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ELASTIC STRESS ANALYSIS OF AN ADHESIVE LAP JOINT
SUBJECTED TO TENSION, SHEAR FORCE AND BENDING MOMENTS

Murlidhar H. Pahoja, Ph. D.
Department of Theoretical and Applied Mechanics
University of Illinois at Urbana-Champaign, 1972

A stress analysis of the lap joint is presented treating the problem as one of

plane strain. The joint is subjected to a general loading, consisting of tension, shear

force and bending moments. The variation in the material properties and thickness

of the two adherends is considered. The displacement field in the adhesive layer is

expressed in series form dnd the compatibility condition at the interface is used to

express the displacement field in the adherends. The potential energy of the joint is

calculated and minimized to obtain linear, ordinary differential equations and boundary

conditions. The differential equations are solved on the computer.

Photoelasticity is used to confirm the theory. Two specimens of lap joint using

a 1/4 in. layer of a photoelastic plastic simulating the adhesive, are tested photoelas-

tically. The agreement between the theoretical and the experimental results is found

to be good.

Design recommendations for thu lap joint are made based on the results of this

investigation.
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NOMENCLATURE

Adherends I and II As defined in Fig. 3

a Overlap length

E Young's modulus of adhesive material

El E E2 Young's modulii of adherends I and II

G Shear modulus of adhesive material

i G1 ,2 Shear modulii of adherends 1 ?nd II

1I0 Strain energy of the adhesive
k0

I1 12 Strain energy of adherends I and II

SI Strain energy of the joint

M1 M M2 Bending moments per unit width of joint

m Integer defined in Eq. (3, 1)

n Integer defined in Eq. (3.2)

N f Dimensionless parameter defined in Eq. (5.3)

P Tensile force per unit width of joint

Q = X + 2G

2Q1: =E! / (1- p,2

Q2 = E 2 /( 1 -22)

Sf Dimensionless parameter defined in Eq. (5. 2)

t Thickness of adhesive layer

t 1 , t2 Thicknesses of adherends I and II

u Displacement in x-direction in adhesive

Ul , U2  Displacement in x-direction in adherends I and II

2
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SNOMENCLATURE (Continued)

v Displacement in y-direction in adhesive

VI, V2  Displacements in y-direction in adherends I and II

V Shear force per unit width of joint

Vf Dimensionless parameter defined in Eq. (5ý 1)

x, y Rectangular coordinates

* ij 'ij 8 ij Variables defined in Eq. (3, 7)

Ex E•y Normal strains in adhesive

Clx Ey" E2 xr E2y Normal stiains in adherends I and II

I 3,xy Shear strain in adhesive

'x•1,y 'I2,xy Shear strain in adherends I and II

-x Lame's constant for adhesive material

x1 x 2 Lame's constants for adherends I and II

SPoisson ratio of adhesive m aterial

"I P u2 Poisson ratios of adherends I and II

a , a Normal stresses in adhesive

a lx L'ly' a2x, a2y Normal stresses in adherends I and II

T Shear stress in adhesive
xy

T Ixy , T2xy Shear stress in adArends I and II

4, Force defined on page 46



1. INTRODUCTION

In the last two decades, adhesive bonding has become more and more common

in engineering structures. The advantages of the adhesive joint over the conventional

mechanical fasteners are, savings in weight and cost and elimination of holes which

can cause excessive stress concentration,

The commonest type of joint in use today, is the lap joint where two adherends

overlap and are fixed together by a layer of adhesive between them (Fig. la). The

main advantage of this joint is its simplicity in design. Further, where the surfaces

need chemical preparation, the adherends are easy to handle. It is also a simple

type of joint to cure. The chief disadvantage of this type of joint is that when loaded

in tension, varying shearing and tearing stresses are produced in the adhesive as well

as the adherends, and very high peak stresses are produced at or very near the ends

of the overlap.

Failure in a joint may occur either in the adherend or in the adhesive or at

the interface. A failure at the interface is termed as 'adhesive, ' since it involves

the failure of -the bond between the adhesive and the adherend. When the fracture

occurs either inside the adhesive or inside the adherend, the failure is then termed

as 'cohesive. ' In a cohesive failure, the material at the two fracture surfaces is the

same. The interfacial adhesion of modern adhesives is high so that failure mostly

occurs either in the adhesive as in the case of metal to metal joints, or in the ad-

herends as happens with wood joints.

The stress in the adhesive layer is deperdent on the geometrical proportions

and the elastic constants of the materials of the jcint, and on the nature of the forces

acting on the joint. When loaded in tension, non-uniform shear and tearing stresses

are developed in the adhesive layer. The shear stress is parallel to the interface
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%while the tearing stresses are normal to the ni e-face. It has been predicted theoren-

cally and confirmed experimentally that the pe. shear-and tearing stresses occur at

"hi- twvo ends of the overlap, This concentration of stresses at the ends of the overlap

is due to two main causes, namely to the differen, ial strain of the adherends and their

be,1ding.

Fig. la shows a lap joint loaded in tension- Each adherend bears the full load

P Jusr before the joint and transmit it gradually to the other through the adhesive,

Thus the stress in adherend (I) wll be the highest at A and gradually diminish towards

B wY ýre it will be zero. On the contrary the stress in adherend (I1) will be the highest

at B znd diminish to zero at A, The adherends (I) and (11) will develop tensile strains

proportional to the stresses resulting in the deformation as shown in Fig. lb. The dis-

placement is the highest at the two ends of the overlap and therefore the highest shear

stress in the adhesive can be expected to occur at these two points.

As can be seen in Fig. la, the two equal and opposite tensile forces acting on

the joint are not colinear, and the joint therefore, is not in equilibrium. In order to

overcome this difficulty, it is generally assumed that the line of action of the two

forces is oblique and passes through the midpoint of the joint. Tlus is equivalent to

the addition of a shear force V (Fig. 2) so that the moment'due to P is balanced by

the moment due to V. This configuration of forces produces bending along the joint,

The stresses developing in this way are normal to the interface, and are called "tearing"

stresses; they are highest at the areas adjoining the ends of the oveilap.

The earliest theoret cal analysis of lap joints is that done by Volkersen (1),

in which the stresses arising from the differential straining are considered but the

tearing stresses are ignored. The next analysis is that of Goland and Reissner (2)

who took the bending deformatio,, of the adherends into account as well as the tearing

stresses in the adhesive, Subseqient modifications to the theories of Volkeisen and
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Goland and Reissner have been made by Plantema (3) and Kelsey and Benson (4). These

theories are reviewed and discussed in detail in Chapter IL

The results from these theories indicate a non-uniform distribution of shear

stress with peaks at the eia ot the overlap. While in a qualitative sense this distri-

bution is in agreement with what has been observed experimentally, the magnitude of

the shear stress in the vicinity of the ends of the overlap is found to be in error. This

is a serious shortcoming since the highest stresses occur in the same area. This

inaccuracy is mainly due to the assumption made in these analyses that the stresses

do not vary in the direction of the thickness of the adhesive. Irrespective of how small

the thickness of the adhesive layer may be, it has to be taken under consideration for

the stress distnbution in the areas distant by the same order of magnit-de from the

edge. Another importait limitation of the above theories is that the joint is considered

to be loaded in tension only. In a general case, the lap joint could be subject to shear

forces and bending mr;.nents as shown in Fig. 3, the only restriction being that the ex-

ternai forces and bending moments be in equilibrium.

The objective of the present work is to analyze the lap joint when subjected

to the general loading (Fig. 3) and to predict the stresses more accurately by allow-ing

them to vary through the thickness of the adhesive layer. The analysis does not put

any restriction on the thickness of the adiesive and is therefore, valid for thin as well

as thick adhesives. The thickness of the adhesive however, is required to be much

smaller than the length of the overlap which of course, is realistic. One major limi-

tation of the previous theories as well as the present analysis is the assumption that

the adhesiv'e is isotropic and linearly elastic. The behavior of most adhesives is visco-

elastic depending on time, temperature and previous history. Even when an adhesivc

can be considered to be elastic, it is more likely that the stress-strain curve is a non

linear one. Furthermore, as the adhesive sets in between the adherends, it may do
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so in an uneven fashion so that it would be strictly inadmissible to consider the adhesive

layer as homogeneous and isotroDic. The nature of such variations is however, uncer-

tain and any attempt to incorporate the viscoelasticity or the non-homogeneity of the

adhesive into the analysis would render the analysis extremely complicated. Further,

any plastic flow of the adhesive would have a relieving effect on the peak stresses in the

adhesive and an elastic analysis would therefore, provide a built-in factor of safety.

It is felt that once a reasonable analysis based on linear elasticity of the adhesive is

available for comparison, it would then be possible to use such tools as finite element

analysis to incorporate the non-linear elastic or plastic behavior of the adhesive.

As regards the adherends, they are assumed to behave as beams or in other

words the lateral stress a in the adherends is considered negligible and their mechani-Y

cal behavior is assumed to ne isotropic and linearly elastic. While in the case of

metal adherends this assumption holds good, it is not strictly valid for wood and plastic

adherends. Wood, although linearly elastic, is anisotropic and its mechanical prop-

erties vary with the direction relative to the grain and the way of loading. Yet for the

relative comparison between similar joints the theoretical results are expected to be

sufficient, since the nature and directions of the developing stresses do not vary con-

siderably from joint to joint. In the case of adherends which exhibit plastic behavior,

the theoretical results may not be applicable since the yield in the adherends will

greatly increase the differential strain and consequently the shear stress in the ad-

hesive layer.

The analysis is based on the theory of elasticity treating the joint as a plane

strain problem and therefore, it goes without saying that the results are valid only

for small deformations, and for joints with sufficiently large widths.

The experimental part of the present investigation is designed to check and con-

firm the theoretical results, both along the length of the overlap as well as through the
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thickness of the adhesive. The stresses in the adhesive layer are determined photo-

elastically since the photoelastic methods provide a simple and effective means for

handling plane problems such as the one under consideration.

Ifi

IL
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2. REVIEW OF PREVIOUS THEORETICAL AND EXPERIMENTAL WORK

2.1 Introduction

Several papers have been published analyzing stresses in various types of

adhesive joints. In the case of double lap joints and scarf joints the analysis is rela-

tively simple because of the inherent symmetry of the joints. The single lap joint

presents a special case where the eccentricity in loading produces a bending moment

which has to be accounted for in the stress analysis, Theories specifically dealing

with the single lap joint will therefore, be reviewed here, Theories dealing with joints

such as double lap joint, scarf joint, butt joint or tubular joints will not be included in

the review,

Experimental works have been published describing tests to determine the

strength of lap joints, Such works will be referred to when useful in demonstrating

a point in relation to a theory, Of greater interest are experimental works where the

main interest is the distribution stresses in the joint. These works will be reviewed

in some detail.

2.2 Volkersen's Theory

The simplest approximate theory is that attributed to Volkersen (1), This

analysis is concerned only with the stresses arising from the differential straining

in lap joints and does not examine the tearing stresses resulting from the bending of

the adherends. The bonded members are assumed to be in pure tension and the (lon

gation of the adherends cx and the shear deformations of the adhesive Y are takenxy
into account as in shear lag problems. It is further assumed that E y i the adhesive

is zero so that the shear stress T is constant over the thickness of the adhesivexy

layer. The results indicate a non-uniform distribution of shear stress with peaks at

the ends of the overlap. Volkersen compared the maximum shearing stress at the end
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of the overlap with the mean stress and evaluated the stress concentration factor Ti,

which is given by,

V1 - I + cosh -DW

sinh 'FJ-W

where,

2
D = Ga /E 2 t2 t

W = (E 1tI + E 2t2 )/Elt1

Here Elt1 > E2 t2 , and the maximum stress oc.urs at the interface with adherend (11).

For identical adherends W reduces to 2 and the factor of stress conentration

can be written as,

S= T-5t72 coth --D/2

Thus it is seen that for identical adherends the factor I of stress concentration is a

function of a single dimensionless coefficient D.

in the case of a joint between adherends that are not identical, the values of

D and W are different at the two interfaces. At the interface with an adherend of

higher rigidity, D is smaller and W larger than the corresponding values of D and

W at the interface with less rigid member. Mylonas and deBruyne (5) show in the

form of a graph the variation of Volkersen's stress concentration factor T1 in terms

of D for various values of W. It can be readily seen from this graph that 'q is smaller

for lower values of D and higher values of W. Thus the stress concentration would be

higher at the interface with the less rigid member. The same result is shown by

Greenwood (6) by calculating the factors of stiess concentration at the two interfaccs
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of a joint between steel ard rubber adherends. The conclusion then would be that it is

disadvantageous to have joints between adherends that greatly differ in rigidity since

this we-ld result in a much greater stress concentration at one interface.

Volkersen's theory, while it indicates in a general way the distribution of shear

stress in the adhesive layer and the importance of various parameters which have an

effect on this distribution, has the following shortcomings.

(1) Bending deformation of the adherends and the associated tearing stresses in

the adhesive are ignored.

(2) The assumption that the stress does not vary through the thickness of the

adhesive is shown to be untrue in the proximity of the ends of the overlap, by Mylonis (7)

and by Tuzi and Shimada (8) in their photoelastic experiments. This assumption results

in inaccurate prediction of stresses in the area where the maximum stress occurs, and

the factor of stress concentration obtained by this theory is therefore, unreliable.

(3) The analysis limits itself to the case when the members are subjected to

tensile loads only. Shear force and bending loads are not considered.

2.3 Theory of Goland and Reissner (2)

This theory takes into account the bending deformation of the adherends and

also the tearing stresses in the adhesive. The system considered is that shown in

Fig. 2a. The line of action of the tensile force R is assumed to pass through the mid-

point of the adhesive layer. This is equivalent to a system where a small shear force

V acts normal to P so that the couple due to P is balanced by the couple due to V.

The adherends are identical in terms of mechanical properties as well as geometry.

Goland and Reissner recognized that the bending of the adherends outside the

joint region has a pronounced effect upon the stress distribution in the joint itself. This

e.fect is expressed via their bending moment factor k which is obtained by treating the
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adherends as cylindrically bent plates. The value of k is given by:

I -1 + 2%r2 tanh a7- J6(1 2" P/(Eltl)1

The system can now be reduced to that shown in Fig. 2b where,

kPtl
M 22

P R

and

V = kPJ3(1 - ) ' P/(Eltl)

Goland and Reissner considered two cases,

(1) In the first approximation, where t/t 1 << E/El, the presence of the ad-

hesive layer is ignored and the joint is assumed to be a homogeneous isotropic rec-

tangular slab. The calculated stresses are those of the adhererids along the glue line,

and are assumed to be equal to those of the adhesive layer, The values of the shear

stress t and the tearing stress a are given as converging series, The results show

that while the tearing stress is high at the edge of the joint, the shear stress is zero,

The shear stress however, rises rapidly to a maximum in close proximity to the edge,

(2) In the second case where t/t1 >> E/El , the adhesive layer is considered

to be flexible so that the transverse normal strain and the shear strain in the adherends

may be neglected in comparison with the corresponding strains in the adhesive. In

this approximation the adhesive is assumed to behave like a system of infinitesimal

springs placed between two plates. The distributions of shear stress i and the tearnng

stress a are obtained as follows:
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T* a =iFja cosh (O~X/__ _._ _ 1 #a (1+3k) +•( -k
p 1- (+k sinh qa/2t1 ) + 3(1

and

2 1 .2Xx
or [ (R2 X2 . k/2 + Xkk, cosh X cosX) X cosh (-)
p 2t 2 a

cos(-) + (RlX 2 k/2 + X sinhX • sin)X sinh2Xxa
a a.

sin 2ý-x,'

where,

2 8Gt
E t

a 6Etl
2t, E1t

R= cosh• sinX + sinhX • cosX

R2 sinhX cosX - coshX • sinX

A =2(sinh2X + sin2N)

k= Va/(2Pt1 )

p P/tP I



The maximum values of -r and a are found at the edge of the joint and are given by,

""max. _a) [-a ( + 3k) coth 3a 3(1- k)
P t ot-1 +2

and

-max a 2 X2k sinh2X - sin2X + Xk cosh2X + cos2X
p " 2 sinh2X + sin2X 1 sinh2 X + sin2X

The first expression gives the ratio of maximum shear stress to mean shear

stress which of course, is the factor of stress concentration. As is seen, this factor

is a function of 3a/2t1 and k. Comparing with the factor D of Volkersen's theory, it

can be readily seen that ,Ba/2t1 = N As in Volkensen's analysis, the shear stress

distribution obtained through Goland and Reissner's theory is uniform irrespective of

the value of D as long as this is smaller than about 0. 1, but the stress concentration

increases rapidly for higher values of D and for D -> 2 becomes practically propor-

tional to %fD. This is because for large values of D, coth-2"D approaches the value 1

and in fact the factor TI of stress concentration can then by written as,

4 (1 + 3k) JFb + 3(1 - k) /4

The bending of the members (k small) is seen to have a reducing effect on the highest

stresses. For small values of k, the shear stress distribution is of similar form to

that obtained by Volkensen. in the limiting case of k = 1 i. e. when the bending defor-

mation of the adherends is negligible, the Goland and Reissner theory yields 11 =

coth N2-D, whereas the Volkersen result was TI = q-D/2x coth NTD/2 . For D - 2 iJe.

for long uverlaps, the stress concentration factor is therefore twice as large as pre-

dicted by Volkersen.
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IThe theory of Goland and Reissner, though an improvement over Volkersen's

analysis in that it takes into account the bending deformation of the adherends and the

tearing stresses in the adhesive, has certain limitations which can be summarized as

follows.

(1) This theory is valid only for adherends of the same material and of identical

length and thickness.

(2) The first case is valid for t/tI < < E/E 1 while the second case requires

the condition t/t > > E/El .

(3) The joint edge loads are not in equilibrium except when k = I.

(4) The stresses in the adhesive are not considered to vary through its thickness

which as in the case of Volkersen's theory, results in inaccurate prediction of stresses

in the area adjacent to the overlap edge.

(5) The theory does not consider external shear force or bending loads.

2.4 Plantema's Modification

Plantema (3) has attempted to combine the Goland and Reissner theory with rhe

Volkersen theory. Volkersen's theory is employed to calculate the differentlai strain

of the members and the stress distribution at the edges of the overlap. The factor k

of Goland and Reissner theory is then introduced to calculate the differential strain

of the members due to bending. The total strain of the members due to both tension

and bending is used for the correction of Volkersen's formula. The factor of stress

concentration is given by,

D = D(l+ 3k)[2 • coth *JD(l+3k) /2

No calculation is made of the tearing stresses.

Mylonas and deBruyne (5) show that for inflexible adherends (k = I) and long

joints, Plantema's results approach those of Goland and Reissner whereas for flexible
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adherends (k << 1) Plantema's results are closer to those of Volkerscn.

2.5 Modification by Kelsey and Benson (4, 9)

Kelsey and Benson employ the complimentary energy method to determine the

shear and tearing stresses in a lap joint. In this method, the equilibrium is taken into

account, but the necessary compatibility is only approximately satisfied. Treatment

of the lap joint as a shear lag problem results in a second order differential equation,

but allowance for the complimentary energy due to the tearing stresses inflates the

equation to one of fourth order. The boundary condition that the shear stress vanishes

at the two ends of the overlap is then applied. Tho expressions for shear and tearing

stress are obtained as follows,

ii.,2 a mIa
S(cosh m 1x). (cosh - 2 (cosh - 2 ) (cosh m 2x)

mIa m2a mIa m2a
(m1 cosh --- ) (sinh --- ) - (m2 sinh --.- ) (cosh---)

and

in~ mam~a
m ac o s h -! ! ! )) - ( s i n h -- --2 a

r = Pm m at. (mIsinh miIx) • (cosh ra) - (m2 2 2

8 12 ma m2a m 1a m2a
(mi1 cosh-) 2 (sinh---) - (m2sinh- 2-) (cosh---)

where,

6E1 7= 7 (1+- m 3)
t G

6E (I
m2  ---- 3 )

t G

22Gt 13= (1- 3EE t
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The shear stress distribution shows no appreciable difference from that obtained

by Volkersen's analysis, except that at the two ends of the overlap it rapidly falls to

zero. This of course, because the boundary conditions used in the analysis require

that the shear stress be zero at these two points. Since the two end surfaces of the ad-

hesive are stress free, it is argued that for equilibrium, the shear stress must vanish

at the two ends. However, it should be noted that the lap joint has a discontinuity at

dhe two leading corners of the adhesive and the stress at these points can be expected

to be singular for an elastic analysis. There is no such discontinuity at the two trailing

corners howeveL, a,,d the shear stress at these two points can be expected to be zero.

Since Kelsey and Benson do not allow the stresses to vary over the adhesive thickness,

the imposition of the boundary condition that the shear stress be zero at the two ends

of the overlap only results in the shear stress falling rapidly to zero at these two points.

The shear stress distribution cannot however, be considered an improvement over that

obtained by Volkersen.

The tearing stress distribution obtained by Kelsey and Benson shows these

stresses to be concentrated almost entirely at the two ends of the overlap. Through

most of the length of the overlap, this stress is almost zero.

2.6 Cornell's Modification (10)

The system considered by Cornell is shown in Fig. 4. This joint is fixed at one

end and it is some what different from the conventional lap joint. Cornell's interest

lay in brazed joints where a thin tab is brazed to a thick base bar. The base bar is

subjected to tension, bending moment and shear force. Cornell assumed that the two

adherends act like simple beams ind the adhesive layer consists of an infinite number

of shear and tension springs. Differential equations for a and -r are combined

into a tenth order linear differential equation in the transverse deflection of each ad-

herend. ''he mathematical analysis is fundamentally simple but the expressions involved
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are complicated. Results indicate a high concentration of shear and transverse tensile

stress in the vicinity of the joint edge.

Cornell has compared his theoretical results with the results of photoelastic and

brittle lacquer experiments and found them in good agreement. It should however, be

noted that the joints investigated by Cornell both theoretically and experimentally, are

brazed joints where the adhesive modulii are 1/3 to 1/2 as large as those of the ad-

herends, whereas in an adhesive joint the ratio might be 1/20 or smaller, The error

in the predicted stresses due to the assumption that the stresses do not vary over the

chickness of the adhesive, may be more serious in the case of the adhesive joints than

it would be for brazed joints.

Cornell's theory applies to joints between adherends differing in material prop-

erties and thickness. Application of external shear fi :;ce and bending loads are also

considered. The configuration considered by Cornell is however, of a special type

and the theory cannot be applied to a general case of lap joint.

2.7 Stepped Joint of Erdogan and Ratwani (11)

In this analysis a stepped joint between two plates is considered (Fig. 5).

Plate (1) is considered to be isotropic while Plate (2) is orthotropic. A uniform tensile

force P is applied to the plates away from the joint, The tensile stresses, aI (x) and

G2 (x), in the two plates and the shear stress, r , at the interface are determined under

the following assumptions:

(1) The thicknesses of the two plates are small compared to the other dimensions

of the composite structure so that the individual layers and the composite plate may be

considered to be under generalized plane stress (i, e, a ly = a2y = 0).

(2) The thickness variation of the stresses in the plates is neglected.

(3) In the z direction (Fig. 5a), it is assumed that either Iz = E 2 z or
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z = 0, az being the average stress in the composite.

The results of this analysis are then applied to a special case of one single step

(Fig. 5b) which of course is a single lap joint. The shear stress in the adhesive layer is

given by,

2 cosh ax
_r Po sinhax + (I - coshaa +-)

a" sinha 2

where,

a 2  G G l 1- 2  1 2x 12z 1
t E If + E2xt2 :

GU( - u(I)
Elt

For both plates isotropic and identical,

a2 2Gt E tI _

2
1 - 2

and

cosh ax
= - sinhax - (1 + coshaa)

sinh aa

This result is similar to that obtained by Volkersen. This theory assumes that the

tearing stresses are noney:stant in the adhesive layer.



2.8 Finite Element Analysis

Problems in str•cvral mechamcs can be n -mericalh- solved h using the hmre

element method (12). Woofer and Carver (13) have atzempted to zpp4y tkis mnetkd to to

case of a single !.p joim. The lap poi is loardd in tension a2- shear and tearing

stresses are determined. The •ad•esa.ve laver was divided into mo eual layers tEhroa'

its thickness, giving an indication of the -variation of stresses in the direc:ion normal

to the bondline. Te solution is ob•ained : a plane sz.es analysis. The shear a3d

rearing stress distribution obt•amed b' tins method is simhlar to that odbetned h- Goland

and Reissner, Wooley end Carver compare the stress concentration factors wIi thosse

obtained by Golancd and Reissner t-heory. They are shoh-n to compare favorahblh.

The joint consi&dred by Wooley and Carver is loaded in tension only. The finite

el-ment method is however, a promising one and can be extend ed to a more geneta! case

Another attempt to use the finite element analysis in the case of adhesive joints

is tha" by Harrison and Harrison (14). It is assumed that the displacements at the two

interfaLes are known and are uniform. This is a very special caýse and the closest

practical zase would be one where the adherends are ngid It is furuier assumed that

in 3 region of the adhesive layer, away from the two ends, f.he stress field is uniform

This uniforrn stress field is determined from the kmnow displacement field at the two

interfaces I-hnite element analysis is then. applied to determine stresses near the ends

of the adhesive layer.

In practici,, the relative displacements of the interfaces are not known, only

the externai loads :-re given. Furthermore, the displacements at the interfaces are

far from being uniform, especially at the ends of the joint- This method needs to be

further developed in order to be applicable to practical problems in adhesive joints.
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1).9

2.9 Experimental Stress Analysis

Several works have been published where the stress distribution was determined

experimentally, These works will be reviewed here briefly.

Unpublished extensometer tests made by Copper have been referred to by Mylonas

and deBruyne (5). In these tests, the shear stress developing at various points of the 3

inch long overlap was estimatea from the relative displacement of the adherends meas-

ured by an optical lever. The load applied was tensile and was kept very low so that

Hooke's law could be assumed to hold even in the region of high stress. The stress

distribution so obtained was compared with the results of Volkersen's theory and also

with the results of Goland and Reissner theory. Experimental results were found to be

in better agreement with the theory of Goland and Reissner than with the theory of

Volkersen.

Mylonas (7) applied the method of photoelastic analysis to investigate the stresses

in a lap joint. The adherends were made of ½ in. square Bakelite bars reinforced

longitudinally with stainless steel studdings. The adherends were made practically

rigid. The adhesive used was an Araldite resin which is also a photoelastic material.

The thickness of the adhesive layer was appreciable,

The main purpose of Mylonas' work was to study the effect on the peak stress

of the shape of the free boundary of the adhesive at the edge of the overlap, Models

with concave edges with varying radii of curvature and with straight edges of various

inclinations were studied.

"The practically infinite stiffness of the adherends in these experiments leads

theoretically to a uniform shear throughout the adhesive layer. For this reason Mylonas,

results are of limited interest from the stress analysis point of view. The work is

however, of great importance as a pioneering work describing techmques for making

stress free adhesive joints to be used as models for photoelastic analysis,
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McLaren and Machines (15) studied the effect of bending of the adherends in their

photoelastic tests. Two series of tests were made., In the first, a lap joint consisting

of ½ in. thick adherends and an adhesive layer varying in thickness from zero to ½ in.

was simulated by a model cast whole in Araldite; in the second series of tests the ad-

herends had a Young's modulus twenty times greater than that of the adhesive layer,

In the homogeneous models the 'adhesive layer' was always rectangular and

ran the whole length of the overlap. In every case in which k > 0 the fringe pattern

had the same general character: the order was a minimum at the center of the joint

and increased towards a maximum at the leading corner. Change of the value k pro-

duced an approximately proportional change in the value of the peak fringe without

appearing to affect the order at the center. For negative k = - ½), the fringe order

at the free end of the glue line reduced to a minimum, the fringe order was a maximum

at the center.

In composite models which were geometrically similar to the homogeneous ones,

similar fringe patterns were obtained, For k > 0 the fringe order rose from a

minimum at the center of the adhesive layer to a maximum at the leading corner, The

high tensile stress in the free surface at the leading corner decreased on traversing

the end but gave way to slight compression at the other extreme, Increase in the value

of k again produced no change at the center but led to an increased fringe order at

the leading corner. When k was made sufficiently negative, it was found that the

4. highest-order fringe appeared at the center of the adhesive and then there was a fall

in order towards the free surfaces.

The main signifcance of this work by McLaren and Macinnes is that it clarifies

the contribution made to the distribution of stress by the bending of adherends, The

results tend to support the Goland and Reissner theory.

Tuzi and Shimada (8) use both the adhesive and the adherends made of photo-
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elastic materials. The adherends are made of an epoxy resin while the adhesive is

made of epoxy rubber. The ratio of the Young's modulii for the two materials is 6,

The fringe pattern obtained for rectangular adhesive layer is similar to that obtained

by Melaren and MacInnes. Tuzi and Shimada study adhesive layers with concave and

canvex ends and joints with a fillet at the leading corners, The results indicate that

convex ends tend to produce excessive stress concentration at the leading corner where-

as the use of a fillet tends to reduce the stress concentration considerably.

The photoelastic investigations by Mylonas, McLaren and Maclnnes, and Tuzi

and Shimada, all show a significant variation of stress through the thickness of the

adhesive layer, especially in areas where the maximum stress occurs,

2.10 Conclusion

Amongst the theoretical works, Goland and Reissner's theory is the most

rigorous study of the stress distribution in lap joints and is in good agreement with

experimental results except at and near the two ends of the joint where the maximum

stress occurs. This error results mainly from the assumption that the stress does

not vary through the thickness of the adhesive layer. In fact, photoelastic tests show

this variation to be quite significant especially in those areas where the maximum

stress occurs. Furthermore, the theoretical analyses consider the joint to be loaded

in tension alone and the effects of shear force and bending moment are not studied.

Photoelastic stress analysis by McLaren and MacInnes shows that application of shear

force and bending moment can be advantageous from the point of view of obtaining a

more uniform stress distribution along the overlap.

The objective of the present work is to analyze the lap joint subjected to a

generalized load configuration consisting of tensile and shear forces and bending

moments (Fig. 3). The stresses are allowed to vary through the thickness of the ad-

hesive layer. The analytical results are to be checked by means of photoelastic tests,
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3. ANALYSIS OF LAP JOINT

3.1 Problem

Given are two rectangular sheets of thickness tI and t2 and of unit width, lap-

jointed over a length 'a' by means of an adhesive layer of thickness t (Fig. Sl). It

is assumed that the loads P, V, Ml , and M2 are given at the joint edges. The main

problem is the determination of the shear stress xr and the normal stresses cx

and a n the adhesive layer.

3.2 Assumptions

The following assumptions are made:

(1) The adherend and the adhesive materials are isotropic and linearly elastic.

(2) The adherends behave according to simple beam theory, i.e. the lateral

stress in the adherends can be neglected, and plane sections remain plane,

(3) The adhesive thickness t is small compared to the overlap length a.

(4) The displacements in the joint are small, i, e. the strains are considerably

less than l1

(5) The joint width is large compared to adherend and adhesive thicknesses,

so that this may be considered as a problem in plane strain.

3.3 Derivation of Differential Equations

The coordinate axes x and y are shown in Fig. 3. The x-axis is parallel to

the plane of the adhesive layer ýnd passes through its center. The y-axis is normal

to the plane of the adhesive layer at the left edge of the joint.

Let u(x, y) and v(x, y) represent the displacements of the point (x, y) in the

adhesive, in the x and y direction respectively. Further, let

2 m
u(x,y) = uI (x) + yuI(x) + y u2 (x) + .. . +yum (x) = yJu=x)

j --
(3.1)
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and

v(x, y) = v0 (x) + yv (x) + y2 v2 (x) + ...... + yn vn(x) v 2 yJv.(x)
j=3

(3.2)

where m and n are integers.

A perfect solution would require m and n to approach infinity. However, since

the adhesive thickness t (dimension in the y-direction) is small compared to the over-

lap length a (dimension in x-direction), m and n could be terminated at values 2, 3,

or 4 and the results could be expected to be reasonably accurate.

The strains in the adhesive layer can nc-:: be written as,

ax, z U. (x) (3.3)x oxj=O

• n
Sv (x, y) 0 ( 1)

E - x.= y l v(x) (3,4)
y Dy j=l

m n
x ___u(xy) -+ av(xY)x - 0 1)uj(x) + z y v'.(x) (3.5)

-'xy D y ax j~ =O0

For the plane strain problem, the strain energy 10 of the adhesive is given by,

a a t (Q/2) 2+ + + G 2 dydx

o -/2 x y y xy

0- jL2 0 jI
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m u'j(m . +i) dydx
+ Y' jyV.) +j )vY)+ -( jD

j 0 j=1 j=l j =O0

a t2m m +JRu' n y(i+ jy C + j) U.U + Z IijY ij-)V

o -t/2 i=O j=O i=l j=1

r n (i+j- G m m y(i+j

_=0 _ = y1 v2+ i-=1 j 1=1 j

I +J> ' n n) (i+j - 1)uv 1

+ n -(i+ .v . + 2 . .E iy .v dydx

+ 2 Y13 j 1y '

i=O j--0 i=lI j= 0

Integration over the thickness of the adhesive yields,

a •2_[m m -I f t i+j+l .. u.u'.

0 i =0 j =0

n n i-• I m n t i+ j
+ F + j( uj-. vv

i=l j=l 2 ij i 1J i jvl 1 0+=1 2 ij iv

m m n n
G ~~ t+i -1 tij-S ij(-t 5. .u.u. + F Z (f) a. .v .V'.

32 i1= j3=1 2 i=O j=0 1310

m n
m t )i+j+l

+F2 i a..u.v. dx (3,6)
i=0 j=0 13 i d

where,

- i+ j +(I = - (I)i +J + -(-I) j " I
Ci i+j+ I ,ij i+j ij i+j - 1

(3,7)
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The condition of compatibility at the two interfaces can be used to determine the

displacement field and the strain energy of the two adherends.

Let U1 (x,y) and VI (x,y) represent the displacements in the x and y direc-

tions respectively in adherend (I).

Since plane sections remain plane,

U1 (x,y) = U 1(x,4-) - V-I (x'(3.8)

Now, conditions for compatibility at the interface are,

U1 (x, = u (x,--t) (3.9)

and

vl(x, = v(x,--) (3A10)

Eqs. (3. 8), (3. 9) and (3. 10) yield

t
U )t tY 8v (x, -2" (3.11)

SUl(x,y) = u(x,v-) - (y-4-) v 2-i-----(.1
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or

i m tn

U1 (x,y) = )Juj - (y-) 2 -2)Jv'j3
j=o j=0

Similarly for adherend (I1) the displacements U2 (x, y) and V2 (x, y) in the x and y

directions respectively can be written as,

m~~ t )Ju - y+tL )IV,. (3.13)
U2 (xy) = j 2 t 2 (-J (

j=o j =0

The strain field for adherend (I) is,

au1 m t"t n t)v,.(14

Elx ax jo (w)u ( - (Y- ) v'.j 0

Itxy =0 (3.15)

And the strain field for adherend (H1) is,
m n

S- )ju. - (y+ t L )jV,, (3.16)
E2x 0 (3.17)

Sy2xy =0 (3,17)
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The strain energy I1 for adherend (I) is given by,

a(t~ +t 1 )
11 S 2f I 1 f2 dy dx

0 2

; ~1[m n ,]
o[ -i=O jj=

t i•Oj=O

2 2

=f 2 1 Q, (2m i nj

+ ('Y) i=O j=O

f- L2) (t)1+ 2t-L
0 2(y0-)=0j=O

2 Q1 m In m ~

2 , E7 T, 72)vui
-f -- i =o j =o00 nt
2( - -t 2 Z, • (-2- . . d dx (.8

0~ j =
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Similarly, the strain energy 12 for adherend (II) is given by,

am
12 2 t2 (-T) iuu

0 2 i j =0

n n t i)+j -•+ 3i=O j2 2 1vjJ

2~ ,t i+j
+ tm n u i v+ dx (3.19)

i-0 j=0 0,

Work done by the boundary forces P and V and moments M and M2 can now be calcu-

lated. Let Wp,1, WV. and WMl represent the work done by P, V, and MI respectively

on adherend (I). And let W P2 , WV 2 , and WM 2 represent the work done by P, V,

and M2 respectively on adherend (II).

Assuming P to be uniformly distributed over the cross-sectional area of each

adherend,

(
W + tf ) t Ul(a,y)dy

t
2

P ( _ t l1) m 2 t [ j n t ,0t ( + ) (4 Ju (a) - (y - ) z (-)'vj(a) dy

Sm t1  n
Pt Ij =0 j 0F,2 (7 u()J 2 (-T)Jv'(a) (3,20)

j = 0 ua) 2 j =0
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S [-P -- (-2uj(o) +J 2; (-2 2v (3.21)Sj=0 2 0~

n

WV= V , VI(a) = V j=0(4)Jv (a) (3.22)

AV•) v. (o) (3.23)WV2 -V- V2(o) = 0( t2 (

av (a, t/2) n JMI0 = M1 1 3X" = ( 2V (3.24)

n
W -M (-t-)jv'j(o) (3.25)

M2j= --

The total work done by external forces is given by,

PW =p1 + WP2 + WVi + WV2 + WM1 + WM2 (3,26)

Let 10, I1, and 12 be expressed as,

I() F u'., v ' ,v" )dx (3.27)I0 F0(u''i'' ,j, j_

a'1 1r 1 Uu'.~ V'.,v"')V"

I1 Fl(U i 7 V., , j ) dx (3, 28)

a
12 r F2 (ui' u''vjV'v )dx (3.29)

10

where i = 0, 1, 2 ....... , m and j = 0, 1. 2, ...... , n
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The functions F0 , F1 , F 2 are given by the expressions on the right hand side of the

equations (3.6), (3.18), and (3.19) respectively. Let

F". (u=iVvj, ' 1 F 0 + FI+ F 2 (3.30)
F(u., u'., v., v'., v'. (330

so that the total potential energy I can be written as,

I F(u., u'. V., v dx,'v,v )dx -W(3.31)

Now, equilibrium requires that I be minimized. Application of the principle of calculus

of variations yields the following differential equations; also known as Euler equations,

aFu d ._5-j___ = 0 i = 0, 1, 2, ...... m (3.32)au. dx (au'. .....

and

I. -d ____ d2  
___

av. " dx Fv. + 7 ( = 0 j = 0, 1, 2, ..... , n (3,33)
( j " di

In order to eliminate the rigid body displacements of the joint, it will Ibe convenient to

let the displacement and slopc at the origin be cro. This would yield the forced

boundary conditions (3. 34).

u0 (0) = 0 v0 (0) 0 and v' (0) = 0 (3.34)

The natural boundary conditions are given by Eqs. (3.35) to (3.40).

-a _ - (_ t )i = 0 i = 1, 2, ........ in (3,35)
i2
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S(3.36)

9F -(- ( 2 )0, 1, 2=01,......., n 1336)

jV] x ax=a

l F Jc JI~ -xa- +~Q x V(-L =0

j =0, 1, 2 ....... , n (3.38)
__IF d =F v 0•_t

( .F) - (-L)J ( 2- + M2) =0 j=1, 2 ...... n (3.39)

av.j x-O 2 2 2

and

t ) Pt
ov7.)xa+ )(2 - M 1 )= 0 j=0, 1, 2 .... , n (3.40)

Differentiation of F yields Eqs. (3.41) to (3.50).

OF 0 (3.41)

bF mnG• ju - j t; -- )' j 'I., + , E i ( )i v

au i ij=o0 J

i =1, 2 ....... , m (3,42)

OF Q 2(-") i+j+l n t )+j

- j=0 L =0
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Q , 'r - - -

Q j=o 2 - j=O - j

0 , 1, 2 ......... L-(3.43)

-~- iir~a _ [ti÷j . . "
exj= O - . ,

1 -
•: I • j(7):-- 13i ,j,.j

Qlt I m .

2- til -

-+ j =i O 2(u9 j - t1  J -'O (v;)j

Q~t2  2(- + uO ( '?-) v.2j =0 J 0 -

i = 0, 1, 2 ....... m (3.44)

F - 0 (3,45)

av 0

aF Qn +j-Im t il-j

Ev 2i 2 j t.)' 6~v + x F i ~(L)JaF - Q T. 2ij ti j ] iv X u1

avj 2 j T i i2 (3.4

j 1 , 2,. ........ n (3.46)
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OFn tii m t: •ijui

OF - G ) j+l a ijv, + i(-) 1i
avj i =0 1 i-"1

j = 0, 1, 2 ....... , n (3.47)

3F n t i~jim t i+j u.

d a [ (T) +i+ j a• iv, + ZI
i 8 i=0

j = 0, 1, 2 ....... , n (3.48)

Q 2tl3

OF t: n +J " 2 t i+JuT

2 L 3 i 0 2 0j i=1=0j

2 1 2t 2
3  n t i+jv" + t2 2 m t i+j u

j = 0, 1, 2, ........ , n (3.49)

d 2 . F ) Qltl2 2tl n t:ijiv M t i+Ju, If

d_[ 2 (_)i+j v. - ( im

Q2t22 2t2 n t i+j iv m t i + J j ,

y,(•) vi + (--2 u.

+ 2 i=0 i=0 0

j = 0, 1, 2. ........ n (3,50)

Differential equations (3. 32) can now be rewritten as Eqs, (3. 51) and (3. 52).

m
z -- ta + + 2Q t2(-1)J (-L)3 u".

j=O2 2 + 22 I



33n ÷n Q,2
+ 2 Xj(+) 3 P~ov'. + 2 [ (-2 )t 2 (-l) - 2 '2v" =

?j = 2 ) j o j =ojI~

(3.51)

m t72 ) 2 j + Qltl + Q2 t2 (-l)T+ j

Gj=l 1J J j0o -

n n (12)t22 )i+j

+ Z (Gi-Xj)( )J v' - 2 (T 2 (- +
j =0 j=o

(Ql) t 2z t jv"'' 0 i = 1, 2, ... om (3.52)
S1 2 j

Differential Eqs. (3.33) can be rewritten as Eqs. (3. 53) and (3. 54).

'~mm [_)2 1i •)

-G z i (- )t. + z" ( 2 ()t 2 1  2( (-_)i u" '.

i =1 i=0

"3 3 1
n n Q " t iv

-G 2 (2) a.v.+ 2  + 22 (-1) v =0
2 1o 1 i=0 3 3 2 I

(3,.53)

m m Q2 )i + j Q
(Xj -Gi)( t)if3iju'. + 2 (-- )t 2 - 1) (-

i=0 = -

n n
( )u + (..) 2 2ij(___) - 1 6 - G z (•) a. v

i i=2 1 1 i=0 213

n - Qltl3 Q2t23 1Ii+jt i i

+ i=E 3 + 3(1)i+ (t)iviv = 0

j = 1, 2, ....... , n (3,54)
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The forced boundary conditions are,

U. (0) = 0 v (0) =0 v' 0) = 0 (3.55)

The natural boundary conditions can be rewritten as Eqs. (3. 56) to (3. 61).

In F j+ itn ~ xt
,[j .0ai+Qltl+Q 2t 2 (-1)i + J 2 (.(O)

j= 0 j(0 -

+ (-2)t2 2 (_)1+j - t1
2  (-L) Jv 71 (0) - ()P 0

i = 1, 2, ....... , rn (3.56)

[( )taij + Qt 1 + '2' ( (a) +
2= Q'2t2 2j=0 J j =

2 _I~ + Qj 21 _ vIIa)-2j (2 (a) + Z _ (--L-)t 22(-1 ( -t J (-a) - 0

i = 0, 1, 2, ....... , m (3.57)

Gi( 2i ijui.(O) E [ -)t12 - 2

+ Z G(-2 Q2 t2
3 (-1)i+j

---) v (0) (-1)V = 0 j = 1,2, ..2p ... , n (3,58)

(2
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Sm t ) ¢i j i ( )m2+ j. t2 .- i U lf ( a
G - i(- Pi j. (i (a)2t2 (-'I' ( t- • 2 i~a

i 0

+n n I Q +t3 Q2t2I ti

+ Z; G(7)i+l a. +v((a) Fli . t ...... + -V=0
S=ijv0ia - 3 3 - - i

j = 0, 1, 2, ....... , n (3.59)

Sm [ _Q2 2 Q) 1 21 t i
m Q2 t2 -I)i +j Q_ 2 (-L)i fiO
F, ( =I 2U 0

i
n3 Q2 t2 3  ptSn Qltl Qt )i + j .t .i ....

+ 3 3 + 3 (-l)2v i u) (-1)( 2 + M.) = 0
i-0

j 1, 2, ........ , n (3.60)

(ý m )•t22 _+ j t12 ti,
i (I () tu(a)

n Ql t 33  + j 1 It Pt1
4+ 3 + 3 J( (-)1 v +() + M) 0

Si 
=0

J = 0, 1, 2 ....... , n (3.61)

3.4 Parameters of Similarity

Inspection of the differential equations and the boundary conditions shows that

the displacement field in the adhesive layer is a function of G, X, QI' Q2 ' t, t1, t2 , a,

'A P, V, M1 and M2. The equilibrium of the external forces however, gives M2 as a

function of P, V and M1.

M = M1 + Va - P(- -- + t2 + t) (3,62)
2-
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Further, it can safely be assumed that the Poisson's ratio P does not vary appreciably

P for different adhesive materials. G and X could then, be considered as functions ofI Q. Also, the various dimensions and the loads can be expressed in dimensionless form,
t tI t2 M I

The parameters of similarity then, are, Q, Q1 , Q2 ' t- aP v:• a ~~a a----P '

The stresses a and a are dependent on the modulus of elasticity E, while
Sx y

the shear stress -r is determined by the shear modulus G. Since p does not vary
xy

greatly, G can be considered as a function of E. Also, if we assume that , and
p2 are approximately equal then, G a ---a E and - a---Q2a--2 . The stress

E G E E G E
S1 E2 t tlfield in the adhesive layer is then determined by the factors, E-- -- a•s'

2 P V M1

a a P Pa"

c bA special case of identical adherends with antisymmetric loading configuration

can be considered here. In this case,

M = -M 2 =½ [P(tl+t)-Va] and t =t 2 ; E1 = E2  (3.63)

E1  t I P V
The stress field in this case, is a function of -E t1' -E '-" -a-'-P'"

3.5 Case of Identical Adherends

The differential equations and the boundary conditions can be greatly simplified

if the two adherends are identical and m and n are taken to be equal to 1. An analytical

solution of the differential equations is possible in tlis case. Since, the adherends are

identical,

t2 = tI; and Q2 = Q1  (3.64)

The four differential equations in this case are:

.)t 2 t 2 0 (3.65)
•$(Qt + 2Qltl)Uo" + X.tv1' 2 ( t =v 0I35
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Qt22Gu _ 2Q t ul,, + 2 Gv Q+t2V = 0 (3.66)2G1 -3 1 + 2Qt)- 0 2G°

2t1i-Gtu - QM2t u l,,, Gtv Q1+Qoi v = 0 (3.67)

3
Gt t iv2Xu°0 Qltl2U0 + 2Qv- V + Q • v = 0 (3.68)

The boundary conditions in this case are given by Eqs. (3. 69) to (3. 78).

u0 (0) = 0 v0 (0) = 0 v°0 (0) = 0 (3.69)

(-u- + 2Q t ) -Lul'(0) - Q2tl (0) + P = 0 (3.70)

tlt(Qt + 2QItl)uo' (a) + Xtv,(a) - Q1 2 VI"(a) - P = 0 (3.71)

(- + 2Qtli) t u1'(a) Qltl2 vo' (a) P = 0 (3.72)

3 3

2 Gt 2  t 13t

Q ut1 u" (0) + 6-vl' (0) Q1  V (0) + V = 0 (3.73)

t122t) UlQ,, t2tl13 fi

GtuI(a) + 1 - (a) + Gtv° (a) - Q1- vo (a) -V = 0 (3.74)

2 t3t

Qlt2 uo' (a) + -t-v 1 ' (a) - Ql, t Vl' (a) - v = 0 (3.75)

2 t3t ,, Pt(-Qlt2Uo' (0) + Q1 ---- Vlt (0) + 2• M 2 ) =0 (3.76)
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2 3

t t 2t 1 P
2-Q UI ' (a) + Q1  vlv (a) + (--- 1 (3.,77)

2tlt ,,Pt 1

1 2 2O

-Qlt1 u'(a) + Q!3 V1 (a) + ( - = 0 (3.78)

The solution for the differential equations can be found as follows:

From (3.65) we have,

0 AI v" + A2 * (3.79)

where,

A Q~t2t (3.80)1 2 (Qt + 2 Qltl=3

and

A2 _ -Xt (3.81)
2 (Qt + 2Qltl)

Integrating (3. 79),

u u A = A " + A 2 v1 + c1 (3.82)

where c1 is a constant.

Substituting (3. 79) and (3. 82) in (3. 68) and rearranging the coefficients, we

get,

V + A v1  + A4 v1 = (21 c (3.83)
1 , 4 c1
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where.

Gt2
A3 = A- 4XA 1 ) A5

A -2(XA 2 + Q) /A 5

Qlt 3t

A5 = A 1Q~t1  3

(3. 83) is an ordinary linear differential equation with constant coefficients and yields,

k kIx -kIx k2x -k2x 2 X cI

v I = C2e + c3e + c4e + C5e + A4A5 (3.84)

4 2
where k, -kI , k2  -k are roots of the polynomial k + A3 k + A4 = 0; and

c2 , c3 , c4 , c5 are constants of integration.

Substituting (3. 84) in (3. 82) we get,

,- 2 klX 2" 2 k2 x 2"~

u - AI(c 2 k1 e + c3 k1 e + c4k2 e + c5 k2 e )

+ A kc e cx + c e klx + ceek2x + -k2 x + 2c I + c

or

A c kx A c -k xU0 (A 1 C2k + k2 )e - (Alc k + -- 32- )e1
u 1=(A 1 22 1 13 1 k

A 2c 2 k Ix A 2c 5 -k 2x 2A 2x
A2c2 1A25 e2x 2A2

+ (ACkI + k2 )e - (AIc5 k2 + k )e + (A A + l)c Cx+c 6
(Ac 2  2 4 5

(3° 85)
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where c6 is a constant of integration.

Now, v1 and u° are known functions of x from (3. 84) and (3. 85) if the constants

c1 , c 2 , c3 , c4 , c5 , and c6are known. These constants can be determined from the

boundary conditions (3. 69), (3. 71), (3. 73), (3. 75), (3. 76), and (3. 78). These boundary

conditions yield the following set of simultaneous equations.

From (3. 69), i.e. for u° (0) = 0,

A2  A2  A2  A2
(A k1 + 2 )c 2 - (A k + )c + (Ak + 2 )c (Ak + 2 )c + c= 0

IIk2 1 1 k 3 12 k 4 12 k 56

(3.86)

From (3.71),

(Qt + 2Qltl) c1 = P (3.87)

From (3. 73),

(A61 6 + A7 - (A6k1 + A7k1 )c 3 + (A6k2 + A7k2 )c 4 - (A6 k2 + A7 k2 )c 5 = -V

(3.88)

where,

A Gt2 + A 2
6 = 6 2Qltl

and

A7 7 Qlt 2 (A1 - 3)
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From (3.75),

3 kla . 3 -kla

(A6 k 1 + A7k3 )e c2 - (A6kI + A7k3 )e c3

k3  2 a3 2 V
+(A6k2 A 7k23)e c4 - (A6k2 +A 7 k2 )e c5 V (3.89)

From (3. 76),

A9 c1 + (A7kl 2 + A8)c 2 + (A k12 +A 8 )c 3 + (A 2
2 + A8)c 4

+ (A7k2
2 + A8) c5 = (L + M2 ) (3.90)

where,

A8 = -Qltl2A 2

and

A9 = -(1+ +)A 2  2
A 4 '

From (3.78),

k a -k a

21 2 1A9 c1 +(A7 k1,+ A8)e c2 + (A7 kl + A8)e c3

k a -k a PtI
2 ka 2 2 Pt+ (A k22 + A8 )e c4 + (A7 k2 + As)e c5 = M (3.9i1

The above six simultaneous linear equations can be solved to obtain the six constants which

when substituted in (3. 84) and (3. 85) would give vl(x) and uo(x).

S . .. .. . -- .- - . . . . . . .. . . . . . . . . .. . . . . . . . . . =• •;0
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Now, to demermine U1(x) and vo(x), differential equations (3.66) and (3.67)

shwId be solved.

Di feremtating (3. 66) once, multiplying by t/2 and theii adding to (3.67) gives,

-) ( _ 2Q Q t)20 -t.) _ 1  '1  ]Q671- T 'O ' - 4+Ql -2

or

u10" = IN (3.92)

wI'.ere,

Q ti 2t_( . _ + t
- t

[Bi _, t2 tl12 t
S +(Q+t _ 2QQ

Integrating (3.92), we have,

"u,= Blvo' + 2 + csx + c9 (3.93)

where c7 ', C8 ', c9 are constants of integration.

Substituting (3.93) in (3.66) and rearranging coefficients, we get.

9
vo + B 2v = B3 cT7x + 2B3 c8x + 2B3c9 + B4 c7  (3.94)

where,

-2G(B + 1)
B2 =

35
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(T- + Qtl)t
134=- B4 ~ B 5

B5  Q(-- + QltI) tBI Qlt12

The solution of (3. 94) is,

B33 B3 2 B 2B3  2BVo = c 3 3 2  + 2 )c3 + -c x
xx 2- 7  B

+ c10e + c1ek + c12  (3.95)

where c10 , CII, c12 are constants and k = 2

The six constants c7 , c8 , c9 , Ce10 , C11 and c12 are determined from the

boundary conditions (3. 69), (3. 70), (3. 72), (3. 74), and (3. 77).

From (3.69), for v° (0) = 0 we get,

C10 + c1 1 + c 12 =0 (3.96)

From (3.69) for v 0' (0) = 0 we get,

B4 2B3 2B3
- --- )c 7 + g c + kc 0 kC 0 (3.97)

g2 B2 92 10 -k 11 =B2

From (3.70),

B6 • c8 + B7k2 . c10 + 157 k K C = P (3.98)
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where,

2 B7B3

B B2  + B

(2Q3

Qltl !-t- + Qltl

B7  3 1 1
7 3 (Qltl 2 + B8 )

Q -+ Qlt)t.

From (3. 72),

I~2eka 9 -ka

BCac +Bc+ Bke c 0 + B k9e = P (3,99)
6 7 68 7 10 71

From (3. 74),

Bc7 B+l+3) ea Bl3) e-ka c= V (3,100)

B 9c7 + (B10k k3k)e + (B10k + B11k ) C

where,

B- __2_( t " 4 t1 ) Qt2 t

9 8 (BI- +1) 2 2(BI + + +

B 10 = Gt(B1 + 1)

: t 2 11 3

From (3. 77),

2 ka9 -ka

B1ac + B1c + BlO + B k-e C M 1 (3-101)
12 7 12 8 13k c10  13B11 2

13 1
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where,

1~~9

B13  Qtl-t
B12 (BI+l) 2

and

B t- 4
B13  2 (3tl - Blt)

The above six simultaneous linear equations can be solved to obtain the six

constants which wher substituted in (3, 95) would give v0 (x). uI (x) can then be

obtained from (3. 93).

3.6 Condition for Uniform Shear Stress in an Antisymmetric Joint

If, in a joint, the two adherends are identical and the moment M? is equal to

-.M1, then the joint is antisymmetric about the middle of the adhesive layer, 1, e. about

the x-axis. In such a case, it is possible to require a uniform distribution of shear

stress along the x-axis, and derive an expression for the ratio (V/P) as a necessary

and sufficient condition for this requirement. It is required that,

(-rx)y = 0 P
xyy= a

or

G(uI + vo') = p
a

or

v P (3.102)0 Ga 1I
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Substituting (3.102) in (3. 66),

2P T+22Qt Ul + Q 1  1 (-U 1 ) = 0

or

,, 2P (3.103)

where,

Qt 2 +Q2-6- = +qtlt + Mll

(3.103) yields,

P 2

u = Px + bx + b2  (3.104)

b and b 2 are constants of integration.

(3.102) yields,

vo x(a- + blx + b2 ) (3.105)

From (3.69), since v° (0) = 0,

b
2 Ga

"V = x - blx (3,106)

and

U x2 P (3.107)
= x +abx!+I Ga
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The above expressions for v and u1 satisfy the differential equation (3.67) identically.

From (3.70),

(Qt + Qltlt) bI + Q btl~b = , P

or

b P P
b1 2 (3.108)

b (-6 + Qltyt + Qltl2

From (3. 74),

Pt + Qlt 12t 2 3 -2Pa a7- -3-Qltl ( )-V =0

or

Pt 2 4 3 P-V=O
a + 11 + QItl )a-,-

or

2 4 3

(Qltl2t + 4 TQltl 3
V( + (3 109)P a a(Q2

a( Qt + Qltlt + Qltl2

Boundary conditions (3. 72) and (3. 77) are identically satisfied. Two special cases can

be considered.

Case (1): «1
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The ratio (V/P) then reduces to

t1 (t+ 4 t1 )- + -1 3 1(3.110)

P a a (t + t1)

Case (2): t << I
tI

In this case we have

V 4 tl
- 3 a (3.111)

It can be seen that as the ratios and increase, the required value of
QL

(V/P) also increases. Eq. (3. 111) thus provides the minimum value of V/P for which a

uniform distribution of shear stress can be obtained,

A similar attempt at requiring the tearing stress a to be uniform along the
Y

x-axis results in the trival case of P = V = M1 = 0 indicating that the tearing

stress distribution cannot be completely uniform under any given load configuration.

3.7 Solution for the General Case

In the case where the adherends are not identical and where m and n are

integers greater than 1, the differential equations still remain linear and homogeneous

but their number is larger and therefore their analytical solution becomes more complex.

These differential equations are therefore, solved numerically using the method of

linear conversion. The details of this method and the computer program for IBM 3o0

are given in Appendix A.
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4. EXPERLMENTAL INVESTIGATION

4.1 Introduction

The main purpose of the experimental work was to check the analytical results

and establish confidence in the theory. The analysis considers the variation of stresses

through the thickness of the adhesive and treats the problem as one of plane strain.

Photoelasticity presents the most suitable means of experimentally determining stresses

over an area in a plane problem and was therefore employed in this case, In order to

check all the stress distributions and results that the analytical work gives would

require the construction and testing of many complex specimens. For the limited

purpose of checking the validity of the theory however, testing of two specimens of

varying overlap lengths was thought to be sufficient. In order to obtain a reasonably

good fringe pattern for the adhesive, it was necessary that the adhesive layer be suf-

ficiently thick. For this reason the joints ere made of a -" laver of a photoelastic

plastic simulating the adhesive, bonded between two identical I" thick metal adherends.

The joints were made P" wide to approximate the condition of plane strain,,

One important result that the theory predicts is the effect of the ratio V/P

On the distribution of stress. This effect was tested experimentally by subjecting the

specimens to loads at different angles with respect to the plane of the adhesive layer.

4.2 Material and Specimen Preparation

Araldite 6020 epoxy was used to simulate the adhesive layer. This epoxy is

available in sob:d form and can be machined to the required shape. Araldite 6020

was preferred over the other photoelastic plastics for two main reasons, Firstly,

compared to the other plastics, Araldite 6020 has a lower fringe value which means a

good number of fringes can be obtained with small loads thus improving the accuracy

of the experimental results. Secondly and more importantly, Araldite 6020 can be
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easily bonded to aluminum with a thin layer of adhesive of the same material, setting

at room temperature. Araldite 6020 adhesive sets at room temperature when used with

Ciba hardener 951. This aids in keeping the initial stresses to a minimum. In fact

with a little care, the joints can be made practically free of initial stresses. This

fact is important because the presence of high initial stresses would render the model

e useless for a photoelastic investigation.

Adherends were made of 1" square 2024 T4 aluminum alloy. In order to pre -

pare the aluminum surface for adhesive application, the adherends were treated in a

0hot acid bath at 150 -160 F for about 10 - 12 minutes, The hot acid bath was made with

66 ml. of sulphuric acid (H2 SO4 ), 315 ml. of water and 13. 5 gins. of sodium dichromate

(Na 2Cr*O7 ).

'Thvo pieces of Araldite 6020 epoxy were machined, one to the dimensions,

2" for the 2" overlap model and another to the dimensions, 1" x 1 x 3",

for the 3" overlap model. Each piece was bonded first to one adherend by means of

an adhesive consisting of 10 pbw of Ciba 6020 and 1 pbw of Ciba hardener 951. The

joint was allowed to set at room temperature for 24 hours. The other surface of the

epoxy was bonded to the second adherend in the similar manner and allowed to set 24

hours. The joint was tested immediately after it was hardened, because the epoxy

starts absorbing mositure from the air and high initial stresses develop. The dimen-

sions of the two specimens are shown in Fig. 6.

4.3 Test Equipment and Procedure

Fig. 7 shows the photoelastic bench. A circular polariscope with a mercury

green monochromatic light source was used. The model was photographed in light

background, The model was loaded by means of dead weights at the end of a lever arm

with a mechanical advantage of 4:1. The direction of the load with respect to the plane

of the adhesive layer -,as varied by rotating the model to the desired angle. This was
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achieved by means of two aluminum plates fastened to the model, one at each end (Fig. 8),

each plate provided nine loading points allowing the tangent of the angle (or the ratio V/P)

to vary from zero to 0. 8 in steps of 0.1.

At first the model was photographed with no load. For the photoelastic tests to

be reliable it was necessary that nothing in excess of a half order fringe be present at

zero load. The model was then gradually loaded to R = P + V = 3W0 lbs. The move-

ment of the fringe was observed and the model was photographed.

In order to obtain the stress distribution from the fringe patterns photographed,

it was necessary that the Araldite epoxy be calibrated for its fringe value. A circular

disc of the material was loaded in compression and the fringe order at the center of the

disc was obtained by using Tardy's method of compensation (16). This procedure was

repeated with different loads and a calibration curve was obtained (Fig. 9). Theoret-

4P
ically the shear stress at the center of the disc is given by, T = c where, P =

7rd c
compressive load, and d = diameter of the disc, The fringe value, f, of the material

4P
was then calculated from f - c where N is the fringe order at the center of the

7TdN
disc.

The modulus of elasticity for Araldite 6020 (E = 4. 5 x 105 psi) was taken from

Leven (17). This value was used for the theoretical stress analysis of the models. The

results are discussed in the following chapter.
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5. ANALYTICAL AND EXPERIMENTAL RESULTS

5.1 General

The behavior of a lap joint depends on a number of factors including the relatiue

properties of the two adherends. The case of identical adherends is of special interest

and will be discussed in detail. The performance of the non-identical-adherend-joint

will be compared with that of the identical-adherend-joint. The case where the joint

is subjected to pure moment, will also be discussed.

5.2 Effect of m and n

The displacements u, and v, a ,e been expressed in Eqs. (3. 1) and (3. 2) as

power series in y. For an exact elastic solution m and n should approach infinity.

It should, however, be possible to terminate the series after a certain number of terms

and arrive at a solution rea.sonable close to the elastic solution.

Fig. 10 shows the shear stress distribution at the mid-planc (y = 0 plane) of the

adhesive layer with varying values of m. At m = 1, the displacement u is a linear

function of y, while at m = 2 and 3, the displacement u is expressed respectively as

a quadrati-z and a cubic in y. Qualitatively it is seen that in all the three cases, the

maximum stress occurs at the joint edges, decreasing rapidly to a mimmum in the

middle. It is also seen that as m increases, there is a decrease in the maximum

stress concentration. The effect of m is, however, much more clear in Fig. 11 where

the distribution of interfacial shear stress is shown. For m = 2 and 3, the highest

stress is seen to occur at the leading corner, there is a rapid decrease in the stress

towards the middle of the joint and then another smaller peak occurs near but not at

the trailing corner. The stress is in fact, seen to decrease at the traihng corner, This

qualitative distribution is not seen in m = 1 curve. Theoretically the stress at the

trailing corner should be expected to be zero whereas the singularity at the leading
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corner should produce a high shear stress at that corner. It is interesting to note that

rising values of m produce a higher stress at the leading corner. This indicates that

if m is made sufficiently large the ideal solution may be approached. The real mate-

rials, however, do not behave as perfectly elastic materials and some plastic deforma-

tion may occur at the leading corners, the extent of such deformation would depend on

the properties of the adhesive material. The stress distribution obtained for m 2 or

3 can be expected to be reasonably close to the actual case both qualitatively and

quantitatively.

The distribution of a at the mid-plane and at the interfacial plane is shown in
y

Figs. 12 and 13. At the interface the three curves are in good agreement, buc at the

mid-plane, m = 2 and 3 show a to be- much lower. This indicates that a varies
y y

appreciably through the thickness of the adhesive. Similar conclusions can be drawn

about the longitudinal stress a x shown in Figs. 14 and 15.

It can be concluded from these results that for m equal to 2 or higher the

qualitative and quantitative distribution of stress is better, compared to the distri-

bution obtained for m equal to 1. Also, the quantitative results for m equal to 2,

can be considered sufficiently close to the elastic solution.

In all cases discussed above, the value of n was kept constant at I. The thick-

ness, t, of the adhesive is small compared to the overlap length, a. For this reason

the numerical integration of the differential equations for n greater than 1, becomes

extremely inaccurate. In order to obtain reasonably good results, the step size for

integration has to be made extremely small. 'The computer time and cost involved

would in such a case be high. It must, however, be noted that for the very fact that

t/a is small, the displacement v can be assumed to bc approximately a linear function

in y, and n can therefore, be taken as 1.
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5.3 Comparison with Experiment

In Fig. 16 are shown the fringe patterns for the two models at no load. It is

seen that the zero and half order fringes are present. Under load, fringes of up to

eighth order are found. The models can be considered to be adequately free of initial

stresses.

The experimental results were obtained in the form of photoelastic fringe pat-

terns. The computer was programmed to zonvert the maximum shear stress at each

point in the adhesive layer, into the corresponding fringe order. The comparison of

these results is shown in Figs. 17 and 18 for the 2 inch specimen and in Figs. 19 and 20

for the 3 inch specimen. The theoretical results shown in these figures are for m = 2

and n = 1. At the mid-plane (Figs. 17 and 19), the theoretical and experimental results

are in good agreement except at the two ends, where, the experimental results show a

rapid decrease in stress. At the interfacial plane (y = t/2), again, the two results are

in excellent agreement except at the trailing end, where the experimental results show

lower stress concentrations. It can be argued here again, as has been done in Licle

5, 2, that as m is made greater, the theoretical stress distribution can be expected

to approach the experimental pattern.

The analysis predicts that the ratio V/P has a significant effect on the stress

distribution, and in fact for a certain value of V/P giver, by Eq. (3. 109), the shear

stress distribution can be made uniform. This value of V/P turns out to be 0. 76 for

the 2 inch specimen and 0. 51 for the 3 inch specimen. Experimental results for

V/P = 0. 8 for the 2 inch specimen are compared in Figs. 21 and 22 with the corresponding

theoretical results. At the mid-plane (Fig, 21), it is again seen that the two results

are in good agreement except at the ends where the experimental stress decreases

rapidly. At the interfacial plane (Fig. 22), the experimental stress shows a rapid

decrease at the trailing edge but is otherwise, in good agreement with th theory. Simi -
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lar results are shown in Figs. 23 and 24, for the 3 inch specimen for V/P = 0. 60. It I
must be emphasized here, again, that the theoretical results are for m = 2, and can be

expected to approach the experimental results for greater values of m.

In order to compare the theoretical and experimental results over the whole area

of the adhesive layer, the computer was programmed to plot theoretical fringe patterns

for m = 2. These fringe patterns are compared against the experimental fringe patterns

in Figs. 25 to 27 for the 2 inch specimen and Figs. 28 to 30 for the 3 inch specimen.

Similar conclusions can be drawn from these results as have been discussed above.

5.4 Case of Identical Adherends

In this section, the analytical results for a joint with identical adherends and

antisymmetric loading will be discussed. Theoretically it has been found that the stresses

in the adhesive layer depend on the factors, EI/E, tl/t, tl/a, V/P and P/a. The

stresses can be expressed in dimensionless form by dividing them by the mean shear

stress P/a. The number of joint parameters then reduces to four, EI/E , tl/t, tl/a

and V/P.

The condition for a uniform distribution of shear stress at the mid-plane of the

adhesive layer is given by Eq. (3. 109). Let Vf be a factor defined as follows

V = V a (5.1)

f It + tQltl(t+- 3t 1 )]

Then the condition for uniform distributicn of stress is, Vf = I. The factor Vf can

X therefore, be used as a parameter of comparison. The joint parameters then are,

SF/•I , tl/t , tl/a , Vf.

Let Sf and Nf be parameters defined as follows.

a S~Sf

- Et 1  

(5ý 2)
1f~

Iý
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El (5.3)

~~tl

"•.ege~o Sf essiilret ss'Do Vledrs'zn (I n of -olad and Reise (2).

The sfacr mess can be expressed as 2 function of tane

• F! (Sf , Vf , El/E , ti1t) (5.4)

Where,

2V = a2erage shear stress = P/a (5,5)

The factor N- is similar to the parameter A of Goland and Reissner (2). The normal
I

mresses can be expressed as functions of Nf.

V)maX 2 F, (Nf, Vf, El/E, tl/t) (5.6)
2aV tl

(V x)max a
Zav tl F(f f lE lT 57

In the following discussion on the shear and normal stresses in the adhesive

layer, the theoretical data has been calculated for m = n = i and Ul = 0, 30. It

has been discussed in Article 5.2, that m = 2 gives better results from the viewpoint

of accuracy ,f stresses. m I, however, provides a simpicr and adequate means for

comparison of joints.

5.4. 1 Shear Stlss: Figs. 31 and 32 show the shear stress concentration factor

as a function o! the parameter tlAt. Curves are shown for various values of EI/E and
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Sf, keeping Vf constant at zero. Figs. 33 and 34 show the same curves for Vf = 2.

It can be concluded from these diagrams, that for tl/t -> 10 and EI/E 1 - 10, the shear

stress concentration factor is independent of tl/t and EI/E, and is a function of Vf

and Sf alone.

From design point of view, the maximum shearing stress, Tmax 2 is even more

important and is shown in Figs. 35 and 36 as a function of tlt. For tlt A 10 and

EI/E > 20, the maximum shearing stress can be considered as a function of Sf and

Vf only.

From the above discussion, it is observed that the shear stress concentration

factor and the maximum shearing stress concentraion factor are independent of tI It

and EI/E for t It -> 10 and EI/E >- 20, and are functions of Vf and Sf only. It

must be mentioned here that the peak stress, whether positive or negative, is found to

occur at the leading corner when stresses at the interfacial plane are being considered,

and at the two ends when stresses at the mid-plane are being considered.

In Fig. 37 is shown the shear stress concentration factor at the mid-plane of

the adhesive layer as a function of Sf and Vf. It is interesting to note that the shear

stress varies approximately linearly with Sf, and also with V For Sf > 6 the shear

stress concentration factor can be approximately expressed as follows.

XYmax = I (Sf +)(I Vf) at y = 0 plane (5.8)

av

Fig. 38 shows shear stress at the plane of the interface, as a function of Sf and

Vf. Again, the shear stress is approximately a linear function of Sf and V The

approximate formula in this case is,

xy ) max 7
Iax = I + -8- (Sf-1)(1-Vf), atv = -t- 2 (5,9)

av
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max is shown as a function of Sf and Vf in Fig. 39. The maximum shearing

stress can be approximately expressed by the following two equations.

For Vf I and Sf >. 4;

Tm ax - l + 6 11 (- 1 Vf Sf 1) (5.10)

Tav 7 1

For Vf- 1.5 and Sf > 5

Tmax 18 17
= -- + (Vf - --8 (Sf - 1) (5.11)

av19 f 1

5.4.2 Normal Stresses: The maximum tearinig stress, (ay)max' is shown in

Figs. 40 and 41 as a function of the parameters tl/t, E1/E, Nf and Vf. It is observed

that for tl/t A 10 and E /E - 10, the tearing stress factor is independent of the para -

meters tl/t and E /E, and is a function of Nf and Vf alone.

Figs. 42 and 43 show that the variation of the stress (ax max is quite appreciable

for EI/E < 20. However, it can be concluded from these diagrams that, for E1/E 20

and t1 /t - 10, (ax)max is a function of the parameters Nf and Vf 6nly.

'The maximum normal stress pt any given point acts on one of the principal

planes. Fig. 44 shows the maximum principal stress, a , as a function of themax

parameters tl/t , E1/E , Nf and Vf. Again, it can be concluded that, for tI//t " 10,

and E1/E -! 20, amax can be considered to be a function of two parameters, Nf and

Vf only.

The maximum tearing stress is shown in Figs. 45 and 46 as a function of Nf

and Vf. These diagrams are drawvn for tI/t = 10, and E1/E = 20. As has been

discussed ab( ve, these rraphs would be applicable for all joints wvhere t /t - 10 and

E /E 20. It must be noted here that this range is the one that is most frequently
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encountered in practice. The data shown in Figs. 45 and 46 are therefore, applicable

to the majority of the practical lap joints.

Similar graphs are shown in Figs. 47 and 48 for (a x) m and in Fig. 49 for

cmax. It is observed that for a given Vf, the normal stuess factors vary approximately

as square functions of N This is more clearly seen in Figs. 50 through 54, where
f2

the stress factors are shown as functions of Nf . These graphs consist of almost

straight lines. The stresses can approximately expressed as follows.

y - (1.325 - 1.6 Vf )2 at y = 0 plane (5.12)

av I1

"(aymax a (1.4 2 1.675Vf at y = + (5.13)

(ax) ma_(a- a (0. 85 -0.95 Vf Nf2, at y= 0 (5.14)

Xav tI(a() max)N a 2 t

av

av

Now, Eqs. (5. 2) and (5.3) yield,

N 2 o Sf (5.17)f t1  f

Substituting (5. 17) in (5.12) through (5.15),

y) )•ax = (1.325 - 1.6 V Sf at y = (5.18)

av
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(6y)max (1.4- 1.675 Vf Sf at y + +_-.-

av

(a x) max
m = (0.7 - 0.8 Vf) Sf, at y = 0 (5.20)

av

(a)(x) max =(.5t

Sm x (0.85 - 0.95 V f)Sf aty = + (5.21)
av

amax = (2.0- 2.2 Vf) Sf at y = + -2(5.22)
av

Thus it is seen that the normal stresses are approximately linear functions of

Vf and Sf. Eqs. (5. 18) through (5. 22) show another interesting development if both

sides of these equations are multiplied by t /a , which yields,

(ay) ma lEtl
y Maxtl - (1.35 - 1.6 Vf) Et, at y = 0 (5.23)

P f) E1t

( py max t - (1.4 - 1.675 Vf) Et at y = + -1- (5.24)

P f It -2

(a x max t I Et Ip - (0.7 -0.8 vf) EIt, at y=0 (5.25)

(ax max t1 EtI t

xp = - (0.85 0.95 Vf) --. 1 , at y = + - (5.26)

P 1 2 (5E26)

Crmaxit EtI
m = (2.0 2.2 Vf) E at y = + 2
P aty -- (~7
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Since Vf is a linear function of the overlap length, a (Eq. 5, 1), it can be con -
iI

cluded that the normal stresses are also linear functions of the overlap length.

5.4.3 Effect of Vf: It has been observed that Vf is an important factor con-

trolling the stress concentrations. It would therefore, be of interest to look at the stress

distributions along the overlap length for different values of Vf * Fig. 55 shows the

shear stress distribution at the interfacial plane for three values of Vf. The maximum

shear stress occurs at the leading corner and is in the positive direction for Vf = o.

and in the negative direction for Vf = 2. At Vf = 1, the shear stress at the inter -

facial plane is nearly uniform. Figs. 56 and 57 show the distribution of ay and ax .

Again for Vf = 0 and 2, the maximum stress occurs at the leading corner aind is

positive for Vf = 0, and negative for Vf = 2 . At Vf = 1, the normal stresses are

nearly uniform over much of the overlap length except near the leading corner, where a

negative maximum occurs,

5.4.4 Design of Lap Joint" The importance of the factors Sf and Vf in

relation to the stresses in the adhesive layer, has been demonstrated. The stresses

are greatly reduced as the factor Vf is brought closer to 1. This fact can be usefully

employed in designing lap joints. In practice, lap joints are used to fasten two sheets

subjected to pull. The pull can be applied at any angle 0 along the length of the adherends

(Fig. 58a). The equilibrium of the joint requires that the pull at the two ends be colineai.

In this case the ratio V/P is given by,

V (t I + t)

p = tan 0 = (t+ (5428)

Sis the length defined in Fig. 58a, The minimum value of i that can be used, is

equal to the overlap length, a. The maximum value of the ratio V/P therefore, in

this case is given by,
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V a (5.29)

Further, if t/t 1 is small then the maximum value is,

V tl1P = 1 (5. 30)
P a

Eq. (3. 111) gives the required value of the ratio V/P for uniform distribution of stress

as,

V 4 . tl
P 3 a

Thus the maximum value of V/P obtainable by means of simple bending of adherends.

is less than that required for uniform shear stress distribution, In other words, the

factor Vf for the joint shown in Fig. 58a, is less than 1. The value of this factor Vf

is approximately 0. 75 for i = a. This value is fairly close to 1, and the stress curves

show that this design provides an excellent improvement over the conventional straight

adherend design. It is, however, possible to further improve the design by applying

the pull at angle to the adherend (Fig, 58b) and requiring that the condition for Vf = 1

be satisfied.

5.5 Case of Pure Moment

A lap joint is under pure moment when P = 0, V = 0, and M= M, . In Figs. 59,

60, and 61 are shown the stresses in a joint subjected to pure moment, The stresses

were determined for m = 2. The peak stresses are found to occur at the two ends of

the joint, The highest stress occurs at the leading corner, as would indeed be expected,

The stresses are positive at that end of the joint where the moment produces tensile

stresses in the adherend at tha interfacial plane. The peak stresses are negative at the

other end,
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5.6 Non-Identical Adherends

The case of identical adherends has been discussed in detail. The performance

of the non-identical adherend joint will now, be compared with that of the identical

adherend joint. The two adherends in a joint, can differ in their material properties

as well as in their thicknesses. Theoretical results were obtained for a case where

t2 and E2 were varied while holding t1 and E constant. The case of t2 = t1 and

E2 = El provided the identical adherend joint as the base for comparison. The ratios

t2 tA and E2IEI were increased from their initial value of 1. The stress at the

leading corner of adherend (I), which is also the highest stress in the joint, was obtained,*

This stress is presented in Figs. 62 through 67, as a multiple of the stress for the base

joint. The results are shown for two different loading conditions, (i) V = 0, and

(ii) MI = M2 = 0. It was found, in both cases, that for E2/EI = 1, 10, and 100, the

results were almost identical indicating that the factor E2/EI has no appreciable effect

on the maximum stress in the joint. The factor t2/tI however, has a marked effect on

the maximum stress, which increases as t2 /tI increases. The ratio of this increase

is much greater in the case where V = 0, as compared to the case where MI = M2 = 0o

The moments M and M2 when V = 0, are given by,

11-M 2 l t

M = -M - I + t + t) (5 30)

1 2 =_2 (2 2

Thus MI is proportional to t9 , which explains the rapid increase in stresses as t2

increases. This also indicates that the increase in Ml, rather than the increase in

stiffness of the adherend (II), is responsible for the increase in stresses. One important

* For t2/tI - 1 , and E2/E < 1 , the maximum stress would occur at the adherend (I)

interface at its leading corner.
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conclusion from these results, is that the joint with identical adherends is the most

efficient joint and that any difference in the thicknesses of the tvo joints teLds to increase

the maximum stress.

OR
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6. SUMMARY AND CONCLUSIONS

An elastic analysis of the lap joint has been presented. The two adherends are

allowed to differ in their thicknesses and mechanical properties. The joint is subjected

to a general loading, consisting of tension, shear force and bending moments. The

stresses in the adhesive layer are determined treating the problem as one of plane

strain. The analysis is therefore, applicable to joints with large widths. The main

limitation of the theory is that it requires the adhesive material to be isotropic and

linearly elastic.

In order to check the analytical results, and to establish confidence in the theory,

two specimens of lap joint of varying overlap lengths were made and tested photoelas-

tically. Excellent agreement was found between the theoretical and the experimental

results, thus establishing validity of the theory.

The case of a joint with identical adherends and subjected to antisymmetric

loading, was analytically studied in detail. The following conclusions can be drawn

for this joint.

(1) The maximum shear stress and the maximum normal stresses are

approximately linear functions of two parameters, Sf and Vf o Simplified formulas

giving the maximum stresses as functions of Sf and Vf are obtained,

(2) The maximum normal stresses are linearly dependent on the overlap

length.

(3) A nearly uniform distribution of the shear stress can be obtained for

Vf = 1. The normal stresses, although not uniformly distributed, are minimized in

this case. Thus Vf = 1 provides the most efficient joint.

(4) Design of the lap joint based on the above results, has been discussed and

recommendations made.
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The analytical results for a joint with identical adherends, and subjected to pure

moment, show high stress concentrations at the two leading corners. The adherend that

is subjected to an anticlockwise bending moment ha., at its leading corner, high positive

stresses. The stresses at the other leading corner are negative.

Following conclusions can be drawn from the analysis of joints with non-identical

adherends,

(1) The difference between the modulii of elasticity of the two adherends, has

no appreciable effect on the maximum stress in the joint.

(2) An increase in the thickness of one adherend as compared to that of the

other, results in an increase in the maximum stress.

(3) Considering variation in the adherends, the joint with identical adherends

is the most efficient,

• 4P ! W]] - -
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APPENDIX A

SOLUTION OF DIFFERENTIAL EQUATIONS
IN THE GENERAL CASE

Equations (3.51) through (3. 54) are linear, homogeneous, ordinary differential

equations. The boundary conditions are partly at one end and partly at the other. The

problem can be transformed into an initial value problem by using linear conversion.

The equations are, at first, reduced to first order differential equations by the fol-

lowing substitution.

wi = ui

11 1

W. .

13 1 (A.I)

W. =V
14 1

W. = V.
J5 j

W. = V.

J6

where,

i = 0, 1, 2, o ...... , m

j = 0, 1, 2, ....... , n

ii (m+l) 1

i2 = i + 2(m+l)

j3 = j + 3(m+l)
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= j +(r-1) + (mi)

- j i+ 3(m +1) 3 ((n,+1)

. s (3. 51) am• (3. 5') r to (n +i) al2gebrac eoquons, given by,

m n
- O b (ik) W. = b0 7 ti, k) ME b, .. k)
i0 i0 '2 j=0

( N 0, k) 0 -or k 0O, 1, 2... .7 m A 2)
1=0 )

=. 0, i = l, 2 ......... = m

bl (0. 0) =0 -1k 0 , 2........... .

,o (* Gk i =1.r2. .... mn k = 1, 2,.*m

!),7 0, 0) +• Qht Q• (-I) 1 0 , 1.2, r

iO,1,2", , m; kQ=,i, IN m

b•. L O)= - ).j( -T- "k o" ..
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b14(0, k) = -Gk(.-- ) 'Ook k = 1, 2, .... , m

bl4 (j, k) = (Xj -Gk)(-_-) j+k j= 1, 2 .... , n

y = 1, 2,..,,, m

bl 6 (j, 0) = (_2 -Ql2 + "Q,2] j 0 = ...,2.,

bl(2k) = ((@_!))k Q12 (_!)J~k Q2 J = 0, 1, 2, .....

k = . ........ m

Equations (3.53) and (3.54-) are reduced to (n + 1) first order differential

equations, given by,

£11n rn
Sb 9 2(i, k)w. + Z b-76 (, k) w. = 5 bI (j k!-wi =0 -- 12 j = 0 - i61=O 21 "I

- (-bj,k•" ÷ + • b(.k,,- =0, k=o0. , .... in
0 J3 J0 J5

(A. 3)

where,

b(,o } = 0;()_ •o ,"b21

b2 1 (i0) G1 (-) 2 ) 1

t i+'-

b21 , k) = (GZ- Ak)- t , , -). 1. 2,
S= 1,2. .r

2 (1, ( " -- IJ
T7~ j h12
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b2 k) ( i +k -l (-1)i+k Q222 = 0 2 1 Q2t2, = 0, 1, 2, m
k = 1, 2, n......, n

b23 (0, k) 0, k = 0, 1, 2, .... n

b 23 (j, 0) C', j = 0, 1. 2., n

b93 (j, k) = -Qjk(--L)J +k 0 .jk j = 1, 2, .... n

k = 1, 2, ...... n

b 2 (J, 0) = -G( )J +I a j 0, 1, 2, n

252 jo'

b 2 5 (, k) = G(-L-)J+k+l. k j = 0, 1, 2, .... n; k 1,2 .... , n

13 1) 3 1
b- 6 (J, 0) = - ( Qltl + (-1)jQ 2 t2  , =0, 1, 2, n

b2 6 (j, k) = --- (-j-- J Qltl3 + (-1) kQt3] j = 0, 1, 2,
Lk = 1, 2,........

Equations (A. 2) can be differentiated once to give additional (m + 1) first order

differential equations as follows.

Sm n1 m
Y, (i, k)I. + Z bl 6 (j, k)w. = b (0, k) w.

i0 02 j .0 36 j=0 b1

2 + h 4 (j, k)W. for k = 0, , 2 ...... , rr (A.4)
j f 3.5

Euatcaims (A. 3} .rdA (A. 4) can be rreated as s-,1taneous equauons in m ar. d

1g
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w. and can be solved as such, to obtain the following system of equations.
: J6

w = f. (w0, w!, ....... , w) (A.5)wi9 192

|and

w6 = f.J6 (w0 , wl ........ , Wq) (A. 6)

where, q = 3m+4n+6

Also, eq,.ations (A. 1) can be written in the form,

"W' i W i fi(Wo' w!. ....... ,= w q)

11 q
Wi = w . f WO fil . ....... " )

.-- w. = fJ3 (w0 , w. v......., W (A. 7)I J3  J4  J

W. w. = f. (wO, l..q)
J4 5 J4 . .

W. = w = f. `W7, ........ , .
wJ5 J 5 (

Now, the method of linear conversion can be applied to obtain wi(0), for

i= 0, 1, 2. ....... q. Tie following equations are used.

q
w-(a) = a w,(0) + P1  i -= , 1, 2. ........ , (A.
Iordr e e J•

$In -,rdc~r to determnine the constarts a1 ard p t!he following ý-tp-- are fol -

lr~tweO.
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(( ) Set wo(0) = Wl(0) = w2(0) = ...... Wq(O) = 0and integrate equations

i i w~a' =0,I,2,.....(A. 5), (A. 6), and (A. 7) using Runge-Kutta fourth order formula. This gives,

In this case all the pi are zero.

(2) Set wo(0) = 1, w-(0) = w2(0) = ...... = wq(0) = 0 and integrate

equations (A. 5), (A. 6), and (A. 7). This yields,

a.il = wi(a) - pi = wi(a), i = 0,1, 2 ....... , q.

This step is repeated for w1(0) = I and all other zero, etc., until all aij are

determined.

(3) (4n + 2m + 6) boundary conditions are known. Equations (A. 2) supply

another (m + 1) boundary conditions, so that a total of (q + 1) boundary conditions are

known. Equations (A. 8) provide an additional set of (q + 1) equations. These (2q + 2)

equations can be solved for (2q + 2) initial and final conditions.

(4) Using the initial conditions from step 3, integrate equations (A. 5), (A. 6),

and (A. 7) a final time to get the answers. As a check, wi(a) obtained via this inte-

gration must agree with those obtained previously in step 3.

The Runge-Kutta fourth order formula to be used for integration, can be stated

as follows.

w. (x + h) = wi(x) + -(ai+2b.+2c.+ di)
1 1"- (.+b+2. d1

where,

h - step size

I= hf (x),(x), 2 (x). ....... v(x)]
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b. hf w (x) + 0 W. (X) +
1 w1 2 2

ci = hf2 w(x) + 'x) +T ....... q W(x) +

d. = hf" [w (x) + co, Wl(X) + Cl, ... ..... , w (x) + c q]

The computer program using the above method for solving the differential

equations, is given in Appendix B.

4-~
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APPENDIX B

FORTRAN PROGRAM BASED ON IBM SYSTEM 360/75

FOR THE GENERAL CASE

Notation:

4 E*E1tE2 = E, E 1 , E2 respectively

DD1,02 = G, GI, G2 respectively

B, Bi ,B2 = Q/2, QI/2, /2 respectively

TT1,T2 = t, t , t2 respectively

A = Orerlap length, a

P9VtC1vC2 P, V, Mi, M2 respectively

M m m+l

N= n+l

MM = Number of data points along x-axis, (M M-1). A x = a

NN : Number of data points along y-axis, (NN-1). A y = t

L= Integer denoting number of divisions of Ax for integratio:-

H = Step size for integration

L*H*(PM-1.0) = A, i.e. L H = Ax

SIGMAX = ox

SIGMAY = a
y

7AUXY= T

TAUMAX = -rmax

C THE PURPOSE OF THIS PROGRAM IS TO DETERMINE STRESSES IN THE
C ADHESIVE LAYER OF A LAP JOINT OF GIVEN GEOMETRY AND LOAD!NG.
C
C INPUT : EEl ,E2,DDID2.BBltB2,T,Tl,TZ,P,VCItAHMNMM,NNL
C
C OUTPUT : SIGMAX, SIGMAY, TAUXY, TAUMAX
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C IMPLICIT REAL*8(A-VqO-Z*

1,B14(NM),816(NM)tB22(MtN),B26NNN),B321(MN) B23(NN),B25(NN),
2AU2(MM) ,AVI(NM) ,AV3(NM) ,CV1(NN),CUO(MN),DU1(MN),DV2(NN)
3AX(NW),PBX(NW),CX(NW),DX(NW),GX(NW2,l)
4GG(MNMN2jALFA(MNMNIBETA(MNMN),0ELT(MNMN3,SIGMAX(MMNN)
5,SlGMAY(MMtNN),TAUXYIMMNN),TAUMAX(MMNN)
MN=M+N
MN2=M+2*N
NW=3*M44*N
NW2-2*NW
C2=C1+V*A-P*(T1/2.OtT2/2.0+T)
BB=2.O*(B-D)

C DETERMINE THE COEFFICIENTS FOR THE BOUNDARY CONDITIONS AND
C THE DIFFERENTIAL E2QUATIONS

821 (1f1 )=O.O0

00 6 I=19MIDO 2 J=19M

1( I+J-1..0)+Bl*Tl+B2*T2*(-1.0)**( I+J-2))

2 CONTINUE
DO 3 J=1,N
AV3iJI )=(T/2.0?**( I+J-2)*(-B1*Tl**2+(-1.O)**(I+J-2)*B2*T2**2)
DUI( IJ)=(T/2.0)**(I+J-2)*(-B1*Tl**24(-1.0)**( I*J-2)*B2*T2**2)

3 CONTINUE

AVI(JtI)=BB*(J-1.0)*(T/2.0J**(I+J-2)*BETA(IJ)

B22(1I J)=DUI( IJ)
4 CONTINUE

B10(1911=0O.0
B12(Till=AU2( 1,1)
DO 5 J=2,M
B12(IiJ)=-AU2(I,J)

5 CONTINUE
6 CONTINUE

DO 10 1=29M
DO 7 J-29M
DELT( 1,J)(1.O-(-1.O)**(I+J-3))/( 14J-3.0)

7 CONTINUE

DO 8 J=1,N
BETA( I,J)=(1.O-(-I.0)**(I+J-2)J/( I+J-2.OJ
CUO(I,J)=D*(I-1.0)*(T/2.0)**( I+J-2)*BETA(I,J)
B16(JI)=-AV3(Jil3

8 CONTINUE
B21( 1,1 )-CUO(li )
DO 9 J=2,N
B21(IJ)=CUO(I,,J)-AV1(Jti)
B21(1,J)=-AV1(J,1)
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B14(JpI)=-B21U,#J)
9 CONTINUE

10 CONTINUE
DO 13 1=19N
CUO(1,I )=O.O

B16(I,1)=AV3( 1,1)
823(1,13=0.0
B23(1,13=0.0
B14( 1,1 )=-AV1 (I ,1)
DO 11 J=1,N
ALFA( IJ)=(1.O-(-1.0)**(I+J-1))/( 14j-1.03
CV1(1,J)=(T/2O0)**( I+J-1)*D*ALFA( IJ)
DV2(1I,J)=2.0*(T/2.0)**(I+J-2)*(B1*Tl**3/3.0+B2*T2**3*(-1.0)
1**( IeJ-2) /3.0)

11 CONTINUE
B26(I,1)=-DV2(I1913
B25(1,1 )=-CV1(Iil)
DO 12 J=2tN
B26(I,J)=DV2(I1 J)

1 2 5 CONTINUEtJ
13 CONTINUE

DO 15 1=2tN
DO 14 J=2,N
DELT(I,J)=(I.O-(-1.0)**(I+J-3))/( 14.-3.0)
B23( IJ)=-2.0*B*( I-1.0)*(J-1.0)*( T/2.0)**( I+.J-33*DELT(I ,j)

14 CONTINUE
15 CONTINUE
CSOLVE SIMULTANEOUS EQUATIONS (A.3) AND (A.4) OF APPENDIX A

C AA ARE THE COEFFICIENTS ON THE IHS AND GG ON THE RHS
DO 29 I=ltM
DO 27 J=12M
AA(JtI)=Bl2(ItJ)
GG(J, 13=810(19J.)

27 CONTINUE
DO 28 ,=1,N
J1=J+M
J2-%J1+N
AA(JII )=B22(IJ)

AMAI vlJ)-B16(J I)
GG(1I J1)=O*O

28GG( I,J2)=(114(J, I)
26CONTINUE

29 CONTINUE
DO 31 I=1,N
DO 30 J=19N
11=1+14
J1=J+!4
12=11+N
AA(J1,I1)=B26(IJ)

GG(J1,12)=BZ5(1,Jl
30 CONTINUE
31 CONTINUE



CALL SIMEQ (AArGGMN9MN2,KO)

IF(KO.EQ.1) GO TO 3000I
C NOW USE LINEAR CONVERSION
C F AND G ARE THE COEFFICIENTS ON INS AND RHS RESPECTIVELY
C FIRST SET ALL F AND G TO ZERO

DO 26 J=19NW2
DO 25 1=1,NW2
F(I,J)=0.o

25 CONTINUE
G(J)=O.O

26 CONTINUE
C NOW DETERMINE F AND G THAT ARE NOT ZERO

DO 50 J=1,NW
DO 35 I1,1NW
W( It4l=0.0

35 CONTINUE
W(Jt1)=I.O

C INTEGRATE EQUATIONS (A.5),(A.6),(A.7)
CALL INTEG (GGWHMNMMNWAXBXCXDXL)
DO 40 I=19NW
F( IJ)=W( IMM)

40 CONTINUE
.JW=J+NW
F(JIJW)=-1.0

50 CONTINUE
C USE EQUATIONS (A.2)

DO 80 J=1,M
.JW=J+NW
DO 60 I=1,M
12=1+2*M
F(JWI)=-BlO(IJ)
F(JWt12l=B12(19J)

60 CONTINUE
DO 70 1=19N
14=1 +3*M+N
16zI44+2*N
F(JW#14)=-Bl4(I,J)

70 CONTINUE 19J
80 CONTINUE

C NOW USE THE BOUNDARY CONDITIONS
DO 400 1=19M4
11zI+M
12=11+M4
17=14-NW
18=I1+NH
19=12+NW
DO 90 J-z2,M
JW1=J-NW+54
F(JW1,I1)=AU2(l ,JJ
G(JWI)=P*(-T/2.O)**(J-1)

90 CONTINUE
DO 100 J=1,M
JW2=J+NW+2*14
F(JW2,18)=AU2(19J)



G(JW)=P*T/2.)**(-I)80

100 CONTINUE
DO 200 J=2tN
JW3=JNW+3*M
JW4=JW3+N
F(JW3tI)=CUO(ItJ)
Ft JW3912)z-DU1( I pJ)
G(JW3)=V*(-T/2.0)**(J..13
F(JW4tII)=DUI(IgJ)
G(JW4)=(-T/2.0)**(J-1)*(P*T2/2.O,.C

2 )
200 CONTINUE

00 300 J1,tN
JW5=J+NW+2*N+3*M
JW6=JW5.N
F( JW5,I7)=CU0tI ,J)
F( JW5t19)=-Dul( IJ)
G(JW5)=V*(T/2.0,**( J-1)
F(JW6t18)=DLJ1(.JJ)

300 CONTINUE
400 CONTINUE

6 DO 900 1=19N
13=I+3*M
14=13+N
15=14+N
16=15+N
I10=13+Nw
I11=14+NW
I12=15+NW
I 13= 16+NW
D0 500 J=2,fI
JW1=J+NW+M
F(JW1913)=AV1(19j)
F( JW1,1I5)=AV3c (I J)

500 CONTINUE
DO 600 J1,pM
JW2= J+NW+2*t4
F(JW2,11o)=AV1(Ivj)
F(JW2,112)=AV3( I,J)

600 CONTINUE
DO 700 J=21N
1W3-J+NW+3*M
JW4=JW3+N
F( JW3 P1I4)=CV1C(IJi)
F(JW3,16l=-DV2( Ij)
F(JW4,15)=DV2( I J)

700 CONTINUE
DO 800 J=19N
JW5=JtNW+2*N+3*M
JIW6-JW5.N
F(JW5,I11)=CVI(I,J,
FtJW5,113)=-0V2(lvj)
F( JW6, 112)=DV2( I,J)

800 CONTINUE
900 CONTINUE
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100=950+I1NW

GX(Iil)=G(I)
950 CONTINUE

C SOLVE FOR INITIAL AND FINAL VALUE'; OF W
CALL SIMEQ (FGXNW2,1,KO)
IF(KO.EQ.t) GO TO 3000
DO 1000 I=19NW
W(I,1)=GX(I,1)

1000 CONTINUE
C FINAL INTEGRATION

CALL INTEG (GGWHMNtMMNWAXBXCXDXL)
C INTEGRATION J)ESTROYS W(ilill RESTORE W(I,1)

DO 1020 I=1,NW
W( 1,1)=GX(I ,l)

C CHECK IF THE INTEGRATION IS ACCURATE
IW=4+NW

1020 Ax(I)=1.o-w(IMM)/GX(IW,1)
C AX SHOULD ME MUCH LESS THAN 1
C IF THE ABOVE CHECK IS UNSUCCESSFUL, THE STEP SIZE H NEEDS
C TO BE DEC^-REASED
C DETERMINE S-IRAINS AND STRESSES

DO 1500 J1,tNN
Y=T*(J-1.0)/(NN-1.0)-T/2.0
DO 1400 1 =1,mm
EX=W((M+1),I)+Y*W((M+2) ,I)
EY=W( (3*14+21,1)
EXY=W(2,I)+W((3*M+N+1)1,I)+Y*W((3*M+N4-2)t,I)
IF(M.LT.3) GO TO 1210
DO 1200 11=3,1M

EX=EX+Y**(II-j)*W(I 11,1)
EXY=EXY4(11-1.0)*V**(11-2)*W(liII)

1200 CONTINUE
1210 IF(N..LT.3) GO TO 1310

DO 1300 JJ=3,N
JJ3-3*M+jj
J J4= 3*M+NtJ J
EY=EY+(JJ-1.0)*Y*N(JJ-2)*W(JJ3,I"0
EXY=EXY+Y**(Jj-1)*w(jj4 .1)

1306 CONTINUE
1310 SX=2.0*B*EX+BB*EY

SY-2. 0*B*EY+BB*EX
SXY=D*EXY
SHEAR-DSQRT ((SX-SY)**2/4.0+SXYd**2)
SIGMAX( IJ=SX
SIGMAY( IJizSY
TAIJXY( IIJ)=SXY
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TAUMAX( IJ)=SHEAR
1400 CONT'INUE
1500 CONTINUE
3000 STOP

END

SUBROUTINE INTEG (GGWHv'tu,M,,MNWABCDMMI)
IMPLICIT REAL*8(A-HtO-Z)
DIMENSION GG(MNMN2),W(NWMM),A(NW),B(NWJC(NW),D(NW)
M X= 1
0O 2000 KX=2,MM
DO 1000 MMX=1,MM1
DO 10 I=1,NW
C(11=0.0

10 CONTINUE
K=- 1

100 K=KI1
DO 200 1=19M
11=1+M
12=11+M

4 0D(1)=H*(W(I1,MX)+C( 11))
D( Il)-H'*(W(129MX).C(I2))
D(12)=O.0
DO 120 JJ=1,M
JJ1J~i+M
D(12)=D(12)4+H*GG(19JJ)*(WfjjltMX)+C(iJL))

120 CONTINUE
DO 150 JJ=1,N
JJ1=JJ4M
JJ2-JJI+N
JJ3=JJ4.3*M
JJ5=JJ3+2*N
0(12)=D(12).H*GG( IJJ1)*( W(.iJ3tMX)+C(JJ3) )+il*GG(IPJJ2)*(W(JJ5,MX)

1'C(JJ5))
150 CONTINUE
200 CONTINUE

DO 300 11,#N
11=1+M
13=1+3*M
14=134-N
15=14+N
16-15+N
D(13)=Ht(W( 14,MX)*C(14))
0( 14)=H*(W(I159MX)+C( !5))
D(15)=H*(W(16,14X)*C(16))
D(16)=0.0
00 220 JJ~l1Oi
JJl-JJ4m
D(I6)=D! 16)*H*GG(I1,JJ)*(W(JJ1,mx)+C(JJ1))

220 CONTINUE
DO 25-0 JJz1,N
JJ1=JJ+M
JJ2=JJ14N
JJ3-JJ+3*N
JJ5-JJ3*2:vN
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O(16)=D( 16)JkH*GG(IlJJI)*(W(JJ3eMX)+C(JJ3))+H*GG(I1,JJ2)*
l(W(JJ5vPXJ+C(JJ5))

250 CONTINUE
300 CONTINUE

IF(K.EQo1l GOl TO 400
IF(K.EQ.3) GO TO 600
IF(K.EQ.3) GO TO 500
DC 350 I=1,NW
A(I)zO(I)
C(l)-O(I)/2.0

350 CONTINUE
GO TO 100

400 00 450 1=19NW
2 B(I)=D(I)

C(I)=D(I)/2.O
450 CONTINUE

GO TC 10CC
500 DO 550 I~1,NW

C (I)=D (I)
550 CONTINUE

GO TO 100
600 DO 700 I=1,NW

W(1,1)=W(I,1)4(A(I)+2.0*B(I)+2.0*C(I)+D(I))/6.0
700 CONTINUE

1000 CCNTINUE
DO 1100 !=1,NW

1100 W(IKX)=W(I,1)
2000 CONTINUE

RETURN
END

C
SUBROUTINE SIMEQ (ABNRCWNRHSKO)

C THIS SUBROUTINE SOLVES -SIMULTANEOUS EQUATIONS WITH REAL
C COEFFICIENTS

IMPLICIT REAL*8 (A-H,&-Z)
100 FORMAT(/$ SINGULAR MAIRIXI/)

DIMENSICh A(NROWNROWI,8(NROWNRHS)PCINW2), II(NW2) PJJ(NW2,a
00 1 !=1,NRCW

DO 17 1=1,NPOW
D= 0 *DC
DO 6 J=1,NROW
IF(II(J)-l) 29692

2 DO 5 K-1,NR0W
IF(II(K)-1I) 3,5921

3 IF(CABS(Ol-DABS(A(JK))) 49405
4 IR=J

I C= K
D=A( JK)

5 CONTINUE
6 CONTINUE

IF(IR-ICJ 7,10,7
7 DO 8 JzlNPOW

O=A( IR,J)
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Al IRJ)=A( IC#J)
8 A(ICvJ)=D

DO 9 J=19NRHS
D=B(IR#J)

9 B(ZC#J)=D
10 JJ(1,1)SIR

JJ(I,2)=IC
C(1)=AIC#zCJl
IF(C(IJ) 11.21,11

11 A(!CIC)=1.Do
DO 12 J=1,NROW

12 A(ICPJ)=A(uCtj)/C(z)
DO 13 J=1,NRHS

13 B(ICtj)=B(ICPJJ/C(l)
DO 17 J=1,NROW
IF(J-IC) 14,17,14

14 D=A(Jo1C)
AlJvIC)=O.D0
DO 15 K=19NROW

15 A(JvK)=A(JtK)-A([CtK)*D
DO 16 K*1,NRt4S

16 B(JK)=8(J,K)-B4ICtK)*D
17 CONTINUE

DO 20 I1=1NROW
J-NROW+1I.1
IF(JJ(J,1)-Ji J92)) 18V20118

18 IR=JJ(Jo1)
IC=JJ(J,2)
DO 19 J=1,NROW
D=A(JtIR)
Al JtIR)=A IJ, IC)

19 A(JtIC)-D
20 CONTINUE

KO=O
RETURN

21 WRITE(6,100)
KO-1
RETUIR N
END
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APPENDIX C

FORTRAN PROGRAM BASED ON IBM SYSTEM 360/75

FORT1jEIDENTICAL ADHEREND CASE

Notation:

EqE1 = E, E1 respectively

DD1 = G, G1 respectiv~ely

HHl = Ax respectively

B9881 =Q/2 ,Q 1/2 respectively

A Overlap Length, a

P9VClC2 P, V, M10 M 2 respectively

MM= Number of data points along x-axis, (MM-i) A x= a

NN= Number of data points along y-axis, (NN-1) Ay =t

'C THE PURPOSE OF THIS PROGRAM IS TO DETERMINE STRESSES IN THE
!C ADHESIVE LAYER OF A LAP JOINT WITH IDENTICAL ADHERENDS
C AND GIVEN LOADING.
C
C INPUT EElDDlE~,BlTTlPVYM1,AMMNN

*C,
C OUTPUT =SIGMAX9 SIGMAY, TAUXY, TAUIMAX
C

IMPLICIT REAL*8(A-E9HO-Yj, COMPLEX*16(FtGZl~
COMPLEX*1.b CDEXPt DCMPLX, CDSQRT
,DIMENSION SIGMAX(MMNN)tSIGMAY(MMtNN),TAUXY(MMNN),TAUMAX(MMNN)
DIMENSION UI'12(MMhtUU13(MM),VVOI(MM),VVOZ(MM),VVO3(MM),VVO4(MM)
DIMENSION UUO(MM),UUOI(MM),UUO2(MMIUUO3(NMM)UUl(MM),UUII(MM)
DIMENSION VVI(MM),VVll(MMbtVVl2(MM),VV13(MM),vVV14(MM)
DIMENSION F1595),G(59l)
DIMENSION ZX(41,ZY(2)ql(ll)
C2= C14V*A-P*(T14T)
BT=B*T42.O*B1*Tl
CT=B*T/3 .O+2.O*f31*Tl
AAI=Bl*Tl**2*T/(2.O*BT)
AA2=-H*T/(2.O*BT)
AA3=Bl*Tl**2*(4.O/3.0*TleTJ/(T*(B1*Tl**2,CT*T,2.O))
CV=T*CT*AA3-2.O*B 1*Tl**2
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CCC=B1*Tl**3*T*(2.0*B*T+B1*T1 i
CC=-6.0*H*BT/CCC
CCO=3.0*H*( 2.0*BT-H*T)/CCC,12.0*BT*D/CCC
CC2z6.0*H*T*Bl*TI **2/CCC+D*T*T/ 12.040CC/H-
CCO=BI*Tl**2-CT*T/2.0*AA3
CC l=D*( AA3+1 .0) /CCD
Q2=-D/ (6. 0*CCD)
Ql=3.0*Q2
QO=6.0*Q2
Q3=(CT*T/2.03/CCD
Z(5)=Pf(2.0*BT)
FF=-CCI
£Z1 CC2/2.0 )**2-CCO
DO 100 N=1,2

4 ZX(N)=CDSQRT(-CC2/2.0+(-1)**N*CDSQRT(ZZ))
ZX(N4-2)=-ZX(N)
IY(N)=(-1 )**N*CDSQRT(FF)

100 CONTINUE
DO 200 J=194
F(lJ)=(D*T*T/6.0+2.0*AA2*BI*Tl**23*ZX(J)+2.0*31*rl**2*(AAl-
1T1*T/3o0)*ZX(J)**3
F(2,J)=F(1,J)*CDEXP( ZX(JJ*A)
F(3,PJ)=Bl*T1**2*((T1*T/3.,0-AA1)*ZX(J)**2-AA2)
F(4,J )=F( 3,J)*CDEXP( ZX(J)*A)

200 CONTINUE
G(191)=-V
G(2,l)=V
G;3,1)=-(C2-V*A1+P*T1/2.O)/2.0N1I.0+AA2*CC/CCO)*Bl*Tl**2*l(5)
G(4,1)=(C1I/V*A1)/2.0-P*T1/4.0+(1.0+AA2*CC/CCQ)*Bl*T1**2*Z(5)
CALL SIMEQ (F9G,4,1,K0I
DUi 300 N=1,4
Z(N)=G(Nvl)

300 CONTINUE
0O 400 J=192
Fl 19J)zCV*ZY(J)**2
F(2tJ)=F(1,J)*CDEXP(ZY(J)*A)
F(3,J)=(D*T*(AA3+1.0)*ZY(J)+B1*Tl**2*(AA3*T-4.0/3.0*T1)*LY(J)
1 **3) *COEXP (ZY (J )*A)
F(4tJ)=(4.0/3.0*Tl-AA3*T)*lY(J)**2*CDEXP(ZY(J)*A)
F 15#J)=ZY(J)

400 CONTINUE
F(1931=0.0
F(2,3)=6.0*CV*Q2*A/CC14+CT*T*A
F( 3,3 )D*T*(AA3+1.0)/CC1*(3.0*Q2*A*A-6.O*Q2/CCl+Q3)+A*A/2.0*0*T
1BI~B*Tl**2*( (AA3*T-4.0/3.0*Tl)*6.0*Q2/CCI4T)
F(4,3)=A*( (8.0*T1-6.0-*AA3*T)/CCI*Q2-T)

F(5931z(Q3-6.0*Q2/CC1)/CC1
F( 194)-2o0*CV*Q1/CCI+CT*T
F(2941=F(1,4)
F(31p4)=D*T*A*~((AA3+1.0)*2.0*QI/CC1+1.0)
F(4,4l=2o0*Ql*(4.0/3.0*T1-AA3*T )!CCl-T
F(5,4)z0.0
F(1,51=0.0
F(2t5)-0.0
Fl 3,5)=D*T*( 1.0+Q04'fAA3+1.0i/CCl)
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F(4t5l=0.0
F(5,5)=QO/CCI.
G(191)=-P

* ~G(2,1 )=P
G(391)=V
G(4,13=(C1.-V*A1-P*Tl/2.0)/(Bl*Tl**2)
G(5,1)=0.0
CALL SIMEQ (FqG15tlqKO)
DO 500 N=6,10
Z(N)=G((N-5)tl)

500 CONTINUE
DO 800 N=lNN
Y=T*( N-1.O)/(NN-1.0)-T/2.O
DO 700 M=19MM
X=( t-1. 0)*AfI(MM-1.0)
VI01=1(6)*ZY(1)*COEXP(ZY(1)*X)4-l(7)*lY(2)*CDEXP( ZY(2)*X)+3.0*
IZ(8)*X*X*Q2!CC1+(2.*Ql*Z(9)*X.QO*Z(10)+Q3*Z(8)-6.*Q2*Z( 8)/CC1
2)/Cdl
V02=Z(6)*ZY(1i**2*CDEXP( ZY( 1)*X)+Z(7)*iY( 2)**2*CDFXP( lY(2)*X).+
16.0*Q2/CC1*l(8)*X+2.0*Q1/CCI*Z(9)
V03=Z(6)*iY(1J**3*CDEXP(ZY(l)*X)+Z17)*ZY(2)**3*CDEXP(ZY(2)*X)4
16.0*Q2/CC1*Z(8)
V04=l(6)*LY(1)**4*CDEXP(ZY(l)*X)+Z(71*1Y(2)**4*CDEXP(ZY(2)*X)
VVO1(Mh=Vol
VVO2(M)=V02
VVO3(M)=V03
VV04(M)=V04
Ul=AA3*VO1+L(8)*X*X/2.0+Z(9.)*X+i( 10)
Ull=AA3*V024+Z(B8)*X+119)
UU12(M)=AA3*V03+Z1(8)
UU13(M)=AA3*V04

o ~UU1(m)=Ul
UUI1(M)=Ull
FV1=CC*l(5) /CCO
FV1 1=0.0
FV12=0.0
FV13=O.0
F Vi4=0 .a0
DO 600 K=194
FVI=FV1+l(K)*CDEXP( LX(K)*X)
FV11=FV11+Z(K)*ZX(K)*CDEXP( lX(K()*X)
FV12=FV12ZI-ZK)*ZX(K )**2*CDEXP ( X( K)*X.
FV13=FV13+l(K )*ZX (K)**3*CDEXP( 1X( K)*X)
FV14=FV14+Z(K)*Z-X(K)**4*CDEXPIZX( K)*X)

600 CONTINUE
VL=FV1
Vl1=FV1 1
V12=FV12
VVI.(Mi=VI
VVL1(m)=Vl1
VVi2( Mh=Vl2
VV13(M)=FV13
VV14(M, =FVI4
UOI=AAi*Vl2+AA2*VII-Z(5)
(UU1 (M) =-uo
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UUo2(M)=AA*VV13(M)+AA2*Vll
UU0314M )=AA1 *VV14 (MI +AA2*V12
SX=2.0*B*W0UI +Y*L,11 )+11*VL
SY=H*(UO1+Y*U11) ý2.O*B*VI
S XY=D* ( Vclf VieUl I
SHEAR=DSQRT ((SX'-SY )**2/4.0+SXY**2)
SIGMAX(M,N)=SX
SIGMAY(MN)=SY
TAU X ( MN S XY
TAUI4AX(M,N)=SHEAR
STOP
END

C
SUBROUTINE SIMEG (FtG#NROW,NRHS.KO)

C THIS SUBROUTINE SOLVES .,MUL.ANEOUS EQUATIONS WITH COMPLE-XI
C COEFFICIENTS

IMPLICIT COMPLEX*16 (A-HO'-Z)
RE AL*BCDA BS
DIMENSION F(5t5),G(5,1) ,C(5), II(5),JJ(5,2)

100 FORMAT(/ SINGULAR MATRIX'/)
DO 1 I=1,NROW

DO 17 1=1,NROW
D=4 0. 00 ,. DO)
DO 6 J1,tNROW
IF(%I[(J)-l) 2,6,2

2 DO 5 K=lNROW
IF( 11(K)-i) 3,5,21

3 IF(Cr)ABS(D)-CDABS(F( J,K))) 4,4,5
4 IR=J

IC=K
D=F(J,K)

5 CONTINUE
6 CONTINUE

I IC IC)=II(IC)+1
IF(IR-IC) 7,10,7

7 DO 8 J=lNROW
D=F( IRtJ)
F IR9J)=ý:( ICvJ)

8 FIUCJ)=D
DO 9 J=1,NRHS
D-G( IR,J)

9 GtiCoJ)=D
10 JJ(I,1)=IR

JJ(1I,2)=IC
CCI )iF( IC, IC)
IF(CDABS(C(I))) 11,21,11

It F(IC,[C)=(1.DOO.DQ)
DO 12 J-1,NROW

12 F([C#J)=FU[CJ)/C(I)
00 13 J=1,NRHS

A,13 G(ICJl=GCICJ)/C(l)
DO 17 J-1,NROW
IF(J-TC) 14,17,14
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14 D=F(JIC)
F( JIC)=(O.OOIO.D0)
DO 15 K=1,NROW

15 F(JK)=F(J,K)..F(IC,K)*D
DO 1.6 K=1,NRHS

16 G(JK)-G(J,K)-GU[CgK)*D
17' CONTINUE

D0 20 I=iNROW
J=NROWe-1--I
IF(JJ(J,1 )-JJ(jg2)) 18920t18

18 IR=JJ(Jt1J
IC=JJ(JP2)
DO 19 J=1,NROW
DzF(J, 1W)
F(J ,IR).=F(JIC)

19 F(JtIC)=o
20 CONTINUE

K 0=0
RETURN

21 WRITE(6,loo)
KO=1
RETURN
END
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FIG. 5 Step Joint of Erdogan and Ratwani
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