix=) - (-

(3.9)
(3.10)

.
) e 2 ) (3.11)

[

T e e b e 5
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or

- n -
t t 1
Uy = E (gly - o) 2 )Yy (3.12)

]

L

0

Similarly for adherend (II) the displacements U2 (x,y) and V2 (x,y) inthe x and y

directions respectively can be written as,

+ Yy, (3.13)

The strain field for adherend (1) is,

ou

1 moy t 2 j
R A LR LI Sa (3.14)

ley (3.15)

LN W
0( 5 IV (3.16)

(3.17)




26

The strain energy I1 for adherend (I) is given by,
+ tl)

t
L= ‘7 Q 2
1 -—2—€lx dydx
0

L
2

2 n
+y-5) = z (2

m n .
- 2(y-—£- b T (= 1+J u'.v".}
279 4 7) i

i=0 j=0 D

Integrating in the y-direction,

Q m m
o I IS SR
0 i=0 j=0 J

_t_i+j e "
(2) vivj}

m n . .
-t Oz ()] u'iv"j} dx (3.18)
= J -

+
uM:::
NM‘.:
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Similarly, the strain enexrgy I2 for adherend (II) is given by,

a Q m m < s
L= { - z 2o () e
0 i=0 j=0 ]
3
t f n n
+ -g—' b > ( .?t 1+ J nlvlt
C i=0  j=0 ]
m n -
+ t,2 = 5 (-t g dx (3.19)
2 . . 2 i j
i=0 j=0 y
Work done by the boundary forces P and V and moments M1 and M2 can now be calcu-
lated, Let W

1’ WVI , and le represent the work done by P, V, and M1 respectively

on adherend (I), And let WPZ’ sz , and W

and M2 respectively on adherend (II).

M2 represent the work done by P, V,

Assuming P to be uniformly distributed over the cross-sectional area of each

adherend,

(5 +1) .
WP]. = T Ul(a:Y)dy
t
2
P (*tz‘ +t1) m n
= — t .\ t t .,
t Z (=)u@) - (y-5) Z (5)rv'i(a) dy
1 & j=0 2773 2 i=0 2 j }
2
- p g £\ b e,
= _ (=) uj(a) -5 Z (T)Vj(a) (3.20)
J:O _]=0

e M ARSA e e T e S
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Similarly,
m . t n -
Wy, = -P [ z (-—tz—)Ju.(o)+T2 Z (-5l
Z L jzo ] j:O J
W, =V.V,(a) =V z (L Yv.@)
Vi 1 . _ 277
j=0
n 5
= = . = - "'—J
WVZ v Vz(a) v EI { )vj(o)
j=0
av (a, t/2) : t
7 = 2 — ' (4
Wil = M ——— M ? () v'ia)
ji=0
“'NIZ = —NI.'Z JEO("-Z—) Vj(o)

The total work done by external forces is given by,

W = WPI + “PZ + WVI + sz + WMI + WM2

Let IO’ Il’ and 12 be expressed as,

I0 = JZ FO(ui,ui,vj,v],vj)dx

a
[1 =J0 Fl(ui,ui,vj,vj,vj)dx

where i = 0, 1, 2, .o0uuns , M and j=012,.

s20e020y n

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3,28)

(3.29)
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The functions FO’ F1 ’ F2 are given by the expressions on the right hand side of the

equations (3. 6), (3.18), and (3.19) respectively. Let

F(ui,ui,vj,vj,vj) = F0 + Fl + F2 (3. 30)

so that the total potential energy [ can be written as,

-

= [] , ] " - 1
{ S; F(ui,ui.\j,v.,vj)dx W (3.31)

) j

Now, equilibrium requires that I Le mirimized. Application of the principle of calculus

of variations yields the followiug differential equations; also known as Euler equations,

oF d D .

au N dx (aaul"-‘. ) = O 1 = 0, l’ 2) oooooon,m (3932)
i i

and
oL d , oF & . aer
( ) + ( ) =0 i =012 ..., 0 (3.33)

. dx ', 2 "

avJ avJ dx avJ

In order to eliminate the rigid body displacements of the joint, it will be convenient to
let the displacement and slope at the origin be ero. This would vield the forced

boundary conditions (3. 34).

uO(O) =0 vO(O) =0 and V'G(O) 0 (3. 34)

The natural boundary conditions are given by Eqgs. (3.35) to (3.40).

aF t .\ - -
('m")x=o = P(""“z—)l = O 1 = 1, 2) vesecssy IN (3333)

J e

R

ppa N




i < _
(TuT)x=a - P(5) = 0 1=0L2 ., m (3.36)

i=L 2, ceeeeeey m (3.3D

i=0,1, 2, ..o, (3.38)

Pt

. et
oF ) o "SGR+ M) =0 j=L2...,n (339

av"'
J

( )

and

_OF_ L3 Pl B VISR
av" X=a +(2)( 2 Ml) 0 J 0) 19 2, ....,n (3.40)

Bu. -0 (3.41)

R
Py T !

i

i

1

s
[o54
Los |

peLh

, i=1,2, covvvvu, m (3. 42)

QO
1
]
O
N UR=!
N
/‘\
J
S
.
+
[ B
+
—
-J
1

s,
Sk

7
R

3

o]
%
&




i=0 S g
i=0,14,2, ....... , EE (3.43)

r =

é 8F = i+
& (B ) = q)t s (577 g

2 iZo 2 ij j
i- -
At 2. r izi-1 i
+ 5 z (=) v
N FERa i)

Qt, | m
N -~ t,+] > i+)
+ T 2(=) u”. - T oLy
5 ‘ vl
i=0 2 j 4 ]=0(2) i
Q,t m
., 272 td+] -
+ > 7(-_)1.] ' - T 7] .
5 _ 2 u”. 4 Z (-=) v
jo0 2 P72 0,02 j
i=012,....... , M (3.44)
BF
ov_ (3.45)
oF Q n - [ m ]
=Q = ajfti s v |+ = iyt
3vj 2 =1 2 iji i=0”2) Bijul
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aF
ov

m
1+‘+1 . - ._t_. +J
0(-2—) ai]vi_*-iill(z) Bl]l

1
Q
u'Mu

j = 0’ l! 2’ eevevevy n

n s m
_t_1+j+l o 1+] \l

j = 0’ 1’ 2’ eeesrecy 1

@
oy
]
L
p—
—
)
<t
w
1M
+
3

(2) v". - t2 Z} (_)1+J

o
-
—
[
1
o
pts
| pE————— |

j = 0’ 1) 29 s 000000y n

Differential equations (3. 32) can now be rewritten as Eqs, (3.51) and (3. 52).

| Q
2

m ) ‘
2 -1y Ly
?-:0 taoj + 2Qlt1 + 2Q2t2( 1) ( 2) u

J

(3.47)

(3.48)

(3.49)

(3.50)

PSP PR
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2 j Y i % i
+ T 2j(3) By Vi * z (——)t2 (1) - (—)t1 v v =0
j=1 j=0
(3.51)
1 m | Q o ]
__J - Qt it t o
G J?lu( P ey B Gy QD | Gw,
g j n Q2 i
+ T (Gi-AN5)B VL - Z (=20t (-1)
i=0 I j=0
Q ) .
- (—21—)t12 : (—5—)Jv"'j =0 i = 1,2 ceeneee, M (3.52)

Differential Eqs. (3.33) can be rewritten as Egs. (3.53) and (3. 54).

m m ' Q . Q ) .
-G T i(5)By, z [(—%)tf (- - (= | e
i=1 "o J
3 3
n +1 " n Y Qty i € i
-G.Z OTf io 1+.% 3 +—— (D be“W=O
i=0 i=0
(3.53)
m . m Q . Q 1
C iy B ' 23 2, ity L
ERCRCIC ST l (26,7 (1) ()t ]
S+ (D) E gt ey -6 2 (it g v
72 U R 3 ij Vi o'\ %V
] 3 3
n Q,t Q,t - .
11 22 it t i iv _
+ 2 S =S (1) (&) vV =0

i=1L2 ... ooy I (3, 54)
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The forced boundary conditions are,

u © =0 v, © =0 v'0 0) =0 (3. 55)

The natural boundary conditions can be rewritten as Eqs. (3.56) to (3. 61).

m .
= [ Lo +Q1t1+ta2<1>‘+’ ]( 7l () + EIM(—)JB V(0)
]: ]_
n Q . j .
+z [ (=)t (-1 T <——>t J (Vv - (1P =
]:
i =1, 2, oeensey M (3.56)
- Q it] | j :
=z (—7)taij + Qlt1 + Q2t2(-1) (2) u', (a) + =
j=0 j=1
n Q, C s Q .
N (VB @ + z [ (25" (' - (—Q—)rﬁ} () v'y(a) -P=0
i

i = 0, 1, 2) .onano:,m (3057)

m Q . Q
zlcu ) B4 - = [ (=)t (- - (g }
i=

i i+l . n Q) Qyty i+
(2) (0)+120G() aijvi(O)-ifo{ — + —— (-

(-g—) Vi) - (-)V =0 = 1 2 veeeena, (3,58)

BT
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m Q . Q
EIGI( 2) Bllul(a) - 20 (—22—)t22(~1)1+] - (-—21—)t12 (2)1 v, (a)
i= i=
3 3
n . n Q.t Q,t c ..
+ Z G(-;—)l_*-laijv'i(a) -z 131 + %2 (-1)1+J (T)IV"'(a) V=0
i=0 i=0
j =09 1, 2’ eessseoy 11 (3.59)
: m [ Q L Q
= z (22 DT - (e | (e
. i=
i
3 3
n Q,t Q.t . . Pt
ERE e ARG A (DI (oE+M,) = 0
2 i=
.‘ | § =1, 2 eeessse, (3. 60)
m Q . Q
z (25> (D - Ghe? (@
i=
3 3
n Q,t Q,t - Pt
tZ, L 22 ()T (D@ + (- - M = 0
i=
i=0,1,2 .uiuueu, (3.61)

3.4  Parameters of Similarity

Inspection of the differential equations and the boundary conditions shows that

the displacement field in the adhesive layer is a function of G, A, Ql’ Q2, t, tl’ t2, a,

P, V, M1 and MZ‘ The equilibrium of the external forces however, gives M2 as a
function of P, V and Ml'
t1 t2
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Further, it can safely be assumed that the Poisson's ratio u does not vary appreciably
for different adhesive materials, G and A could then, be considered as functions of

Q. Also, the various dimensions and the loads can be expressed in dimensionless form.

t b4 2 Py M)

— - ,=—, =, and —,
a’ a ”a *a’” P’ Pa

The parameters of similarity then, are, Q, Q1 , Q2 ’
The stresses Oy and Gy are dependent on the modulus of elasticity E, while
the shear stress 'cxy is determined by the shear modulus G. Since p does not vary

greatly, G can be considered as a function of E. Also, if we assume that ., My and

Q Q E Q Q E
o are approximately equal then, 2 52F and R I The stress
EL B ¢ Y
field in the adhesive layer is then determined by the factors, F' B’ 3’ 3’
20 VoM
a’' a’P Pa *

A special case of identical adherends with antisymmetric loading configuration

can be considered here, 1n this case,

= - = 1 - = < =

M1 = M2 3 [P(tl + t) Va} and t ty E1 E2 (3.63)
ELoe % op v

The stress field in this case, is a function of , , y Ty =
E t a a’ P

3.5 Case of Identical Adherends

The differential equations and the boundary conditions can be greatly simplified
if the two adherends are identical and m and n are taken to be equal to 1. An analytical
solution of the differential equations is possible in tlus case, Since, the adherends are

identical,
ty = t1 ; and Q2 = Q1 (3.64)
The four differential equations in this case are:

Q
(Qt + letl)uo" + ?xtvl' - (-—21—-)t12tv1"' =0 (3. 65)
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26y, - (& + 2Qt) 4 " + 2Gv" + Qtv," = 0 (3. 66)
-Gty - QS - G T+ Q 223 vV =0 (3.67)
2 - Qltlzuo"' +2Qv, - —Gglz-vl" ¥ Q tlzt vV =0 (3.68)

; The boundary conditions in this case are given by Egs. (3.69) to (3. 78).

g
g
%
gj
%
&
¢
.
5

u (0) = 0 v, (0) = 0 v, (0) = 0 (3. 69)
&+ 2q) S u' O - Qltlzvo" © +P =0 (3.70)
tlzt
(Qt + 2Qt)u ' (a) + Atvy(a) - Q—5—v," (@) - P =0 (3.71)
(& o+ 2Qt) +u'(a) - Qv," (@) - P =0 (3.72)

2 Gtz t13t
Q. u" (0) + =2V (0) - Q——v,"(0) + V = 0 (3.73)
t2t 2t3

Gtu, (a) + Ql_lz__ul" (a) + Gw_' (a) - Q 31 vU() -V =0 (3.74)

2 at? t13t
Qlt1 uo" (a) + -—6——vl' (a) - Q1 3 vl'" (@ - v=20 (3.75)

3
2 tl t ., Pt1
-Qltl u, (0) + Q1 -5V 0) + (—2—+ M2) =0 (3.76)
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tlzt 2t13 P,

'. -Q1 7Y (a) + Q1 3— Y, (a) + (—-§— - Ml) =0 (3.77)
9 t13t Py

‘: 'Qltl uo (a) + Ql—-g—-vl (a) + (-—2— - Ml) =0 (3. 78)

The solution for the differential equations can be found as follows:

5 ; From (3. 65) we have,
2 |
uo" = AI . vl"' + A2 . vl' (3.79)
where,
. Qtt
- | AT @ I (3. 80)
and
-At
A, = 3,
2 (Qt +2Qp) (3.81)
Integrating (3. 79),
u'=A °*v'"+ A v +cC (3. 82)

where c1 is a constant,

Substituting (3. 79) and (3. 82) in (3. 68) and rearranging the coefficients, we

get,

iv " _ ,2A
v+ A3v1 + A4v1 = (7\‘—5—) ¢ (3. 83)
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where,

ct?
Ay = (S - aan) /A

>
]

4 = "2(AA, + Q) / Ag

3
2 Uyt
Ay = AQ” - —3

(3. 83) is an oxdinary linear differential equation with constant coefficients and yields,

klx -klx kaX -k,Xx 2Ac

(3. 84)

where k1 ’ -k1 ’ k2 , -k2 are roots of the polynomial k4 + A3k2 + A4 = 0; and
Cy» Cg3» C4» Cg are constants of integration,

Substituting (3. 84) in (3. 82) we get,

k. x -k,x k,x ~k X
v 271 2 1 2 72 2 "2
u’ o= Al(czk1 e + c3k1 e + c4k2 e + csk2 e )

klx -klx k2x -k2x 2Ac

1
-+ Az(cze + cqe + 48 + Cge +

-— ) t+ ¢
A4A5 1

oY

A.c k.x A.cC -k,x
_ 272 1 273 1
u, = (Alczk1 + _——kl e (A1C3k1 + _kl )e

A2c2 klx A,c -k x 2A.A

275 2
+ (A1c4k2 + k2 ye - (Alcsk2 + T-)e + (X;Kg + 1)clx+c6

l(3, 85)

e o e+ s
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where Cg is a constant of integration,

Now, v and u are known functions of x from (3. 84) and (3, 85) if the constants
C1s Cy» €35 €4 s Cg and csare known, These constants can be determined from the
boundary conditions (3. 69), (3.71), (3.73), (3.75), (3.76), and (3.78), These boundary

conditions yield the following set of simultaneous equations,

From (3. 69), i.e. fox u, (0) = 0,

A A A2 A

(A, + k_lz)c2 - (A, + El5-2)c3 Ak, + £ Yo, - (A, + '1222)05 +c =0
(3. 86)
From (3. 71),
@ + 2Qpt)e, = P | (3.87)

From (3, 73),

3 3 3 3 _
(A6k1 + A71<1 )c2 - (A6k1 + A7k1 )c3 + (A6k2 + A7k2 )c4 - (A6k2 + A.7k2 )c5 = -V

(3. 88)
where,
2
_ Gt 2
Ag = —5— T AQY
and
t,t
a2, 4
Ay = QT (A - ——)

L T N UCEHPRAPICHL AR
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From (3. 75),

Ak +AkDe ! ~ak +Akde L
(Agky T Ak Te © ¢y - (Agk; + Ak 3

k.a -
3, 2 3 -
+ (A6k2 + A.7k2 e Cy - (A6k2 + A7k2 e Cg = A" (3. 89)

From (3, 76),

2 2 2
Age, + (A KT+ Aghey + (AK" + Ay + (Ak)" + Aghc,

2 P
+(AKE + Adeg = (—+ My) (3.90)

where,

o=
]

2
g = "Qf 4y
and

27\A2 2
-(l+ _K‘;K;)Qltl

From (3. 78),

2 ka 2 “kja
A901 +(A.7k1 + A8)e Cy + (A7k1 + A8)e Cg

k2a 9

2 - i .
+ (A./.k2 + A8)e Cy + (A7k2 + A8)e Cg = M1 —_— (3.91;

The above six simultaneous linear equations can be solved to obtain the six constants which

when substituted in (3. 84) and (3. 85) would give vl(x) and uo(x)o
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Now, to determine ul(x) and vo(x), differential equations (3. 66) and (3. 67)
shoeld be solved.

Differentizting (3. 66) once, multiplying by t/2 and thew adding to (3. 67) gives,

2
iv ! 2 T
Qﬁz(i} i 20 l F 20+ : J y =0

2
or
ull- = Blvol'if (3. 92)
where,
Lo 2
2.1 ot
R e il 2
1 2 t Zt
Qt . t 1
(F- #2975 + Qq—5—
Integrating (3.92), we have,
€7 2
Yy = Blvo' + —5— X + CgX + 9 (3.93)
where C;» Cg» Cg are constants of integration,
Substituting (3. 93) in (3. 66) and rearranging coefficients, we get,
. 2
v, + Bzv0 = B3c7x + ZBscsx + 2B3c9 + B4c7 (3.94)
where,
- ZG(B1 +1)
B7 = ———

o S e e s i sttt £ See TR




43

. &+ Qe
4 B
By = (‘%t_+ Qt;)tBy - Qltlz

The solution of (3. 94) is,

B B B 2B 2B
_ 3 3 3 2 s “P3 3
Vo TS 3 X tegp Xt {('B'“ 7 )¢y + 5 °9} X

2

kx -kx
+ cloe + cIl

where cm » Cy10 Cpp are constants and k = N- B2 .

The six constants C2» Cgs Cgr Cp s and Cjp are determined from the
boundary conditions (3. 69), (3.70), (3.72), (3.74), and (3. 77).

From (3.69), for Vo (0) = 0 we get,

+ ¢, + ¢, =0 (3.96)

10 1 12

From (3.69) for vo’ (0) = 0 we get,

B4 2B3 2B3
(— - —T)C7 + T C9 + kCIO - kCH =0 (3. 97)
2 B2 2

From (3. 70),

2
+ Bk™ - ¢, = -P (3.98)
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where,
2B.B
783
B, = + B
6 B, 8
3 20t
_ Ay (Tt Qy)
B; = —3 2.
_ Q.
Bg = (5~ + Q-

From (3. 72),

2 ka

-ka |

2 _
Béac./. + B6C8 + B./.k e c10 + B7k e c11 = P
From (3.74),
o 3, ka . . 3, -ka _
B9c7 + (BIOk + Bllk )e (Blok + Bllk e ¢y = \Y%
' |
where,
. 2 4 ‘ 2
N A o UGty Yy
9 8 (Bl+1) 2 2(B1+1) 2
B10 = Gt(B1 + 1)
_ Gt 25 . 44,3 !
B = = (Qth - —=Q7)
From (3.77),
. Pt
2 ka 2 ~ka 3 ) 1
Blzac7 + BIZCS + BlSk e ¢ + BIBk e g = M1 ——

:(3,59)

(3.100)

(3-101)




-

T SR R Y R AT TR

NI

& mm%m‘w‘;\‘\:’%u

FEE

-y

Wa
(¥]]

where,
R T I
12 ® D 3
and
2
Biz = Sl‘;l“(‘g“l Bt

The above six simultaneous linear equations can be solved to obtain the six
constants which wher. substtuted in (3., 95) would give Yo (x). u (x) can then be

obtained from (3, 93).

3.6 Condition for Uniform Shear Stress in an Antisymmetric Joint

If, in a joint, the two adherends are identical and the moment 1\12 1s equal to
--Ml , then the joint is antisymmetric about the middle of the adhesive layer, 1,e. about
the x-axis, In such a case, it is possible to require a uniform distribution of shear
stress along the x-axis, anc derive an expression for the rauo ( V/P) as a necessary

and sufficient condition for this requirement. It is required that,

(Txy)y =0 'EP'
or
, G(ul + vo') = %
or
v = o - u (3.102)
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Substituting (3.102) in (3. 66),

2 . ,Qt t . 2w =
< - (5 Qy)syt -y =0
oY
" __ 2P
Y T an
where,
2

e S Qe

(3.103) yields,

_ P 2
ul—?ﬂ’—x +blx+b2

b1 and b2 are constants of integration.

(3.102) yields,

. _ P P 2
v = (_ETX +b1x+b2)

From (3.69), since vo' 0) =0,

b2='g—a
v' o= Px2-bx
o all 1
and
u =—P—x2+bx+——E—

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)




A S
TR B

N o e K
SEAR I G ALY

T

47

The above expressions for vo' and u satisfy the differential equation (3. 67) identically.

From (3. 70),

2
(- + Qi + QP = -P

orxr
-P _ P
b = . — =7 (3.108) |
5 * Q4+ QY ) |
From (3. 74),
2
Q.t,°t
Pt 1t 2..3,-20, o _
a T T3y (p) V=0
or
Pt 2 4..3. P _
= TQut 3y )gr - V=20
orxr
2, 4,.3
(Qt"t + =—Q;t,7)
Tt AL 3 1 (3.109)

2
a( Qét FQut + Qltlz)

Boundary conditions (3. 72) and (3. 77) are identically satisfied. Two special cases can

be considered.

Case (1): —Qg— <«< 1
1
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The ratio (V/P) then reduces to
4
Voo, sy (3.110)
P a a(t+ tl)
i
Case (2) : 1 <<
t
1
In this case we have
t
v._4 1 1
T3 (3.1
It can be seen that as the ratios —— and % increase, the required value of
1

(V/P) also increases. Eq. (3.11l) thus provides the minimum value of V/P for which a
uniform distribution of shear stress can be obtained.

A similar attempt at requiring the tearing stress Gy to be uniform along the
x-axis results in the trival case of P=V = Ml = M2 = 0 indicating that the tearing

stress distribution cannot be completely uniform undex any given load configuration,

3.7 Solution for the General Case

In the case where the adherends are not identical and where m and n are
integers greater than 1, the differential equations still remain linear and homogeneous
but their number is larger and therefore their analytical solution becomes more complex.
These differential equations are therefore, solved numerically using the method of
linear conversion. The details of this method and the computer program for 1BM 300

are given in Appendix A.

I . sl
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4, EXPERIMENTAL INVESTIGATION

4,1 Introduction

The main purpose of the experimental work was to check the analytical results
and establish confidence in the theoxry. The analysis considers the variation of stresses
through the thickness of the adhesive and treats the problem as one of plane strain,
Photoelasticity presents the most suitable means of experimentally determining stresses
over amn area in a plane problem and was therefore employed in this case, In oxder to
check all the stress distributions and results that the analytical work gives would
require the construction and testing of many complex specimens. For the limited
purpose of checking the validity of the theoxy however, testing of two specimens of
varying overlap lengths was thought to be sufficient. In oxder to obtain a reasonably
good fringe pattern for the acdhesive, it was necessary that the adhesive layer be suf-
ficiently thick. For this reason the joints ere made of a " laver of a photoelastic
plastic simulating the adhesive, bonded between two identical 1" thick metal adherends.
The joints were made 1" wide to approximate the condition of plane strain,

One important result that the theory predicts is the effect of the ratio V/P
on the distribution of stress, This effect was tested experimentally by subjecting the

specimens to loads at different angles with respect to the plane of the adhesive layer,

4,2 Material and Specimen Preparation

Araldite 6020 epoxy was used to simulate the adhesive layer. This epoxy is
available in solid form and can be machined to the required shape. Araldite 6020
was preferred over the other photoelastic plastics for two main reasons., Firstly,
compared to the other plastics, Araldite 6020 has a lower fringe value which means a
good number of fiinges can be obtained with small loads thus improving the accuracy

of the experimenta) results, Secondly and more importantly, Araldite 6020 can be
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easily bonded to aluminum with a thin layer of adhesive of the same material, setting
at room temperature, Araldite 6020 adhesive sets at room temperature when used with
Ciba hardener 951. This aids in keeping the initial stresses to a minimum. In fact
with a little care, the joints can be made practically free of initial stresses. This
fact is important because the presence of high initial stresses would render the model
useless for a photoelastic investigation,

Adherends were made of 1" square 2024 T4 aluminum alloy. In order to pre-
pare the aluminum surface for adhesive application, the adherends were treated in a
hot acid bath at 150 -160° F for about 10 - 12 minutes, The hot acid bath was made with
66 ml, of sulphuric acid (HZSO 4), 315 ml, of water and 13. 5 gms. of sodium dichromate
(NaZCr207).

Two pieces of Araldite 6020 epoxy were machined, one to the dimensions,
i x 1" x 2" for the 2" overlap model and another to the dimensions, 3" x 1" x 3",
for the 3" overlap model. Each piece was bonded first to one adherend by means of
an adhesive consisting of 10 pbw of Ciba 6020 and 1 pbw of Ciba hardener 951. The
joint was allowed to set at room temperatute for 24 hours. The other surface of the
epoxy was bonded to the second adherend in the similar manner and allowed to set 24
hours. The joint was tested immediately after it was hardened, because the epoxy
starts absorbing mositure frem the air and high initial stresses develop. The dimen-

sions of the two specimens are shown in Fig, 6.

4,3 Test Equipment and Procedure

Fig. 7 shows the photoelastic bench. A circular polariscope with a mercury
green monochromatic light source was used. The model was photographed in light
background, The model was loaded by means of dead weights at the end of a lever arm
with a mechanical advantage of 4:1. The direction of the load with respect to the plane

of the adhesive layer was varied by rotating the model tc the desired angle, This was
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achieved by means of two aluminum plates fastened to the model, one at each end (Fig. 8),
each plate provided nine loading points allowing the tangent of the angle (or the ratio V/P)

to vary from zero to 0. 8 in steps of 0.1.

At first the model was photographed with no load. For the photoelastic tests to
be reliable it was necessary that nothing in excess of a half order fringe be present at
zero load. The model was then gradually loadedto R = P + V = 300 lbs. The move-
ment of the fringe was obsexved and the model was photographed.

In order to obtain the stress distribution from the fringe patterns photographed,
1t was necessary that the Araldite epoxy be calibrated for its fringe value. A circular
disc of the material was loaded in compression and the fringe order at the center of the
disc was obtained by using Tardy's method of compensation (16). This procedure was

repeated with different loads and a calibration curve was obtained (Fig., 9). Theoret-

1cally the shear stress at the center of the disc is given by, t = _il_P_c_ where, Pc =
compressive load, and d = diameter of the disc. The fringe valuzz:r,cl f, of the material
was then calculated from f = _f_lj_g where N is the fringe order at the center of the
disc. T

The modulus of elasticity for Araldite 6020 (E = 4,5 x 105 psi) was taken from

Leven (17). This value was used for the theoretical stress analysis of the models. The

results are discussed in the following chapter.
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5. ANALYTICAL AND EXPERIMENTAL RESULTS

5.1 General

AP

The bebavior of a lap joint depends on a number of factors including the relative |
properties of the two adherends. The case of identical adherends is of special interest
and will be discussed in detail, The performance of the non-identical-adherend-joint
will be compared with that of the identical-adherend-joint. The case where the joint

is subjected to pure moment, will also be discussed.

5,2 Effect of m and n

The displacements u, and v, t..e been expressed in Egs. (3.1) and (3.2) as
power series in y. For an exact elastic solution m and n should approach infinity.

It should, however, be possible to terminate the series after a certain number of terms
and arrive at a solution reaconable close to the elastic solution,

Fig. 10 shows the shear stress distribution at the mid~planc (y = O plane) of the
adhesive layer with varying values of m. At m =1, the displacement u is a linear
funciion of y, while at m = 2 and 3, the displacement u is expressed respectively as
a quadratic and a cubic in y. Qualitatively it is seen that in all the three cases, the
maximum stress occurs at the joint edges, decreasing rapidly to a mimimum in the
middle. It is also seen that as m increases, there is a decrease in the maximum
stress concentration, The effect of m is, however, much more clear in Fig, 1l where
the distribution of interfacial shear stress is shown, For m =2 and 3, the highest
stress is seen to occur at the leading corner, there is a rapid decrease in the stress
towards the middle of the joint and then another smaller peak occurs near but not at '
the trailing corner, The stress is in fact, seen to decrease at the trailing corner. This
qualitative distribution is not seen in m =1 curve. Theoretically the stress at the

trailing corner should be expected to be zero whereas the singularity at the leading

SR e 2B
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cornerx should produce a high shear stress at that corner, It is interesting to note that
rising values of m produce a higher stress at the leading corner. This indicates that
if m is made sufficiently large the ideal solution may be approached. The real mate-
rials, however, do not behave as perfectly elastic materials and sume plastic deforma-
tion may occur at the leading corners, the extent of such deformation would depend on
the properties of the adhesive material, The stress distribution obtained for m =2 or
3 can be expected to be reasonably close to the actual case both qualitatively and
quantitatively,

The distribution of o_ at the mid-plane and at the interfacial plane is shown in
Figs. 12 and 13, At the intexface the three curves are in good agreement, but at the
mid-plane, m =2 and 3 show o_ to be much lower. This indicates that Gy varies
appreciably through the thickness of the adhesive. Similar conclusions can be drawn
about the longitudinal stress Oy shown in Figs, 14 and 15.

It can be concluded from these results that for m equal to 2 or higher the
qualitative and quantitative distribution of stress is better, compared to the distri-
bution obtained for m equal to 1. Also, the quantitative results for m equal to 2,
can be considered sufficiently close to the elastic solution,

In all cases discussed above, the value of n was kept constant at 1, The thick-
ness, t, of the adhesive is small compared to the overlap length, a, For this reason
the numerical integration of the differential equations for n greater than 1, becomes
extremely inaccurate., In order to obtain reasonably good results, the step size for
integration has to be made extremely small, The computer time and cost involved
would in such a case be high. 1t must, however, be noted that for the very fact that
t/a is small, the displacement v can be assumed to bc approximately a linear function

iny, and n can therefore, be taken as 1,
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5.3 Comparison with Experiment

In Fig., 16 are shown the fringe patterns for the two models at no load, It is
seen that the zero and half order fringes are present, Under load, fringes of up to
eighth order are found. The models can be considered to be adequately free of initial
stresses.

The experimental results were obtained in the form of photoelastic fringe pat-
terns. The computer was programmed to convert the maximum shear stress at each
point in the adhesive layer, into the corresponding fringe order. The comparison of
these results is shown in Figs, 17 and 18 for the 2 inch specimen and in Figs. 19 and 20
for the 3 inch specimen. The theoretical results shown in these figures are for m =2
andn =1, At the mid-plane (Figs. 17 and 19), the theoretical and experimental results
are in good agreement except at the two ends, where, the experimental results show a
rapid decrease in stress. At the iuterfacial plane (y = t/2), again, the two results are
in excellent agreement except at the trailing end, where the experimental results show
lower stress concentrations. It can be argued here again, as has been done in  .cle
5.2, that as m is made greater, the theoretical stress distribution can be expected
to approach the experimental pattern.

The analysis predicts that the ratio V/P has a significant effect on the stress
distribution, and in fact for a certain value of V/P giver by Eq., (3.109), the shear
stress distribution can be made uniform, This value of V/P turns out to be 0, 76 for

the 2 inch specimen and 0. 51 for the 3 inch specimen., Experimental results for

V/P = 0. 8 for the 2 inch specimen are compared in Figs. 21 and 22 with the corresponding

theoretical results, At the mid-plane (Fig. 21), it is again seen that the two results
are in good agreement except at the ends where the experimental stress decreases

rapidly. At the interfacial plane (Fig. 22), the experimental stress shows a rapid

decrease at the trailing edge but is otherwise, 1n good agreement with th  theory, Simi-

{i
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lar results are shown in Figs. 23 and 24, for the 3 inch specimen for V/P =0.60. It
must be emphasized here, again, that the theoretical results are for m =2, and can be
expected to approach the experimental results for greater values of m.

In order to compare the theoretical and experimental results over the whole area

of the adhesive layer, the computer was programmed to plot theoretical ifringe patterns
for m = 2. These fringe patterns are compared against the experimental fringe patterns
in Figs. 25 to 27 for the 2 inch specimen and Figs. 28 to 30 for the 3 inch specimen.

Similar conclusions can be drawn from these results as have been discussed above,

3 5.4 Case of Identical Adherends

In this section, the analytical results for a joint with identical adherends and
antisymmetric loading will be discussed. Theoretically it has been found that the stresses
in the adhesive layer depend on the factors, EI/E , tl/t R tl/a , V/P and P/a. The
stresses can be expressed in dimensionless form by dividing them by the mean shear
stress P/a, The number of joint parameters then reduces to four, EI/E , tl/t, tl/a
and V/P,

The condition for a uniform distribution of shear stress at the mid-plane of the

‘{ adhesive layer is given by Eq. (3.109), Let Vf be a factor defined as follows
Ve = 4 R (5.1)
QY (t+3¢)
t + T

Then the condition for uniform distributicn of stress is, Vf =1, The factor Vf can
therefore, be used as a parameter of comparison. The joint parameters then are,
r

‘l/E , tl/t , tl/a R Vf.

Let Sf and Nf be parameters defined as follows,

S, = — Etl" (5.2)
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Tz fzctor S; is similar o D of Velkersen (1) and % of Goland znd Reissner (2).

The shear stress can be expressed as a function of S,

(rxy, max

T

= F, (S, V¢» E\/E, y/f) (5.4)
ay -

where,

T,y - @verage shear sgess = P/a (5.95)

Thke fzctor :\'f is similax to the parameter A of Goland and Reissner (2), The normal

stresses can be expressed as functions of Nf .

is )
ymax | a - 3 . .
< t’l Fz (Nf’ Vf’ EI/E’ '-l/t) (5.6)
av
(s )
X" max a_ _ 1 A7
av

In the fcllowing discussion on the shear and normal stresses in the adhesive
layer, the theoreical data has been calculated for m=n=1 and u = u = 0.30, It
has been discussed in Article 5.2, that m = 2 gives better results from the viewpoint
of accuracy of stresses. m =1, however, provides a simplcr and adequate means for
comparison of joints,

5.4.1 Shear Stress: Figs. 31 and 32 show the shear stress concentration factor

as a function of the parameter tl/t. Curves are shown for various values of EI/E and
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S, » keeping Vf constant at zero, Figs. 33 and 34 show the same curves for V. = 2,

f’ f

It can be concluded from these diagrams, that for tl/t z 10 and El /E 210, the shear
stress concentration factor is independent of tl/t and E1 /E, and is a functior of Vf
and Sf alone,

From design point of view, the maximum shearing stress, T hax ’ is even more
important and is shown in Figs. 35 and 36 as a function of tl/t° For tl/t 2 10 and
El/E 2 20, the maximum shearing stress can be considered as a function of S £ and
Vf only,

From the above discussion, it is observed that the shear stress concentration
factor and the maximum shearing stress concentraion factor are independent of 4 /t

and EI/E for tl/t 210 and EI/EZ 20, and are functions of V_. and Sf only, It

f
must be mentioned here that the peak stress, whether positive or negative, is found to
occur at the leading coxrner when stresses at the interfacial plane are being considered,
and at the two ends when stresses at the mid-plane are being considered,

In Fig., 37 is shown the shear stress concentration factor at the mid-plane of
the adhesive layer as a function of S £ and Vf. It is interesting to note that the shear

stress varies approximately linearly with Sf, and also with Vf. For Sf > 6 the shear

stress concentration factor can be approximately expressed as follows.

(r..)
XXT max  _ 1 + % (Sf - - Vf ) at y = 0 plane (5. 8)
av

Fig. 38 shows shear stress at the plane of the interface, as a function of Sf and

Vf. Again, the shear stress is approximately a linear function of Sf and Vf . The
approximate formula in this case is,
(r, )}
Xy’ max  _ 7 - . R
— =1+ T (Sf D (1 Vf)’ atv = + D) (5.9)

av
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T nax is shown as a function of Sf and Vf in Fig, 39, The maximum shearing

stress can be approximately eJ.tpressed by, the following two equations.

AR ARV SN A A W N A AT YR R SR W R SR U AV RN

For Vf =1 and Sf > 4,
T ' '
max  _ 6,19 4. .
T =Lt V) (S - ) G
For Vf Z .S and Sf > 5
) " max 18 17
% =, “ 1t D .10
?g 5.4.2 Normal Stresses: The maximum tearing stress, (Gy)max , is shown in

%

Figs, 40 and 41 as a function of the parameters tl/t , El/El, Nf and Vf . Itis observed
. 1

]
that for tl/t 2 10 and EI/E 2 10, the tearing stress factor is independent of the para-

meters tl/t and EI/E » and is a functon of Nf and Vf alone.

Figs. 42 and 43 show that the variation of the $tress ( ox) ma is quite appreciable

X

for EI/E < 20. However, it can be concluded from these diagrams that, for El/E 220

and tl/t z 10, (Ox)max is a function of the parameters Nf and Vf only.

The maximum normal stress at any given point acts on one of the principal

planes. Fig. 44 shows the maximum principal stress, Onax * 5@ function of the

parametexrs tl/t , EI/E , Nf and Vf . Again, it can be concluded thét, for tl/t = 10,

and EI/E 220, o can be considered to be a function of two parameters, N, and

max f

Vv £ only,

!
The maximum tearing stress is shown in Figs, 45 and 46 as a function of Ng
and V,. These diagrams are drawn for tl/t = 10, and EI/E = 20, As has been .
discussed abc ve, these rraphs would be applicable for all joints where tl/t 2 10 and

El/E =20, It must be noted here that this range is the one that is most frequently
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encountered in practice. The data shown in Figs. 45 and 46 are therefore, applicable
to the majority of the practical lap joints.

" Similar graphs are shown in Figs. 47 and 48 for (ax) max’ and in Fig. 49 for
c . Itis observed that for a given V ¢ the normal stress factors vary approximately

max

as square functions of Nf. This is more clearly seen in Figs. 50 through 54, where

. -2 .
the stress factoxrs are shown as functions of Nf . These graphs consist of almost

straight lines. The stresses can ’ . approximately expressed as follows.

(0,)

g
Y maAX . 3 - (1,325 - L6V)NZ, aty =0 plane (5.12)
T t ff
av 1
(c.)
y max = a - _ 2 _ t
- - (L4 - L675 V)N, aty = + 5 (5.13)
av 1
(Ox) max a 2
. = (0.85 - 0.95V) N, at y = 0 (5.14)
T t ff
av I
(0,)
X max ., 8 _ (0,85 - 0.95V)NZ, aty =+ (5.15)
T t £ f - 2
av 1
ﬁlﬂ_)__._&‘_=(20_22v)1\12 at y = + < (5.16)
- q . Ve By s yEI :
av
- Now, Eqs. (5.2) and (5. 3) yield,
2 _ a
NS = —1- S (5.17)
Substituting (5.17) in (5.12) through (5. 15),
(0 )max
~TL = (L.325 - L6V)S,, at y = C (5.18)

av
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Y maX _ (1.4 - 1,675 V)S,,

av

) max

av

(o)

g
X" max

av

g

T
av

maX = (2.0 - 2.2 V.) S

0.7 - 0.8 Vf)Sf,

= (0.85 - 0.95 Vf) S¢ s

) S

at y

at y

aty

at 'y =

i+

i+
e

I+

N

bo| -

(5.19)

(5.20)

(5.21)

(5.22)

Thus it is seen that the normal stresses are approximately linear functions of

V. and S.. Eqgs. (5.18) through (5.22) show another interesting development if both

f f

sides of these equations are multiplied by tl/ a , which yields,

(ox)max 9
P

(o)

y’ max t1

P

(o)

max t:1
P

g
X

g t
max 1
P

= (1.35 - 1.6 Vf) " ET

= (.4 - 1.675 Vf)' ——

Et1
= (0.7 - 0.8 Vf) ¢ —E'l—t’

Et1
= (0.85 ot 0.95 Vf) Tl‘-- >

Et1
- 2,2 Vf) —El—t )

= (2.0

at y

at y

at y=0

at y

at y

1+
o

1+

I+

(5.23)

(5.24)

(5.25)

(5,26)

(5.27)
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Since Vf is a linear function of the overlap length, a (Eq. 5.1), it can be con-
cluded that the normal stresses are alsc linear functions of the overlap length.
5.4.3 Effect of Vf : It has been obsexrved that Vf

trolling the stress concentrations. It would therefore, be of intevest to look at the stress

is an important factor con-

distributions along the overlap length for different values of Vf . Fig., 55 shows the
shear stress distribution at the interfacial plane for three values of Vf. The maximum
shear stress occurs at the leading corner and is in the positive direction for Vf = 0,

and in the negative direction for V_ = 2, At V_ = 1, the shear stress at the inter-

f f

facial plane is nearly uniform. Figs, 56 and 57 show the distribution of oy and gy

Again for Vf = 0 and 2, the maximum stress occurs at the leading corner and is

positive for V_ = 0, and negative for Vf = 2, At V, = 1, the normal stresses are

f f

nearly uniform over much of the overlap length except near the leading corner, where a

negative maximum occurs,

5.4.4 Design of Lap Joint: The importance of the factors Sf and Vf in
relation to the stresses in the adhesive layer, has been demonstrated, The stresses
are greatly reduced as the factor Vf is brought closer to 1. This fact can be usefuily
employed in designing lap joints, In practice, lap joints are used to fasten two sheets
subjected to pull, The pull can be applied at any angle 6 along the length of the adherends
(Fig. 58a), The equilibrium of the joint requires that the pull at the two ends be colinear.
In this case the ratio V/P is given by,

v (t1 + t)

-+ = tan 0 = — (5.28)
£ is the length defined in Fig, 58a. The mimmum value of £ that can be used, is
equai to the overlap length, a. The maximum value of the ratio V/P therefore, 1n

this case is given by,
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(t, + 1)
‘}.’, - - (5.29)
Further, if t:/t1 is small then the maximum value is,
t
1 -
_% = — (5. 30)

Eqg. (3.111) gives the required value of the ratio V/P for uniform distribution of stress

as,

LA A
P

Thus the maximum value of V/P obtainable by means of simple bending of adherends,
is less than that required for uniform shear stress distribution. In other words, the

factor Vf for the joint shown in Fig, 58a, is less than 1. The value of this factor Vf

is approximately 0. 75 for £ = a. This value is fairly close to 1, and the stress curves
show that this design provides an excellent improvement over the conventional straight
adherend design. Itis, however, possible to further imnprove the design by applying

the pull at angle to the adherend (Fig, 58b) and requiring that the condition for V., = 1

f
be satisfied.

5.5 Case of Pure Moment

A lap joint is under pure moment when P =0, V =0, and I\/l1

60, and 6l are shown the stresses in a joint subjected to pure moment, The stresses

=M, . InFigs, 59,

were determined for m =2, The peak stresses are found to occur at the two ends of
the joint, The highest stress occurs at the leading corner, as would indeed be expected.
The stresses are positive at that end of the joint where the moment produces tensile
stresses in the adherend at the interfacial plane., The peak stresses are negative at the

other end,
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5.6 Non-Identical Adherends

The case of identical adherends has been discussed in detail. The performance
of the non-identical adherend joint will now, be compared with that of the identical
adherend joint. The two adherends in a joint, can differ in their material properties
as well as in their thicknesses, Theoretical results were obtained for a case where
t, and E2 were varied while holding 4 and E, constant, The caseof t, = t, and

2 1 2 1
EZ = E1 provided the identical adherend joint as the base for comparison. The ratios

t, /t1 and E2 /E1 were increased from their initial value of 1, The stress at the

leading corner of adherend (I), which is also the highest stress in the joint, was obtained.*
This stress is presented in Figs. 62 through 67, as a multiple of the stress for the base
joint, The results are shown for two different loadiag conditions, (i) V =0, and

9= 0. It was found, in both cases, that for E2 /E1 =1, 10, and 100, the
results were almost identical indicating that the factor E2 /E1 has no appreciable effect

(ii) M1 =M

on the maximum stress in the joint, The factor t, /t1 however, has a marked effect on

the maximum stress, which increases as t2 /t1 increases, The ratio of this increase

is much greater in the case where V =0, as compared to the case where M1 = M2 =0,
The moments M1 and M2 when V =0, are given by,
t t
= M, o= (b oy 2
Ml- M2"2(2 + = i t) (5. 30)

Thus M1 is proportional to t, , which explains the rapid increase in stresses as t

increases, This also indicates that the increase in Ml’ rather than the increase 1n

stiffness of the adherend (II), is responsible for the increase in stresses. One important

* For t,,/t1 <1, and EZ/EI =1, the maximum stress wouid occur at the adherend (II)

interface at its leading corner,
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conclusion from these results, is that the joint with identical adherends is the most

efficient joint and that any difference in the thicknesses of the two joints tei.ds to increase

the maximum stress.
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6. SUMMARY AND CONCLUSIONS

An elastic analysis of the lap joint has been presented. The two adkerends are
allowed to differ in their thicknesses and mechanical properties. The joint is subjected
to a general loading, consisting of tension, shear force and bending moments. The
stresses in the adhesive layer are determined treating the problem as one of plane
strain, The analysis is therefore, applicable to joints with large widths. The main
limitation of the theory is that it requires the adhesive material to be isotropic and
linearly elastic,

In order to check the analytical results, and to establish confidence in the theory,
two specimens of lap joint of varying overlap lengths were made and tested photoelas-
tically. Excellent agreement was found between the theoretical and the experimental
results, thus establishing validity of the theory.

The case of a joint with identical adherends and subjected to antisymmetric
loading, was analytically studied in detail., The following conclusions can be drawn
for this joint,

(I)  The maximum shear stress and the maximum normal stresses are
approximately linear functions of two parameters, S £ and Vf . Simplified formulas
giving the maximum stresses as functions of Sf and Vf are obtained,

(2) The maximum normal stresses are linearly dependent on the overlap
length,

(3) A nearly umiform distribution of the shear stress can be obtained for
Vf =1. The normal stresses, although not uniformly distributed, are minimized in
this case, Thus Vf =1 provides the most efficient joint,

(4) Design of the lap joint based on the above results, has been discussed and

recommendations made.
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The analytical results for a joint with identical adherends, and subjected to pure
moment, show high stress concentrations at the two leading corners. The adherend thai
is subjected to an anticlockwise bending moment ha: at its leading corner, high positive
stresses, The stresses at the other leading corner are negative,

Following conclusions can be drawn from the analysis of joints with non-identical
adherends,

(1)  The diffexrence between the modulii of elasticity of the two adherends, has
no eppreciable effect on the maximum stress in the joint,

(2) An increase in the thickness of one adherend as compared to that of the

other, results in an increase in the maximum stress,

(3) Considering variation in the adherends, the joint with identical adherends

is the most efficient,

oo e —
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APPENDIX A

SOLUTION OF DIFFERENTIAL EQUATIONS
IN THE GENERAL CASE

Equations (3. 51) through (3. 54) are linear, homogeneous, ordinary differential

equations, The boundary conditions are partly at one end and partly at the other. The
problem can be transformed into an initial value problem by using linear conversion,
The equations are, at first, reduced to first order differential equations by the fol-

lowing substitution,

o g I o

W=y
W, = u,'
4 i
f W, = u'"
i i
3 W = v
s j s (A, 1)
w, = v.'
Iy J
w. = v "
I J
W- = v "
J6 J
where, x
|
i = 0’ 1’ 2) ooooaoo,m §
j = O’ 1’ 2’ o-ooooa,n %

i, = i+ (m+1)

e
li

i+ 2m+1)

i+ 3(m+1)




.= j+ 3@mE F (@)

j+ 3m+l) &+ 2(+1D)

i
0

i = §4 3m+1) ¢ 3@

Egrzgions (3. 51) and (3. 52) reduce o (m + 1) algebraic equations, givea by,
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Equations (3.353) aud (3.54) are reduced to (n + 1) first order differenual

equatons, given by,

1 n
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? ”
i=o % 2 j=0
n n
< Z b, Bw. z
)
i=0 23 3 j=0
viere,
b21{9. 6) =6
b, (i, 0) = G(~) 3
21 ¥* - 2 i0 °
1 1+K
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‘L Equations (A. 2) can be differentiated once to give additional (m + 1) first order
‘ differential equations as follows.
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w. ' and can be solved as such, to obtain the following system of equations,

wi? = fi,) (wo, Wis eeneeces wq) (A.3)
and

W, " = f. (Way Wop cevecee, W A6

6 = 5 o M » (A.6)

" where, @ = 3m+4n+6

Also, eguations (A.1) can be written in the form,

W' o= \vil = Wy Wy el Wq) —

wii' = wi2 = iil (wO, Vg eovsnnns .q)

'.'/js' = wj4 = fj3 (wo, Wy everness Wq) > (A.7)
wjz,' = sz = fj4 (wo, Wi ervesces ‘.'.’q)

sz = wj() = fjs (wO, v.-'l, seevcesy \‘-’q) B

Now, the method of linear coniersion can be applied to obtain v:i(O), for

i=012,....... g. Tiae following equations are used.
wi(a) =

aljwj(n) + pl ’ 1 = G,1,2, ....... , G (A. ™)

In order to determine the constarts 2, ard P the following <teps are fol-

Iowed.
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() Set wo(O) = WI(O) = wz(O) = vesees = wq(O) = 0 and integrate equations

(A.5), (A.6), and (A.7) using Runge-Kutta fourth order formula, This gives,

p; = wi(a), i=0,1,2, v00e0ee5 q

In this case all the p; are zero.
(2) Set wo(O) = 1, WI(O) = WZ(O) = veeoee = wq(O) = 0 and integrate
equations (A.S), (A.6), and (A.7). This yields,

ay = wi(a) -p = wi(a), i = 0,12 connnnn, Q.

This step is repeated for WI(O) = 1 and all other zero, etc,, until ail aij are
determined.

(3 (4n + 2m + 6) boundary conditions are known. Equations (A.2) supply
another (m + 1) boundary conditions, so that a total of (qQ + 1) boundary conditions are
known. Equations (A. 8) provide an additional set of (q + 1) equations. These {(2q + 2)
equations can be solved for {(2q + 2) inidal and final conditions.

(4) Using the inital conditions from step 3, integrate equations (A.S5), (A.6),
and (A. 7) a final time to get the answers, As a check, wi(a) obtained via this inte-
gration must agree with those obtained previously in step 3.

The Runge-Kutta fourth order formula to be used for integration, can be stated

as follows,

s 2 hY = 1 .
W (x+h) = W, (x) + < (ai+2bi+2ci+ di)

where,

h = step size

14

a = hfi i ¥ (x), w; (%), w, (x)y ceveuen, wq (X)]
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a a

a
— (4] . 1 _q
bi - hfi Wo (X) + T, Wi (X) + ‘2— g0ecevcoy ‘Vq (X) + 2
bo b1 b
= —_— { — _i
¢ hfi LA x) + 7 W x) + 57 eecscoey wq (x) + 5

d = hfi [wo (x) + Cq 2 wl(x) + Cls oecroncs wq(x) + cq

The computer program using the above method for solving the differential

equations, is given in Appendix B,
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APPENDIX B

FORTRAN PROGRAM BASED ON IBM SYSTEM 360/75
FOR THE GENERAL CASE

Notation:

EsEl,€2 = E, E1 , E2 respectively
DyD1,D2 = G, G1 , G2 respectively
ByB1,B2 = Q/2, Q1/2 , Q2 /2 respectively
TeTlyT2 = T, t], t2 respectively

A = Overlap length, a

PsVeClsC2 = P, V, M1 , M2 respectively

M= m+1

N = n+1

MM = Number of data points along x-axis, (MM-1). Ax = a

NN = Number of data points along y-axis, (NIN-1). Ay =t

L= Integer denoting number of divisions of Ax for integratio:
H = Step size for integration

L*¥H*¥{P¥M-1.0) = A, ie. L-H = Ax

?

SIGMAX = o

X
SIGMAY = g

y
JAUXY = T

x}'
TAUMAX = T

max

THE PURPOSE OF THIS PROGRAM IS TO DETERNINE STRESSES IN THE
ADHESIVE LAYER OF A LAP JOINT OF GIVEN GEQMETRY AND LOADING.

INPUT = EsE1+E2+s09015D2+B9B1,B2:TsT1sT2,PVyCloAeH M N, HH,NN,L

OUT?UT = SIGMAX, SIGHAY, TAUXY, TAUMAX

A S A A A
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IMPLICIT REAL*8{A=~4,0=-2)

DIMENSION F (NW2 oNW2 ) ¢yG{NW2) yB1OIM M) BL2(MyMN) yAA(MN,MN) s HINHyMM)
19B14{NyM)B16{NsN),B22(MgN) 9B26NNyNI9B2L(MyN) ¢B23(NyN)»B25(NyNJ»
2AU2(MyM) g AVLI(NyM) AV (NgM) CVIINgN) yCUCIMyN)yDUL(MsN),DV2{NN)
BAX({NW) s BX{NW) yCX{NW) sDX{NW) ¢GX{NW2,1)
4GGIMNyMN2 ) s ALFA{MNyMN) o BETA(MNyMN) ,DELT (MNyMN) » SIGMAX(MM,NN)
SeSIGMAY (MMoNN ) s TAUXY{MMgNN) o TAUMAX (MM oNN)

MN=M+N

MN2=M+2%N

NW=3%kM+4%N

NW2=2%NHW

C2=Cl4+V*A-P%(T1/2.0+#7T2/2.0+T)

BB=2.0%(8~-D)

DETERMINE THE COEFFICIENTS FOR THE BOUNDARY CONDITIONS AND
THE DIFFERENTIAL CQUATIONS

821(1,+1)=0.0

D0 6 I=1,M

DO 2 J=1,M

AU2(T yJ)=2.0%(T/2.0)%*([+5=-2)%(B¥T/2.0%(1.,0#(-1.0)%%(1+j-2})/
1(I44-1.0)+B1*T14B2%T2%(~1.0)*%{(1¢J-2))

CONTINUE

D0 3 J=1,NK

AVILJde 1 )=iT/2.01%%(14J=2)*{=BL1eTL1*%24(=1.0)*6([+J=2)%B2%T2%%2)

DUI(144)={T/2.0)¢%(14J=2)*%(-BleT1%¥24{(-1,0)%%{[+J-2)%B22T2%%2)

CONTINUE

AVI(I’I’=0.0

B22(1,413==DU1(1,1)

DO 4 J=2,N

BETA(IJ)=11.0-(~1.0)%%(13J-2))/(144-2.0)

AVI{Jd o1 )=BB#(J=1.0)%{T/2.0) %% ([+3=-2)%BETA([,+d)

B22(1,J)=DUY{1,J)

CONTINUE

810{1,1)=0.0

B10(1,1)=0.0

B12(7,1)=AU2(1,1)

DO 5 J=2,M

Bl2(1,4J)==AU2{1,4)

5 CONTINUE
6 CONTINUE

DO 10 I=2,M

DO 7 J=2.M

DELT(I,J)={10-{-1.0)%%(1+J-3))/(1+J-3.0)
Bl0(I,J)==D?{I-1.0)%(J-1.0)*%(T/2.0)%*%(1+J-3)*DELT(],J)

7 CONTINUE

814(1,1)3-D*(T/2.0)*%([~-1}%*(1.0-(-1.0)*%(~-1))
DO 8 J=1,N
BETA(14J)=(1.0-(~1.0)%%([+J-2)}/(1+)-2.0}
CUO(I,J)=D%{I-1.0)%(T/2.0)%*%{[+J-2)*BETA(I,J)
B16(Jy1)=<AV3(J,I}

8 CONTINUE

821(1,1)=-CU0(1,1)

D0 9 J=2,N
821(1,3)=CUOL]1,3)-AV1{S,1)
B21(1,J)=—-AVi(J,1)
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B14(J,1)=-B21(1,4J)
9 CONTINUE
10 CONTINUE
‘ , DO 13 I=1,N
CUO(IOI’;—OQO
B16(I,1)=AV3(I,1)
B23(1,1)=0.0

YRS AR BRI L

823(1,41)=0.0
> BL14(141)==AV1(I,1)

% DO 11 J=1,N

: ALFA(T,J)=(1.0~(=1.0)%*(I+J=1))/(14J-1.0)
- CVI(T4d3=(T/2,0)%%( I+J-1)%D*ALFA( 1, J)

DV2( 140152 0%1(T/2.0)%%([+J-2)*%( Bl *T1%%3/3,0432%T2%%3%(=1,0)
1*%([+4-2)/3.0)
11 CONTINUE
B26({I41)==-DV2(1,1)
P 825(141)==CV1(I,1)
! DO 12 J=2,4N
B26(1,4)=DV2{1,4)
o B25(1,41}=CV1(i,.J)
: 12 CONTINUE
3 13 CONTINUE
DO 15 I=24N
3 DO 14 J=2,N
ki DELT (I ¢J)={1leO0=(=1.0)%x{1+J=3))/(1+4=3.0)
o B23{19J)==2.0%¥B¥{[=1.0}*%{J=1.0)* T/2.0)%%(143=-3)*DELT(I,4)
14 CONTINUE
3 15 CONTINUE
E* t SOLVE SIMULTANEOUS EQUATICNS (A.3) AND (A.4} OF APPENDIX A
: C AA ARE THE COEFFICIENTS ON THE LHS AND GG DN THE RHS
§' DO 29 I=1,M
S D0 27 J=1.M
kS AA(J,I)=B12(1,J)
b GGlJI,I3=B10(I,J)
g 27 CONTINUE
DO 28 g=1,N
J1=J+M
Je=J1+N
AA{J1,1)=B22(1,4)
g GG(J1,1)=B21(1,0)
; AA(T,J41)3Bl6(J,1)
P G6(1.31)=0.0
GG(I,J2)=814(d,1)
28 CONTINUE
29 CONTINUE
DD 31 I=1,N
DO 30 J=1,N
I1=1+H
J1=J+M
12=11+N
AA({J1,11)=B26{1,+J)
GG(J1,113=823{1+J)
66(J1.,12)=B25({1,J)
30 CONTINUE
31 CONTINUC
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CALL SIMEQ (AA,GG¢MN,MN2,K0)
IF(KO«.EQ.1) GO TO 3000
c NOW USE LINEAR CONVERSION
C F AND G ARE THE COEFFICIENTS ON LHS AND RHS RESPECTIVELY
i C FIRST SET ALL F AND G TO ZERO
j DO 26 J=1,NW2
i DO 25 1=1,NW2
f F(1,4)=0.0
25 CONTINUE
GtJ)=0.0
26 CONTINUE
c NOW DETERMINE F AND G THAT ARE NOT ZERO
DO 50 J=1,NW
DO 35 1=14NW
Wil,19=0.0
35 CONTINUE
WiJ,1)=1.0
C INTEGRATE EQUATIONS (A.5)s(AL6),(A.T)
CALL INTEG ‘GG’H’H, M' N' MM. NH. AX ,BX,CX,OX, L,
DO 40 I=1,NW
F{IyJd)=N{]1,MM)
40 CONTINUE
JW=J+NW
F{dydW)==1.0
50 CONTINUE
c USE EQUATIONS tA.2)
D0 80 J=1l4M
JH=J+NHW
DO 60 1=1,M
12=142%M
F{JW,1)==B10(1,J)
FlJuW,12)=812(1,J}
60 CONTINUE
DO 70 I=1,N
I14=1+3%M+N
[16=14+2%N
F(JW,14)=-B14(1,J)
FlJW,16)=B16(1,4)
70 CONTINUE
80 CONTINUE
C NOW USE THE BOUNDARY CONDITIONS
DO 400 I=1,M
I1=1+M
12=11+M
I7=1+NW
I18=11+NW
19=12+NNW
DO 90 J=2,M
JH1=J&NH+H
FUJWH1,11)=AU2(1,4)
GlJIW1)=P*(-T/2.0)*%%(J-1)
90 CONTINUE
DO 100 J=1,M
JH2=J+N¥+2%H
FlJW24183=AU2(1,J)
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GUIW2)=P*(T/2.9)%%(J=1)
100 CONTINUE

DG 200 J=2,N

JH3=3eNW+3I%N

JWe=JW3+N

FUJdN3,1)=CUO(I,J)

FUIN3,12)==-DU1¢1,J)

G(JIW3)=VE(- T/2,.0) %% (J=1)

3

',

‘
%)
Pt
7
33

ST

FOIWA411)=DUL(I,4}
CUINAG)=(~T/2.0)%%(J=1i+{P%T2/2.04(2)
% 200 CONTINUE
2 00 300 J=1,N
4 JH5= S ENWH2EN+3%M
: INE=JWS+N
3 FULIWS,1T)=CUO(1,J)
- FUINS+19)==DUL(1,J)
3 GUJIWS)=VE(T/2.0)%%( J-1)
A FOJUW6,18)=DUL(],J)
2 GIIN6)==(T/2.0) %% (J=1)*(P*T1/2.0-/1}
s 300 CONTINUE
= 400 CONTINUE
4 D0 900 I=1,N
& [3=1+3%M
A 14=134N
b I5=144N
E 16=154N
: 110=13+NW
E 112=15+Nw
: 113=16+NW
% DO 500 J=2,H
‘ JW1=J+NH+M

=3 FOJW1,13)=AV1(I,J)
4 FUUN1,I5)=AV3(],J)
; 500 CONTINUE
DO 600 J=1l,M
JH2= J+NW+2%M
. FUJH2,110)=AV1(1,J)
} FIdW2,112)=AV3{1,J)
600 CONTINUE
DO 700 J=2,N
v JN3=J+NW+3%M
e JHG=JW3+N
/ FUJW3,14)=CV1(1,4)
3 FIIW3,16)=-DV2(1,J)
é FUJN4415)=DV2(1,4])
E: 700 CONTINUE
DO 800 J=1,N
JUS=J+NW+ 2N+ 3%H
JW6=JW5 +N
;‘ F(IW5,111)=CVi(I,J)
= FIIN5,113)=~DV2(1,4)
== FIJIW6,112)=DV2(1,Jd)
800 CONTINUE
900 CONTINUE

G830 24 wg 2ty

iy

i3

7
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JO=NW+M+}1
J10=J0+2%M
J20=J10+N
130=3%M+]
140=130+N
F{J0sl)=1.0
| F(J10,130)=1.0
: F(J204140)=1.0
DO 950 I=1,N¥W2
GX(I41)=G(I)
950 CONTINUE
C SOLVE FOR INITIAL AND FINAL VALUES OF W
CALL SIMEQ (F,GXyNW2,1,K0)
IF(X0.EQ.1} GO TO 3000
DO 1000 I=1,NW
W(l1e1)=GX{I,1)
1000 CONTINUE
c FINAL INTEGRATION
CALL INTEG (GGeWoHeyMyNeMMoNWNsAX2BXsCX9DXyL)
C INTEGRATION OESTROYS W{I,1}, RESTORE W(I,1l)
DO 1020 I=1,NW
W(lel)=GX(1,1)
c CHECX IF THE INTEGRATION IS ACCURATE
IW=14+NW
1020 AX{I)=1.0-W{I ,MM}/GX(IW,1)
C AX SHOULD ME MUCH LESS THAN 1
c IF THE ABOVE CHECK IS UNSUCCESSFUL, THE STEP SJIZE H NEEDS
o
c

TO BE DECREASED
DETERMINE S1RAINS AND STRESSES
DO 1500 J=1,NN
Y=T%(J=1.0)/(NN=1.0)-T7/2.0
DO 1400 I =1,MM
EX=W{{M+1 )}, T)+Y®R((M#2),])
EY=M{{3*M+2),1])
EXY=W(2sID¢W{(3*M+N+1)}, II+VER((3EM+NE2),1)
IF{M.LTL3) GO TO 1210
DO 1200 11=3,M
I1I1=1i+M
EX=EXeY®k(I]I-1)%W{II1ls])
EXY=EXY#(J[=-1.Cleysa(I]=-2}*u{]1],])
1200 CONTINUE
1210 IF{N.LT.3) GO TO 1310
DO 1300 JJ=3,N
JJi=3eMey
JJ4=3*H+N+J J
EY=EY#+{JJ=1.0)%Y*(JI=2)*H({JL3,])
EXY=EXY+Y*¥x(JJ-1) %W (JJ&¢,])
1300 CONTINUE
1310 SX=2.0*%¥B*EX+BB+EY
SY=2.0%B*EY+BB*EX
SXY=D*EXY
SHEAR=DSQRT ((SX~SY)%22/4,04SX(%32)
SIGMAX(I,J3=SX
SIGHAY(1,J)=SY
TAUXYEL,33=SXY
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TAUMAX(1,J)=SHEAR
CONYINUE

CONTINUE

sSToP

END

SUBROUT INE INTEG {(GGyWeHsMoeN,MM,NN,A,B8,C,DyMM]1)
IMPLICIT REAL*8{A-H,0-2)

DIMENSTION GG{MNyMN2) ¢ W({NK,MM) JAINW) BINW} oCINW) ,DINW}
MX=1

DO 2000 KX=29MM

DO 1000 MMX=1,MM1

DO 10 I=14NW

CtI)=0.0

CONTINUE

K==1

K=K+1

DO 200 I=1l,M

I1=1+¢M

12=11+#M

DUI)=H®(W(ILl MX)+C(I1))

DIl )=H*(W{12,MX)¢C(I2))

D(I2)=0.0

DO 120 JJ=1,M

JJl=Ji+M
D{I2)=D(12)+H*GG(I4dJ)%(W{JIL,MX)&C(JJ1))
CONTINUE

DO 150 JJ=1,N

JIl=JdJeM

JJ2=dJl +N

JJ3=JJ+3%M

JJ5=JJ3+2%N
DII2)=DUI2)#+H*GG( 1o JIL)}* (W JI3yMX)+C{UJI3) }+HEGG(IyJJ2)E(W({JIS)MX)

1+C(JJ45))

150
200

220

CONTINUE

CONTINUE

DO 300 I=14N

[1=1+M

13=1+3%}M

14=13+N

I5=14+N

I6=I5+N
DEI3)=HT(W(14,MX)#C14])
DII4)=H*E(W( IS5 ,MX)#C(15))
DOIS)=H®(W{T6,MX)+C(16))
D(I6)=D.0

DO 220 JJ=1.¥%

JJl=JJ+M
DII6I=DII6)+H*GGIIL,JJ)*(W{JJL,MX}+C(JI1))
CORTINUE

D3 250 JJ=1,N

JJl=JJ+H

JJd2=JJ1+N

JJ3=J j+35H

JJI53JJ3¢2¢N

PR L)

7 e oM e
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D(16)=D(I6)4+HXGGIILsJILI*(H(JIIB,MXIH+C(II3))I+HRGG(TL,JI2)*
LINEJIS,MRIEC(II5))
250 CONTINUE
300 CONTINUE
IF{K.EQ.1} GO 70 400
IF{K.EQ.2) GO TO 500
IF(K.EQ.3) GO TO 600
DC 350 I=1,NW
A(1)=D(1)
CtI)=D(1)/2.0
350 CONTINUE
GO TO 100
400 DO 450 I=1,NW
B(I)=D(I)
C(I)=D(1)/2.0
450 CONTINUE
GO TC 1GC
500 DG 550 I=1,NW
Cir1)=0(I)
550 CONTINUE
GG YO 100
600 DO 700 I=1yNW
WIT L)=W(Tlo )+ {ACI)#2.0%B(1)+42.0%C(1)+D(I})/6.0
700 CONTINUE
1000 CCNTINUE
DO 1100 I=1,NW
1100 WlIKX)=ull,1)
2000 CONTINUE
RETURN
END

SUBROUTINE SIMEQ (AyByNRCWsNRHS,KOD)
C THIS SUBROUTINE SOLVES SIMULTANECUS ECUATIONS WITH REAL
C COEFFICIENTS

IMPLICIY REAL*8 (A=H,({-1)

100 FORMAT(/*' SINGULAR MATRIX*/)
DIMENSICA A(NROW,NRON)},BINROWsNRHS) s CINW2) o ITINW2) 9 JJ{NW2y2
£O 1 I=1,NRCHW

1 I1(1)=0
DO 17 I=1,NROW
D=0.DC
DO 6 J=1,NRONW
IFCIT(J)=1) 246,42
DC 5 K=1,NROK
IF(IT(K)=1) 3,5,21
IF{CABSIU/~-DABS{A({JsKDI)) 4,4,5
IR=J
I1C=K
D=A{J:K)
5 CONTINUE
6 CONTIKUE
TILITI=TI(IC)¢e]
IF(TR=-ICH 7,10,7
T DC 8 J=1,NRQOW
D=A(1IR,J)

%)
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AULIRyJ)=A(IC,J)
A(IC,J)=D

DO 9 J=1,NRHS
D=8(IR,J) -
BUIRsJ)I=B(IC,d)
B(IC,J)=D
Jdtly1)=1R
JJlI,2)=IC
Cll)=ALIC,IC)
IF(C(I)) 11,21,11
A(IC,IC)=1.D0

DO 12 J=1,NROW
ALIC,J)=A(IC,J)/C(])
D0 13 J=1,NRHS
BUICsJ)=BLIC,J)/C(])
D0 17 J=1,NROW
[F{J~IC) 14,17,14
D=A(JsIC)
AtJ,1C2=0.D0

00 15 K=1,NROW

AlJyK)=A{J,K)=ALIC,K)*D

DO 16 K=1,NRHS

B(JyKI)=B(JyKI=B(IC,K)*D

CONYINUE
D0 20 I=1,NRO¥
J=NROW¢1-1

IFtJItdsld=21 3,2)) leZO»lB

IR=JJ(J 1)
IC=34d(J4,2)

DO 19 J=]1,NRO
D=A(JyIR)
ACJyIRI=A(J,IC)
A(J,IC)=D
CONTINUE

KG=0

RETURN
WRITE(6,100)
KQ3=1

RETURN

END
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APPENDIX C

FORTRAN PROGRAM BASED ON IBM SYSTEM 360/75
FOR THE IDENTICAL ADHEREND CASE

s SR At < W .

.Notation:

EyEl = E, E1 respectively é

0;01 = G, G1 respectively '
HoHl = A, Al respectively t
: | ByBl = Q/2, Q1/2 respectively
' A= Overlap Length, a

PsVeClyC2 = P, V, Ml’ M2 respectively

MM= Number of data points along x-axis, (MM-1) AX = a

NN= Number of data points along y-axis, (NN-1) Ay =t

THE PURPOSE OF THIS PROGRAM IS TO DETERMINE STRESSES IN THE
ADHESIVE LAYER OF A LAP JOINT WITH IDENTICAL ADHERENDS
AND GIVEN LOADING.

INPUT = E'El'D,Dl!B'BIQT'TIOPQVVMIUA'MM’NN
QUTPUT = SIGMAX, SIGMAY, TAUXY, TAUMAX

OO0

IMPLICIT REAL*8(A=EyHy0-Y)y COMPLEX®*16(F,G,y2)

" COMPLEX*l6 CDEXP, DCMPLX, CDSQRT
"DIMENSION SIGMAX(MMoNNJ »SIGMAY (MM NN) o TAUXY (MM oNN), TAUMAX (MM, NN)
DIMENSION UUL12(MM)oUUL3{MM)VVOL(MM), VVO2({MM),VVO3{MM),VVO4(MM)
DIMENSION UUO(MM) ,UUO01{ MM) ,UUO2 (MM} JULO3( MM}, UULINM),UULL (MN)
DIMENSION VV1(MM) 4VVI1(MM),VV12(MM),YV13(MM)}, VV14(MM)
DIMENSION F(545)96(5,1)
DIMENSION ZX(4),2Y(2),2(11)
2= Cl+VH*A-P¥(T1+T)
BT=B*T+2.0%81%T]
CT=B*T/3.0+42.0%B1%T1
AAL1=Bl*T1#%2%T/(2.0%BT)
AA2z=H%*T/(2.0%BT)
AA3=B1¢T]1#%2%(4,0/3,0%T1¢T)/(T&(B1*T1*22¢LT*7/2,0))
CV=T#CT*AA3~2,0%B 1 #T]1%*2
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CCC=BL*T1#**32T%(2,0%B8%T+81%*T1}
CC==~6.0%H*BT/CCC
CCO=3.0%H*(2.,0%BT~H*T}/CCC+12.0%B7*D/CCC
CC2=6.0%H*T*BY1#T1 *%2/CCCLD*T*T/12.0%CC/H
CCO=BL*T1#x2~-CT*T/2.0%AA3
CC1=D*{AA3+1.0)/CCD

Q2=-D/{6.0%CCD}

Ql=3.0%Q2

Q0=6.0%Q2

Q3=(CT%*T/2.0)/CCD

Z(5)=P/(2.0%BT)

FF==CCl1

12=(CC2/2.0)*%2-~CCO

DO 100 N=1,2
IX{N)=CDSQRT(~=CC2/2.0+(~1)*xN¥CDSQRT(2Z))
IX{N#2}=~ZX(N)

LY{N)=(-1)**N&CDSQRT{FF)}

CONTINUE

DO 200 J=1y4

FUlyJ)=(D*TRT/6042. 0%AA2*BL*¥T1%%x2)*IX{J) +2.0%0 14T 1k42%(AALl =

1T1*7/3.0) %2 X(J)**3

F(29J)=F(1,J)*COEXP(ZX(JI*A}
FI3,J)=Bl*T1*%2%x((T1*T/3.0-AAL)*ZIX(J)**2-AA2)
Fl4yJ)=F(3,Ji%CDEXP{ZX{J)*A)

CONTINUE

Gtlsl)=-v

G(2,1)=V
Gi3el)==(C2~V*AL1+P*T1/240)/2.08(1.04AA2%CC/CCO)*B1*T1%%2%7(5)
G(441)=(C1¢VXAL1)/2.0-P%xT1/4.,04¢(1.04AA2%CC/CCOI%BLATI*%2%7(5)
CALL SIHMEQ (FyGe4,1,KO}

DU 300 N=1,4

LIN)=Gi{N,1)

CONTINUE

D0 400 Jd=1,2

F{leJd=CVRZY(J)*%2

F(2sJ)=F(1: JI*CDEXP (2ZY(J}*A)
FU39J3=(D*T*(AA3+1.0)*%2ZY(J)+BL1*TL1**2%(AA3XT=4,0/3.0%T1)*2Y(J)

1*x3 ) *#CDEXP{2Y(J)*xA)

400

Fl49d)1=(4.0/3.0%T1-AA3%T)*ZY(J)**x2%CDEXP{ LY (J)*A)
FI5,d)=2Y(J)

CONTINUE

F(113'=0.0

F{2+3)=6.0%CV*Q25A/CCLLCTAT*A

F(343)=D*T*(AA3+1.0)/CCLl*¥(3.0%Q2%A¥A~6.0%Q2/CC1+Q31+A%¥A/2,0%0*T

14B1*T1#%2%{ (AA3XT=4,0/3.0%T1)%6.0%Q2/CCL+T)

FU493)=AX((8.0%T1~6.0%AA3XT)/CC1%Q2-T)
F{543)=(Q3~6.0%Q2/CC1)/CC1
F{l114)=2.0%CV*Q1l/CC1+CT*T

FE244F=F{144)
FU3+4)=D*T*A%(({AA3+]1,0)%2.0%Q1/CC1+1.0)
F{4943=2.0%Q1%(4.0/3.0%T1-AA3%T }/CC1-T
F(5'4’2000

F(1450=0.,0

F(2'5)=0.0
F(3,5)=D%T%(1.0+Q0+!AA3+1.0)/CC1)

PR S
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F{4,5)=0.0

=(5,5)=Q0/CC)

G(l,1)==P

G(2,1)=P

G(3,1)=vVv
Glayl=(CleVxA)l~-P%RT1/2.0)/{BI%RT1%%2)
G(5,14i=0.0

CALL SIMEQ (F,Gy5,41,K0}

DO 500 N=6,10

ZIN)=G({N=-5),1)

CONTINUE

DO 800 N=1,NN
¥Y=T*(N=1.0)/(NN=-1.0)-T/2.0

DO 700 M=1,MM

X={M=1,0)%A/{MM=-1.0)
J01=2(6)*ZY(1)*COEXP(ZY(1)I®X)42(T)I*ZY{(2)*CDEXP(LIY(2)%X)+3.0%

12(8)*X*xX%Q2/CC1+(2.%Q1*Z(9) *X4QO0*Z(10)+Q3%2(8)-6.%Q2%2(8)/CC1

2}/CC1

V02=Z246)*ZY (1) **2*CDEXP(ZY (L)X} +Z(T)*ZY{2) #*2%xCDEXP(ZY(2)*X)+
16.0%Q2/CC1*Z{8)*X+2.,0%Q1/CC1*Z(9)
VO3=Z2(6)*ZY (1) **¥3*COEXPUZY(1)*X)}+2(TI*ZV(2)**3¥COEXP(2Y(2)*X}+
16.0%Q2/CC1*Z2(8}

VO4=Z(6 %IV (L) **%4%CDEXP(ZY (L) *X)+Z(TI*ZY(2) %*x4%xCOEXPL{LY{2)*X)
Vv0l(M)=VOl

VVO02({M}=V02

VV03{M)=Vv03

VV04({#)=V04
Ul=AA3%VOl+Z{(8)*X*X/2,0+Z(9i*X+2(1G)
Ull=AA3%VQ2+2(B)*X+Z2(9)
UU12(M)}=AA3*V03+Z(8)

UU13(M)=AA3%*VO4

Uul (Ki=Ul

UULl1(M)=Ull

FV1=CC*Z(5)/CCO

FV11=0.0

FV12=0.0

FV13=0.0

FV14=0.0

DO 600 K=1,4
FV1=FV1#Z(K)}*CDEXP{ZX{K)*X)
FVI1=FV11+Z(K)*ZX(K)*CDEXP(ZX(K)*X)
FV12=FVI2+4Z(K)*IX(K)*&22CDEXP (ZX(K)*%X)
FV13=FV13+Z(K)®IX{K)**3%CDEXP{ZX(K)}*X)
FV14=FV14+Z(K)#IX(Kj**k4=CDEXP{ZX(K)*X)
CONTINUE

Vi=FV1

Vil=FVl1l

V12=FVl2

VV1{Mi=Vv]

VVI11(M}=Vl1ll

VV12(M)=V12

VV13{M)=FV13

VV14(M;=FV14%

U01=AA1*VI2+AA2*%V1+2{5)}

UUOL (M) =y01
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UUOZ2(MI=AAL*VV1I3{M)+AA2*V]1]
VUO3(M)I=AAL *VV14 (MY +AA2*V]12
SX=2,0%BXx{UOL+VY*U/11)+H%V1
SY=H¥(UOLl+Y*Ull) +2.0¥B%V1
SXY=D2{VvCleY%xVil+ULl)
SHEAR=DSQRT ({SX=SY )} *%2/4,0+5XY%%2)
SIGMAX{M,N)=SX
SIGMAY(My,N)=SY
TAUXY{(M,N)}=SXY

TAUMAX(M4N) =SHEAR

STopP

ENC

SUBROUTINE SIMEG (F,GoeNROWyNRHS-40)

COEFFICIENTS

IMPLICIT COMPLEX*16 (A-H,0~12)
REAL*8CDABS

DIMENSION F(545)4G(541),C(5),11(5)4JJ(5,2)
FORMAT(/' SINGULAR MATRIX'/)
DO 1 I=1,NROW

II1{I)=0

DO 17 I=1,NROW

D={0.00,0.D00)

D0 6 J=1,NROW

IFLTII(J)=1) 2,642

D0 5 K=1,NROW

IFCTII(K)=-1) 3,5,21
IF(CIOABS(D)=CDABS{F{JsK))} 44445
IR=J

IC=K

D=F(J,K)

CONTINUE

CONTIMUE

TI{ICI=TT(IC)+1

IF(IR-IC} 7,10,7

DG 8 J=1,NROW

D=F(IR4J}

FUIRyJI=(IC )

F{IC,J2)=D

DO 9 J=1,NRHS

D=G(IR,J)

G(IR,J)=G(IC9J)

G{ICuvJ)=D

JJ(I,1)=IR

JJtls2)=IC

CtId=F(IC,1C)
IFICDABS(C(I))) 11,421,411

. FUIC,1C)=t1.00,6.D0)

DO 12 J-=14NROHW
F{ICyJ)=F(ICyJ)}/C(])
DO 13 J=1,NRHS
GUIC,d)=G{1L,J)/CHL1)
DO 17 J=1+NRGH
IF(J=TC) 14,17,14

v

THIS SUBROUTINE SOLVES SIMULTANEOUS EQUATIONS WITH COMPLCX




14

15

16
17

18

19
20

21

89

D=F(J,1IC)
F(JyIC)=(0.00,0.00)

D0 15 K=1,NROW
FLIvKI=F(J,K)=FL{IC,K)*D
D0 16 K=1,NRHS
GlJaK)=G(JyKI=GLICyK) %D
CONTINUE

DO 20 I=1,NROW

J=NROW¢ 1~1
IFCIL(Jy1)=dd(d,e2)) 18,20,18
IR=JJ(J,1)

IC=4J04,2)

00 19 J=1,NROW
D=F(JyIR)
FUJyIRY=F(J,IC)
FU4,ICI=D

CONTINUE

K0O=0

RETURN

WRITE(6,100)

KO=}

RETURN

END
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