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INTR'ODUCTION

Let

(1) A, - b

denote a systeem of m linear equations in m unknowns, and let

(2) xn+I - Mxn + k

be an iterative method for finding the solution to (1). There are two central

questions in using such an iterative method to approximate the solution to a

set of linear simultaneous algebraic equations:

(i) Does the iterative method (2) ultimately convergo to the solution of (1),

i.e. does

limxn =x?
n-"n

(ii) What is the error e or and error estimate E for the difference betweenn n

the computed solution and the true solution, i.e. what is Ea such that

jje I -"x I< E ?n n - n

The first of these two questions has received considerable exposure in

the Lrature. The texts by Varga (16) and Young (21) give convergence criteria

for a variety of methods; moreover, each of these references has an extensive

bibliography on the subject.

Error estimates, on the other hand, have received much less attention. The

results that have been derived car be broken down into three categories:

TYPE I. The error estimate E assumes a knowledge of the inverse or ann

approximate inverse of A.

TYE I. The error estimate En is given only in terms of previous iterates,

for example suppose there exists a computable constant a such

that for some vector norm

len Ii -i x~ i E_ = a xx 1n - n n n n
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TYPE III. The error is given in terms of two vectors in and v which

bound both the solution x and the n-th iterate Xn, i.e. at

each iteration u and v are calculated such that for some
n n

partial ordering, < , between vectors

u < x < v and u < x < v .
n-n-n n- -n

In this paper we viii discuss each of these three types of error bounds.

Special emphasis will be placed on the estimates of Type II since the estimates

of Type I have recently been thoroughly reviewed by Fitzgerald (8)• an the

estimates of Type III generally apply onli to very specialized prcblwm.

We will review the articles that have appeared in the literature which give

error estimates of Type II, beginning with the historically interesting paper

of von Mises and Pollaczek-Geiringer (17), chronologically proceeding to the

latest papers available, and concluding with a numerical example using the

successive over-relaxation (SOR) method and an error estimate 
of Albrecht (1)

NOTATION AND BASIC CONCEPTS

Throughout this paper we will consistently use the terminology of

Householder (9) and Varga (16). For completeness the definitions and conceits

used in this paper are presented below.

Let R denote the real numbers, C the complex numbers, Em the m-dimensional

vector space over the field nf cimplex numbb's, and G(Em) the set of all m x m

complex matrices. Then 11 " 11: Em R is a vector norm on Em if

(a) x _ 0 for all x, andi x i 0 if and only if x - 0

(b) I1 x II - l II x II , X in C

(c) II + y II x x II +11 y II, x, y in E.

Furthermore 11 I1: G(E) -* R is a matrix norm if, in addition to (a), (b), (c),

(d) II AB IJ._J A * J!B f for all A and B in G(Em) is

2
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satisfie- Let Ij • f1 be any vector norm on -, then the equation

b Hlxll
II A -sup

definss a matrix norm on G(EI) which is said Lo be induced by the vector

J norm II on e. A matrix norm ellis consistent with a vector norm

I1" !1 if

II A I! < II A II II x
for all A in G(E3) and all x in Em; moreover the matrix norm induced by a vector

norm is consistent with that vector nor.,. Let o(A) denote the spectral radius of

A, then pOA) < I! A II for any matrix norm.

Now let x &ad A respectively denote the conjugate transpose if the vector

x and the atrix A, where A = (aij) and x - (xi). Three widely used vector nocms

* and their induced matrix norms are:
im m

x = , = max a aj

li x 112 = -i , 12 11 il, 4/A* A)

II x Ir,--max I I II A I max I a I
l<i<m 1<i<r j=l

It is well known (-%,arga (16) that the sequence x from (2) convergesn

for any x if and only if P(M) < I Tf A is nonsingulpt -nd the method (2) is0

derived from the system (1), i.e. x = A-1b is the only solution to x - Mx + k,

then x =lm x
n-

is the unique solution to (1).

3
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The three most commonly used iterative methods are the Jacobi*, Gauss-Seidel**,

and successive over-relaxation methods. Each of these three methods will now

be expressed in the form (2). Decompose A into a diagonal matrix D, a lower

triangular matrix E, and an upper triangular matrix F such that

(3) A-D-E-F,

then the Jacobi method

[ m
(4) x a a + +i,(~l aii j= i j jin

jb]

can be written

x,+ 1 - D-'(X + F)xn+1 + D-b

so that the Jacobi matrix B is D-1(E + F). The Gauss-Seidel method

(5) xi, (n+]l ) -at J- a t  x t (~)- ij 'i (n) + bt i m 1
i - I-~

can be written

X n+1  (D E) Fxn (D - E)l b

so that the Gauss-Seidel matrix L1 is (D - E)- F. The successive over-relaxation

method

[6 - -i a aij + bi] (n)
(6) Xi(n+) a aL Jl a j Xj , (n+l) Ji+l (n) - ()

can be written

Xn+- (D - u1E) - I r(l - w)D + wF] xn + w(D - wE)-ib

*Jacobi method is also called the r9int total step method, the
method of simultaneous displacements, and the Richardson iterative method.
Note the total step method is a translation of the German word
Gesamtschrittverfahren.

**The Gauss-Seidel method is also called the point single step method,
the method of successive displacements, and the Liebmann method. Note that
single step method is a translation of the German word Einzelshrittverfahren.
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so that the successive over-relaxation matrix L is (D - wE) -1 [(1 - w)D + wF].

We note that for w - 1 the successive over-relaxation method reduzes to the Gauss-

Seidel methed. Young (20) shows that under certain conditions there exists an

optimum over-relaxation parameter, 1 s w S 2, such that p(L ) < 1, aiid that the

successive over-relaxation method then converges faster than either the Jacobi or

Gauss-Seidel methods.

We now proceed to discuss the error estimates of types I, II, ane III.

ERROR ESTIMATES OF TYPE I

Recently Fitzgerald (8) developed bounds for the error in a computed

inverse of a matrix and for the approximate solution of Ax - b. These bounds are

of the first type listed above in that he assumes the availability of an approxi-

mate inverse X of A. Methods in which these bounds would be most applicable

compute an approximate inverse X of A and let y - Xb. The residual I - XA or

I - AX is then computed and from these a bound on the error e - x - y is found

using the well known inequality

V- x , -A-l II Ay - b H

where

I Al jJ I xjJ
1-I I -AX 

if H -AX I<1.

If this error is too large X may be improved until the error is within acceptable

bounds. When one uses such a method to solve for the solution vec'or x of AX - b

for just one b, he is actually computing much more than he needs, namely A-1.

Fitzgerald feels that in general it is futile to expect to find a good error

bound without some knowledge of the inve-se of A; however, one would hope that if

A had a "special enough" structure it would be possible to find an error estimate

without knowing anything about A- , that is find error bounds of the second

5
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or third types above. As we shall see, this is true for some frequently used

methods employed ou classes of matrices which often arise in the solution of

problems derived from physical phenomena.

ERROR ESTIMATES OF TYPE II

We now present the error estimates of the form

Although some of these bounds were originally neither presented nor proved in this

form, for simplicity and self-consistency they will be given using the results of

the following theorem due to Weissinger(19).

Theorem I. Let 11 - il be a matrix norm consistent with the vector norm

II - II, and let x+l = MXn + k be a method derived from the nonsingular

system Ax =b. If II M < 1 then

x = lim x, and

(7) x xn < 1- ii n n-1

Proof: Since P(M) II M I < 1 the method converges to the unique solution

of AX = b. For the proof of the second statement let

e x -x, and

6n x n X n-i

Then since 6n+ - M6n and p(M) < 1, it can be easily shown that

en  ( I - M)-M6n,

and since I " II is a consistent matrix norm

II x- x nil 0 ( - M)-  II ' Ii M • II n- x -i li.

6
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-1 iO
Now again since p(M) < 1 we can expand (I - M) as 2: M , then using

i=O

M)- 1 M I

i=O 1-II HII

we have the result of the theorem.

We can see from Theorem I that if we can find an easily calculable, consis-

tent matrix norm such that I M II < 1, then we have a computable error bound.
This is in fact what has been done for the Jacobi, Gauss-Seidel, and successive

ever-relaxation methods using the three norms 11 II I 1 12' and II "I I.

We must note however that in general any or all of the above norms may give

11 I 1 > 1, precluding the use of the error bound (7), but the method may still

converge.

We now present the error bounds of Type II that have been derived. In all

that follows we assume we are solving the m-th order system Ax = b, where

A (aij) b (bi), and x = (xi), by the method xn+l = Mx n + k where

xn u (xi,(n)) and M is matrix of order m which may be one of the matrices B, LI,

or L corresponding to the Jacobi, Gauss-Seidel, or successive over-relaxation

methods respectively.

In 1929 von Mises and Pollaczek-Geiringer (1 7) proved that if

iE ai j < 1 for j = 1, ... , mi-i a ii

i~j

then an error estimate for the Jacubi method is

m m
i= xi,(n+l) -i i,(n+l) i,(n)J= 1-P i=l I

7
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Eqivalently using the terminology and the result of Theorem I we have:

If v = H B i1 < 1, then

No other results were obtained until 1942 when Collatz (5) showed that for

the Jacobi method, if

m

j=l < 1, for i=l, , m
joi aii

then Max tax
i i i,(n+l) - x  __i I<__m 'i, (n+l) -Xn

He also noted the same bound held for the Gauss-Seidel method. Again we restate

this bound in the form of Theorem I to get: If = = I1B % < 1 then

X n ~l - In~ K.
Again there was a long lapse until 1951 when Sassenfeld(ll) presented two

results for the Gauss-Seidel method, namelv,

Criterion I. Let

1 1-'1 m
a.= Y a a.+ I' a i1ai ij " j=i+] ai , i=l, , m

and a = Max a If a<l then

Max i  - xi Max I  - x ii xi,(n+l) i -- xi(,l) (n)

Criterion II. Let

l- i 1  Iaxj a 1
i = iLjl a,, Ik<i k) + j=i+l a , i1 . m

8
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and 8 = Max8.. If 5 < 1, then

Max X(n~) -x1 'i 'Mx xinl X i,(n)

We observe that Criterion I is the stronger of the two since a<8. Both of

Sassenfeld's criteria will be proven as corollaries to the following more general

theorem on the successive over-relaxation method which uses Theorem I with an

explicit representation of I (and the norm .1 • J.• Referring to (6) we can

write the successive over-relaxazion matrix J,( = (s)ij as

Sll = -(U - 1)

Slij = a-- a1j, J=2,p ... .m
all

and for i=2, , m
i -1

s =- a s ,J=l, i -1
ij aii k=l Ak kj

S a (w - 1)a i i + W F a ik 9k
i ii k=l

i-l

5.. Wj= i (aij a k kj

m
Theorem II. Let yi  I slj and y = Max Yithen if y<l, an error

estimate for the successive over-relaxation method is

Max : ly M -!-ax
i xi,(n+l) - xi I 17 I xi,(n+l) - Xi,(n)

Prr~of: We note that ¥ L Then if <1 we have

x n+ l - x ___ Xn+l - Xn1

which is the conclus-on of the theorem.

9
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Corollary I. Let

i i i i

J.1

+ W i j 1 -2, ..,

J-i+l

and 6 Max 6
jiV

If 6 < 1 then for the successive over-relaxation method, we have

i x - x 1 S M" I Xj(n.1 )

Proof: We need only to show that y <S 6. For i > 1 we can write

1 1 1 alkSkj I+ (w - 1)&ii +- W a kSkj

]alli J-1 k-1 k-3

m i-i

+ W I a k + l k

J=k+ ,ikkj

1- af JSi + I (Wi - 1LJ)a IaWj+

< 1I Iaati I + SkI (w - 1)a ( 1  I +  aIij]Saii 1W J-1 J-i+i

Now 61 = Y., hence yi < 6i and y < 6.

10
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Corollay 11 Let

V -61

1I  a= + ( -vi  
anSai,[ J-1

jm

and v - Maxv
i i

If v < I then for the successive over-relaxation method, we have

MaxIi . )-x I _ v " I .(+) -xi.(n)

i, (j1 inl ixin

Proof: This corollary obviously follows from Corollary I since v < 6.

Corollary III. Criterion I and 11 of Sassenfeld.

Proof: Let w - I in Corollaries I and II.

Dueck (6)presented the following error estimate for the Gauss-Seidel method

which is slightly better than Collatz's estimate but not as good as Sassenfeld's.

Let A2 be the upper triangular part of the Jacobi matrix B. If 11 B < 1

then
II xI-IxA 2  .IIxn+, - X <i -IIX.+l - xn I.

1- I B 1i.

Let A be the lower triangular part of B, then Dueck proved this estimate by

noting that an equivalent formulation of the Gauss-Seidel method is

x n+ - Ax = A2x n + k

11



YU)LTR 72-189

and

x -xn+ 1 =- A (x - x ,+. ) + At2('E-x.)

(I - A,) (z - Xn+ 1) - A 2(x - Xn)

= A2(Y - xn+ ) + A 2(x,+l- xn )

(I- A)(x-x -  +1 ) = A2 ( x + l - x n )
oB)1A (x x 1 ) A(x 1 - )

or x - xn+1 = ) A2 (Xn+ - Xn).

Therefore by Theorem I
x -xn~l :E A2  X'. X

i 1-I!.. 11 B-

Feldan (7)found an error estimate for the Gauss-Seidel method which is comparable

to that of Dueck. As before let A1 be the lover triangular part and let A2 be

the upper triangular part of B. LetI 11A2 :1. if ! A1 A ! #1

= A1l , A I.

ml If A2 I. if 11 A 1II . = I.

If V < I an error estimate for the Gauss-Seidel method is

i -xn II <-. J--- {Xn+l - - Xn+l - x "

Following the proof given by Feldman, we have

L1 = (I - A1 )- A2

and

It L1 II 11(I - A) A2

12
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Howver since I -Al Is lower triongular we cam write

I - - -l I- A, + * +

and

1-1

and

IL - II A, l 2 1I.

Then using Theorem I we h a Feldman's result.

Albrecht ()derived an error estimate for the successive over-relaxation method

for the Important case when A is Hermitian, positive definite, and 2-cyclic. [A is

2-cyclic if there is a permutation of its Jacobi matrix B such that

~1 ~T (A 12)

where the zero blocks are square.] We first transform the system (1) into a

similar system whose Jacobi matrix is Hermitian. As in (3) let A = D - E - F

where D is diagonal, E is lower triangular, and F is upper triangular. Let

T = D' (E + F)D- ,

a Db, and

y = Dx,

then Yn+l = Tyn + a

is the Jacobi method for the solution of

(8) (I - T)y - a

and the solution of Ax = b is x = D 2y. However T like A is Hermitian and posi-

tive definite while the Jacobi matrix B is generally not. Using the above

notation, Albrecht's error estimate for the solution to (8) by the successive

13
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over-relaxation method when A is lermitiam, ponitive definite, and 2-cyclic is

7I 7.nL - 7 112 sA Y.+I - Y. 12

where

,, 411 T I I p7 + I! y I I + 4y2r II I 1 1 ' '2 ' I12

1 - If T 112

and
1 2

y=I-- and o-- 1

Now since x - D-ly, D - diagonal (di), an error estimate for the solution cf

(9) 11 - x 112 -E F di  yn~l- yi2

The only thing remaining is to calculate I T !2but. T is Hermitian hence

11 T 112 - p(T). Varga(1 6 , section 9)gives methods for finding r(T) which are

based on the iterative scheme (2) and are thus qite easy to implement since the

same scheme is used '.o solve the set of equations.

Young (20) shows tiat in the case of 2-cyclic matrices (i.e. matrices with

Young's Property A) if the spectral radius . of the Jacobi matrix is less than

one then the optimum over-relaxation factor i is related to o by

2
1 +j 1

and t(L) = -1,

where L is the associatc4 over-relaxation matrix. Hence if P < 1 we have

0 s w < 2 and o(L) < 1. Now in our case where A is Hermitian, poitive definite,

and 2-cyclic, the over-relaxation matrix P for the system (8) is similar to the

matrix L (see (6)) for the system (1) by

P = DL D

14
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and

T -D W5D

eore p(FU! - P(LU) and P(T) - P().

Stl.rly denote the constant vector k of (2) by k1 for L and by k for P.
P

k -DL\. If as before we let

Y. - Dx

and y ". P,, + k"

then y DNxn"

Therefore by (9) an error estimate for the method xn+l - L1x n + kiIs

or a less desirable estimate is

lixi

To use Albrecht's estimate we have two alternatives. We can either solve

the system (8) for y using the error estimate (9), ard after sufficient conwer-

gence let x = D y, or we can solve the original system (1), using the error

estimate (1). The two methods are equivalent and neglecting any computational

aspects such as round-off error should give the same results. In the .-numple

at the end of this paper we decided to take the second approach only for the

reasoi that for our case it was eisier to program.

We now turn to a rather singular result by Weinberger (19) which gives an

error bound whose range is determined from a maximum principle. Specifically if

the real matrix M of the iterative method xn+l = Mxn + k is symmerric let

15
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* -z1I
a a-MI1,

6T
a-Isa

and i -I s 29,

then if POO s 1- c < I the range of possible val of II e I1

is equal to the range of

0) - 2,),, + ,(4-0), / , _ + y,
(1-) [ -B) - (0 -)

on the interval

(- )s + <

The requirement that K be symetric generally imits this result to the soition

of re l linear system by the Jacobi method

Yn+l = Tyn + a

-jerived frou the transformed system (8).

Finally Schroeder (3)used a theorem concerniug an abstract iteration process

U n+1 Zu to derive error bounds for the Jacobi and Gauss-Seidel methods which

are essentially the same as the bounds of Collatz acd Sassenfeld respectively.

COMENTS ON THE ERROR ESTINATES OF TYPE I

All of the estimates except Albrecht's and possibly Weinberger's only hold

if II MII < 1 vhere !I I is some consistent matrix norm and M is the matrix

from the iterative process Xn+I = 1'fx + k. However the condition for convergencen

is 0(H) < 1, whereas it is possible to have p(H) < 1 < I H I. We would then

have a convergent method but no usable error estimate. In particular for the

16
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boinds of vo .ises and ollowek-Geirziug, Collat, Sassemnfeld, the author's

Tbeorem II, and Duck, it is necessary that the matrix A of Ax - b be strictly

giamosi~aiak i -e.

:II I aj I < I a I •

j01

This Is unfortunate siace the matrices that are generated by many physical

problems, e.g. the numrical solution of elliptic differential equations, do not

enjoy this F-,perty.

On the other hand Albrecht's estimate for the successive over-relaxation

method relies only on the spectral radius of the matrix 14, but it requires that

A be positive definite, Hermitian, and 2-cyclic. In the example at the end of

this paper we solve a set of linear equations derived from the numerical solution
of Poisson's equation by the successive over-relaxation method. For this example

the only estimate that is applicable is Albrecht's.

I)R ESMIMMS OF TYPE III

Schroeder (15) and Albrecht ( 2 ) ,(),(4)give error estimates of Type III fo.

monotone iterative methods. A description of either monotone methods themselves

or conditions under which such a methoa will produce a monotone sequence of

vectcrs ohich conirerge to the solution of the system of linear equations is

(14)
beyond the scope of this paper. However, Schroeder gives a derivation of

C

monotone methods ap. well as sufficient conditions for the convergence of these

methods.

Given a monotone iterative method, it is usually easy to write error bounds

for this method. For example let < be the component-wise partial ordering

between vectors, x the solution vector of the set of equations, and x and y0 be

two vectors such that x °  y0 , then if the method gives successive iterates

17
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z_ <..<. X y yl<y

then an error estimate for x - zn or y - yu is

I "i - x, (a) I I I Yi, (n) - x, (n) I, for i-1, ...

This example Is not meanL to give the most general estimates for all monotone

methods. It s however representative of the type of error estimates obtainable

with these methods.

There are a few distinct disadvantages to monotone iterative methods. First,

the range of applicability of these methods is small; second, it is usually diffi-

cult to find initial values with the desired properties; and third, the iteration

itself is nore complcated, often as in the case of our example equirn to or

more sequences which converge to the solution. On the other hand, termination

criteria for such iterations are easily determined as the iterates give both

upper and lover bounds on the solution.

NUERICAL EXAMPLE--SOLUTION OF THE POISSON EQUATION

In this section we present an example of Albrecht's error estimaLe for the

solution of the set of linear equations derived from the discretized Poisson's

equation. The error estimate was programmed into the computer code MACNOL

(Marker and Cell Method of the Naval Ordnance Laboratory) which solves incom-

pressible, viscous, intilal value, fluid flow problems by the marker and cell

(10)
method. The MACNOL code is a modification of the MACYL code of Pritchett

One modification of HACYL which was incorporated into MACNOL was to reprogram the

routine which solves the discretized Poisson's equation to use the successive

over-relaxation method instead of the Gauss-Seidel method.

18
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As a note of interest we would like to report that for the sample problem

we solved, the succecsive over-relaxation method converged about 100 times faster

than the Gauss-Seidel method.

A brief derivation of the set of linear equations arising from the finite

difference solution of the Poisson equation will now be given. Using a cylindri-

cal coordinate system let r be the rAdial dimension and z be the vertical

dimension. We denote a finite difference cell by the indices i and j where i

varies with radius and j varies with height.

Figure 1 illustrates this nomenclature:

Ari - radial dimension of cell i,j

Az = vertical dimension of cell i,j
j

ri - distance from axis to center of cell i,j

z = distance from bottom of mesh to center of cell ij
i

ri - distance from axis to inner boundary of cell i,j

zr_ a distance from axis to outer boundary of cell iJ

z + - distance from bottom of mesh to lower boundary of cell i,j

-+1 distance from bottom of mesh to upper boundary of cell i,j

Ar,_1  - ri - ri

Ari+- ii~

Azj- = z - z_

zj P2 MZJ+ l - z

Figure 2 illustrates the computing mesh. Rows 1 and N and columns 1 and M

are physically fictitious. They are used for convenience in representing the

19
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governing finite difference equations. The domain of the problem need not be

defined on each cell of the mesh; by suitable flagging we can represent free

surfaces. Figure 3 gives an example of such cell flagging. The computation is

only done in full (F) cells; the boundary conditions are applied on the surface

(S) cells as well as the axis, wall, floor, and ceiling. The empty (E) cells are

only used 4 the calculation to specify boundary conditions. Let * denote the

ratio of pressure to constant density and let g be the acceleration due to

gravity. We wish to solve the Poisson equation in cylindrical coordinates

2 2z
a20 + 2A = R~rz)

2 r Br 1 2
3r Oz

with the mixed Neumann-Dirichlet boundary conditions

t= 0 on the axisar

w(z) on the wall

Dr

2z0= g on the floor and ceiling

and * is prescribed on the surface,

where R(r,z) and w(z) are known. Let 0 be defined at cell centers. The MACNOL

code solves the following discretized form of the above problem for €

(12) +rI ri+ 2 € r)+ - (€i i )]

Ari rl1 ij -i+l,j Ar ,j i-li

+ Azj j ¢i,j ij+l )+ j i -i,j-] 
= -Ri,

22
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with the boundary conditions

Nj " )4-lJ + 8T.-1/ 2 vJ

(13) Ot,1 # 1,2 - I't312'

#I's # 1,N-1 * ON-1/2

and 41,J is given if iJ is a surface cell, and where I j and vj are regarded

as known.

ihere applicable substitute the boundary conditions (13) into the equations

(12). The result is a set of linear equations In the unknowns $1," where ij

ranges over the set of full cells. Denote this set of equations by DPE

(Discretized Poisson's Equation). If the set of equations DPE Is naturally

ordered, i.e. ordered by the rows or columns of the finite difference mesh, then

Its matrix A is symmetric, positive aefinite, and 2-cyclic. The matrix A Is not,

however, strictly diagonally dominant, although it is irreducible and

m ; I a" j I : < iii, m-, .. ,

with inequality for at least one i. That is, A is irreducibly diagonally

dominant.

To check the usefulness of Albrecht's estimates for use in the MACNOL

code, we programmed four similar sample problems whose solutions are known

exactly. The four problems are broken down into two sets of two problems

each. The first problem in each set uses an unevenly spaced mesh, the

second ubes an evenly spaced mesh. The first set of problems is simply

24



o,, 72-189

water standing still In a cylindrical tank. For the second set of przblem, in

order to test the error estiates on a non-ectuular mesh, me Introduced the

artificial problen of an az-smetr:c undeter cavity bose surface was at

hydrostatic pressure. The solution to aU1 of these problem Is stlply hydrostatic

pressure.

ro reiterate, Problem 1 uses an unevenly spaced rectangular mesh; Problem

2 .:ses an evenly spaced rectangular mesh; Problem 3 uses an unevenly spaced

non-rectangular mesh; and Problem 4 uses an evenly spaced non-rectangular mash.

All four problems use a mesh of dime uion 56 In the radial directikm and

122 in the vertical direction. When the mesh is evenly spaced

Ar - Az - .5.

For the unevenly spaced problems Ar and Azj are given in Table 1. Figure 4

shows the cell flagging for Problem 1 and 2, and Figure 5 shows the cell

flagging for Problems 3 and 4.

The error estimates g.:ven are (10) and (11) of Albrecht. Let D be the

diagonal of DPE then from (10) we have

(14) !1 *n+l - # 112 f a 11 D1/2 (t-1 - n ''2

where a - f -1/2 112

and from (11)

(15) i l , - * ''2 B !! ,+i -n !2

where 8 X1 D-1/ 12 11 D1/2 112

We also Investigated the possibility of using

0 (L )
(16) 11 ,n+1 - '11'2 ti ''I 1 - n 112 1 1 '0 1 - . 112

1 -o(TL )

25



** so .la . . .. . .Z. . .. . v0~*~ ___a . .-a..ZdI.. m

GOm.. o . . . . .. w.ee.

4L

* 00

* 4 4
*- N ce e c..cff f cfe cur c-orC e ccwe cc cclt %.ClCCC. Ccc.,.cm cc-c wee ce-c ge* LA t

£~~~~~~~~~~~~ PIQ@ Cut 'a 9w..ws0ee .~*99.C.4eee~m4

mc... ~ ~ ~ ~ ~ i, tmet~eeeee ttt.mtc -i~mw~nm~t titw
- *e49.e~eegae~'Ae"orewVeeeeVeeee99eIe999e VC9CC999990 e e

0t f 0

of 4c e c e !ttt:Zftft 4% It Alt 4%totwr Icc

~ccc- cccc ewvqa a~a---26



N01. 72-13

* 0 e C ..........

- .,,44**g* S6W .54 S*34 4** *S4.*44464 .. ......... g

--:::::: ... °,::::::::;: °°.... :::: ....... ,.-°°..

-. *ee:ege e..... .:.° ...... e . eIe.e. I . ... .. II.

= ......... ::g e;ff ........ ............

PG ......... eegeee:ee.Cgee,-eeeeeeeeeeu:e:eee... *powe..

a. *e : .... eee.:::: ....................,We~e~eegee,*g. .

"" *eeeeeee .... e::eee ........feeeee .ee;eeee:gaee:eg°..

- :*eeeeeee- e ;e :: ...... ... .. ,., e.. ,,.,., eeeee .eu,.eaeee. ..

.,ee."ee.Cee .. :eeeee..ee: ee :ee ;" eeeee.. ..ee....., . :

... .. :: ;, -° :ffw :w:v

• ............

eieeeee!eeee'e!eeeeeeeeeee~eeee:e.Ceeeeeeeeeee:!eee!f e.

- *eei neeeeeeiee~eeegeeefeeeee~eeeee eI Ie e IeIeIeIeIeI

-[ *,U!efle,*CCFie,,CCCCee CC*B 1eC tC W ! e , e 0 1 1

- .eeee iieeee eese eieee eeeeee eei ee eeeee eegee eeeIf

3 e e e ,,, ee,,

FIG. 4 CELL FLAGGING FOR PROBLEMS1I AND 2

27



* ... .... ........... ....................... .

.... g....gg .Sg
g s.....g.ggg~es....

*eegogeoeoeCCCog..*eeflgeeg g oeo e oe..g ~e g...e e.........eeeeeoougegeeeeeeeeeeoff~gepeegeggefgggeeeeeewgegeg

~ *ee.e~eeggg..eggeg~eep..........geg~~g.g

W .......... .............................. 9 c w

p *,g~egg~'Eegeegggge~eWDU~eg~ge...e........g..

a,.. . .. ..e ew e ee.....ige e ee e ee . .. .... few:::: ....

a, .V.UeggC... ff" . ...ege.e..... e.eeg UCe

.4~~~~~~~~~'' ..ggCCe~gUCeC~iUeeg..D.ggef~e

-~~~~~f.''' *g ee eCgg.g .e....~~Cegee.eeeDe

.......ggegeeeggg...... ~ eeee..gge 9 001

-~~~~~~~ .ge .ge. . . . . gegg .gg . .eeeg, .

oo •~3 'q e ool I.:o#

FIG. 5 CEL FLAGGING FND 4

- -eeeegeeffeeCCegeCIgege..eeggIgIe..geeg..tggg28

0 :::e Wg:::: 99 ~g.. eec....e::.gee.:...gee erii::: ie :gee...

O "Ue:g:iegeigiiegg::::iege:::igei!egeCigCii:::f:i::::ei9
a :*.e!eCCiee iegge.Cgeeegg!gegtrggeieegeegggc egeegegege

-[ *geggeegge,,,eeggggeegggggeIeeegggeeegewvggeegg"eIgeee*
S. ":CCFieCCieCCie:ee:eFCeCC:eC:eieieU:,C*SCSCCi~eC.C~eg

* *eeeeeeiegcieecigefl!!geeieegeceggrlieeggeceeeeee. *r,

* *~ggggeFIgG. ELL FLGeeegtcGING FOR PROBLEMS 3 AND

- gc~gg~e~g~ee*Ce~eeee~ece..gcge.g2ee8



m 72-10

=, - r timete. The rftu -dh i ade of (16) Is ot a enwd scae

for my trI sow II L I w hae

- 0%c) 1 - !1 L, !1

lbr al prbo we hare the folloUwb data:

K - rmUdia desiaon of nesh - 56

N - vertical dtiesmon of mesh - 122

J - indez of borilsa layer of surface cells =120

14
w1j  -0
v.-O

* 14 - knowe true solution - -g(zj - z)

:t~j0tj - initial guess - 0

Table 2 gives the associated parameters needed to calculate the errer esti-

mates for Problems 1,2,3 and 4. Tables 3 and 4 give Albrecht's two error esti-

ates from equations (10) or (14), and (11) or (15), Tables 3 and 4 also give

the spectral error estimate from equx.tion (16) as well as the true error

14- For comparison all parameters are normalized by 11- Il 2 "

CONCLUSION

From Tables 3 and 4 we see that :or the unevenly spaced nrobdems, Albrecht's

bounds are over-estimates by more that five significant digits, and that for the

evenly spaced nroblems they are over-estimates by about three significant digits.

his due to the fact that, as show in Table 2, I) -112!2 is large for theThis i u otefc ht sso nTbe2 1) 2i ag o h

unevenly spaced problems. Hovevcr, even for the evenllv snaced problems, Albrecht's

error bounds are ove.rly essim.nstic and thus cowutattonally unusable.
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rublem

Frmter

1 2 3 4

p(1) ." 49 .9999 .999949 .9"964

(2) 1.90 1.967 1.980 1.968

CL.) (3% .987 .9W0 .968

(4) 9.60 3+3 2.53 -4 9.60 E+3 3.66 E+3

1lD -121:2(5) 16. .354 14. .354

In1l2 (5) 4.00 4.00 3.16 4.00

1.60 E46 8.96 -3 1.80 46 5.20 E+3

a (7) 7.21 E6 3.58 E+4 5.70 E46 5.20 E+3

a (8) 49.0 75.9 49.0 30.3

(1) Spectral radius of associated Jacobi Matrix

(2) Optimum over-relaxation factor

(3) Spectral radius of over-relazation matrix

(4) Constant trom (10) and (11) for Albrecht's error estimate

(5) D is the diagonal of L.

(6) Constant from (10) and (11) where a - JID- 1 1 2 j 12

(7) Constant from (10) and (11) where B - axjD1 12 I12

(8) 6 - p(L,, )/(1-p(L)) for spectral error estimate (16)

Table 2 Parameters Needed to Calculate Error "stimates

30



L11 72-189

a I1%1'12 ( ) 11#U-4112/11#,112 Olli 12(2) _I ID112%e112 (3) 611 e!l12 (4)

50 4.70 5-2 1.38 3.39 45 2.01 51-5 2.30

100 6.29 Fd-3 1.27 E-1 4.54 E+4 2.92 5.4 3.08 E-1

1.50 2.44 E-3 2.98 E-2 1.76 V+4 1.04 B3-4 1.20 9-1

200 8.20 E-4 1.92 E-2 5.92 kL3 2.93 1+3 4.02 3-2

250 2.20 E-4 6.80 3-3 1.58 43 9.68 £'2 1.08 E-2

3W0 1.38 E-4 4.35 E-3 9.99 Z2 5.47 E2 6.78 9-3

350 5.17 E-5 9.88 E-4 3.73 Z+2 2.53 E+2 2.53 E-3

400 2.03 E-5 1.66 E-4 1.46 E+2 9.24 l41 9.94 -4

Problem 1 - Unevenly Spaced Rectangular Mesh

()(3) 11,i2(4)
n 1liEl12 (1) 11l#.-#1121111l 2 O11%ul12 (2  -11 D1:'%n11 2 61e 2

50 2.6) 2-2 1.78 9.62 E+2 9.59 E+2 2.12

100 7.87 E-3 3.58 E-1 2.82 E+2 2.81 E+2 6.22 E-1

150 3.27 E-3 4.69 E-2 1.17 E+2 1.16 E+2 2.53 E-1

200 5.93 E-4 5.45 E-2 2.12 E+1 2.11 E+1 4.68 E-2

250 4.27 E-4 4.66 E-2 1.53 E+1 1.52 E+l 3.37 E-2

300 4.77 E-4 2.63 E-2 1.71 E+I 1.70 E+1 3.76 E-2

350 3.36 E-4 6.63 E-3 1.21 -+1 1.20 Z+1 2.66 E-2

400 8.75 E-5 2.22 E-3 3.14 3.12 6.91 E-3

Problem 2 -- Evenly Spaced Rectangular Mesh

(1) To normalize results let en = (n-fnl)/II nnH2

(2) Albrecht's error estimates from equations (11) and (15)
(3) Albrecht's error ectimates from equations (10) and (14)

(4) Spectral error from equation (16) letting 6 = p(IL)/(l-p(L ))

Table 3 Errors for 7roblems 1 and 2

31



NOLTi 72-189

" 11e,112'1'11#,,-411211#',112 011% 112 12 '11I112e,,l112. 1-) 6 1en12 4

50 1.58 E,-2 3.80 E-1 8.20 E+1 8.14 E+1 4.70 E-1

100 3.83 3-3 2.42 E-2 1.99 E+1 1.98 E+1 1.14 E-1

150 5.94 E-4 1.40 E-2 3.,9 3.06 1.77 E-2

200 1.22 E-4 1.24 E-3 6.33 E-1 6.29 E-1 3.63 E-3

250 4.38 E-5 4.40 E-4 2.28 E-1 2.26 Z-1 1.30 E-3

300 5.56 E-6 3.57 E-5 2.89 E-2 2.86 E-2 1.65 E-4

350 1.15 E-6 1.90 E-5 5.97 E-3 5.85 E-3 4.42 E-5

400 2.11 E-7 1.76 E-6 1.09 E-3 1.09 E-3 6.28 E-6

Problem 4 -- Evenly Spaced Non-rectangular Mesh

12(31 61l]!1f

n Ien1I2(l)11#n712/I1#n12 BIlenhI2(2) DI/2en 11 2 .nI2

50 4.36 E-2 1.04 2.49 E+5 1.90 E+5 2.14

100 5.83 E-3 9.40 E-2 3.32 E+4 2.68 E+4 2.85 E-1

150 2.41 E-3 1.53 E-2 1.37 E+4 1.02 E+4 1.18 B-1

200 9.03 E-4 1.78 E-2 5.16 E+3 3.59 E+3 4.43 E-2

250 2.79 E-4 5.55 E-3 1.59 E+3 1.32 E+3 1.37 E-2

300 1.51 E-4 3.53 E-3 8.65 E+2 6.38 E+2 7.43 E-3

350 4.99 E-5 5.20 E-4 2.85 E+2 2.42 E+2 2.45 E-3

400 2.15 E-5 1.26 E-4 1.23 E+2 9.89 E+1 1.05 E-3

Problem 3 -- Unevenly Spaced Non-rectangular Mesh

(1) To normalize results let en - (fu-fu-l)/* U11 2

(2) Albrecht's error estimates from equations (11) and (15)
(3) Albrecht's error estimates from equations (10) and (14)
(4) Spectral error from equation (16) letting 6 - p(L)/(I-P(L,))

Table 4 Errors for Problems 3 and 4
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A surprising computational result is that the spectral estimate is very good

for all of the sample problems. We have hence decided to implement this much

more practical but less desirable spectral error estimate (16) into the MACNOL

computer program.
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