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INTRODUCTION
Let
¢ (1) Ax = b
denote a system of m linear equations in m unknowms, and let
@ %y
be an iterative method for finding the solution to (1). There are two central

=Mx +k
n

questions in using such an iterative method to approximate the solution to a

set of iinear simultaneous algebraic equations:

(1) Does the iterative method (2) ultimately converge to the solution of (1),
i.e. does

limx = x ?
n
o

(i1) What is the error en or and error estimate En for the difference between

the computed solution and the true solution, i.e. what is Eu such that
He Il =1lx-x [l <E2

The first of these two questions has received considerable expcsure in

the 1i«c.rature. The texts by Varga (16) (21)

and Young give convergence criteria
for a variety of methods; moreover, each of these references has an extensive
bibliography on the subject.
Error estimates, on the oth2r hand, have received much less attention. The
results that have been derived can be broken down into three categories:
TYPE I. The error estimate En assumes a knowledge of the inverse or an
approximate inverse of A.
TY:E II. The error estimate En is given only in terms of previous iterates,
for example suppose there exists a computable constant & such

that for some vector norm

e Il =1l x-x 11t =allx -x_Il
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TYPE III. The error is given in terms of two vectors L and va which
bound both the solution x and the n-th iterate x,1i.e. at
each iteration u and v  are calculated such that for some
partial ordering, < , between vectors

u <x <v_andu <x<vV.
n—"n— n n—"—=—"n

Ia this paper we will discuss each of these three types of error bounds.

Special emphasis will be placed on the estimates of Type II since the estimates
of Type I have recently been thoroughly reviewed by Fitzgerald (8). and the
estimates of Type III generally apply only to very specialized prcblexs.
We will review the articles that have appeared in thz literature which give
error estimates of Type II, beginning with the historically interesting paper
of von Mises and Pollaczek-Geiringer (17), chronologically proceeding to the
latest papers available, and concluding with a numerical example using the
succesgsive over-relaxation (SOR) method and an error estimate of Albrecht (1).
NOTATION AND BASIC CONCEPIS

Throughout this paper we will consistently use the terminology of

9 (16)

Householder and Varga . For completeness the definitions and concerts
used in this paper are presented below.

Let R denote the real numbers, C the complex numbers, E® the m-dimensional
vector space over the field o~f cumplex numbevs, and G(Em) the set of allm x m
complex matrices. Then || . II: E" »R is a vector norm on B if

(@ || x|] >0 for all x, and || x || = 0 1f and only 1f x = 0

®w ||Ax]]=Ix <] x}|],2rinc

@ x+yll <=l +I1lyll,x yin€e"

Furthermore || + ||: G(E™ + R is a matrix norm if, in addition to (a), (b), (c),

@ | as |l <Ilall-]ls]l for all A and B in G(E") {is
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satisfie:. Let || - || be any vectsr norm on ™ then the equation

&) = oup L]
xto || x ||

defings a matrix norm on G(Em) which is said to be induced by the vector
norm || « || on E”. A matrix norm || - || is consistent with a vector norm
[ 11 it

[l ax 1] <flall-]x=[]
for all A in G(Em) and all x in Em; moreover the matrix norm induced by a vector
nore is consistent with that vector norn~. Let o0(A) denote the spectral radius of
A, then p(a) < || A || for any matrix norm.

Now let x* zad A* respectively denote the conjugate transpose nf the vector

x and the .atrix A, vhere A = (a,.) and x = (xi). Three widely usad vector nocms

1j

and their induced matrix norms are:

m m
Dol lotlall,=nax §[a

=1l = |
= 1<j<m 1=1 3
* 2 . *
”x“2= X X = z ]xil,:lA”zs Jp(A A)
Vs
m
lx Hlo=max | g, [l all,=nax ] |agl

1<i<m I<i<e =1
It is well known (Varga (16)) that the sequence X, from (2) converges
for any X, if and only if p(M) <1 Tf A is nonsingula: .nd the method (2) is

derived from the system (1), i.e. x = A-lb ic the only solution to x = Mx + k,

then x = lim x
n-s>co

is the unique solution to (1).
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The three most commonly used iterative methods are the Jacobi¥*, Gauss-Seidel*#,
and successive over-relaxation methods. Each of these three methods will now
be expressed in the form (2). Decompose A into a diagonal matrix D, a lower
triangular matrix E, and an upper triangular matrix F such that

(3) A=D~-E -F,
then the Jacobl method

1
) =x A e I
N Wl BN TS NG

i#1

i can be written

- Tt -1
X 41 D "(k + F)xn+1 +D b

go that the Jacobi matrix B is D-l(E + F). The Gauss-Seidel method

i-1 m

G %@ 5] jZI %13 (o)) 7 j,§+1 "y TP

[y

can be written

X4 " o - E)‘lfxn + (D - E)‘lb

wt

so that the Gauss-Seidel matrix L1 is (D - E)-lF. The successive over-relaxation

method
" i-1 m
(6) Xy (abl) ;;; - jzl 333 %, (n41) " j-§+l 243 %, () +b, |- (w-l)x%(n)

can be written

X4 " (D - wE).1 I(1 - w)D + wF] X + w(D - mE)_lb

*Jacobl method is also called the rnint total step method, the
method of simultaneous displacements, and the Richardson iterative method.
Note the total step method is a translation of the German word
Gesamtschrittverfahren.

**The Gauss-Seidel method is also called the point single step method,
the method of successive displacements, and the Liebmann method. Note that
single step method is a translation of the German word Einzelshrittverfahren.
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so that the successive over-relaxation matrix Lm is (D - wE)—l [(1 - w)D + wF].
We note that for w = 1 the successive over-relaxation method reduces to the Gauss-

(20 shows that under certain conditions there exists an

Seidel methcd. Young
optimum over-relaxation parameter, 1 < w < 2, such that p(Lw) < 1, aud that the
successive over-relaxation method then converges faster than either the Jacobi or
Gauss~Seidel methods,

We now proceed to discuss the error estimates of types I, II, ard III.
ERROR ESTIMATES OF TYPE I

Recently Fitzgerald (8)

developed bounds for the error in a computed

inverse of a matrix and for the approximate solution of Ax = b, These bounds are
of the first type listed above in that he assumes the availability of an approxi-
mate inverse X of A. Methods in which these bounds would be most applicable
compute an anproximate inverse X of A and let y = Xb. 7he residual I - XA or

I - AX is then computed and from these a bound on the error e = x - y is found

using the well known inequality

y=x ]l <l a )] o] ay-nll

where

if || T -Ax]] <1.

If this error is too large X may be improved until the error is within acceptable

bounds. When one uses such a method to sclve for the solution vec*or x of AX = b

for just one b, he 1s actually computing much more than he neéds, namely A-l.
Fitzgerald feels that in general it is futile to expect to find a good error

bound without some knowledge of the inve-se of A; however, one would hope that if

A had a "special enough" structure it would be possible to find an error estimate

without knowing anything about A-l, that 1s find error bounds of the second
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or third types sbove. As we shall gee, this is true for some frequently used
methods employed on classes of matrices which often arise in the solution of
problems derived from physical phenomena.
ERROR ESTIMATES OF TYPE I1

We now present the error estimates of the form

x-x Il collx -x_ Il

Although some of these bounds were originally neither presented nor proved in this
form, for simplicity and self-consistency they will be given using the results of
the following theorem due to Weissinger(lg).

Theorem I. Let || * || be a matrix norm consistent with the vector norm

H . H, and let S
system Ax = b. If || M || < 1 then

= Mxn + k be a method derived from the nonsingular

x = 1im xn, and
nro

M x-x || oLy

n 1-|] ml

n—l

Proof: Since p(M) < || M || < 1 the method converges to the unique solution
of AX = b. For the proof of the second statement let

e =x -Xx , and
n n

Gn = xn - xn-l'

Then since § - Mén and p(M) < 1, it can be easily shown that

n+l
e = (1 - M)’lmsn,

and since || + || is a consistent matrix norm
Hx-x Il <l a-w™2(]-[In]| |

T *n-1 i
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Now again since p(M) < 1 we can expand (I - M)-l as I Hi, then using
i=0

II(I-M)'1|I51§IIMII1= 1
- 1-|| wli|

we have the result of the theorem,

We can see from Theorem I that if we can find an easily calculable, consis-
tent matrix norm such that || M || < 1, then we have a computable error bound.
This is in fact what has been done for the Jacobi, Gauss-Seidel, and successive
ever~relaxation methods using the three norms || . ||l’ || . ||2, and || . ||m.
We must note however that in general any or all of the above norms may give
|| M || > 1, precluding the use of the error bound (7), but the method may still
converge.

We now present the error bounds of Type II that have been derived. Imn all
that follows we assume we are solving the m-th order system Ax = b, where
A= (a

), b= (b)), and x = (xi), by the method x = Mx_ + k where

ntl

)) and M is matrix of order m which may be one of the matrices B, Ll’

13

X " (xi,(n

or L corresponding to the Jacobi, Gauss-Seidel, or successive over-relaxation

methods respectively.

In 1929 von Mises and Pollaczek-Geiringer(l7) proved that if

a
m ij

I |a su<lforj=1, ... , m
i=1 | i1
i#3

then an error estimate for the Jacubi method is

m m

T X - X, ¢ u T Ix - X

4=1 i, (nt+l) i T 1=l i, (n+l) i,(n) .
7
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Equivalently using the terminology and the result of Theorem I we have:

If u=1!| BHl<1, then

Xkl — X bl ~ ¥

]
& ——

1 | 1-u 1
No other results were obtained until 1942 when Collatz (3) showed that for

the Jacobi method, if

m

£l a,

j=1 A3 <k <1, for i=1, , M
: a
; j#i| “id
then Max Max
lsismlxi(n+l)—xi|.<__§__151<m
’

= i-"i,(,nﬂ) T ¥1, (0)

He also noted the same bound held for the Gauss-Seidel method. Again we restate

this bound in the form of Theorem I to get: If § = l:.B I!m < 1 then

Again there was a long lapse until 1951 when Sassenfeld(ll)

presented two
results for the Gauss~Seidel method, namelv,

Criterion I. Let

l i-,] m
ai =5 7 ai. a, + z aij
1i3=1] M| I =1n , i=1, , m
and o = Max a,. If a<l then
i i
Max | %y ey T %] S %MT‘,| *1, (1) T ¥4, (n)

Criterion II. Let

i-1
REH R
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and B = ngBj. If 8 < 1, then
i

Max | Xy a1y T %y | S Tog MEX

| *4, 1)~ %1, )
We observe that Criterion I is the stronger of the two since a<B. Both of
Sassenfeld's criteria will be proven as corollaries to the following more general

theorem on the successive over-relaxation method which uses Theorem I with an

explicit representation of Im and the norm |

. Ilw. Referring to (6) we can

write the successive over-relaxacion matrix Im = (sij) as

811 = —(w ~ 1)
$.,, =W a_.
14 EII 1j, j=2, ... , m
and for i=2, ... , m
i-1
= - —— z = s
slj 37 kel aikskj s 371, . ., i-1

1 i-1
Sy =~ 3;; (b - l)aii +w I aiksk%]

k=1
s " i-1
ij = - 37— =1+1, ... .
ij a;; (aij + w E aikskj)’ j=1+1, , T
k=1
m
Theorem II. Let v, = L s and y = Max v,,then if v<1l, an error
_— i j=1 ij i i
estimate for the successive over-relaxation method is
Max i -x < 1zv Max l X - x
1 0% @) "% . 1,(n+l) ~ “i,(n)
Prrof: We note that y = |] L, ||_. Then 1f <1 we have
N *a41 ~ * ntl *a

< X
o = Y
1 =Y ’

|

which is the comnclus.on of the theorem.
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Corollary I. Let

m
+w 2 | 8 i], i=2, ... , m
jei#l 3

and § = Max §,.
§ 1

If § < 1 then for the successive over-relaxation method, we have

& Max | x

ng | X () " %1 | < is 1 1,(=1) ~ *1,(n) |

Proof: We need only to show that vy < §. For 1 > 1 we can write

m
e jzl | sy |
i-1 I i-1 i i-1
N aii | [% jzl i kzl EC T I B T kzl 1%
m i-1 W
e =i+l | *13 e kzl *11%y
i-1 m - m
T [ el L lagl el @oney leu 3 laijl]
i-1 m
v [mjzllaﬁlyju<w-nau]+wj_§ﬂ|aij 1]

Now 61 = Yy» hence AP 61 and v < 8§,

10
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Corollary 1I. Let

v, = 61
i-1

1 (hax )
v, = ——a 51 Y 1,1+ (w-2)a,, |
ST DAL u

T layl
+ow a s 12, ... , m
j=i41 13

and v = Max v, .
§ 1

If v < 1 then for the succesgive over-relaxation method, we have

Max | x

i
Proof: This corollary obviously follows from Corollary I since v < §.

v
xilf.i::\;ﬂflx

1,(n+l) ~ 1,(a+1) ~ *1,(n) .

Corollary I1I. Criterion I and 1I of Sassenfeld.

Proof: Let w = 1 in Corollaries I and 1I.
Dueck (6) presented the following error estimate for the Gaugss-Seidel method

which is glightly better than Collatz's estimate but not as good as Sassenfeld's.

Let A, be the upper triangular part of the Jacobi matrix B. If 18l <1
e 1, 1l
A
2 ®
Hx o -xli,s——— Il x,, -x Il
ntl ® = nt+l o
1= sl "

Let Al be the lower triangular part of B, then Dueck proved this estimate by

noting that an equivalent formulation of the Gauss-Seidel method is

X1 " A%ay TAX, K

11
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and
X=X 4= Al(x - xn+1) + Az(x - xn)
(1 - Al)(x X 4y) = Az(x - xn)
= Ay x - X)) P Ay, - x)
(- Ay - A0 = x 4y) = By0xpy — %)
- 7 ~1
or X=-x 4= {1~ B) A2(Xn+1 - xn).
Therefore by Thecrem 1
I TR LN "
Hox-x . § — x -x |l_.
Ty, ™ e

Feldnan(7)found an error estimate for the Gauss-Seidel method which is comparable

to that of Dueck. As before let A be the lower triangular part and let A, be

2
the upper triangular part of B. Let
1=t a1
L=l Ay il e 1A, #1
v = l-HAlllm

1.

of | A, 1, i€ ] & 11,
If y < 1 an error estimate for the Gauss-Seidel method is

I x

ntl ¥

> | -
Following the proof given by Feldman, we have
-1
L1 = (1 - Al) A2

and

Moy 1o a-ap™ 1 a0l

12
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lmvusmel-ﬁulmrtﬂmhxnmmu

3 §

(I-Al)'lsl-'r;lvrgi«r...-:-‘l

»-1l
Ja - a7t 1
| 90 Ml | I 1§o” A Ll

n-1
locw=f "V 1 .
Ny I (ja.jHAlll.)ilAzll.

Then using Theorem I we h > Feldman's result.

Albrecht(l)derived an error estirate for the successive over-relaxation method

for the important case when A is Hermitian, positive definite, and 2-cyclic. [A is

2-cyclic if there is a permutation of its Jacobi matrix B such that

N

: Ay O
vhere the zero blocks are square.] We first transform the system (1) into a
similar system whose Jacobi matrix is Hermitian. As in (3) let A=D - E - F

where D is diagonal, E is lower triangular, and F is upper triangular. Let

T = n';’(z + F)D.li,

a=DJ5b,and
y = D%,

then

is the Jacobi method for the solution of

(8) I-T)y=a

e ey

=L
and the solution of Ax = b is x = D °y. However T like A is Hermitian and posi-

tive definite while the Jacobi matrix B is generally not. Using the above

M

notation, Albrecht's error estimate for the solution to (8) by the successive

13
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over-relaxation method vhen A is Hermitian, positive definite, and 2-cyclic is

Wy -vllc2y, -5 ll,

vhere
s T GT e D sela- e+l T2 62+ 11T 1D
1-1i 1|12
snd
y=1-1 amdp=2_1
%

Now since x = D “y, D = diagonal (di)’ an error estimate for the solution cf

Ac =)D is

’ 1 -
9 ” xﬁl”l!zf- 4?3;” Ynﬂ-ynz

The only thing remaining is tu calculate /| T §§2- duc T is Hermitian hence

Hrll, =em. Va,ga(lﬁ, section 9)

gives methods for findiang r (T) which are
based on the iterative scheme (2) and are tiwus gquite easy to implement since the
same scheme is used to solve the set of equatfons.

YOung(zo)

shows that in the case of Z-cyclic matrices (i.e. matrices with
Young's Property A) if the spectral radius 2 of the Jacobi matrix is less than
one then the optimum over-relaxation factor & is zrelated to o by

2

@ T pe——
141 -2

and e(l) = w ~ 1,

where L is the associat:u over-relaxation matrix. Hence if p < 1 we have

0 <w< 2and p(L) < 1. Now in our case where A is Hermitian, po.itive definite,
and 2-cyclic, the over-relaxation matrix Pw for the system (8) is similar to the

matrix Lw (see (6)) for the system (1) by

14



NOLTR 72-199

T =00t
therefore o(P,} = p(L,) and p(T) = o(B).

Similarly denote the constant wector k of (2) by for L and by k_ for P , then
" P v

kp = D”kl. If as before we let

o
= L
‘m] -xn ML
and Yoiz = Pu’n + kp’
thea y = ﬂ&x .
n n

Therefore by (9) an error estimate for the method x ol L-xn + kl is
“ xll”'l x ||2$xvx:‘ di ” D(xn'l-l-xn) ”z’

or a less desirable estimate is

11
an X4 - X !Izsx'l(xfx :—i)(xgx a) o=, -x i,

To use Albrecht's estimate we have two alternatives. We can either solve
the system (8) for y using the error estimate (9), ard after sufficient comver-
gence let x = D-;’y, or we can solve the original system (1), using the error
estimate (1). The two methods are equivalent and neglecting any computational
aspects such as round-off error shovld give the same resuits. In the :xample
at the end of this paper we decided to take the second approach only for the
reaso: that for our case it was e:sier to program.

We now turn to a rather singular result by Heinberger(m)

which gives an
error bound whose range is determined from a maximum principle. Specifically if

the real matrix M of the iterative method x = Hxn + k is symmetric let

ntl

15
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U e =

2
o=[ls_, I,

T

B=8 .8

1l n’
and v=11s 112
n''2’
then if p(M < 1 - € < 1 the range of possible values of || en”;

is equal to the range cf

_ (-85t . (e -p° [o$” - 288 + 7]
R(#) $ . 5
1-92 [(a-B¥- (-]

on the interval

(Q-¢)8+y

(Q-ca+6 ¢<1-¢€

Tke requirement that M be symmetric generally limits this result to the solution

of real linear sysiems by the Jacobi method
Yot = ”n ta

derived from the tramsformed systea (8).

(13)

Finally Schroeder used a theorem concerning an abstract iteration process

Yol

are essentially the same as the bounds of Collatz ard Sassenfeld respectively.

= Zur to derive error bounds for the Jacobi and Gauss-Seidel methods which

COMMENTS ON THE ERROR ESTIMATES OF TYPE 11

All of the estimates except Albrecht's and possibly Weinberger's only hold
if || M || < 1 where || - || is some consistent matrix norm and M 18 the matrix
from the iterative process x tl
18 o(M) < 1, whereas it is possible to have p(M) <1 < || M ||. We would then

= }brn + k. However the condition for convergence

have a convergent method but no usable error estimate. In particular for the

16

- TSI Yy T p—— — v mw
L .



U U

NOLTR 72-189

bounds of vom Mises and Pollaczek-Geiringer, Collatz, Sassenfeld, the asuthor's
Theorem 11, and Dueck, it is necessary that the satrix A of Ax = b be strictly

diagonelly dowinant, j.e.

jzl | ‘ij I <| a, l s I=1, ... , m.

H
This is unfortunite siace the matrices that are generated by many physical
problemss, e.g. the numerical solution of elliptic differentisl equatiomns, do not
enjoy this rrcperty.

On the otker hand Albrecht's estimate for the successive over-relaxation
methcd relies oaly on the spectral radius of the matrix M, but it requires that
A be positive definite, Hermitisn, and 2-cyclic. In the example at the end of
this paper we solve a set of linear equations derived from the numerical solution
of Poisson's equation by the successive over-relaxation method. For this example

the only estimate that is applicable is Albrecnt's.

ERROK ESTIMATES OF TYPE I1I1

(15) (2),(3) ,(4)3

Schroeder and Albrecht ive error estimates of Type III fo.
monotone iterative methods. A description of either monotone methods themseives
or conditions under which such a methou will produce a monotone sequence of
vectcrs which comverge to the solution of the system of linear equations is

beyond the scope of this paper. However, Schroeder(la)

gives a derivation of
monotone methods as well as sufficient conditions for the convergence of these
methods.

Given a monotone iterative method, it is usually easy to write error bounds
for this method. For example let < be the component-wise partial ordering

between vectors, x the solution vector of the set of equations, and X, and Yo be

two vectors such that Xy S X £ Yo then if the method gives successive iterates

17
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X, and \ A such that
x < Xy S oo SX SXSY S oo N <Y

then an error estimate for x - x ory-y, is

| X~ % (a) | s | Yi,(a) " %4, (n) |, for i=1, ... , m,
This example is not mesnt to give the most general estimates for all monotone
methods. It is however representative of the type of error estimates obtainable
with these uethods.

There are a few distinct disadvantages to monotone iterative methods. First,
the range of applicability of these methods is small; second, it is usually diifi-
cult to find initial values with the desired properties; and third, the iteration
itself is more complicated, often as in the case of our example requiring tvo or
more sequences which converge to the solution. On the other hand, termination
criteria for such iterations are easily determined as the iterates give both
upper and lower bounds on the solution.

NUMERICAL EXAMPLE-~-SOLUTION OF THE POISSON EQUATION

In this section we present an example of Albrecht's error estimate for the
solution of the set of linear equations derived from the discretized Poisson's
equation. The error estimate was programmed into the computer code MACNOL
(Marker and Cell Method of the Naval Ordnance Laboratory) which solves incom-
pressible, viscous, intiial value, fluid flow problems by the marker and cell
method. The MACNOL code is a modification of the MACYL code of Pritchett(lo).

One modification of MACYL which was incorporated into MACNOL was to reprogram the
routine which solves the discretized Poisson's equation to use the successive

over-relaxation method instead of the Gauss-Seidel method.

18
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As 1 note of interest we would like to report that for the sample problem
we solved, the succecsive over-relaxation method converged about 100 times faster
than the Gauss-Seidel method.

A brief derivation of the set of linear equations arising from the finite
difference solution of the Poisson equation will now be given. Using a cylindri-~
cal coordinate system let r be the radial dimension and z be the vertical
dimension. We denote a finite difference cell by the indices i and j where i
varies with radius and j varies with height,

Figure 1 illustrates this nomenclature:

Ari = radial dimension of cell 1,j
Az, = vertical dimension of cell 1i,j

r, = digstance from axis to center of cell 1,]

z, = distance from bottom of mesh to center of cell 1,j

iy - distance from axis to inner boundary of cell i,j
r“;5 = digtance from axis to outer boundary of cell i,]
z:]__;5 = digtance from bottom of mesh to lower boundary of cell i,j

z:’+;5 = distance from bottom of mesh to upper boundary of cell i,j

i-% i i-1
Ar

e =g -1y
Az, ,

3 =z, -2

J-% 3 3-1

Azj_'_l/2 = zj+1 - zj
Figure 2 illustrates the computing mesh. Rows 1 and N and columng 1 and M

are physically fictitious. They are used for convenience in representing the

19
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governing finite difference equations. The domain of the problem need not be
defined on each cell of the mesh; by suitable fiagging we can represent free
surfaces. Figure 3 gives an example of such cell flagging. The computation is
only done in full (F) cells; the boundary conditions are applied on the surface
(S) cells as well as the axis, wall, floor, 3&& ceiling. The empty {E) cells are
only used ¥n the calculation to specify boundary conditiéns. Let ¢ denote the
ratio of pressure to constant density and let g be the acceleration due to

gravity. We wish to solve the Poisson equation in cylindrical coordinates

2 2
3¢ .13 3¢ _
ar2+r3r+ 7 = R(x, 2)

-

gz

with the mixed Neumann-Dirichlet boundary conditions

% 0 on the axis
or

%% = w(z) on the wall

g%-s g on the floor and ceiling

and ¢ is prescribed on the surface, "

where R(r,z) and w(z) are known. Let ¢ be defined at cell centers. The MACNOL

code solves the following discretized form of the above problem for ¢

(12) 1 T 14 e ]
(¢, . - ¢ ) + (b, . = ¢, ¢ &)
EﬁAri Ari 1 i,j i+1,] Ari—% i,j i-1,3

1 1 1
+ = | (¢ - ¢, Y+ (¢, ,~ ¢, . ﬁ= -R
Azj [Azj*_l/2 i,j i,j+l Azj_% i,3 i,j-1 1,3

22
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AXIS
WALL

CEILING CEILING

FIFIF| Fl F| F F F
SIS|F| F| F F I or F
EJE{S| Fj F I F F F
eElelST F! F{ F F
E[E|]S| FI| F F F F
E|S|F| F| F F F F
SIFIF| FI F F F F
FIFIF| F | F | F F F
FIELF| F | F | F F F

!
FIE|F] Fl F | F F . F
FLOOR | FLOOR
-
g F: FULL 3
E: EMPTY S
S: SURFACE

FIG. 3 EXAMPLE OF CELL FLAGGING
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with the boundary conditions

.l’j = .2’19

.3 " Y1,y t My

(13) 01" %5,2 " B8Zy,

4157 ¢ n1 Y %)
and 01’1 is given 1f 1,§ is a surface cell, and vhere ‘l,j and'wj are regarded
as known.

Where applicable substitute the boundary conditions (13) into the equations
(12). The result is a set of linear equations in the unknowns ‘i,j’ vhere 1,j
ranges over the set of full cells. Denote this set of equations by DPE
(Discretized Poisson's Equation). If the set of equations DPE is naturally
ordered, i.e. ordered by the rows or columns of the finite difference mesh, then
its matrix A is symmetric, positive definite, and 2-cyclic. The matrix A is not,
however, strictly diagonally dominant, although it is irreducible and

m

21 lagy | <lagl, 1=1,000, m

with inequality for ac#%east one i. That is, A 13 irreducibly diagonally
dominant.

To check the usefulness of Albrecht's estimates for use in the MACNOL
code, we programmed four similar sample problems whose solutions are known
exactly. The four problems are broken down into two sets of two problems
each. The first problem in each set uses an unevenly spaced mesh, the

second uses an evenly spaced mesh. The first set of problems is simply
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water standing still in a cylindrical task. For the secowd set of problemsr, in
order to test the error estimetes on a non-rectangular mesh, we istroduced the
artificial problem of an axi-symsetric underweter cavity whose surface was at
hydrostatic pressure. The solutfion to all of these problems is simply hydrostatic
pressure.

fo reiterate, Problem 1 uses an unevenly spaced rectangular mesh; Problem
2 ;ses an evenly spaced rectangular mesh; Problem 3 uses an unevenly spaced
non-rectangular mesh; and Problem 4 uses an evenly spaced non-rectangular mesh.

All four problems use a mesh of dimension 56 in the radial directim and
122 in the vertical direction. When the mesh is evenly spaced

Ar = Az = 5.

For the unevenly spaced probleas Ar1 and Azj are given in Table 1. Figure 4
shows the cell flagging for Problems 1 and 2, and Figure 5 shows the cell
flagging for Problems 3 and 4.

The error estimates given are (10) and (11) of Albrecht. Let D be the

diagonal of DPE then from (10) we have

(24) gy -0 ll,call o2 a -1,
where a=1|] D-llz ”2

and from (11)

(15) [ gy ~ ¢ 1y el o, -0, I,

where =2 |l 072, 11 02,

We also investigated the possibility of using

o(L )
6) 1] bpg -0 [ ——— o -6 [, =818 - 1,
1-»o@)

25
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FIG. 5 CELL FLAGGING FOR PROBLEMS 3 AND 4
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as aa ervor estimste. The right hand side of (16) is wst a= error bowad siace
for-y—trkmﬁolll..l|<lwhn

o) il

1-o0L) T 1- L,

For all problems we have the following data:
M = radial dimension of mesh = 56
N = vertical dimemsion of mesh = 122
J‘siﬂaofbﬁmtdlayerofﬂn‘facecellstlm

: ¢ =0
r 1,3,

‘1,5"’
w, =0

h )
’:l,j = known true solution = -3(st - zj)
¢° . = initial guess = 0
1.3
Table 2 gives the associated parameters needed to calculate the erre:r esti-
; mates for Problems 1,2,3 and 4. Tables 3 and 4 give Albrecht’'s two error esti-
i mates from equations (10) or (14), and (11) or (15), Tables 3 and 4 also give

the spectral error estimate from equuticn (16) as well as the true error

I“n - ¢ |2. For comparison all parameters are normalized hy ”4',,”2-

CONCLUSION

From Tables 3 and 4 we see that : or the unevenly svaced nrobiems, Albrecht's
. bounds are over-estimates by more thar five significant digits, and that for the
evenly spaced vroblems they are over-estimates bv about three significant digits.

This is due to the fact that, as shown in Table 2, ”n—l/Z”Z is large for the

unevenly spaced problems. Howevcr, even for the evenlv snraced problems, Albrecht's

error hounds are overly nessimistic ard thus computationally unusahle.
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Problem
Parameter
1 2 3 &

o) ¥ 999949 -999980 .999949 999864
o 1.980 1.967 1.980 1.968

j p(L) G -980 .987 .980 -968
y @ 9.80 E43 2.53 B+ 9.80 E+3 3.66 B3

| o Y2125 184, 354 184. .354
12211,  4.00 4.00 3.16 4.00
o (& 1.80 E+6 8.96 B+3 1.80 E+6 5.20 E+3
g (1 7.21 46 3.58 B+ 5.70 E+6 5.20 E+3
s ® 49.0 75.9 49.0 3.3

[ (1) Spectral radius of associsted Jacobi Matrix
: (2) Optimum over-relsxation factor

(3) Spectral radius of over-relaxation matrix
(4) Constant rrom (10) and (11) for Albrecht's error estimate
(5) D is the diagomal of L
(6) Constant from (10) and (11) where a = XHD.”2”2
(7) Constant from (10) and (11) where 8 = uHDlIZHZ
@, &= p(Lw)/(l-p(Lu)) for spectral error estimate (16)

Table 2 Parameters Needed to Calculate Error ' stimates
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Q) (2) 1/2 3) (4)
n eI, Nl e 1, siley ;P <ls™2e 1, sllel,
50 4.70 E-2 1.38 3.39 ES 2.01 B+S5 2.30
100 6.29 E-3 1.57 E-1 k.54 ¥Y4 2,92 EB+b 3.08 E-1
150 2.44 E-3 2.98 E-2 1.76 .4 1.04 Bié 1.20 E-1
200 8.20 E-4 1.92 E-2 5.92 x+3 2.93 E+3 4.02 E-2
250 2.20 E-4 6.80 E-3 1.58 E+3 9.68 g2 1.08 E-2
350 5.17 E-S 9.88 E-4 3.73 EF2 2.53 EF2 2.53 E-3
400 2.03 E-5 1.66 E-4 1.46 EF2 9.24 EBEF1 9.94 E-4
Problem 1 — Unevenly Spaced Rectangular Mesh
1 2 1’2 3 4
n e 1, 1o sl r10e (1, 8lle 1,2 <lfp¥ e |1, slle |1,
50 2.6 2-2 1.78 9.62 E+2 9.59 E+2 2,12
100 7.87 E-3 3.58 E-1 2.82 E+2 2.81 E+2 6.22 E-1
150 3.27 E-3 4.69 E-2 1.17 E+2 1.16 E+2 2,53 E-1
200 5.93 E-4 5.45 E-2 2.12 E+1 2.11 E+1 4,68 E-2
250 4.27 E-4 4.66 E-2 1.53 E+1 1.52 E+1 3.37 E-2
300 4.77 E-4 2.63 E-2 1.71 E+1 1.70 E+1 3.76 E-2
350 3.36 E-4 6.63 E-3 1.21 E+1 1.20 E+1 2,66 E-2
400 8.75 E-5 2.22 E-3 3.14 3.12 6.91 E-3
Problem 2 -- Evenly Spaced Rectangular Mesh
(1) To normalize results let e = (¢n-¢n_1)/|]¢n||2

(2)
(3)

Albrecht's error estimates from equations (11) and (15)

Albrecht's error ertimates from equations (10) and (14)

(4) Spectral error from equation (16) letting & = p(L»)/(l—p(Lw))

Table 3 Errors for “roblems 1 and 2
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o Hell, P41 0e 11, sllel,P <%, slle 1,

50 1.58 E-2 3.8 E-1 8.20 E+1 8.14 E+1 4.70 E-1
100 3.83 E-3 2.42 E-2 1.99 E+1 1.98 E+1 1.14 E-1
150 5.94 E-4 1.40 E-2 3.09 3.06 1.77 E-2
200 1.22 E-4 1.24 E-3 6.33 E-1 6.29 E-1 3.63 E-3
250 4.38 E-5 4.40 E-4 2,28 E-1 2.26 i4-1 1.30 E-3
300 5.56 E-6 3.57 E-5 2.89 E-2 2.86 E-2 1.65 E-4
350 1.15 E-6 1.90 E-5 5.97 E-3 5.85 E-3 4.42 E-5
400 2.11 E-7 1.76 E-6 1.09 E-3 1.09 E-3 6.28 E-6

i Problem 4 -~ Evenly Spaced Non-rectangular Mesh

1/2 3

o e 1, D 4l /11s, 11, slle]1,® el il

S0 4.36 E-2 1.04 2.49 E+5 1.90 E+f 2.14
100 5.83 E-3 9.40 E-2 3.32 E+4 2.68 E+4 2.85 E-1
150 2.41 E-3 1.53 E-=2 1.37 E+4 1.02 E+4 1.18 E-1
200 9.03 E-4 1.78 E-2 5.16 E+3 3.59 E+3 4,43 E-2
250 2,79 E-4 5.55 E-3 1.59 E+3 1.32 E+3 1.37 E-2
300 1.51 E-4 3.53 E-3 8.65 E+2 6.38 E+2 7.43 E-3
350 4.99 E-5 5.20 E-4 2,85 E+2 2,42 E+2 2.4+5 E-3
400 2.15 E-5 1.26 E-4 1.23 E+2 9,89 E+1 1.05 E-3

Problem 3 -- Unevenly Spaced Non-rectangular Mesh

(1) To normalize results let e = (¢n-¢“_1)/||¢n||2

(2) Albrecht's error estimates from equations (11) and (15)
(3) Albrecht's error estimates from equations (10) and (14)
(4) Spectral error from equation (16) letting § = p(Lw)/(l-p(Lw))

Table 4 Errors for Problems 3 and &4
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A svcprising computational result is that the spectral estimate is very good
for all of the sample problems. We have hence decided to implement this much
more pvractical but less desirable spectral error estimate (16) into the MACNOL

. computer program.
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