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ABSTRACT

Thi~ paper presents theoretical work which should lead fairly directly
to analytical tools which can materially reduce the cost of transferring pro-
grams fréfm one compuier system to another. Past work has indicated that
program ‘ransferability is a muiltifaceted proble: fequiring different solutions
for différent situations. This paper concentrates on one such facet; namely,
access to data stored on non-random access devices such as tape and
‘mmoving head disk. The paper asserts that programs fail to be transferable in
par;"}because they either underspecify or overspecify their data processing
requirements. A unified, general description of data files and data access
methods, called the data access representation, is developed which, it is
asserted, is detailed enough to allow efficient us2 of complex 1/0 devices
yet simple enough to make possible the development of analytical lools to
study and modify programs using the data access representation. As an
example of such a tool, an algorithm is developed which will a.*er a program
to compensate for any of a class of data iile structure transfor :ations similar
to those required to transfer a data file from one 1/0O devic. :3 »nother. The
data management routines of three important operating systeni» ¢ then
considered: IBM 08/360, CDC SCOPE, and HONEYWELL G« 5. Each is
described in detail in terms of the data access representatin,
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EVALUATION -

Contrart F30602-71-C-0310, Envirohment for Traneferab111ty, was under-
taken to 1nvest:aate the p0551b1!1tv of finimizing the propagation of hard-
ware intélligence into. 1ntell*oonce app]Icat1on programs operating on them,

Currently; Data Manaaement Sys»em~ are not ‘transferablie amona machines of
different manufacturer's computer systems in spltp of being -programmed in the
sanie lanquage:

Systems of the size and complexity needed to provide adequate support to
intelligence functions must be tailored to the capabilities of a specific
manufactuvér's, hardware. When-the users of these computer systems -(hardware/
software) are forced to chanqe to a different computing environment, suppiied
By a different. manufacturer;. they must redesign all their application programs.
This is verv expensive. }

In an attemot to rectify this condition (Ref RADC TOP 4) RADC decided to
conduct an investigation of the charecteristics of the data access techniques
used with -different comnputer manufacturers. The invectiqation included a
detailed examination of the different data management systems and resul’éd._in
the deveéiopment of an algovithm which can be used to alter a program to com-
pensate for a class of data file structure transformations similar to those
required to transfer a data file from one I/0 device to another.

The effort provides the necessarv tocls to support the desiagn, development/
modification, -and impiementation of transnareat comnuter software for use
within the intelligence community.:

/\
ity ;¢57;}7C42§*3f:/

LS A, MCHEELY

C:;/*ﬂcgect Engineer
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1. , PROGRAM TRANSFERABILITY - A REVIEW

It is appropriate to begir-this paper with a review of our previous
work, -‘which. constitutes the foundation of our current effort. Thé first point
to note is our definition of the program transferability problem. 1In order-to.
reduce an amorphous; probably unsolvable problem to manageable proportions

we imposed sevéral conditions:

° We are concerned with. the transier of large programs --
written in:a high level languags; cousisting of many pieces
interconnected in a more or less complidated way; interacting

with secondary storage.

9 Although the difficulties associated with standardizatio..
are real - and we will, in fact, introduce new suggestions
for standardization (at least functionally) - these difficulties
are mainly administrative, not technical, and will not concern

us here.

e We restrict the computing milieux among which transferability
is feasible to machines >f similar design and similar capacity
-- that is, "FORTRAN machines" with comparable memory
sizes, We will consider transferability between a 360/65
and an 1108, but not between a PDF -8 and a 6600.

° We regard the transferability problem as solved when a
program running with acceptable efficiency on one machine
can be moved, at acceptable zost, to another machine on
which it again runs with acceptable efficiency. This view-

point implies that such a sclution will not allow the "last




inch” of opérating,*efficiency to-be obtained in a program
‘that is to be trafisferable. We accept this loss of efficiency
as the price we pay for moderate transferability.costs. As

in so many-other aréas of computer :scienc;é, this position is

a balance: between-two-competing :demands..

We shall see in the sequel why we intrcduced these restrictions, but let us

leave them now.,

We régard a program as Gonsisting of three parts

] Algorithm - the core of a program is the algorithm which is
to be implemented. The point of the third restriction above
is that the algorithm implemented is sensitive to computer
design and capacity. One would use different sorting
algorithms on a PDP-8 and an ILLIAC IV. In order to have
any basis at all for accomplishing transferability, we had to
have a constant, and we chose it to be the algorithm designead
1o solve a proklem rather than the problem itself. The algo~
rithm is conventionally described in a hign level (algebraic)
language - e.g., FORTRAN, ALGOL -~ and we repeat that we
will not consider the very real problems of standardization of

such languages.

® Program assembly -~ large programs are commonly written in
pieces which have to be assembled into running modules.
The pieces can be code or data and can be related as sub-
routines, coroutines, overlays, job steps, etc. We call the

process >f gluing these pieces together program assembly
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. File structures - the programs we are concermed with
interact with secordary storage They are sufficiently
large and complex that all code and data cannot be core
contained, and hence they require a file structure to

manipulate objects in secondary storage.

Now, perhaps the most transferable program is a simple FORTRAN main pro-
gram without subprogram calls and without I/O. This suggests that the dif-
ficult transferability problems lie in the areas of program assembly and file
structures. We first note that these two troublesome program parts interact
more with operating system than hardware features -- e.g., with loaders
and file handlers rather than with arithmetic units and memory address regis-
ters. This implies that functional standardization of at least some operating

system features might be necessary to effect program transferability.

High level programming langu 'ges provide an effective means of
describing an algorithm (and, hence, standardizution of these languages
could be expected to sclve the transferability problem for at least this portion
of a program). When we consider program assembly and file structures the
problem is not so simple. We dc nct have high level problem-oriented
languages for describing these paits of programs. The languages (e.g., JCL)
provided not only must describe the logical (problem-oriented, algorithm-
determined) characteristics of the desired program assembly ard file struc-
tures, they must also describe, and be couched in terms of, the physical
(machine-oriented) mapping of these program parts into the operating system
hardware complex. This mapping is a series of calls on operating system
and hardware capabilities. This dual nature of the languages describingvro-
gram assembly and file structures lies, we believe, at the heart of the

transferability problem, When a programmer describes these program parts

(8%
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he serves two masters - one, the algorithm he is implementing (and, ulti-
mately, the problem he is solving) and, two, the hardware-operating system
on which he is implementing the algorithm. Unfortunately, he has only one
language to serve these rwo purposes. He must describe both the logical

structure and its mapping to physical realization with only one tool.

Now the portion of this description which is algorithm dependent is
transferable, but the remaining, machine~-deperdent, part is certainly .iot.
Suppose a programmer could write his entire program - algorithm, program
assembly, and file structures - in two colors, so that the statements in
black are algorithm dependent and hence transferable, but the statements in
red describe the mapping of the algorithm dependent parts into a particular
machine. Then transferable programming would consist of describing a
problem solution in black and supplying adaitional red statements for every

computer facility on which one wished to realize that problem solution,

Unfortunately, programmers do not have two colors available tc write
in. We believe that the present difficulty with transferring programs arises
because of this. Present facilities submerge the algorithm~dependent portions
of a program in a mass of mapping description. It is necessary to work back-
ward from the realization of an algorithm to reobta:in the logical structure of
the algorithm, program assembly, and file structures. Our proposal to solve
the transferability problem is to provide separate means of describing ti:e

algorithm- dependent and machine-dependent portions of a program.

Let us now examine the current situation in terms c¢f the availability

of black and red languages.




Algorithme - high level algebraic langiages provide
suitable black languages. Red languages, which wouid
describe the inapping from 2 black laaguage to machine
language are not necessary because we already have
software (compilers and interpreters) which perform this

mapping.

Program assembly - it is possible to describe a (hopefully)
sufficient black language in terms of the various possible
logical relationships (subroutine, coroutine, etc.) among
nrogram pleces. A suitable red language would describe the
physical relationship (overlays, etc.) among these same

pieces, The problem is more fully discussed in the "Handbook

on File Structuring" and "The Representation of Algorithms".

File structures - this problem is somewhat mcre difficult,

if only because of the great diversity of secondary storage
devices. Our current effort is centered around obtaining
functional descriptions of meta~devices which are sufficiently
general that they provide a framework in which logical file
descriptions can be made. This would constitute a black
language. In addition, these functional descriptions must

be clearly mappable intc a large range of physical devices.
Such a mapping would constitute a red language. The
remainder of this paper will descrihe our efforts to obtain

such descriptions.
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2. ON THE NEED FOR DEVICE-DEPENDENT CODE

One of thz most direct ways of ensuring "transferability" of a user
program i{s to write it .o 2 device~independent environment. The operating
system then contains mapping software which will support this general
2nvironment on any of a range of specific machine configurations. This user
program may then be transferred without change between anv two machine
coniigurations within the range of the mapping software of the operating

system.

This method has been used with success for efficient random-access
storage devices such as fixed-head disk and drum. The device-independent
environment includes a virtual memory space within which the user program
may directly store and access the data it uses. This virtual memory space is
pariitioned by the operating system into pages or segments, which are mappec
onto blocks of memory on the random access devices, A reference to a
particular location in virtua®' memory is mapped automatically into a 1eerence

to the corresponding block of memory on the random access device.

In order to efficiently use a virtual memory environment tha user
program must organize its virtual memory accesses to minimize the size of,
and number of changes to, th¢ working set of device memory blocks.
Techniques for accomplishing this are fairly well understood and are fairly
independent of the specific devices upon which the virtual memory is mapped.
Thus a program written for such a system will be truly transferable as we
have defined the term; the program will be reasonably efficient in its origir .
form, will require practically nc reprogramming for a new computer config-

uration, and wi!l run reasonablv efficiently on the new configuration,




* e

Random access devices, however, are not suitable for all types of
secondary storage. To provide fast access to any point in memory no
matter what point was accessed pefore requires complex and expensive
equipment. For example, the cost of 256K of fixed head disk memory for a
PDP-11/20 computer with 8K of core is roughly equal to the cost of the rest

of the system.

Th -e is another class of storage devices, however, which offers
greatly reduced cost per word of memcry but which allows efficiant access to
that memory only in certain sequences. We shall call these devices moving
head devices. The most common examples are tape, moving head disk, and
data cell. These devices are especially useful when there is a large amount
of data which is accessed in some particular sequence, for instance, while

sorting date or while updating an information data base.

Data stored on such a device can be thought of as having two
simultaneous structures, physical structure and access structure. The
physical structure is engendered by the fact that the data is stored on a
physical object, and thus a word can be said to have a definite position in
real space at any given time. Thus a particular word of data may be thought
of for instance, as the 3rd word of the 5th track of the 2nd cylinder of the
disk pack A0001. As we shall see in part 3 of this paper, the physical
structure representation of data is not only highly sensitive to alterations in
machine environment but also not really satisfactory as a data representation

even within one environment.

Data stored or. a moving head device is also structured by the set of
head positioning commands allowable on that device. We call this the access
structure of the data. ' This structure is of greater use to the programmer, as

it contains explicitly the information ha nceds to effectively access data in

~}
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some particular sequence. It is the access structure of data which forms
the bas.s for data management systems such as the IBM 0S/360 data access
imethods. Data on tape is "sequential" not because words appear sequen-
tially on the oxide layer of the tape but because the tape head passes over
these ‘words in one particular sequence when the tape drive is instructed to
read cr write forward., We shall discuss this in more detail in part 4 of this

paper.

The access structure of data wormes, then, partly from the physical
arrangement of data words on a storage volume and partly from the se’ of
possible sequences in which these words may be accessed by the devic=
upor. which the volume is mounted. Thus, for instance, a tape mounted on
a tape drive which reads or writes forward and backward has a radically
different access structure tnan the same tape mounted on a tape drive that

reads and writes only forward,

Can one solve the problem of transferability for movirg head devices
by de reloping a completely machine independent programming environment,
as has been done successfully for random access devices? We feel not, at
least for the near future. It is, to be sure, fairly easy to map a particular
physical structure representation of some data on one device onto an
"equivalent" physical structure representation on some other device. If
these two devices have different access capabilities, however, the access
structures of these two "equivalent" data representations may differ

significantly.

A tape 1ewind may take several seconds; a disk head <eck may take
several hundied millise .nds; a typizal CPU instruction, however, takes
orly a few micro-seconds, This great disparity in speed between the

algorithmic and data access parts of a pregram using moving head devices
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usually implies *hat data access efficiancy rather than computational
efficiency determines the overall program efficiency. In other words, using
an algorithm which "wastes® several hundred CPU instructions in order tc

save one disk head seek or tape rewind is usually a very good trade-off.

We must always keep in mind that the ultimate purpose of a user
program is to solve some problem for that user. The algorithmiz, program
assembly, and data access parts of a program are simply means to that end.
This is why we include in the cost of trar.sferability of a user program not
only the cost of alteration but also the cost of using a suboptimal problem

solution.

It may eventually become possible for a user merely to state the
problem he wishes solved. System software will select an algorithm and
data access scheme suitable for the particular machine environment that

obtains. These problem statements will be truly machine independent,

Such a system does not appear feasible in the near future, at least
for data management problems. Until it does become feasible it is futile to
attempt to solve the problem of transferability for moving head devices by
creating machine independent languages. Rather, we should strive to reduce
the machine dependence of the languages to that minimum necessary to
utilize the special characteristics of a given environment, We must then
develop analytical touls to reduce as mﬁch as possible the cost of altering

this machine dependent code when the program is to be iransferred to a

different machine environment. We begin to do this in part 5 of this paper.




3. PHYSICAL REPRESENTATION

It is possible to represent access to secondary storage by describing
in detail the physical layout of the storage volume and the mechanical actions
of the I-O device upon which the volume resides. We shall call this the

physical representation of secondary storage access.

3.1 Yolume

A volume 15 some physical entity such as a tape or a disk which is
capable of storing data. We shall assume thai this data s broken up into
units, all of the same size, which we shall call words. We shall further
assume that each word has a precise and unchanging posicion on the volume
and that eny control datum, such as an interrecord gap on tape, consists of
some integral number of words. These assumptions aren't always true, as

we sh=ll explain later,

3.2 Device

The volume is placed on some machine called an I-O device. All I-D
devices commonly used for secondary siorage are basically similar and may all

ba described reasonably well by the following model,

There are two parts to the mode! device, a volume positioner and a
read-write head. The volume positioner orients the volume so that the read-
write head is always "at" exactly one word. The head may be given a com-
mand to read or write the word it is currently at, or both. Associated with
the word, however, is an access protection attribute which may make reading
or writing (or both) of that word illegal. The veclume positioner may be given
one of a set of commands. Any of these commands will cause the positioner

to move the volume so that the head is over annther word. The current head




position and the command name determine exactly which werd is selected.
The time required to move the volume is also determined by these two

parameters.

The fact that the pair (current head position, position command)
defines a unijue next word implies that the device has no memory of its
past actions. This is an important simplification, one that we would like to

retain if at all possible. It is in the main true, but there are exceptions.

3.3 Graphical Representation

We may express this rodel graphically. We shall denote a word by

®

w

where n 1is the name of the word, and w its contents. If the word is read-

only we denote it by

r)

W

and if it is write-only by

@

w

if it is not readable or writable we denote it as

()
\ U or gimply @

11




For every volume positioning command that is legal for a given word
we draw an arc from that ward to the word sele«ted by that command., We

label the arc with the name of the command it represents.

/z@
i [

Once we have included all the words on the volume and have drawn
for each all legal command arcs we have: a graph which represents the model.
We shail often call the words ncdes. We shall at times call the wor'
currently under the read-write head the state. We represent this staie by a
token, which is 'on" exactly cne node at any given time. We call the graph

the volume access graph.

Let us now state some properties of a volume access graph. First the
graph is an s-graph; that is, there may be more than one arc fromn a given
node to a given other node. This corresponds to the possibility that when
the head is 3t certain words o:n the volume two or more commands may have
the same effect. Second, the number of arcs emanating from a given node
1s bounded by the number of commands recognized by the device, Tor all
devices currently used this bound is finite. Third, the number of nodes is
finite. This corresponds to the fact ‘hat each node represents a unique area

on a volume of finite physical dimensions. Pronert:=s two and three together
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guarantee that the graph is finite. TFourth, there is at most one arc with any
given label emanating from any given node. This corresoonds to the fact

that the device operates deterministically.

The fifth, and most interesting, property is that this graph is
»crongly connected for almost all volumes of interest. We shall show that if
a volume graph is not strongly connected then it represents only a part of a

complete process of information storage and reirieval. We make two

assumptions:
1. Let G he the set of all aodes in the velume graph. There is
a nonempty set S & G of nodes called starting states for
which
¥n « S then
vri ¢ G g apath p: nam
2. Forevery m ¢ G, ® apath g and a node £¢ S such that
q: mas g

From these two assumptions it is easy to prove strong connectedness.

We must prove that

vm,neG thereisapath p: man

By assumption two, there is a path qlz m« ¢.forsome g¢S . By
assumption one, there {s a path qzz ¢=»n , Butthen the path 41 ¢ M AN

and thus p=q2q1 . q.e.qd,

Let us examine the motivation for these assumptions. Assumption

one implies that it ic possible to initialize the volume and the device such

12




that all parts of the volume can be accessed, no matter what the past
kistory of this volume has been. If the ussumption one were not true, then
it would be pnssible to make varts of a volume permanently inaccessible on
that device. Assumption two implies that it is always possible to re-

initialize the voiume. Let us consider sever:1 important devices:

1. fape

S contains the first word on the tap=s. Assumption two can
be met by rewinding the tape. Assumption one is met by

loading the tape.

2, Disk

Here S = G and the spinning of the disk satisfies both

assumptions.

3. Card punch

A card punch does not necessarily meet assumption two.
If the punch does not accept already puached cards in its
input hopper then it will not be ;oss5°hie to reinitialize a

partially punched deck of cards.

Assumptions one and two were created on the premise that data which
is read must first be written and data which is written will presumably
eventually be read. The reason card nunches and line printers fail to meet
these assumptions is that the subsequent readings are performed by different
devices, namely card readers and humans, respectively. Obviousiy, a
human will access a printout differently than a line printer, and the processes
must be described by different graphs. We will call any device which

produces a graph which {s not strongly connected an incompiete device. It
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should be stressed that incomplete devices are inherently less flexible than
complete ones. We shall be able to describe accurately the use of an
incomplete device, but we shall not be able to use some of the transforma~

tions and simpiifications that we shall derive for complete devices.

3.4 Tape: An Example of a Physical Representation

While we won't attemp* here to compietely describe a real tape
machine, we will concoct a simplified "tape"” machine which still contains

some of the interzsting features of a real one.

Cur tape has 571 words on it. Each word may contain an integer
with absolute value less than 215, or one of the special codes <RG >,
<BT>, and <ETs. The first word on the tape contairs <«<BT > and is
read-only. The 571-5-t word contains <ET » and is also read-only. The rest
of the tape contains data and record gaps. A record gap consists of at least
4 words in succession all contairing <«RG > . The physical volume graph is

as follows:

<BT> <ET>

AY

15




Our three volume positioning commands are then F, B, and R
standing for space forward, space backward, and rewind, respectively. A

volume positioning command is of the form

MOVEH ¢

where q=F, B, orR

The current word may be accessed by three different commands:

1. READW

2. WRITEW

3, ON NODE (C1, C2, ..., CN) GO TO (S1, S2, ..., SN)
where

Ci (1<1i<¢ N) canbe DATA, <RG>, <BT >, <ET>
Ci # Cj for i#}
St (1< 1 < N) is a statement label

READW cause~ the current word to be read and its contents placed in some
data transfer register. WRITEW causes the contents of some data transfer
register to be written into the current word. ON NODE causes the program to

branch to statement Si if the current word is of type Ci .

We now have a representation of a tape and a tape drive, and a
notation which allows us to write programs for them. Unfortunately, the
atomic operations F, B, and R are simply not realizable on a standard tape
drive. A tape drive takes some time to start and stop a tape, and during
this time more than one word will pass by the read-write head. Consequently,
the simplest tape commands generally deal with entire records. The set of

tape record commands do not strongly conaect the data graph.
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As an example of a real tape drive command let us represent
READER. READER assumes that the tape is stopped with the head in the
interrecord gap. The tape is staried and twc words pass by the head before
the tape reaches speed. READER then ignores any further <RG > words.
When it encounters DATA words it reads them. After reading at least one
DATA word, it begins checking for an <RG » word. When it encounters one
it stops reading and halts the tape. As the tape slows down, e word passes

by the head. We may express READER as follows:

MOVEH F
S2 MOVEH F

ON NODE (DATA, <RG ) GOTO (S1, S2)
S1 READW

MOVEH F

ON NODE ( <RG >, DATA) GOTO (S3, S1)
S3 MOVEH F

By describing tape operations in such minute detail, we have
introduced another problem. At the READER level the tape drive always
performs consistently. At the F, B, and R level it does not. All interrecord
gaps are not exactly the same size, nor are they generally exactly an integral
multiple of data words in width. The drive does not stop a moving tape ia
some precise distance, it only stops it within some range of distances. Thus
our graph represents a much neater and more consistent situation than really

obteins.
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4. DATA ACCESS REPRESENTATION

4.1 Level of Detail

The physical volume representation, while it has many attractive
features, is not suitable as a language for expressing considerations of
transferability. Its principal inadequa~y is that it expresses seccendary
storage operations in excessive detail. Thus instead of {liuminating the
important characteristics of a data volume, it cbscures them in a mass of
irrelevant detail. We were forced to go to this level of detail by two restric-

tions:

1. We required thac each node in the volume access graph

correspond to a precise physical position on the volume.

2. We required that the access graph state always correspond to

the precise position of the physical read-write head.

If a user program is to interiace directly with an I-O device without
any intervening software then these restrictions are necessary. It is generally
accepted, however, that a program which contains machine-level instructions
for an I-C device is seldom transferable. We shall always assume that
transferable programs communicate with secondary storage through some
standardized data management routines. These routines nide minor differences
between similar devices and insulate the user program from real-time con-

straints imposed by mach.ne dynamics.

Given that we may Interpose a data management routine between the
user program and the device, we have great freedom to chouse to what degree

the details of device handling are left to the user and to what degree they are
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haadled automatically. At one extreme is the volume access graph, which
we have already rejected as being too detailed. At the other extreme the
strong connectedness of most of our graphs allows us to construct the trivial
case of a complzate, or direct-access graph where it is possible to get from
any node to ary other node in one step. Programs written for such a data
misaagement routine would be completely "transferable” in that they could rurn
with .... modification on almost any machine and almost any operating syscem.
They would not be transferable in our sense of the w<id, however, in that it
would be almost impossible o assign meaningful costs to the arcs of the
graph. Thus it would be quite difficult to optimize a program to efficiently
use the special capabilities and avoid the special limitations of a particular

device,

This discussion should make it clear why we included in our
definition of transferability both the cost of recoding a program for a new
environment and the increased cost of running the recoded program in *hat
environment. The volume access graph level allows a programmer to
minimize the run-time costs but at the expense of losing all control ove: the
reprogramming costs. The complete-graph approach, however, reduces the
reprogramming cost to near zero but at the expense of losing all control over
rnm~time costs. We need an intermediate level which is detailed cnough to
allow reasonable control over spccific devices yet general enough to allow

analytical techniques to be applied to the process of reprogramming.

4,2 The Data Access Technique

We will now develop a language intermediate in level of detail between
the physical volume representation and the complete-graph representation,
We shall retain the graph structure developed for the physical volume repre-

sentation, but we shall weaken its correlation with specific locations on a
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physical volume. We shall retain the notion of a device acting upon the
graph through a finite command set. Our device, however, will be not a
physical device but a virtual device formed by interposing a data management

program between the user program and the device.

4,21 Nodes

As Lefore, the basic unit of data will be the word, and there
will be one word per node of the graph. We shall no longer require that a
node correspond to a fixed position on a storage volume, but we shall require
that it have a fixed logical relationship to all other nodes in the graph. We
shall describe this logical relationship when we discuss templates. As before,

each node shall have a name. We shall, however, call it the node vne

instead of the node name, and we shall no longer require that it be unique
within the graph. We shall discuss this wher we examine the problem of

context.

As before, the symbol for a node shall be

®

w

where w is the data word and t the node type.

4,2.2 Arcs

As before, the basic changes of state w thin the graph are
described by arcs. Each arc has associated with it a label drawn from a

finite set of labels called the positional command set. Now, however, an

arc represents a change of state for the data management routine and device

together, rather than some definite physcical movement. We shall again
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associate with each arc a cost. This cost shall now, however, be a mean
cost as the operation the arc stands for no longer necessarily represents a
single physical action. If we have chosen our positional command set with

reasonable care the deviation from this mean will not be unworkably large.

4,2.3 Templates

One of the objections to the tape graph developed earlier was
that the number of data words on a particular tape was not constant. It
varied according to the number of interrecord gaps, the amount of friction in
the capstan brake, the temperature, and so forth. Thus a permanent
representation of a particular tape as a single graph was not logically
consistent. Even if we had a nonstretchable tape and a tape drive with
inertialess moving parts, it could be true that neither the user nor the data
management routines know how many words are on the tape until the tape is
completely read or written. We must find a pracise representation for state-

ments such as "This i{s a tape, but of unkinown length",

8uch a tape is describable by a set of graphs, one for each
pcssible tape length. The set is enumerated by a single parameter, namely
tape length. This parameter has a lower a.d an upper bound. We may specify
the value of the parameter to be any value between the lower and upper bounds.
Specifying the parameter results in a new set of graphs that is a subset of

the old set. We call such a set of graphs a template.

We shall not define templates in general. Our use of templates
is at present rather limited and we do not know yet precisely what attributes a
templatr should or should not have. We shall content ourselves with a

limited operational definition which we shall augment as the need arises.
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The basic construct we shall use to build templates is the iteration

bracket. Its basic form is as follcws:
1P [P} { RP

where LP, P, and RP are pictures

i is a non-negative integer

The position of the left and right brackets, which are parzllel, the
same height, and at the same level, defines a set of boundaries for LP, P,
and RP. We say that LP has a right edge, P has both right and left edges,
and RP has a left edge. We can construct a picture by maiching appropriate
edges., The basic form given above corresponds to a single picture formed
from LP, RP, and i versicons of P. The i wversions of P are chained togeiher
by placing the left edge of the second P, if it exists, against the right edgz
of the first P, and so on. The right edge of LP is then abutted with ihe left
edge of the first F and the left edge of RP with the right edge of the i-th P,
If i =0 the right edge of LP is abutted with the left edge of RP. Thus

stands for

™~
Pl
P P P : P g,
AN ~



We now introduce uncertainty into templates by allowing

j
P [P _, RP

where

q is a parameter name

i and j are integers such that i< j

This stands for all of the pictures obtainable by iterating P at Jeast i times

anc at most j times. It should be clear that

LP [P]3 RP

and
3
P [P P
p [P] q=3 R
produce the same picture. We describe the prccess of selecting one of the
possible wictures by assigning to the parameter name ¢ an integer value such
that i<q<¢j . We shall allow infinity, « , as a pessible value for j . We

shall abbreviate

At times we would hke to differentiate between elements of an

iteration. We shall therefore allow the following
% ]
[*p b

where *o appears sorewhere inside the picture. *p will be replaced by 1
in the first element of the 1teration, by 2 in the second, and so forth up to

p. Thus

s
AlLepl 4 B
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stands for

A Ll L2 L3 B

We shall allow one further type of iteration bracket:

f Y
- I p=1i
which is equivalent to
il
— oy

-t

4,2.4 Macros

The striacture of an iteration bracket
ILP [P RP
(P] .

gives templates constructed using brackets a particular form. LP and RP are
invariant outer parts. The chain of pictures P is enclosed by LP and RP. Its

variation is completely described by the parameter q,

Thus it is often true that a template consists of a fixed number
of external nodes and a variable inner structure with the variation controllable
by a fixed number of parameters. We call a template such as this a macro.
For each macro we assign a unique graphic symbol. The parameters are
assigned unique locations within the symbol and the external nodes are

agsigned unique locations on the periphery of the symbol.
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We may use any macro so defined as part of a larger template by
placing arcs between the proper points on the macro's periphery and cther
nodes or macros. In fact, we may even define a new macro using the template

so constructed.

We shall not require that all iteration brackets be given explicit
parameter names, nor that all parameters within a macro appear on the macro
symbol. Thus it may be possible to specify all known parameters of a
template ard still have a template containing more than one graph. We say

that such templates have implicit parameters.

As an example, consider the following template

OO OO0

We may replace
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bv the macro

p=(0, m)

with equivalence

Thus the template is now

n
b= 0,1 ‘-}~£
q=1

We could further simplify the template by defining the macro

which replaces

n
“'{'A—"D=(O,m) TS -A—b@
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and with equivalence

e eme e amm mmm e o e e — ——

Our template has now beca reduced to

R

by

a=(1 ,n)!

3

Notz that specifying the values for j; in

p=(0,m)

TN T

results in a single graph, while specifying values for m and n in

m g=(1,n)

results in a template containing several graphs.

4,2.5 Template Names

It will be necessary later to describe a tem»late compactly
through use of some standard format. To accoumplish this we shail define a

template name as follows:




< TNAME » ri= ¢ MACNAME ~
or (<TNAMEs) , <PLIST>

<PLIST > !l= <PRMSs> {, <PRMS> }j

<PRMS » 1e= <PNAM s> = <BNDS >
where

<MACNAME> = name of a macro

< PNAM > = name of @ parameter for some template
< BNDS »

limits on the value of the parameter

We shall assume that all templates have been described by a set of standard
macros or are refinements of these macros. Each macro in this set has been
given a name.

As we described earlier, a template is refined by specifying
values for, or value limits on, one or more of the ex»licit parameters of the
template. These values or value limits must be within the value limits already
in effect for that template. The result is a new tamplate which is a subset of
the old. This new template may have some explicit parameters which were
implicit in the old. The process of refinement may be carried further by
specifyil. parameters of the new template, and so forth, In the definition of
template name, <« PLIST > is a list of parameter specifications sufficient to
carry out one level of refinement, Parentheses delimit multiple levels of
refinement, e.g.

((( < TNAME ») , < PLIST>) , <PLIST>) , <PLIST>

represents three levels of refinement of <« TNAME s .
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4,2.6 Access Technique State

In the data access representation the physical read-write head
is replaced by a virtual head. The state of the system represents not the
precise position of a physical entity, but rather a collection of information
maintained by a data management routine in order to prop‘erly manage a
storage volume. Some of this infoimation may be stored on the volume itself,
such as record marks and home addresses. The rest of the information will be
contained in pcinters, counts, and flags internal to the data management
routine.

It is crucial to program transferabiiity that the information a
program may obtain about secondary storage be rigorously defined and strictly
limited. It must be possible at any point in a user program to be able to tell
exactly how much that program could know about the data structure it is
accessing. We call this information the context.

The user program gains context information from two sources.
The control portion of the program, in setting up the data file and initializing
the data access technique, establishes an initlal template. Once the
algorithmic part of the user program is given control, it may gain further
structural information about the data it is accessing by using the command

ON NODE (T1, T2, ..., Tn) GOTO (Sl, S2, ..., Sn)
where

T1l, T2, ..., Tn are node types, no two of which are 1dentsical

81,82, ..., Sn are program statement labels

Tnmay be < ELSE 5 , which stands for all node types not specified in T1,

T2, «v., Tn=1. If the current node ic of type Ti then control will pass to
staterent Si . Any statement label may be replaced by « NEXT > , which
stands for the statement immediately following the ON NODE statement, If

no Ti matches the current node type then the statement is in error,
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4,2.7 Head Movement Commands

At any given point in a user program the data access technique
is in a definite state, represunted by a node in the current template. Frcm
this node emanates at least one arc to another node. Each such arc has a
label, and no two arcs from the same node may have the same label. At any
point in the user program the command

MOVEH <ARC >

may be given, where < ARC > is an arc label. If the current node has no
such arc emanating from it the statement is in error. If there is such an arc
then upon return the node terminating the arc will be the new current state.

Note that the program is not allowed to test the current state
to determine the labels of arcs emanating from it. This is quite important.
If we did allow such a test, then we would be classifying a node not just by
its type t , but by the name (t, A), where A is the (unordered) set of names
of arcs emanating from it. This is a more complex system then is desired or
needed.

4,2.8 Data Access Commands

If the current node has associated with it a readable or
writable data word then that word may be read or written, respectively, We
shnull later use some very specialized commands to read and write using
buffers. For our present purposes, however, we may define the access
technique's capability by the two commands

RcADW ani WRITEW

We assume some data transfer register R exists. READW will, if the current
node is readable, set R tc the data value of the current node., WRITEW will,
if the current node is writable, set the data value of the current node to the

value in R.

30




ey

For many devices it is not always possible to satisfy an
arbitrary sequence of READW and WRITEW commands without moving the head
between commands. For instance, it is generally not possible to WRITEW
more than once at the same node without moving the head. Thus we must
establish for a particular template a set of rules limiting the possible
sequences of reads and writes. We call such a set of rules an access
sequence discipline.

4.2.9 Template Refinement Commands

The data access graph of an already existing file is assumed
to be fixed. Because the data access technique cannot in general obtain
complete information about the structure of the file, it must express what
information it does know as a template rather than as a single graph.

When a new file is being created, however, the data access
graph does not yet exist. One might say that it is implicit in the inner
structure of the algorithmic part of the routine, but it is certainly not
accessible to the data access tecnnique, nor is it reflected in any pattern
of data on a physical volume. Thus in this case the template represents real
indeterminacy in the structure of the file, rather than simple lack of informa-

tion,

The data access technique must, however, know enough about
the file structure to be able to insert data words and control information at
the proper peints on the physical volume. For instance, it must know the
length of a record it is about to write if 1t intends to place a record length
indicator in the record header. Thus there must be some mechanism whereby
the algorithm may inform the data access technique of any refinements it
makes to the template name. To this end, we provide the command

REFINE TEMFLATE < PLIST

If the current template name is < TNAMEs , the new template name will be
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5. TRANSFERABILITY OF PROGRAMS USING THE DATA ACCESS
REPRESENTATION

5.1 Characterization of Programs

We will, as before, consider a user program as consisting of an
algorithmic part, a program assembly part, and a data access part. The pro-
gram assembly part is normally executed only at the beginning and ending of
a computational process. It does nct mix with the algorithmic part nor with
th= data access part. We may consider the program assembly part as forming
a partition of the program's execution into subunits which we shall call rou-
tines. A routine consists of algorithmic and data access statements inex-
tricably intertwined. To achieve transferability for the data access part, we
must fiad ways of altering it in place, without having to understand or mod-

ify the algorithmic part.

We do not know in general how the user program's algorithm works,
nor even what the individual algorithmic statements mean. We will assume,
however, that the program documentation is sufficiently detailed to allow us

to construct a flowchart of the routine.

5.1.1 Pattern of Access Graph

We call such a {lowchart a pattern of access graph. It can

contain the following types of flowblocks:

5.1.1.1 Algorithmic Command Flowblock

This represents a sequence of purely algorithmic statements
where only the last stetemen® may be a branch point and where only the first
statement may have a statement label. The branch instruction, if it exists,
nmust indicate explicitly the set of possible branch locations. This set must

he finite and any element of the set must ei{ther be the next instruction after the
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branch or be a statement lalel. As we do not presume to know how the
algorithm works, we will consider ail locations in the set as possible next
instructions whenever control reaches the branch instruction. An algorithmic

command flowblock is denoted by

If the first instruction has a statement label g, it is written outside the
upper left hand corner., If the last instruction is a branch instruction with n
branch locations we draw n arcs exiting from the flowblock and label each

with the probability that it will be chosen:

n
where z pi =1
=]

i

5.1.1.2 Head Movement Command Flowblock

There will be exactly one of these fiowblocks for each MOVEH
instruction in the routine. We denote it by a box with the iastruction written

inside:

MOVEH n

where q is an arc label in the volume access graph.
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5.1.1.3 Data Access Command Flowblock

There will be exactly one of these flowblocks for each READW
or WRITEW instruction in the routine. It is denoted by a box with the in-~

struction inside:

[ READW or {W WRITEW

5.1.1.4 Node-type Branch Flowblock

There will be exactlv one of these flowblocks for each ON NODE
instruction in the routine. ON NODE (N1, N2, ..., Nm) GOTO (S1, S2,
<.+, Sm) will be represented by

If two or more of the Si are identical they may be represented by cne arc

labelied by a list of the node types.
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5.1,1.8 Template Refinement Flowblock

There will be exactly one of these flowblocks for each REFINE
TEMPLATE command in the routine:

REFINE TEMPLATE

5.1.1.6 Start Flowblock

There will be one such flowblock. From it will be drawn arcs
to all flowblocks where control could enter this routine. If there is more than

one arc, probabilities will be assigned:

(G ]

d.1.7 Finish Flowblock

There will be one such flowbleck. All flowblocks representing

instructions wnere control will leave the routine will have arcs going to it:
|
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5.1.2 Context in a Pattern of Access Graph

One useful item which may be calculated for every flowblock
in a pattern of access graph is the set of possible combinations of template
name and node type tnat could be true of the access technique state when
control enters the biock of code corresponding to that flowblock. We call

such a set the context of a data access flowblock,

Each element of a flowblock context will be of the form (t,n) ,

where t is a template name and n is a nnde type.

We may calculate the context for every flowblock in the pattern
of access graph by a fairly simple algorithm. Assume for simplicity that only
one template name is allowed in the routine. This is the normal case, and
routines which allovr more than one template can be handled by a relatively

straightforwarda extension of the algorithm to be given.

First we need, for the template accepted by the routine, a

function

c: AxTa2 f
where A is the set of possible arc labels and T is the set of pussible node
tvpes. Forany a¢ A andany t¢T the set g(a,t) contains the types of
all nodes that can be reached from some node of type t by executing the

command MOVEH a .

Suppose there are n flowblocks in the pattern of access graph,
that the first flowblock is the start block, and that the nth flowblock 15 the
finish block. Let T: N ZN , where N=1{1,2, ..., n}, describe the
flow paths in the pattemn of access graph. Let Cl’ CZ' ey Crl be sets of
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node types. Initialize CZ’ C3, oo,

the types of the possible initial states for the data access technique when

Cn to be null sets and C1 to contain

the routine is entered.

Define a path p through the pattern of access graph to be a seguznce
of flowblock numbers p = (fl, f2' ..., £) where for every i such that

fi+1 € I‘(fi)

Call fl the initial block and fq the terminal block of the path. Associate
with any such path a set of node types T_ which we shall call the path

context.

1 7 2 ’
extension of the path hy the following nondeterministic algorithm:

For any given path p= (f_, f .., f ) with context Tp , define an

1. I"fr (fq) is null, there is ar error., Otherwise select an

f ‘1 from I‘(fq) .

2 If f {is anything but MOVEH or ON NODE go to step 5.

3. If f is MOVEH a, for some a, then set

T ¢+ LJ O(alt)
teT

and go to 5.

4 If £ 1is an ON NODE instruction and the arc (f , f .1
“

label t then set Tp et

) has
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5. Set z« T .
P

R, - . c z.
Set Tpo-Tp C Set «C lU

q+1 q+1 q+

We can now use this process of path extensicn to calculate the

context of each flowblock:

1. Start with a single path, of length 0, namely the path (1)
consisting of the start block. Let Tp for this path be C1 .
Let B be a set containing this path as its unly member.

2. Extend every path in 6. Let C be the set of all paths and

associated path contexts that can be formed in this way.

3. Subtract from C all paths with null contexts.
4, If C 1is nul?, stop.

N Set B« C .,

6. Go to 2,

It can be proved in a straightforward but tedious manner that this process
always stops in a finite number of steps and that the results are independent

. C,.,

of the order in which paths are extended in step 2. The resulting C1 9

ooy Cq are the flowblock contexts we desire,
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5.2 Characterization of Program Execution

Once we have the pattern of access graph for a routine we may analyze
all of the ways that routine could possibly access secondary storage. Any
path through the pattern of access graph which starts with the S block and
ends with the F block represents a possible flow of control through the routine.

We call any such path a control history, and represent it as (h hZ' eee, hm)

1 !
where each h q is a flowblock number, Of course, h1 =1 and hm =q,
where q is the number of flowblocks.
5.2.1 Information Flow During Program Execution

Bs a first step toward separating the data access part from the
algorithmic part of a control history, let us examine how each flowblock affects
the flow of information between the algorithm and the data access technique.

We may divide the ilowblocks into the following categories:

5.2.1.1 Type A Flowbhlocks

Algorithmic flowblocks have no contact with the data access
technique. Thus the internal workings of the data access technique, the
current state of the data access graph, and the current template have no
effect on the correct execution of an algorithmic flowblock. Conversely, the
data access technique cannot be directly affected by the execution of an

algorithmic flowblock.

5.2.1.2 Type A 4 D Flowblocks

These represent one way information flow from the algorithm to
the data access technique. Included in this type are MOVEH and REFINE
TEMPLATE., These commands sct no registers nor alter any data dircctly
accessible to e algorithm, and thus do not directly affect the exccution of

the algorithn .
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5.2.1.3 Type D + A Flowblocks

These represent one~way information flow from the data access

technique tc the algorithm. This type contains the ON NODF command.

5.2.1.4 Type A & D Flowblocks

These reprecent two-way information flow between the data
access technique and the algorithm. Included in this type are READW and
WRITEW. In both cases data must flow bztween the storage volume and some

register accessible to both the algorithm and the data access technique.

5.2.2 Data Access History

Let us now examire, for any control history, that subseauence

composed of all flowblocks of the {ollowing types:

AaD

MOVEH

REFINE TEMPLATE
Da A

ON NODE
A&D

READW

WRITEW
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We call any such subsequence a data accwvss history. It represents

those operaticns that require the attention of the data access techaique during

the course of program execution,

We s:ated at the outset that programs which depend on time intervals
rather than time sequences are not transferable. We shall now make use of
that restriction to decouple somewhat the actions of the algorithm and the data
access technique. We shall aid a FIFO queue, the Data Information Access
Queue (DIAQ). When the user program issues a command of type A4 D it
will be placed on the DIAQ and the us2r program will then continue as if the
command had been processed iy the DAT. The DAT will, at its leisure, remove

commands from the DIAQ and execute them.

As long as the user program issues commands only of type Aor A4 D
the algorithm and the data access technique may proceed independently of each
other. The DAT may allow commands to pile up in the DIAQ and thus the current
node and current template may not be what the algorithm expects. Commands of
type A or A4 D , however, do not transmit information from the DAT to the
algorithm and thus the algorithm cannot be affected by the discrepancy. For
clarity, let us call the node and template that should be current the current
node and current template and the node and template that are actually current

the lagging node and lagging template.

A user program command of type A & D requires that the DAT virtual
head be at the current node. The program must wait while the DIAQ is emptied.
The DIAQ contains a string of MOVEH and REFINE TEMPLATE commands., The
result of executing, in order, all commands in the string -vill be that the
virtual head will have been moved from thz lagging node teo the current node
and the lagging template will have been refined to the current template. All

Jetails of the path taken in getting from the lagging node to the current node,

41



howeer, will have been lost. Thus any other string of A+ D commands
which has the net effect of moving the lagging node and template to the
current node and template will produce precisely the same result. We shail

use this freedom later.

In summary, when a command of type A & D is issued by the user
program that prograin must halt while the lagging node and template are
advanced to the current node and template. This process is defined by the
contents of the DIAQ. The DAT may accomplish this by executing all commands

in the DIAQ, or by executing an equivalent string of commands.
The only D4 A command is ON NODE. This requires that the virtual
head be moved to the current node in order to test its type. As with A & D

commands, any path to the current node will do.

A data access history may thus be characterized as

(nO, TO; PINIPZ v Nm—IPmNm)
where
n0 is the starting node
N, l«eicgm are node accesses

i

Pi lcigm are strings of A4 D commands

T0 is the initial template
Node n, is the current node and T0 the current template as initlalized by
the control section of the user program. T0 is a macro and nO one of its

external nodes,
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Node accesses are ingeneral any A & D or D4 A commands. We
must make an exception, however, for ON NODE. ON NODE causes a branch
to one of a set of locations depending on the current node type. The result
of this branch is, however, implicit in the control history from which the
data access history was abstracted. Thus we must replace ON NCDE
(Tl, TZ’ T3) GOTO (Sl' Sz, SZ) with TYPE = {Tl} if the next block in the
control history was S1 and with TYPE = {‘1‘2, T3} if the next block was S2 ,
Thus the only legal node accesses are READW, WRITEW, and TYPE = {Tl , Tz,

v}

Each P1 can be thought of as an operator on the set of template

names:
P : tat

where

t is a template name or ERROR

t' =t if P1 contains no REFINE TEMPLATE commands

t' = ERROR if a REFINE TEMPLATE command is incompatible with t
t' = the template name produced by applying in order all REFINE
TEMPLATE commands in Pi to t

Let T_=P P .. P.T be the final template for this data access history.
f m m-1 170

If Tf = ERROR then the data access technicue will have aborted the job.

Let us now consider a grarh ¢ T

£ g has a definite number of nodes, say
g of them, which are labelled with the integers 1, 2, ..., 9 . Construct a

sequence of (m+ 1) node indexes as follows:
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1, set goq-no; set ie 0

2. if i>m, stop

3. set g1 ¢ P16

4, set {+1i+1; goto 2.
where Pi g1 is the node reached by taking the path defined by Pi from node
gi .

If each g1 is paired with the corresponding N, the pair a, = (gi, N,)

i i

defines a transfer of information between the algorithm and s particular word
on a storage volume. The sequence a = (ao, al, ceo, am) , called a word

access history, expresses the total interaction between the algorithm anc the

data on secondary storage.

Thus for every data access history there is a set of word access

histories, one for each graph in the final template for that data access history.

5.3 Assoclate Graph Transformations

Inasmuch as the data access representation can be programmed for a
variety of machines and operating sys“ems it is more transferable than, say,
machine code. The same can be said, however, for most other data manage-
ment systems which interpose some software between the user program and
tne physical I-0 devices., “We want more than just a clean language., We
wish to be able tc mov~ a data file to a different device, alter a program
using this file to take advantage of the characteristics »f the new device, and

yet not alter nor be required to understand the algorithmic part of the program.
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As was shown in the previous section, the algorithm's use of the data
file consists of a sequence of accesses to specific nodes of the specific
graph representing the data file. The only permissable types of access are
a test of node type and a read or write of the node’s data content., The
algorithm is unaffected by the way in which the virtual head is moved to each

successive node.

If the new device is significantly different from the old device, then
one would expect that the "same" data file would be represented by different
graphs on the two devices. The nodes mentioned in any word access history
for the unmodified program would have exact counterparts in the new graph.
The new graph might have extra nodes, and it will almost certainly have a

different arrangement of arcs and arc labels,
We shall for the moment ignore the possibility of extra nodes and
concentrate on the problem of graphs with the same nodes but a different

arrangement of arcs.

5.3.1 Associate Graphs

It is first necessary to define precisely what is meant by two

graphs with the same ncdes but different arcs.

AG: Definition

Let G and G' be data access graphs. G' is an

associate of G if and oaly if

AGT: 7(G) = n(G)

AG2: Yn ¢ n(G) ,

45



5
pr,
i
¥
"4
v
#
‘o]
b
g
B
s
Fy
. 4
4
K
i
4
3,
P
B
4
R
4
£
3

type (ng) = type (ng,)
access restriction (nG) = access restriction (nG‘)

value (nG) = value (nG.)

where for any data access graph Q, 7 (Q) is a set of integers uniquely

labelling each node in Q and where n. 1is the node in Q with label n .

Q
Suppose G and G' are associates. G and G° can be thought of
as a single graph with two colored sets of arcs. The red arcs belong te G

and the green to G' .

Suppose that a program accesses the data file represented by G and

tnat one of its data access histories is

G , of course, belongs to TF = Pum_1 ... BT This data access history,

1°0°
in conjunction with G , gives us the data we need to construct a word access

history:

((gO'-) ’ (gl'Nl) AR (gmle))

where for every 0 ¢ 1 ¢ m=1

P =
1+19 7 9141
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Suppose now that this program is to be altered to access G' in
place of G . We will examine the same data access history as  “ore and
suppose that the program has not been altered. In order that the algorithm

operate correctly, the word access history
((go 1_) ' (gl ) Nl): o aey (gm ’ Nm))

must be such that

The patl. functions P, , of course, do not apply to the new graph G' . We

i

need a new set of path functions Pi' such that

g =pigifor 0 <i ¢m-1

i+1

Remember now that P i is not a path in G but a path function

consisting of a number of MOVEH commands. Its action differs for different

nodes. Pi may be desciived as follows

P.: {1, 2, ...,a) » {ERROR, 1, 2, ..., q}

where P, (b) = ERROR if, starting from node b , the MOVEH commands in Pi

would cause an error.

Since path functions are right associative and gince each P{ is

compcsed of a string of single arc functions, we need a function y such that

& (a,n)} - Fa
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where

a !3 an arc label
n is a node index

and where Fa' is a path function for G' such that

Fa' (n) =a(n)

In our two~colored graph analogy, suppose we are at node n and
there is a red arc exiting from n and labelled a . At the other end of the
arc is another node, say t . There is also (strong connectivity) a path from
n to t using only green arcs. vy {a,n) will be a string consisting of the

labels on these green arcs.

Thus if every MOVEH a issued by the user program for data access
graph G 1is replaced by MOVEH vy (a,n), where n is the current node &t the

time the command is issued, the program will run successfully using G' .

Unfortunately, neither the user program nor the data access technique
knows the uniciue name of the current node. At most they can know the type of
the current node. Thus if it is possible to transfer from G to G' , y must

obey the following restriction

y(@,n) =y (a,nz) whenever n, ard n_, have the

1 1 2

same type for every arc label a in G . If y satisfies this we say that the

transformation from G to G' {is context consistent. A contexi consistent

transformation will be denoted by £ (a,t), where t is a node type and

% (a,t) =v (a,n) for some node n having type t .
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Let us forma: -e this,

CCGT: Definition

Suppose the two graphs G and G' are associates and

are related by the transform
5: PCS ¥ NTS 4 { PCS'* ) (NIL}))

where PCS is the set of arc labels In G, NTS {s the
set of node types in G , and PCS* {8 the sot of all
finite strings of arc labels from G' , Lot elemonts of
PCS and PCS' be viewed as right asuac. iative aporators
on the sets of nodes of G and G', respectively, iy

a context consistent graph_transfcrm if and only {f

CCGT1: va ¢ PCS, vt o fZ\é\ (a,z) = (NILy V ,
vn e { x|xc¢n(G) andtype (x) = i},

an=5(a,t)n

In other words, whenever there is an arc with label a leaving a node of type
t in G there is an equivalent path in G' denoted by the string of arc labels

5(@,t) .

5.3.2 Associate Templates

In the previcus section we dealt with single graphs. Any
practical transformation, however, must applv to all g.aphs in a template.

This requires the following generalization;
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AT:

CCT:

Definition

Let (T, TNC) stand for a template with name T and
naming convention TNC. Let (T', TNC') be another
template. Let

AT1: IT|= |1

and |INC | = |TNC'|

T' is an associate of T if and only if there exist 1-1 onto

functions

[TUN T -+ T'

o: TNC -+ TNC'
such that
AT 2: vgeT, w(g) is an associate of g
AT 3: YN ¢« TNC , w: N= ¢ (N)
Definition

T' is context consistent with T if and only if

CCT1: T' is an associate of T

CCT2: There exists a function § which for every
ge¢ T is a context consistent graph transform

to wlg) .
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5.3.3 Correct Localized Transfers

We are now ready to describe a process which will alter a
user program o compensate for a change tc an associate template. This
process is quite mechanical, requiring no knowledge of the program's
function or logic. The results are guaranteed correct. FPurthermore, if the
process is coupled with knowledge of the possible paths of control through
the program, their significance, and the probability each will occur then a
solution may be obtained which is nearly optimal ainong solutions which do

not alter the algorithm of the original program.

First, let us define a formal framework in which to discuss
the process. Let UP be a user program containing g statements. Let P
be the pattern of access graph for UP. When a flowblock in P corresponds to
the r-th command in UP then let that flowblock be labelled as flowblock r .
Any legal control path through UP must start at command 1 and end at command

q.

For simplicity, we will not condense blocks of non-branching
type A commands into single flowblocks. As a result there will be a 1-1

correspondence: between commands In UP and flowblocks in P .

Sunpose UP accesses a file F, We know the template name,
T, of F. We know the template naming convention, TNC, of F . This is
the set of T -1d all refinements of T . Furthermore, for every graph q¢« T ,

we know the starting node, that i{s, there is a function S such that

vg e T, S(g) ¢ 79
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where 7(g) is the set of all nodes of g. Now T, TNC, and S
characterize the file F , and we call the triple (T, TNC, S) a fiie.
Similarly we call the quadruple (P, T, TNC, S) a file use.

As has been described before, given a pattern of access graph P we
may gerierate the set of all paths through P which start at block 1 and end
at block q . Each path is described by listing, in order, the indices of all
blocks through which it passes. We call such a path description a control
history. From a control history we may produce a data access history by

converting, in order, all indices through use of the following rules:

1, If the index refers to a type A command, discard *he index.

2. If the index refers to a type A & D command, replace it with

the command.

3. If the index refers to a MOVEH or REFINE TEMPIATE command,

replace it with the command.

4, If the index refers to an ON NODE command, check the next
index. Replace the current index with the statement TYFE = C,
where C is the set of all node types that could have caused

coitrol to branch to the next index.

We describe the entire process of going from a pattarn of access graph

P to a set of data access histories DAH by the function v
X (P) = DAH

where the domain of y 1s the set of all pattern cf access graphs.

(2]
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The virtual head, using an element of DAH as input, operates on the
file described by the triple {T, TNC, S) . We embody the rules of the data
access representation in two functions £y and ¢ 2 &y is characterized

as follows

given F = (T, TNC, S), given DAH,
¥h ¢ DAH , L (F,h)=Tf ¢ TNC

that is, ¢ ) extracts from a particular data access history all of the REFINE
TEMPLATE commands and produces the refined template they imply. ¢ 2
describes the movement of the virtual head; it transforms a particular data

access history into a set ¢f word access histories, one for each graph in Tf :

given Y = (T, TNC, S) , given DAH ,
vh ¢ DAH , WAH (h) = {g, (h,9) |g g, (F.h))

The range of L9 is the set of legal word access histories and the
special element <ERROR >, which implies that the commands in h were

incompatible with either the arc labels or the node access restrictions.

Normally, if UP is well written, onc would not expect a WAH to
contain < ERROR > as it implics that there is a path through UP which would
cause an I-0O error. This situation could arice, however, because P represents
a simplification of the true control structure of UP, If, for some history h ,
WAH (h) contains <« ERROR > then h is logically inconsistent with the data
file structure. We call a data hiz.ory, h, erroneous ‘f WAH (h) contains
<ERROR » . If it can be shown somehow that h will never be taken by UP

then it is spurious.




Let us now describe a process of altering a user progicm, UP, which
accesses a file, F, so that the altered program, {UP', correctly accesses a
file F' , which is an associate of F. Let F= (T, TNC, S) and let
F = (T', TNC', S') . The fact that F' is an associate of F implies the

existence of w, g, and § such that

w : T+ T
c : TNC -+ TNC!
8 : PCS x NTSa {PCS' {J<NIL>}

We shall further require that g ¢ T, S{(g) =8 (u(g))

Produce UP' by copying UP and then making the following changes to

the copy:

1. If a REFINE TIiMPLATE command is found, it will be in the
form REFINE TEMPLATE ¢, where ¢: TNC 4 TNC . Replace o
by ¢' . where yN ¢ TNC, o(p(N))=0' (c(N)) .

2. If a MOVER a command is found, for any arc label a, replace
it by

MOVEH [5,t) (6 1 5@t () ovs b lart) )]

where (tl , tz, .o, tn } is the context of the corresponding
flowblock i P.

3. Do not alter any other instructions.
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We have taken two notational liberties in the above. First, REFINE
TEMPLATE usually has an argument that looks like (PARM = 5) rather than
some function over the set of template rafine nenis, TNC. It should be fairly
clear, however, that these are simply two forms of the same thing. One form
is more convenient for programming, one is more convenient for theoretical

work.

Secondly

MOVEH i l‘tll’tIZ' ved), a, (t21’t22’ o)y eeey a (tnl’th’ eed)
is equivalent in action to
ON NODE (t, . ,t

1120t

MOVEH 3,

GOTO ¢OUT

.,ELSE) GOTO (NEXT, ..., NEXT, ¢ON1)

¢ON1 ON NODE (t .,ELSE) GOTO (NEXT, ..., NEXT, ¢O\2)

71227

MOVEH a,

GOTO ¢OUT

¢ON2

¢ONn-1 ON NODE (tn1 ,tnz, ...) GOTO (NEXT)

MOVEH a
n

¢OUT NOOP




That is, it will cause the virtual head to move along arc an1 if

the current node is of type t if of type

11’ t12, ..., along arc az

t21, t22, ..., and so forth. If the type of the :urrent node is not listed,
an crror occurs. This form of MOVEH is introduced in order to retain a one

to one corregspondence between control histories in P and P,

While we won't rigorously prove it, it is 1.'rly easv to see that UP'
will perform the same calculations and get the same answers as 1JP. First,
UP and UP' have exactly the same control structures. The only alterations
were one for one replacements of REFINE TEMPLATE and MOVEH comman-s.
Because neither of these commands cause hranching nor do their replacemeats,
there is no change to the number of flowblocks in the pattern of access graph
ncr to the arcs betweoen these flowblocks. Thus, if equivalent flowblocks in
P and P' are given the same integer labels, the control histories for UP and
UP' will be identical. As a result, there will be an obvious 1-1 correspondence
T between DAH and DAH'

7: DAH + DAH'

where forany h¢ DAH , h and ¢ (h) result from the same control history,

just with different instructions in some of the flowblocks.

Now we must show that equivalent control histories in P and P
compute the same thing., First, no type A instruction was altered. Secondly,
MOVEH and REFINE TEMPLATE are A «+ D instructions. Short of causing an
error, they convey no informaticn to the program, and hence cannot directly
affect the result of any computation. Ths only real problem is with the A & D
commands READW, WRITEW, and ON NODE. These commands are the same

in UP and UP' , but they act upon different nodes because he files are different.

[0}
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All this can be summed up in the following way: For any h ¢ DAH ,

h and ¢ (h) must correspond to equivalent computations.

h has the general form

h = (PlNlFZN2 co Pml\m)

where for 1< i <« m

1. N1 = READW, WRITEW, or ON NCDE
2. Pi = null op
or

Pi1Pyg + o piki

where for 1 < § < ki ,

pij = MOVEH a
or

REFINE TEMPLATE ¢ i]j

1j

r (h) has the general foom +(h) =P' N.P' N, ... P' N
171 272 m m

where for 1

A
IA
3

o
i

null op if Pi = null op

otherwise p!

i TP Py e piki

where for 1 < j < k,
1

p'ij = REFINE TEMPLATE ' if p:j = REFINE TEMPLATE
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Py = MOVZH [é(aij, ty) @), 6(aij' ty) (), oty 6(an, t) (tz)] '

where {tl, t2, .ve, tz} is the command context, if pij = MOVEH aij

The data access technique, ¢ 9 7 operating on h produces, for each

graph g in g, (F,h), a word access history
e ,(h.9) = (g, =), (n, N, weny (n, N )

where

cees D are node indices in g,

2, for1_<_i_<_m,ni=pini_1

e A

o PR RERTLS YRS

T RIS SRR F e s T -

TIITTRRORTAON TR Ty T memd oo

Similarly, forany g¢' in g, (F', r(h) ,

\ Y = 1 v [ ' VY
gz(‘r(hll g) ((nU' I \nll Nl)l "'I(nml I\Jm’)

where

Now we know, since F' is an associate of F , that if UP processes graph

ge 7T unde- the same conditions UF' will process o (g) .

14
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We thus want
gz(hlg) = ((nol-)l (nll Nl)l oo oy (n ’ N ))
and

Y, vees 0, N )

§2('r(h),w(g))=((n‘0,'-), (n'l,N1 mt N

to be equivalent operatiors. Since (by condition AG2) nodes of the same
index in two associate graphs have the same type, value, and access
restriction these two word access histories will be equivalent if for every
0O<i<m, n' =no.

Fairly obviousl:;”, the following two conditicns would guarantee this

by induction

IC2; for 1 ¢igm, if n_p =0 g then n, = n'

IC1 is, of course, guaranteed true because we required that associate graphs

have the same starting node indices, i.e.,
¥g ¢ T, S(g =8" (w(g)
To guarantee IC2 true we must prove that for any i suchthat 1 « i < m ,

Py =Py

wn
(Ce)




Ry TR T

But this is true if for every j such that 1 < j < ki .
Piy -1 T Py My

If pij = REFINE TEMPLATE so is p'

1 and p1j n

-1~ Py N

If, however, pij = MOVEH then

Py M-y =Py My
is true by condition CCGT1 in the definition of the context consistent graph

transform .
Thus, since IC1 and IC2 are true, it must be true that

ih e DAH, vg ¢ g, (F,h), g (h,9) = ¢, (7(h) , w(g))

Thus we know now that the type A & D commands in UP and UP'
produce equivalent results. Since the type A cominands in UP and UP' are
identical, the type A+ D commands don't affect the program, and the A & D
commands in UP and UP' produce equivalent results, UP and UP' must produce

equivalent results,

It should be pointed out that while the existence of one function
6 (a,k) 1is assured, in general there will be many alternate paths that
consistently replace an arc labelled a emznating from all nodes of type t.
The programmer transferring UP is, of course, free to select the most efficient

context consistent path.

60




chali

5.4 Summary

In Chapter 5 we characterized the interactions between the algorithmic
and data access portions of a user program. We then defined a particularly
simple data file tran=formation where the new file has the same nodes as the
old but a new set of head movement primitives. We showed that a certain
consistency had to exist between arc labels in a template and in its transform
in order for a simple transformation rule to exist. We called this context
consistency. A template which was obtainable from another template by a
context consistent transform was callod an associate template. We then gave
a mechanical procedure whereby a user program could be altered to correctly

access a transformed file and gave an informal proof of that correctness.

Such a mechanical procedure for altering programs is precisely
what we set out originally to produce. As such, it represents a significant
advance in the field of transferable data management facilities. It is by no
means a complete solution, however, Associate transformations are fairly
restricted in scope, and we suspect that most practical problems in transfer-
ability will require more general transforms. We must, therefore, find more
transforms and then define mechanical procedures for altering programs to
compensate for them. It should be clear from the straightforward way in which
the associate temrplate program transformation was derived and proven that we

have hardly begun to stretch the limits of our theoretical framework,

We are especially interested in the following:

1. Files often contain blocks of control information. In the data
access technique this would be represented by a string of

n ) . The user program

control rodes, say (11] ARIPYERERE
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might access all these nodes and then extract certain
information from all of them. Mathematically, one could
say that the program calculates the functions d1 (nl , nz,
cees nm) . d2 (nl, Nyr eees nm) ) e

In the transformed file, however, the old string of control

AR O Seae i A

nodes is replaced by a new string of nodes (n'l, n'z, oo, n' ),

p
No individual node n'i has any obvious relationship to any

node in the old string, but the new string contains "the same
é information”, i.e., it is possible to define functions

,n')=d

tl,fz, ... such that fi (nl, APTREE D i(nl' n,,

2. Sometimes control information is shifted some limited distance
within a file. For instance, IBM 0S/360 has a header defining
the length of a variable length record and CDC SCOPE has a
trailer. In both cases the size of the record is bounded. In
going from an IBM to a CDC system, one could gick up IBM's
header information by spacing to the end of a CDC record,
reading the trailer, then spacing back to the beginning of the
record. This is clearly not desirable from a performance
standpoint. There appears tn be a variety of interesting

alternatives which should be investigated.

3. Suppose the transformed file has a different word width,
There will then no longer be a 1-1 relationship between

equivalent nodes. If the word width in one file is an integral

multiple of the width in the other then a relatively simple

transformation is pc ssible. Consider, h.wever, the case of
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going from 3-bit octal tc 4-bit hexadecimal, where 4 octal
nodes correspond to 3 hex nodes This will require a more

sophisticated transform.

One problem with context consistency is that in order to check
for it one must not only know the original file but also its
transformed version. We would like to develop criteria which
will guarantee that a given file has an interesting and non-

trivial set of context consistent associates without having to

derive any of these associates.
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6. ADDITIONAL MACHINERY FOR THE DATA ACCESS REPRESENTATION

The following is a cellection of special techniques and abbreviations
that were developed in the process of writing the next two chapters. These
are largely items of convenience which allow some of the complexities of
real-world systems to be expressed compactly; they do not really add anything
new to the theoretical frarework established in Chapter 5. XFORM, introduced
in section 6.1 of this chapte., is an exception. It allows us to model the
dynamic changes in data file structure that occur when a data file is written
into or edited. We show that this does not affect the results of Chapter 5
provided a "commutativity" relation holds between the possible transformations
caused by XFORM and any transforms to associate templates required for

transferability.

6.1 Modification of Data Structures

Heretofore we have always assumed that between OPEN and CLOSE
there was only one graph which represented the data file. We dealt with
templates only because it wes assumed that the user prngram and/or data
management routine did no. know which particular graph applied. This
assumption works well when the data file is bei:g read or when it is being
modified in place. It shows signs of strain when a new file is being created.
It breaks down completely, however, for IBM partitioned data sets. A
partitioned data set contains a directory of names, each of which points to a
sequence of data records called a member. It is possible to delete irembers,
create new members, and replace members with new ones of a different size.

It is not reasonable tc deseribe this by a single data access graph.
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We would like, therefore, to consider a class of data access graph
transformations. This class must be rich enough to cover the specific
transformations allowed in the access methods we are studying, yet
restricted sufficiently that they don't invalidate the analytical tools we have

developed.

It should first be ncted that useful transformations do not alter the
basic structure of a data file That is, replacing a member of a partitioned
data set still leaves it a partitioned data set. Thus we need only consider
transformations which map the members of a template into other members of

the same template.

The new command allowed in a user program will be
XFORM &

where » is a transform .

First, some definitions.

Dl1. For any data access graph g , 7T(g) is the set of all nodes

in g.

D2. For any data access graph g and any set of node types T ,

n(g,T) = fn | r is a node of g and type (n) ¢T} .

D3. Transformations geneérally depend on the current node. For
instance, in order to delete a member of a partitioned data set
it is neccssary for the current node to be in the directory entry
for that member. Thus we will consider a transformation
to be valid only if the current node type is one o1 a sct of

types C , called the context of




4
be
;

D4.

DS.

D5.

D5S.

2

A particular transformation 4§ is valid only for graphs of a
certain structure. For any transformation & there is @

template TG which covers g .

A transformation 3 with context Ce and covering template

Te has the form

6'—‘(61, By 93)

where 91, 92, and 93 are functions .

Yg ¢ TS' vn ¢ 7 (g, CB)

1. 9, (g,n) = q(q)

2. ne g, (g,n)

That is, for a graph ¢ and a particular current state n, el
selects a subset of the nodes in g . These will be called

the passive nodes and will be unaffected by the transformation

g . The current state must be one of those passive nodes.

T , ¥n , C
Vg eT, e 1lg 9)

8, (g,n) =qg'¢ T9

That is, for any given graph in the covering template Tp and
for any legal current node, 35, selects a new graph, a'so

in T .
n
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D5.3 Vg ¢ Tg ., ¥n ¢ n(g, Ce) , ¥Ym e 8 (g.n)

— [} { A}
1. 93 (glnlm)"'m GT’.(GZ (grn:)
2. type (m) = type (m')
3. value (m) = value (m')

That is, passive nodes are unaffected by the transformation.
93 identifies passive ncdes in the old graph with identical
nodes in the new graph.

Now tnat we have defined what a transformation is, let us see how
it affects a user program that employs one. Allow XFORM g to be represented
by a type A+ D flowblock In the pattern of access graph. In order for ¢
to work without error, Ce must contain the context of the flowblock
representing XFORM ¢ . This guarantees that the current state whzi the

transform is to be made is one for which the transform is well defined.

As before, the paitern of access graph generates a set of data access
histories, one for each pnssible flow of control through the program. Let us

consider one such history:

(no'lO ; P1 N1 Pz N2 v Pm Nm)

Suppose that Pi XFORM 35 and that no other P contains an XFORM.

5 ‘ p
Suppose that l‘g P Pi~2 PITO .
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Now for this data access history, for every g e Te there is a word access

history
((nol-) ' (nl’ Nl)l ¢ ooy (nm; Nm))
where
1. for 0 < j<i-2
a. n e 7 (9)
4
E b. nj+l_Pj+1 nj
2 Z=P1 ni—l
g'=3, (g, 2)

= )
ni 63 (gl Z! z’

3. for i<j<m-1
a. njen(g‘)
b. n,_” =Pj+1nj

So far we have done nothing more than pin down in precise notation
exactly what XFORM does to a program. We must now show that a program

transfer to an associate template is not damaged by XFORM.

First, a review of associate templates is in order, Remember that

asgsoclate templates T and T' are related by a 1-1 onto function

w: TT
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wh’_h establishes a correspondence between any grapk g ¢ T and some
graph ag =w(g) ¢ T' . We further assumed a correspondence between nodes
of g and ag such that node i of g corresjorded to ncde { of ag .
The anly interesting template associations were those that were context

consistent, that is, there was a function
§ 1 Py () 4 P*
where

P is the positional ¢command set for T
Q is the set of node types in T

P* 1is the set of all finite sirings of positional commands for T'

This function relates arcs in g to equivalent paths in ag .

We now make a very reasonable restriction and shall then show that

it is sufficient to avoid damage:

Ri. Suppose T and T' are associate templates, XFORM n is
covered by T and XFORM @' iscoveredby T . ¢ and g'

are equivalent if

R1.1 g, = 8"

R1.2 Y9 ¢ T, ¥t e C,al Vn ¢ n(gl {t}) ]

»’5'2 (wlg), nj = w (82 (g,n))

Sort of a "commutativity".
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This is illustrated by the diagram

g v y ¢
6, ',
' ‘

Y o '
eg »> eg

Restriction R1 can be paraphrased that ¢ must transform associate

graphs into associate graphs.

The result of Rl is that if equivalent data access histories for the cld

and the new user programr start out accessing associate graphs they will at
each step of the way continue to access associate graphg, which was al’ e

needed.

Repre-entative Nodes

In a graph of the following structure

=

o~ ||

7C




it would be convenient to be able to compactly represent the fact that all
nodes have an R link to the first node. We will do this by introducing a

representative node, which we draw as a dashed circle:

.::)———B—-y ——f»@ ——-—l:—'b@ —-L»®-———F-—>

Representative nodes that do not appear within an iteration bracket apply to
all nodes in the graph. Representative nodes that appear within an

iteration bracket, however, apply only within that bracket. For instance

r r N RS b
\ }
F F F
O—+0 —HO@1>®

3

_ ]2

is equivalent to
RS RS
RS

If une or more node type designations appear within a representative node,

that node represents nodes only of those types. For instance
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/"By R '3 13 F
(2 B »(&) —>()

is equivalent *:.

6.3 Choice Brackets

Suppose Pl’ Pz, ..., P are pictures. Then

|
: P?' Pn}

represents one of P -~ Pn , end

o
0o
|A
—
IA
=

! . Pn}i for 1

represents P1 . [If the boundaries between each rnicture are clear, we drop

the vertical dashed lines,

If the choice bracket represenis a subtemplate, then an arc incident
from ou:side the choice brucket must be made incident witl. :acl item 1n the

bracket. We show this by splitting arcs.
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Thus

is equivalent to

O5OH0 | OO0 | @S

A vertical bracket

L
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is equivalent to the horizontal bracket

- -

6.4 The Q Node

We would like at times to indicate that when the current state is some
cavticular node the command MOVEH A, for some A, will work but will move
the current state to some un! .own node. This could happen, for instance,

if an index entry on a random access device were used before it was initialized.

To do this we introduce the "node" @ , which has the following

oroperties:

1. ON NODE (?, ... ) GOTO (Si, ...} 1is syntactically

illegal, i.e.? 1is not considered to be a node type.




5%

WAL

ON NODE (T1, T2, . ., TN) GOTO (S1, S2, .., SN).
If this command is issued wher. the current state i. @
the result is uncertain. It might cause a branch to one

of S1 - SN or it might cause an error.

MOQVEH g , for any syntactically valid arc label ¢, may be

2 null operation or ni\ay cause an error.

WRITEW, READW and any other primitives which access the
data gortion of a node will either be null operations or produce

an error.
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7. IBM 0S/360 ACCESS METHODS

7.1 Introduction

This is the first of three chapters wherein we attempt to describe three
different data management systems using the data access representation as a
framework. These descriptions should 1.0t be taken as formal definitions, nor
as training manuals for data processing programmers. Rather they should be
viewed as experiments, wherein the theoretical work described in previous
chapters is meast.red against real-world probiems.

The reader is also forewarned that chapters in this paper do not follow
in chronological order of development. In fact this chapter, which describes
IBM CS/360, was written quite early, long nofore the material in Chapter VI
was invented. ‘ine reader will notice in this present chapter tha. no formal
mechanism is given for deleting a member of a partitioned data set. It was
precisely this diffi cuity that led to the creation of XFORM.

The source for this ~harpter is the IBM manual

IBM System/360 perating System
Supervisor and Data Management Series
Form C28-6646-2, November 1968

and to a lesser degic 2

IPM System/36U Operating System
Supervisor and Data Management Macro Instructions
Form C28-6647-3, November 1968

7.2 Access Methods

In IBM terminology, an access method consists of two parts: data set
organization and data access technique. A data set organization is a set of
rules which defines a basic form for the data set graph. Any unit of data which
can be fully represented by a graph corresponding {0 a data set oryanizaticn is
sailc to be a data set having thet organization. It is possible for one unit of
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data to be a daca set having more than one data set organization. There are
four types of data set organization: sequential, indexed sequential, direct,
and partitioned.

A data access technique consists of a set of macro instructions and
some special facilities which allow a program to efficiently transfer data
between itself ana a data set. There are .wo data access techniques: basic
and queued . Basic access is asynchronous and unbuffered. The program must
supply the eccess method with a block of data to write or a block of core in
which to read data. A command to perform an activity inerely initiates tnat
activity. The program must 1ssue a CHECK instrmiction to ensuvre that the oper
ation is complete. Queued access uses internal buffering, lovk-aheadreading,
and a string of output buifers to give the program the impression it is using [~O

synchronously but which still allows [~O to overlap with program execution.
An access method consists of a data access technique and a data set
organization. Theoretically all combinations are possible, but mly the ones

shown below have been implemented by IBM (as of Nov. 1968):

data access technique

data set organization basic gueued
sequentizal BSAM QSAM
indexed sequential BISAM QISAM
direct BDAM o
partitioned RPAM

7.3 Sequential Access Methods

0S/360 supports two sequential access methods, BSAM and QSAM.
Both use the sequential data sef organization. BSAM uses the basic data

access technique, and QSAM uses the queued Jata access technique.
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7.3.1 Sequential Data Set Organization

In order to define the sequential data set organization, we must derine
three templates: records, blocks, and data sets.
7.3.1.1 Records

There are three different templates for records: fixed length or format F,
variable length or format V, and unformatted or .ormat U. 2 _rucular data set

may contain only one type of record.

7.3.1.1.1 Format F Records

% fu\u 3

where m is the same for all records in the data set. We sihall denote this
template as

F, m

where | stands for @ and ) stands frr .

The typ2 C node eiter contains a cuslage control charactier or is
ignored by the access metho¢. The D type nodes contain the data, m words
in all (bytes in 08/360).

The last record in a data set mav be iruncated, which we will designate
das FT,m , which stands for

m
—-—-———Eé@ p} D L N
= L=l
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7.3.1.1.2 Format V Records

ra/D 'a>@
e s B Rss Y

Here both q and scc may vary hetween records in a single data set.
q is of course the record length. Nodes of type C, D, and RE are as before.
Node RB now contains g in read~onlv mode. Node S contains an element
called the Segment Control Code, determined by the value of scc. We shall
draw a different macro for each value of scc: .

7.3.1.1.2.1 SCCc =20
v, a]>

7.3.1.1.2.2 SCC =

7.3'1'1'2.3 SCC=

7.3.1.1.2.4 8CC=3

7.3.1.1.3 Format U Records

D .
f—

or

o— L@
I 3

- - "

Io
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1 which w2 shall designate by | U |> . with | standing for the first data node
and ) standing for the last.

YITRRR

3 7.3.1.2 Blocks

There are three kinds of blocks: formats F, V, and U. Ali have the
general snape

R ETETS

a a

|

TN

All block macros shall have the basic form

where [stands for BB and:l stands for BE.

7.3.1.2.1 Format T

Format F blocks may contain only format F records, as follows:

:

We shall designate this by

F.n

Note that specifying a value for the parameter n does not turn the
block template intc a graph, as the value of m is not vet fixeda. We will not
always specify in a template symbol all parameters necessary to turn the

template into a graph. The reason shoull become obviou~ when we discuss
format V blocks.,
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7.3.1.2.2 Format V

The basic form of a format V block is:

where £ is the physical length of the block. We shall designate this as

I3 . The number of recrrds within a block is not explicitly known,
and must be discovered by actually traversing the path from BB to BE.

There are only certain forms the list of records may take:

7.3.1.2.2.1
a a
- g

where £ = m x n, and n ) 0.

7.3.1.2.2.2 .
N2 ] L i

7.3.1.2.2.3 . |
_v__ Sl B—5@
‘5 4 | -0

7.3.1.2.2.4

b [ R s
BB)———> v 4> v }——————) v P—sGE
- B P

7.3.1.2.2.9

@—>l Pl D——®
AN -0
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7.3.1.2.2.6

@[ >—>5@

7.3.1.2.3 Format U Blocks
v

is the only allowable form. We shall denote it as I U ] l

7.3.1.3 Data Sets

It is not all that clear from IBM publications just exactly what a data
set is in general, or whether there even is a general, device independent con-
cept of a data set. The following material inust therefore be considered
tentative and probably incomplete.

There are three radically different types of sequential data set. The
most common one has the general form

@B)———ea @——-JE; é@@:‘lj a>@

which we shall denote as

70

witt | standing for DB and ) standing for DE. In this form any block of the

data set, once accessed, cannot be accessed again until the data set is

closed. We shall cali this forward sequential. This 1ype of data set is
supported on all devices. On direc. access devices, oace the read-write
heads have been positioned 10 access a data block they are in position to
access that block repeatedly. For this class of device there is a data set
form that we shall call reflex sequential:
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which is

e—e—f T 6

where the arc B allows cne to REREAD or UPDATE the block most recently
accessed.

Certain types of tape drive are capable of moving tape forward or back-
ward while reading or writing. On such a tape unit it is possible to have a
third data set form which we shall call doubly sequential

55

which is '
~ B B

B B .
DP9

- 1

where D] stands for a hlock of data that can be accessed in either
direction.

It should be clear by now that when considering problems of transfer-
ability cne must treat these three forms of "sequential" data set to be radically
different. From now on we shall confine our discussion to forward sequential
data cets.

The data set template is set up ai the time the data set is OPENed. It
consists of the standard forward sequential data set* template plus a set of
parameters which refine this template. These parameters are stored in a table
called the Data Control Block (DCB). It should be emphasized that these
parameters are normally not sufficient to refine the temolate into a single graph.
Information such as the number of blocks in the data set is jenerally not known.
The DCB contains a number of fields, not all of which pertairn to data set

structure. Some of the pertinent fields are described below.
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7.3.1.3.1 BLKSIZ =n

For format F blocks n is the number of words in a block. For format V
or U blocks n is the maximum number of worde in a block, including control
words.

Rl £ Basi i

OO

7.3.1.3.2 DEVD = code

This specifies the device type to be used and for certain devices
special information such as recording density for a magnetic tape or stack
number for a card punch.

SX S Ny L Ay

7.3.1.3.3 LRECL=morX

For format F recoras m is the number of data bytes in a record. If
spanned records are allowed then m is the maximum length of a set of sganned
record segments. X means that the maximum size is not specified.

7.3.1.3.4 RECFM = code

This is used to specify whether the records are to be format I, V, or U.
If they are V then it also specifies whether or not spanned records are allowed.

7.3.2 Sequential Data Access Techniques_

7.3.2.1 Queued Access

The queued access technique uses internal buffering which allows the
user program to use synchronous data access commands and yet still have over-

lap betweorr CPU processing and physical I-O processing.

0S/360 offers a variety of buifering schemes. All ensure that some
finite pool of buffers is used to transfer an arbitrarily long stream of data
records between the user program and the access method. We shall not, at
this time, specify a standard for this bufferiny. We shall sumply require that
each system shall have at least one self-consistent buffering scheme in
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exactly the same way for all devices that this access method supports. The
specific buffering scheme used here is an imaginary one provided solely for
logical concreteness.

7.3.2.1.1 Buffer Scheme

The access method provides three virtual registers: the buffer address
register {(BAR), the buffer size register (BSR), and the buffer pointer register
{BPR). This triplet of registers defines the buffer currently in use: the BAR
contains its address, the BSR contains its size, and the BPR points to the
current word of intecest within the buffer. The following commands are used
to manipulate buffers:

7.3.2.1.1,1 GBUF

This gets a buffer of size LRECL (a parameter in the DCB), places its
address in BAR, its length in BSR, and zero in BPR.

7.3.2.1.1.. MKBUF < addr>, <len>

This allows the user program o set up a block of storage as a butfer.
It places <addr> in the BAR, <len> in the BSR, and zero in the BPR.

7.3.2.1.1.3 GVBUF

This returns the buffer defined by BAR and BSR to sutfer pool.

7.3.2.1.1.4 READN

If BPR = BSR the statement is in error. Otherwise the data attribute
of the curren* node is placed into the memory lccation BAR + BPR and then BPR
is incremented by one.

7.3.2,1.1.8 WRITEN

BPR must be <« BSR. The word at memory location BAR + BPR is stored
as the data attribute of the current node and then BPR is incremented by one.

85




7.3.2.1.2 More Notation

When the dita set is opened under the queued access technique, the
access mode must be set to either INPUT or OUTPUT. In INPUT mode the only
allowable command is GET. In OUTPUT mode the only allowable cocmmand is
PUT. The access mode, once set, cannot be altered until the data set is
closed.

7.3.2.1.3 @I

On return BAR and BSR will contain a buffer containing the next (BPR+ 1)
words of data on *he data set. The user program is expected eventually to use
MKBUF and GVBUF to rexu i this bufier to the r~ol. There are several forms of
GET, depending on the block and record format.

7.3.2.1.3.1 Record F, Block ForV

GET MACRO

ONNODE (DE, ELSE) GOTO (ENDFIL, ¢N1)
¢N1 ONNODE \RB, ELSE) GOTO (¢N3, ¢N2)
¢N2 MOVEH a

GOTO ¢N1
¢N3 MOVEH a

MOVEH a

GTBUF
¢N5 READN

MOQOVEH a

ONNODE (RE, ELSE) GOTQ (¢N4, ¢NS)
¢N4 MOVEH a
GET MEND

ENDFIL is the location to which control is passed when an end of file is
reacned.
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7.3.2.1.3.2

GET
¢N1
¢N2
¢N3

¢N4
¢N8

¢N6
¢N9

¢N7
GET

Record V, Block V

MACRO
ONNODE
ONNODE
MOVEH
GOTO
GTBUF
MOVEH
IF

IF
MOVEH
MOVEH
READN
MOVEH
ONNODE
IF
MOVEH
ONNODE
MOVEH
MEND

(DE, ELSE) GOTO (ENDFiL, ¢N2)
(RB, ELSE) GOTO (¢N+, ¢N3)

04

¢N2

a
(DATA (CURNODE) = 3}, RESET SCCSW

(DATA (CURNODE) = 1), SET SCCSW
Qa

ot

04

(RE, ELSE) GOTO (¢N6, ¢N5)
(NOT SCC3W), GOTO ¢N7
(RB, ELSE) GOTO (¢N8, ¢N9)
(54

Note that this form of GET assumes that the last record on a data set is

not or

Tt also assumes that GETBUF returns a buffer

long enough to hold any record or series of record segments. SCCSW is a

binary switch in the access method. 1t may be 3ET true or RESET false.

Block U, Record U

7.3.2.1.3.3

GET MACRO
ONNODF

¢N1 MOVE:!
GTBUF

¢N2 RFADN
MOVEH
ONNODE

(BB, ELSE) GOTO (¢N1, ENDFIL)
2

L

(BE, ELSE) GOTO (¢N3, ¢N2)
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¢N3 MOVEH
MOVEH
GET MEND

7.3.2.1.4 PUT

PUT is used for output. It assumes that the user program has used
MFKBUF to set up BAR, BSR, and BPR with a block of memory which is to he
written onto the data set. Upon return, this block of memory cannot be
accessed by the program withnut risking an error. It is assumed that even-
tually the access method "v1ll use GVBUF to return this block of memory to the
buffer pool. Again we will write different forms for PUT depending on the data
set organization.

7.3.2.1.4.1 Block F, Record F

PUT MACRO
¢N1 ONNODE (RB, ELSE) GOTO ($N3, ¢N2)
¢N2 MOVEH o
GOTO ¢N1
¢N3 MOVEH a
¢N6 MOVEH o
ONNODE (RE, ELSE) GOTO (¢N5, ¢N4)
¢N4 WRITEN
GOTO ¢N6
¢NS MOVEH a
PUT MEND
7.3.2.1.4.2 Block V, Record V {assume spanned records)
PUT MACRO
¢N1 ONNODE (RB, ELSE) GOTO (¢N3, ¢N2)
¢N2 MOVEF >
GOTO ¢N1
¢N3 MO /EH Y
¢N4 MOVEH "y
ONNODE (RE, ELSE) GOTO (¢N6, ¢NS5)
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¢NS IF (BSR = BPR) GOTGC (¢N7)

WRITEN
GOTO ¢N4

¢N6 IF (BSR = BPR) GOTO %N7
GOTO ¢N1

¢N7 MOVEH a

PUT MEND

7.3.2.1.4.3 Block U, Record U

PUT MACRO
¢N1 ONNODE (BB, ELSE) GOTO (¢N3, ¢N2)
¢N2 MOVEH o

GOTO ¢N1
+N3 MOVEH o

ONNODE (BE, tLSE) GOTO ¢NS5, ¢N4)
¢N4 WRITEN

GOTO ¢N3
¢NS MOVEH o
PUT MEND

7.3.2.2 Basic Access

In basic access mcde the allowable commands are READ, WRITE, and
CHECK. Execution of a READ or WRITE does not cause an immediate transfer
of data. Instead it creates a promise of such a transfer, called a Data Event
Control Block (DECB). This DECB is pushed onto the bottom of a stack which
we shall call the Pending Command Stack (PCS). The access method, at its
leisure, will execute the DECB on the top of the stack. When it is done it will
mark the DECB complete and remove it {rom the stack. Before the program may
use the data obtained from a RE.D DECB or may reuse the buffer space in a
WRITE DECB it must 1ssue a CHECK instruction for that DECB. Control will
not be returnad from a CHECK instruction until the DECB 1n question, and all
DECB's higher than it on the PCS, have been executed and removed from the

stack .
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It is an interesting question in just what ":tate" the access method is
when the PCS is not empty. If we assume that the program always ChHEZKs
before using any core memory area mentioned in a DECB then we may consider
the access riethod "state" to be the state it would be in after it had emptied
the PCS. Normally we may accept this definition of "state" and for all intents
and purposes ignore the existence of the PCS. If an error occurs,; however,
the "state" of interest will be the real accses method state. The treatment of
I-O errors in an asynchronous access method is a complex problem that will
not be considered at the moment. It shouid also be noted that the queued
access mode has the same problem.

The allowable commands in rhe basic access mnade are READ, WRITE,
and CHECK. READ and WRITE deal not with records, but with blocks. Blocks
are treated as if they were either format ¥ or format V. Records within blocks
are ignored, and record control information is treated as if it were data.

In the following READ and WRITE macros it should be remembered that
the READs and WRITEs are performed by the access method, not the user's code.
The true READ and WRITE macros for the user progra.n merely create DECBs and
push them onto the PCS.

7.3.2.2.1 READ

7.3.2.2.1.1 Formact F

READ MACRO
¢N1 ONNODE (BB, DE, ELSE) GOTO (¢N3. ENDFIL, $N2)
¢N2 MOVEH a
GOTO ¢N1
¢N3 MOVEH o
ONNODE (BE, ELSE) GOTO (¢NS, ¢N4)
¢N4 IF (ACCESS (NODE) = NR) GOTO ¢N3
READN
GOTO ¢N3
¢NS MOVEH o
READ MEND




7.3.2.2.1.2 Formati V

READ MACRO
: ¢N1 ONNODE (BB, DE, ELSE) GOTO (¢N3, ENDFIL, ¢N2)
i ¢N2 MOVEH a
GOTO ¢N1
¢N3 MOVEH o1
MOVEH a
ONNODE (BE, ELSE) GOTO (¢N5, ¢N4)
¢N4 IF (ACCESS (NODE) = NR) GOTC ¢N3
REAL'N
GOTO ¢N3
; ¢N5  MOVEH a
] READ MEND

7.3.2.2.2 WRITE

7.3.2.2.2.1 Format F

WRITE MACRO
¢N1 ONNODE (BB, ELSE) GOTO (¢N3, ¢N2)
¢N2 MOVEH a
GOTO ¢N1
¢N3 MOVEH a
ONNODE (BE, ELSE) GOTO (¢N5, ¢N4)
¢N4 WRITEN
GOTO ¢N3
¢NS MOVEH a
WRITE MEND




7.3.2.2.2.2 Format v

WRITE MACRO
¢N1 ONNODE (BB, ELSE) GOTO (¢N3, ¢N2)
¢N2 MOVEH a
GOTO ¢N1
¢N3 MOVEH a
¢N4 MOVEH a
ONNODE (BE, ELSE) GOTO (#N6, ¢NS5)
¢NS WRITEN
GOTO ¢N4
¢N6 MOVEH a
WRITE MEND

7.4 Partitioned Access Methods

IBM claims that a partitioned data set is simply a collection of
mambers, each of which can have any legal sequential data ¢:: {ormat. Fecr
the purpose of this discussion we will assume this to be true.

A partitioned access method is basically a sequent'al access method
with the addition of two new command macros, FIND and S’OW. These have
approximately the same relationship to members of a pa titioned data set as
OPEN and CLOSE have to sequential daia sets. Thus ir a sense we have
nothing new, as we agreed l:efore to consider an algorithm as starting when
the data set is opened and s*upping when it is closca., With a partitioned
data set (PDS), however, FIND and STOW are so much faster than OPEN and
CLOSE that we must consiaer them as being embedded in the algorithm. Thus
our model of a partitioned access method must explicitly include machinery to
allow the control taken to visit more than one member of the data set currently

open.

In order to do this, we must have an explicit representation of the
coliection of member names and of the prozess by which these names are
located. This representation must also accurately model the process by which

membears are added, dealeted, or aitered.
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7.4.1 Member

As far as we can tell from IBM documentation, a member can have any
sequential data set form, but with one extra twist, If a \/RITE macro immed~
iately follows a READ macro, something which is possipie only in UPDATE
mode, the block written will be the block just ;ead. Thus we must have the
following form for a member:

a \@ “/
o — / \Xair— 3
@—E~<\B@ s//L-__K B B// @

where we will use B for writing and o for reading.

We abbreviate this as:

with | representing MB and) representing ME,

7.4.2 Directory Entry

For each member in a partitioned data set there is at least one direct-
ory entry. Each entrv for a member gives that member a name. One entry is

flagged as the official member name and the others are flaggec as aliases.

Cach directory entry contains a pointer to the beginning of the member
it defines. It also contains an optional user data area. This area can contain
arbitrary information, but usually contains pointers to locations inside the

member. A directory entry can have the following form:
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where

DB is the beginning of the directory entry

DN contains the name, or alias, of a member

DA contains 0 if DN contains a name and contains 1 if DN contains
an alias

DP points to the data set member

DTN points either to a note list or to the beginning of a block in the
data set member

DUD contains arbitrary data

DE is the end of the directory entry.

We shall use the abbreviation

) - @”"‘

€

We have taken some liberties with our previous notational scheme here,

r
|
L
The arc labeled a in

D =)
o T

!
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represents not just a particular arc but rather the rossibility of dra ving an arc
from any of the DTN nodes to any BB node irn: the data set member. We shall
call this a representative arc. Furthermore, the portion ot the macro symbol
from which the arc emanates represents not just one DTN node but all DTN
nodes in that directory entry. We cail this a representative node.

We shall make some use of representative nodes and arcs in the
following discussion. We shall not attempt to formalize rules for their use,
however., It is hoped that the context of each individual use will make the
meaning of that use clear.

hriderd

7.4.3 Note List

A note list iy simply a list of pointers 1o blocks within a member of a
data set, Its template is:

L B 3 |

with symbol D] and ecuivalerice




A DTN node in a directory entry may point either to a block in the
member or to a note list, wha~h itself contains pointers to biocks in the member.
Thus we could in one sense subsume note lists into the directory. There 1s one
impertant practical problem, however, which makes it worthwhile to include an
explicit refresentation for note lists. A DTN node is part of the directory antry
and has been allocated space in the same bhlock as all other nodes in this
directory entry; a note list is a separate record somewhere else cn the list.

It requires an extra read and perhaps an extra disk head seek to access a note
list. The overhead involved in doing this may well be a crucial factor in
practical pioblems of prcgram transferability.

7.4.4 Partitioned Data Set

A partitioned data set consists of a directory and a set of members, as
follows:

©

i

subject to *he following variations and/or restrictions:

The directory entries are collated by the value of the DN node, i.e.,
the names are sorted alphabetically.

Some of the members may be identical, i.e., more than one directory
entry may point to a particular member.
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Any arc labeled E going from a DTN node tc a BB node may be replaced

by ,
E . E

~
i

7.4.5 Space Allocation

One feature of the graph representation for a partitioned data set is
that it hides almost completely the process of space allocation on a physical
volume, This is convenient, as the access method is so constructed as tc
shield the user quite thcroughly from any specific considerations of space
allocation. This gives the access method quite a bit of freedom to adapt to
different devices and -ifferent data set histories without requiring changes to
any user program,

Space allocation in a partitioned access method is quite simple. The
size of a data set is fixed when the data set is first created, and cannot be
changed without recopying. The space can be thought of as a block of con-
tiguous words. A fixed sized area at the front of the data set is reserved for
the directory. The size of this area limits the total number of member names
and aliases and the totat amount of user data in the directory. As long as this
I!mit is not reached, the access method will keen the directory properly sorted
and up to date.

The rest of the data set area is used to store members and note lists.
member is stored as a set of contiguous words. The first member defined is
stored directly above the space allocated for the directory; each succeeding
member is stored immediately after the member that was defined just prior to it.
If a member is deleted and it is not the member most recently defined then the
space allocated to it becomes unusable; no attempt is made to move other

memtrers down o {ill the space created.

97




FIND is given a member rame or alias. It will search the data set
directory for an entry of that name. If it doss not, find that name it will return
an error-code to that effect. If it does find the name, on return the access
method token will be positioned on the MB node of th=z appropriate member.

7.4.7 STOW

STOW causes an entry in the directory to be added, deleted, or
changed in .:ame. The specific details of the method of using STOW are quite
implementation-dependent. We will give here a more abstract, and hopefully
more understandable presentation.

7.4.7.1 Add & Name

The directory is sorted alphabetically by name. A new directory entry
is added between the name ordering just before it and the name ordering just
after it.

7.4.7.2 Change a Name

The directory entry corresponding to the old name is removed and an
entry for the new name made at the proper place in the directory.

7.4.7.53 Delete a Name

The directory entry for thisz name is removed from the directory. If this
is the only name of a particular member, then that member will thereby become
urveachable.

7.4.7.4 Replace a Member

If the name given is not already in the directory, it is added. Other-
wise, the NP pointer in the directr-y entry is made tc point to a new member.

This may make the old member unreachable.
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7.5 Indexed Sequential Access Methods

The primary feature of indexed sequential data sets is that each data

TROPTS PR QR TR

record has a key. Records are ordered more or less sequentially on the key

IRy

value. Records may be accessed sequentiaily using the queued access tech-
nique or they may be accessed directly using the basic access technique. A
record may be removed, added, or changed in size by using the basic access
technique. The access method will automatically move ower records as
necessary to recover any gaps left hy the removal or reduction 1n size of a
record.

Again IBM documentation is not too clear, but it appears that the basic
unit of information is the keyed record and tiie block, if it exists at all, is

used only internally by the access methods. We cnall assume here that blocks

do not exist.
7.5.1 Records.

7.5.1.1 Format !

Suppose LRECL = n

&B) N s D_l @
® -0

key

With symbol E_Eey F|/~ and equivalence
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7.5.1.2 Format V

@ {a@} ‘@

with symbol %ey v and equivalence.

e e

7.5.2 Tracks and Cvlinders

While the user is to some degree shielded from the fact, tracks and
cylinders play a fundamental role in the organization of indexed sequential data
sets. Their precise meaning varies from device to devi:e, but roughly speak-
ing a track is a {ixed number of Jate words which can ke accessed sequentially
anc a cylinder is a fixed number of records such that the overhead invelved in
sw.tching between two tracks in the same cylinder is less than the overhead
involved in switching between cylinders. The important fact here is that the
numb2r of data words on a track and the number of tracks per cylinder is fixed

for a yiven device and varies from device to device.

To expedite lucating a record with a given arbitrary key several levels
of indexing are nrovided. At the Jowest level is the track index, of which there
is one per cylinder. For every prime data track (tc be defined later) there are
two entries in the track index. The first entry is the highest value key ona that
track. The second is the highest value key of any entry assigned to that track

but stored in the overflow area.

The data set also contains a cylinder index with one entry per cylinder,

giving the highest key value of any record on that cylinder.
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If the cylinder index is so large it covers more than one track then a
master index is created. There is one entry in the master index for each track
of the cylinder index and this entry gives the highest value found on that track.

For extremely large data sets it is possible to create even higher level
indexes. As they add nothing conceptually new we will not model them here.

7.5.3 Tracks

There are two types of tracks in an indexed sequential data set: prime
data and overflow.

A prime data track is a sequence of records in ascending order by key

-]

e~ ol

value:

b e

g
@<_B//< :

The total length of all records on the track must not exceed some limit set by
the device, say TRKLEN,

Overtlow tracks are much more complex. At the level of detail we have
been using up to now an overflow track has the following template:
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where -TT) is representative of any TT node on any overflow tra "k on this
cylinder, or the special node @ .  The TT nodes are used to string over-
flow reco.ds into lists.

The indexed sequential access methods contain some relatively complex
code which uses all of the overflow tracks to maintain one overflow record
string for each prime data track on the cylinder. The specific algorithms used
to allocate space and maintain the strings are invisible to the user and are not
officially specified. Thus we cannot and should not include ‘n our model a
specific overflow track management scheme. We must replace the overflow
tracks bv overflow lists.

o XD

This is exactly the same template as for prime data tracks. Again the
keys are in ascending order. There is no fired maximum size, however, as
this is dependent on the other lists. The arcs, while logically consistent,
now represent rather complex operations. Thus while it is possible to assign
average costs to these arcs, great veriations from these averages can be
expected when the access metnod is actually run. We shall denote prime data
tracks as
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overflow tracks as

e Ea

At A T

bg and overflow lists as

| o
| ]

7.5.4 Cylinders

The physical tracks on a cylinder are divided into three areas. The
first track or so is used to store the track index. The bulk of the tracks are
prime data tracks. The remaining tracks are overflow tracks. Jf NPTRK is the
number of prime data tracks, a cylinder may be represented by

E
&

l ——I NPTRK
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The value of a TK node is the highest value key in the attache:l track
or overflow list. The overflow key must be higher in value than tlie prume key.
Furthermore, the prime key of one primeé track must be !_Eyher than the overflow
key of the preceeding prime track. 7’ny :E or —rl‘] may be replaced
by the node @, signifying an empty list or track .——TI‘he TX node for an
empty list or track has value -1, one less than the smallest possible key value.

We shall denote a cylinder as

<

with equivalence

V4 14
/

D) €
A ¢

7.5.5 Data Sets

An indexed sequential data set consists of one or more levels of
master index (not modelled here), one or more cylinders of data, and option-
ally one or more cylinders of independent overflow area. The independent
overflow area is used to contain overflows from cylinders whose overflow
tracks are full. Concewtually it adds an extra overflow list to each prime data
track:
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As it adds nothing new conceptually, we shall not model it here.

An indexed sequential data set has the form

l | NCYL
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where NYCL is the number of prime data cylinders. The value of an MI node is
the highest key found on the associated cylinaer, or -1 if the cylinder is

empty. Successive non-negative MI values must be in ascending order.

7.5.6 Queued Indexed Sequential Access Method (QISAM)
Although we will preseni here QISAM and BISAM separately, neither is

really a szlf-sufficient access method. To create, access, and maintain an
indexed sequential data set it is usually necessary to use a mixture of both
access methods. We quote from the IBM Svstem/360 Operating System;:

Supervisor and Data iManagement Services manual (C28-6646-2) p. 137:

“Although the queued and basic access techniques can be used to pro-
cess an indexed sequential data set, each has separate and distinct functions.,
The queued access technique mugt be used to crea.e the data set. It can also
be used to process or update the records. On.v e basic access technique
can be usec to insert new records between records already in the data set. It
too can be used to read the data cet or update records. However, you may add
new records to the high key end of the data set v sing the queued access
method."

Whils it isn't all that clear exactly what happens, it appears that the
gueued access technique writes records only .in prime data tracks while the
basic access technigue always causes records to be written into th-. overflow
tracks, either directly or by displacement from the prime data tracks. Thus i1
the basic access technique were used to creat: a data set, all of the records

would be written into the overflow tracks.

Tne commands uvailable in the queued access technique are GET, PUT,
SETL, and ESETL.

7.5.6.1 SETL, ESETL

SETL allows the user to select a point other than the beginning of the
data set to start sequantial retrieval of records. It can only be used while

reading, SETL takes as crgument a key, a key vrefix, or an absolute track
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address. A key prefix has fewer characters than a key. If a key prefix is
given, ESETL will find the first key in the data set with the same initial char-
acters as the key prefix. After a SETL, subsequent GET instructions will
retrieve records sequentially starting from the record selected, If SETL is to
be called more than once, all but the first must be preceded by a call to
ESETL. ESETL destroys the look-aheaid buffers and other machinery set up by
SETL. It places the data set in some sort of 1 mbo which the manual doesn't
bother to define.

».8.6.2 SET, PUT, PUTX

It is pos¢ible to access an indexed sequential data set in input,
ovutput, or update mode. In input mode, only GET is allowed. In output mode,
only PUT is allowed. In urdate mode GET and PUTX are allowed. PUTX will
couse the record referred to in the most recent GET statement to be replaced
by the record given to the PUTX statement.

7.5.7 Basic Indexed Sequentie! Access Methnd (BISAM)

BISAM 1is set up in such a manner as to simulate direct access of
records, usiny the record key as address. It is possible in update mode to
WRITE the record most recently READ, but other than this the system makes no
use of information about the current record irn cetermining the next record.

The commands possible under BISAni and READ, WP.TE, and CHECK. The IBM
Supervisor and Data Management Services manual (C28-6646-2) contains

(p. 102) some self-contradictory nastiness about using WAIT instead of
CHECK, but we will ignore this.

7.5.7.1 READ

READ takes as argument a key, and returns the record having that key.
There are two modes, K and KU. In mode K nothing additional happens, but
in mode KU the physical address of the record is placed in the DECB. A sub-
sequent WRITE command using thr same DECB will cause the record to be

updated in place,
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7.5.7.2 WRITE

While READ causes nothing more than the access of a record, a WRITE
command has much more far reaching effects. There are two modes for WRITE,
K and KN. Mode K is used to update in place, and causes no changes in data
set structure beyond the bounds of the current racord. It can have a later
effect, however, as the record update may have included the insertion of a
delete code. This is a byte of all ones (X'FF') as the first character of the
record. Such a record may be deleted if a subsequent WRITE in KN mode

accesses that track.

Mode K requests require that the new record replace an existing record
of the same key. Mode KN requires that the key of the record to be written
not already exist in the data set. If the key of the "i.ew record is higher than
any key presently in the data set, the record is added to the overflow list of
the last prime track currently used. In all other cases the new record must be
placed between two already existing records. If the new record must go on an
overflow list, it is simply written there and the list pointers adjusted accord-
ingly to string the new record into the proper location on the overflow tist. If
the record must go between two -ecords already on the same prime track, how-
ever, space must be made on the prime track for it., This is done by moving
all records or that prime track with higher keys than the new kev up a
sufficient distance to accomodate the new record. This will in general {force
one or more records off the end of the prime track and onto the overflow track.
The access method will do this automatically. If a record which is for:ed off
the end of a prime track contains a delete code, it will not be written onto the
overflow list but will simply disappear.
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8. CDC SCOPE _ACCESS METHODS

The Control Data Corporation SCOPE operating system for the CDC
6400, 6500, and 6600 computers offers a comnicte access method for second-
ary stosage. Compared to the IBM access methods, it offers a smaller number
of file structures, but a larger number of macros for access., There is no
distinction between blocks and records. The atomic unit of data is a six bit

character. The smallest unit of transaction with external devices is the

physical record unit or PRU. This is a fixed length string of characters, with
the length determined by the characteristics of the specific device used. A
logical record consists of one or more physical recor? units, with the last PRU
truncated or zero length. A truncated or zero length °RU contains a flag
signalling the end of data. Depending on the flag used, a truncated or zero-
length PRU signifies the end of a logical record, the end of a file, or the end
of a volume.

Compared to 0S/360, the SCOPE system offers a much simpler buffer-
ing scheme. The sole interface between the program and the I[-O device is a
circular buffer, This is a block of contiguous memory within the user program

which is treated as if the first location immediately followed the last, forming
aring.

SCOPE supporis only two data structures, corresponding roughly to
08/360's sequential and indexed sequential. As with OS/360, sequential
files may be accessed either forward or backward, i the [-O device allows it.

This description was originally written using a manual for SCOPE
version 3,1.6 of November 1969. It was later updated to conform with SCOPT
version 3.3 of February 1972. Our description does not include SCOPE Indexed
Sequential, which was added between versions 1 and 3 and which is appar -
ently a separate prcgram package which uses ordinary SCOPE data management
as a base. It would be guite interesting to compare it with IBM Indexed
Sequential.
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8.1 SCOPE Access Method Elements

8.1.1 Character

There are two basic data forms in SCOPE: display code and binary.
The smalizst unit of data is six bits wide and corresponds to one display code
character or two octal digits. We will denote a character by

®

8.1.,2 Physical Record Unit (PRU)

This device dependent quantity is the smallest unit of transaction
between the access method and the device. For any given device there is an

n such that — l—P‘D _| >
O r%J w

n-1

represents a PRU for that device. We assigrn: thiz the macro

f

where [represents the first node and T the lest node.,

8.1.2 Truncated PRU

Less than n words of data may be stored in a truncated PRU, This
contains t words of data, where 1<t< n-8, and &n end flag:
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£ may be any one of 16 types, corresponding to levels 0-15: L0, L1, L2,
..., L15. We give this the macro symbol

z;t

8.1.4 Zero Length PRU

A zero length PRU contains only the end flag. It is represented by

O—)

and has macro [Z ,0¢ . Truncated and zero leng.h PRU's are used to
delimit logical records and files. Node type L15 is reserved for an end-of-
file mark:

T 7

L5,0 (

8.1.5 Logical Record (SCOPE Standard)

A logical record consists of zero or more full PRU's followed by a
truncated or zero length PRU:

for m =0 (:J,,,q l

or form ) 0 n I L

2,9

L”
v

. m-1
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This is given the macro symbol

m,n,t,q

£/ may not be L15. If £ = L14 the record will receive special treatment by the
checkpoint dump program of SCOPE,

8.1.6 Nonstandard Tapes

SCOPE offers some facilities to enable a nonstandard tape to be
azcessed. This allows tapes to be sent to or received from other operating
systems, telemetry equipment, and the like. It also provides compatibility
with earlier versions of SCOPE. We will describe tliese speciai tape formats,
but will not attempt to make programs using these formats transferable, at
least not at the moment.

8.1.6.1 Type S (Stranger) Tape

S m_]> m must be even and < 5120
. F _l F F
G50 >
Li

N/
im-2 :j

with the following equivalence
b

al >C

where
a is the first type D node
b is any no- 2
c is the RE node

112




8.1.6.2 Type L (Long Record Stranger) Tape

L m m must be even

with equivalence

[ Se

where
a is the first D node
b is any node
¢ is the RE node
8.1.7 Circular Buffer

This is a block of contiguous memory locations within the user pro-
gram's address space. It is described by four registers: FIRST, OUT, IN, and
LIMIT, The buffer beqins at the address in FIRST, LIMIT is the first address
beyond the end of the buffer. The two registers OUT and IN partition the
buffer into two regions, data and garbage. QUT and IN satisfv the following

constraints:

I'IRST = Cul < LIMIT
FIRST = IN < LIMIT

Hal

If OUT 1IN then the whole buffer is garbage. If OUT < IN then the
region from QUT to IN -1 is data and the rest i1s garbage. II' QUT > 1IN then
the region from OUT to LIMIT -1 and the region {rom T'IRST to IN -1 contain
data and the rest 1s garbage. These relations may be described graphically as

follows:
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LIMIT —> LIMIT ——>, ‘
7 ,
m-—;l garbage OUT. / //d /// //

SR/ r—"{—

FIRST“L_> garbage FIRST _I. _)J /M ///////

The buffer size m = (LIMIT-FIRST) must be sufficient to contain at
least one full PRU and preferably several.

8.1.8 Write A PRU

We will use a template transform to describe the process of writing
PRU's. The commands will be

XFORM FP
for full PRU's of length n, and

XFORM TP (2,q) 0=¢=15, 0 =q =PRUSZ

The covering templates for these transformations will be specified as
the need arises. Any covering template, however, must have in its name a
positive integer valued parameter PRUSZ. It chould be noted that the transform

TP(2,q)

is not a single transform but rather a shorthand for 16 (PRUSZ + 1) functions.

FP or any one of the TP(¢,q) is a triplet of functions., The first and
third functions specify which parts of the data structure remain invariant, and
the second function defines the part that changes. If we let
FP = (FPI, FPZ, FP,S\ and TP(¢,q) = (,TPLQI, TPLQz, TPLQ3) we may define
the transformations as ‘oilows:
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8.1.8.1 FPZ.TPI..Q2

The current state must have an exit arc labelled F. While the transform
doesn’t require it, the current state should be of type RE, ER, or PND and the
state reached from the current state along the F arc, which we will call the F
successor, should be of type D or LO, L1, ..., L15.

li‘P2 breaks the F arc between the current state and its F successor
and puts a full PRU in its place. We will describe this graphically as follows:

-, ~
~ F

O ——
| PRUSZ f >
]

Similarly TPLQ2 inserts a truncated or zero length PRU of level L:
_____ F

- ~
-~ N

" F F
X 2,9 %

8.1.8.2 FPI, FP3, TPLQl, TPLQ3

As should be evident from the above, all nodes in any graph of the
covering template are passive, and the only structural change consists of the
addition of a PRU between the current node and its F successor,

8.1.9 XFMTPL 4

E This is a special form of XFORM TPLQ keyed to the circular buffer.
Let g = ((IN-OUT) mod m), the number of data words in the buffer. If
g> PRUSZ -6 there is an error. Otherwise XFMTPL selects and executes

XFORM TP(Z,q)




8.2 Forward Sequential File Structure

There are three basic file structures allowed in SCOPE: forward
sequential, doubly sequential, and indexed. SCOPE does not explicitly dis-~
tinguish between forward and doubly sequential but, for reasons stated before,

we feel it is important to do so.

A forward sequential file has the following form:

- —
— — —_ —_D - - - ( -
———NRL -———F—>[:>l;@ >6RY) —- N 5.0
s

y N i
éfl} < Ji do L~ 0 -1

When the file is opened the current node will be the first node of the
first record of the first reel, i.e., the node reached irom node BI' by executing
MOVEH NRL, MOVEH F. Note that there is at least onereel, that the end of
file indicator is a zerc length PRU of level 5, that the head refuses to move
past the end of file, and that rewind applies only to the current reel and can

be performed at any time.

8.3 Doubly Sequential File pi'ucture

The SCOPE system does not appear to provide any facilities for reading
or writing backward. On devices capable of reading or writing backward, how-
ever, SCOPE does provide the ability to space backward a number of PRU's, a
number of logical records, or to the first logical record with level equal to or
higher than a particular level number. This requires that SCOPE read the file
hackwards in order to find logical record ends and level numbers. Thus we
must includ= in our file structure a mechanism for reading backward, even if
the user program is not allowed to employ it. Thus the doubly sequential forta

is as fcllows:
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template

D n l; macro

8.3.2 Truncated PRU

B B B
’@K_~ £ D ' E M template
' _J t-1

D 4,t macro

8.3.3 Zero Length PRU

P F
@/———-3@ template

D2,0 macro
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8.3.4 Logical Record

DL,q template
DO0,0,2,q macro
B B
¥ F
D n D n l D 12,q template
. S m
‘D m,n,{,q > macro
8.3.5 Tile
B
~ R .~ [F> /’\F ‘
' /@ >| Dm*i,n,*i,q*i DL15,0
L. di=1

8.4 Random Access File Structure

A random access file consists of a number of logical records and a
fixed length linear directory. Each directory entry can be accessed by its
fixed nonnegative integral index. A directory entry may be null, or may con-
tain the absolute address of a logical record. It may also contain an alpha-

numeric key for that record.
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It is possible for the user program to position the read/write read at
an absolute location and thus pzr-form absolute addressing of a random access
value. Any program that utilized this would perforce beccme tied to a given
random access device type, and even to a given distribution of files on that
volume. We will not attempt to make such programs transferable.

In order to make the user program independent of absolul¢ addresses,
SCOPE provides facilities which maintain the directory for a given file and
translate user references to record indexes or keys into absolute addresses.
We will assuma that the user program employs these facilities exclusively and

never refers to absolute addresses.

SCOPE random access is a form midway between IBM indexed sequen-
tial and partitioned data formats. Like indexed sequential, a random access
file is composed of a sequence of logical records, which may have keys. Like
a partitioned data set, however, there is an index containing pointers to each
record. If the records have keys, these are in the index. Only one directory
entry may point to a given record. The directory is fixed in length, and an en-~
try for a particular record does not move about relative to the directory origin.,

We may now represent a SCOPE random access file as:

e — F - I-‘\,p
50
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n = 2 implies records with keys, n =1 implies no keys.
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8.5 SCOPE Abstract Machine

The SCOPE abstract machine for deata management, like that of IBM
GS/360, has two parts, a bufter handler and a data access machine. These
two facilities are in a sense orthogonal, in that all communication betwesn
them is restricted to their common access to the circular buffer and the four
registers FIRST, IN, OUT, and LIMIT which cont.ol the buffer. Thus in order
to show the equivalenty of two abstract machines for data management we need
to show only that their buffer managers and data access machines are
separately equivalent.

The abstract machine is defined and controlled for any particular file by
its File Environment Table (FET) and by an entry in the File Name Table (FNT).
Some of this information, such as absclute disk addresses and uevice depen-
dent status codes, should never be directly accessed by a program using a
SCOPE access method. Whenever possible, these fields will not be mentioned
here. Some fields, such as the code and status (CS) field of the FET, contain
a mixture of information which should be used and information which should
not. We will describe only the parts of such fields which the user program
should access, and simply state that the field also contains other data.

8.5.1 TFile Name Table (FNT)

This is a system table and is protected from user program access. It
contains an entry for cvery file attached to a control point, The following
fields are of interest, not berause they are accessible Lo the user but because

of what they lmply in terms of access methed internal structure,

[
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8.5.1.1 Equipment Type

This is set by the system when the file is assigned to a particular
device. The user may make a complete or a partial specification of device
type and the system will select a device that satisfies the specification. The
DT field of the FET is updated from this field every time an I-O command is
executed.

8.5.1.2 Last Code and Status

This contains the code and status (CS) field of the FET as it appeared
at the completion of the mcst recent command. This is the field :hecked by
the instruction IF LAST MACRO WAS ‘<name>', which we invented in oider
to describe WRITE,

8.5.2 File Environment Table (FET}

The FET is in user memory and is the principal interface between the
data management routines and the system. User programs should be very care-
ful about directly accessir.g the FET, as it contains interral status information
for the data management routines. The fields of interest to the user are:

8.5.2.1 Legical File Name (LFN)

8.5.2.2 Code and Status (CS)

Not to be altered by the user.

8.5.2.3 Device Type (DT)

This contains the device type code as copied from the FNT, Device
types are so structired that they contain encodements of the following two

template name parameters:

8.5.2.3.1 DT.GRP

1 mass storage device
= 2 tape
- 3 other (telecommunications or unit record)
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8.5.2.3.4 DI.DN - device name.

8.5.2.4 R - bit

If R = 1 the file is in random indexed format, and if R = 0 it is in
sequential format.

8.5.2.y Release bit

This causes records to be released after a forward skip or read.

8.5.2.6 UP bit user processing at end of reel

UP =0 automatic end of reel processing
UP =1 return to user if end of reel encountered

8.5.2.7 EP bit error processing bit

EP =1 return to user if error encountered
EP =0 kill job if error encountered

8.5.2.8 Disposition Code (DC} - Specifies disposition of file after CINSE

8.5.2.9

o
p-s)
e
7]
IN

physical record unit size

8.5.2.10 RBSZ record hlock size. Number of PRU's in a physical

record, Not useful to user program.

8.5.2.11 FIRST, IN, OUT, LIMIT - registers for circular buffer

8.5.2.11.1 WSA -~ registers defining a working storage area

8.5.2.12 (S or L tapes only) UBC -~ unused bit count. This is used to
indicate the number of garbage bits in the low order part of the last data word

in the circular buffer.
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8.5.2.13 (S or L tapes only) MLRS - maximum logical record size.

8.5.2.14 (random files unly) record request/return - not to be accessed by

user.

8.5.3 SCOPE Buffer

The buffer is defined v four registers: FIRST, IN, OUT, and LIMIT,
These are discussed in secticn 8,1,7 of this paper. We will define here five

primitive operations on these registers. Letm = (LAST-FIRST).

T AR Y

8.5.3.1 CLEARBUFF
i) sets OUT = IN

8.5.3.2 ON BUFFULL GOTO £
where S is a stateme.: labe)
i) branches to S if ((GUT-IN) mod m) = 1

8.5.3.3 ON BUFCLR GOTO S
i) branches to S if OUT=IN

8.5.3.4 READN
i) put contents of current node into @ IN
ii) IN+ FIRST + ((IN - FIRST + 1) mod m)

8.5.3.5 WRITEN
i) put contents of @ QUT into current node

ii) OUT « FIRST + ((OUT - FIRST + 1) mod m)

8.5.3.6 ON PRUNFIT GOTO S
i) branches to S if ((OUT-IN) mod m} = PR7'9Z

8.5.3.7 ON NPRUBUT, GOTO S
i) branches to S if ((IN-TO) mod m) < PRUSZ
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8.5.4 RDPRU_Read One PRU

Because of its importance, we will define a saparate macro for the
process of reading one PRU into the circular buffer.

RDPKU works quite unambiguously whenever the current node is the
first type D node of a PRU and it is known that the circular buffer has space
loft for at least one PRU. We will use RDPRT only under these conditionsg. It

should be noted, however, that PRU's have physical significance as a
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b RDPRU MACRO ¢4, ¢TRLT, ¢TREQ, $TRGT

3 $S1 READN

MOVEH F

ONNODE (D,ELSE) GUTO (¢S1, NEXT)
ONNODE (PND,ELSE) GOTO (¢S3, NEXI)

1 ONNODE (L#, ELSE) GOTO (¢ TRLT1, NEXT)

3 ONNODE (L1,ELSE) GOTC (4TRLT1,NEXT)
ONNODE (L(¢2-1), SLSE) GOTO (¢TRLT1,NEXT)
ONNODE (L4, ELSE) GOTO (¢TREQI, NEXT)
ONNODE (L(¢£ + 1),ELSE) GOTO (¢TRGT1,NEXT)
3 ONNODE (L15,ELSE) GOTO (¢TRGT1,ERROR)
¢TRLT1 MOVEH F

GOTO ¢TRLT

STREQI  MOVEH F

3 GOTO ¢TREQ

¢TRGT1 MOVEH F

GOYO ¢TRGT

3 ¢83 NOOP

1 RDPRU  MEND
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hardware unit of transaction and that normally all of a file will be in the form
of PRU's, includ.ng tape labels and random access directories. Thus one
might object that our restrictions on the use of RDPRU are too severe., It
should be noted, however, that SCOPE does not explicitly commit itself to a
particular format for ‘.1.e PRU encodement of its file labels and indexes. If we
fixed into our model the particular encodement that now obtains we would in
effect be binding SCOPE to that encodement. This overspecification would
make SCOPE harder to improve and less flexible.

8.6 SCOPE Data Access Macros Useable On Sequential Files

8.6.1 READ

When READ is called the current node must be either the first node of
a PRU or the end of the file.

READ MACRO

¢82 ON PRUNFIT GOTO ¢S1
RDPRU #, ¢S1, ¢S1, ¢Sl
GOTO ¢82

¢S1 NOQP

READ MEND

8.6.2 READSKPZ

READSKP functions like READ except that if the circular buffer is fiiled
before a record end is reached or if a record end is reached which is less than
4 the virtual head is moved forward either until just after the firsti record end
with level equal to or greater than £ c¢r until the end of file is reached, which-
ever happens first. It should be noted that since the end of file indicator is a
zero-length PRU with the maximum possible level, the two cases amount to

the same thing.
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READSKP  MACRO ¢LEV

¢82 ON PRUNFIT GOTO ¢81
RDPRU ¢LEV, ¢S1, ¢83, ¢83
GOTO ¢82

¢81 SKPRU ¢LEV, ¢81, ¢i3, ¢83
GOTO ¢81

¢S3 NOOP

READSKP  MEND

where SKPRU is exactly like RDFRU except that READN is replaced by NOOP,
and where ¢LEV is an integer from zero to 15 inclusive.

8.6.3 WRITE

This causes full PRU's to be written out from the circular buffer until
the huffer no longer contains enough data for a full PRU.

WRITE MACRO

$S2 ON NPRUBUF GOTO ¢AROUND
XFORM FP

¢Sl MOVEH F
ON NODE (D,ELSE) GOTO (NEXT,¢S2)
WRITEN
GOTO ¢8S1

¢AROUND MOVEH r

WRITE MEND

8.6.4 WRITER

This is like WRITE, except that when the circular buffer contains less
than PRUSZ number of worids a truncated or zero-length PRU is written out
with approgriate level.
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‘WRI.ER MACRO ¢4

$S2 ON NPRUBUF GOTO ¢AROUND
XFORM FP

¢Sl MOVEH F
ON NODE (D,ELSE) GCTO (NEXT, ¢52)
WRITEN
GOTO ¢S1

¢AROUND XFMTPL ¢4

¢S3 MOVEH F
ONNODE (D,ELSE) GOTO (NEXT,¢DUN)
WRITEN
GOTO ¢S3

¢DUN MOVEH F

WRITER MEND

8.6.5 WRITEF

WRITEF operates differently depending on whether or not the SCOPE
I-O command most recently performed was WRITE, This requires an addition
to the SCOPE abstract machine. We need a register, LSTMKRO, which con-
tains the name of the last SCOPE macro issued. We will test this register by
the instruction

IF LAST MACRO WAS '(name)', GOTO

where < name> is the last name of the last macro issued.

WRITEF MACRO
CN BUFCLR GOTO ¢S1

WRITER §
GOTO ¢WEOF

¢Sl IF LAST MACRO WAS 'WRITE', GOTO ¢82
GOTO ¢WEOF

¢82 X.'ORM TPLQ#, #)

¢WLOT XFORM TPLQ(15,0)
WRITEF MEND
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8.6.6 SKIPF n,f{

First, define a simpler form, SKIP1F £, as follows

SKIP1F MACRO ¢4

¢S1 SKPRU ¢L, ¢81, ¢82, ¢82
GOTO ¢S1

¢S2 NGCOP

SKIP1F MEND

SKIPF is then

SKIPF MACRO ¢n, ¢l
SKIP1F ¥
¢n times ‘
SKIP1F ¢4
SKIPF MEND

8.6.7 SKIPB - Skip Backwards

Needless to say, this command is legal only for doubly sequential data
structures. To define SKIPB, we will use a macro

SKPRUB n, SLT, SEQ,SGT

This uses MOVEH B to space backward until a type PND, BRL or BF
node is reached. Control will exit from SKPRUB as follows:

- Next sequential instruction if no level node was found

- SLT if a level node Li was found and i< n

- SEQ if Li was found and i =n

- SGT if Li was found andi > n
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The next intermediate s.age is SKIP1B

SKIP1B MACRO ¢4

¢S1 SKPRUB ¢2, ¢S1, ¢$S2, ¢S2
GOTO ¢81

$S2 SKPRU g, ¢83, ¢83, ¢S3

¢$S3 NOOP

SKIP1B MEND

SKIP1B is then

SKIPB MACRO ¢n, ¢4
SKIP1R ¢l
¢n times
SKIP1B ¢L
SKIPB MEND
8.6,8 BKSP

This causes the read to be backspaced one logical record.

equivalent to

SKIPB 1.9
8.6.9 BKSPRU
BKSPRU MACRO ¢n
¢S1 SKPRUR 0, ¢82, ¢82, ¢S2
$82 SKPRUB 0, ¢83, ¢S3, ¢S3
¢Sn SKPRUB 0, ¢Sn +1), ¢Stn + 1), ¢S{n + 1)

¢S(n + 1) NOOP
BKSPRU MEND

In other words, space backwards n PRU's.
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8.6.1C REWIND, UNLOAD

It is not at all clear how REWIND and UNLOAD differ because it is not
at all clear just how a rewind affects a file. We will for the moment ingnore
UNLOAD, saying that it is similar to REWIND . REWIND is as follows:

REWIND MACRO
MOVEH R
MOVEH F
REWIND MEND

8.6.11 RPHR, WPHR

These read or write one PRU of 512 words on SCOPE standard magnetic
tape only. RPHR clears the circular buffer before reading a PRU, WPHR clears
the buffer after writing a PRU. READ and WRITE could be used to accomplish
practically the same result, and we will not discuss RPHR or WPHR further.

8.6.12 READL

READN is a nonstop read and can be used only on type S or L tapes.
Because of its limited applicabiiity we will not discuss it here, It is worth
noting, however, that SCOPE adds to the beginning of the record in the
circular buffer a header giving the record ilength. SCOPE, of course, must

wait until it reaches the end of the record to generate this information.

READIN has three torms, differing in the parameter supplied. The
no-parameter form can be used on a sequential file. The other two forms are
restricted to indexed files. PREADIN transfers data from the circular buffer to
a secondary buffer ~alled the working storage area. This is conceptually not
a data access function but rather a program level subroutine which happeons to
call on the data management routine. We shall therefore discuss only how
READIN calls on the data managament routine and not attempt to define what

a working storage area is.
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READIN attempts to {ill the working storage area from the circular
buffer. It will call READ if in the process of doing this it finds the circular
buffer empty.

8.6.14 WRITEN

This is similar to READN. It is for S and L magnetic tapes ¢ ly.
Records placed in the circular buffer will be written out. A header uiust pre-
cede each record indicating that record’s length.

8.6.15 WRITOUT

This is similar to READIN. The no-parameter form is supposedly usable
on sequentia!l files, but the description is contradictory: a WRITOUT n.ay be
issued only if there is a "current record"; a "current record" exists only if a
WRITOUT has been issued. 7There is throughout the SCOPE manual great
ambiguity about what the "current record” is. As READIN and WRITOUT are of
marginal usefulness for sequential files anyway, we won't describe tnem
further in this section.

8.6.16 REWRITE, REWRITER £, REWRITEF

These may be used only on mass storage files, either sequential or
indexed. They cause PRU's to be rewritten starting from the current head
Snsition. Any information contained in the old PRU's is lost, including end
of record and end of file information. For instance, if a full PRU of a mulii-
PRU record is rewritten as a truncated PRU, the original record will have been
split into twe records. REWRITE will also blithely write over indexes and
labels. SCOPE warns against this and promises unpredictable results. As we
discussed in the section on RDPRU, we will not guarantee that our unpredict-
able results muatch SCOPE's unpredictable results when restrictions are
violated.

131




R A S e

In order to define REWRITE we need sume new transformations:

XFORM RFP
XFORM RIP (¢,q) 0=<£ =15, 0=q=PRUSZ
XFORM REF

The current head position must be at the first node of a PRU. This PRU
will be replaced by a full PRU if XFORM RFP is called and by a truncated or
zero length PRU of length £ and level ¢ is XFORM RTP {£,q) is called.
XFORM REF replaces the current PRU by an end of file PRU. Becavse of the
special way end of files are handled, REF#RTP(15,0). Instead, ail of the file
from the currant node to the erd is deleted and a new end of file PRU appended:

v T T T

p—

- © F
|

i ot 7
@ _____ Ey (- _] . _E 4L15,0 J/”_'
R | - — = .

The PRU's deleted still exist on the storage volume. Since they now

belong to no file, they are not legally accessible however.

REWRITE is just like WRITE exce >t that XFORM FP is replaced by
XFORM RFP:

REWRITE MACRO

¢S2 ON NPRUBUF GOTO $AROUND
XFORM RFP

¢S1 MOVEH F
ONNODE (D, ELSE) GOTO (NEXT,¢S2)
WRITEN
GOTO ¢Sl

¢AROUND NOOP

WRITE MEND
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For REWRITER, we need a new version of XFMTPL, namely XFMRTPL £.
This verifies that the data, if any, in the circular buffer will fit in a truncated
PRU then executes

XFORM RTP(¢,q)
where q = ({IN-OUT) mod m)

REWRITER is then:

REWRITER MACRO ¢4

$S2 ON NPRUBUF GOTO ¢AROUND
XFORM RFP

¢Sl MOVEH F
ONNODE (D,ELSE) GOTO (NEXT,¢8S2)
WRITEN
GOTO ¢S1

¢AROUND XFMRTPL ¢4

¢83 MOVEH F
ONNODE (D,ELSE) GOTO (NEXT,¢DUN)
WRITEN
GOTO ¢83

¢DUN MOVEH F

REWRITER MEND

REWRITEF is simpiy

REWRITEF MACRO
XFORM REF

REWRITEF MEND

8.6.17 WRITIN

This is similar to WRITOUT except that where WRITOUT would use a
WRITE, WRITIN would use a REWRITE.
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8.7 Macros and Transforms Usable on Random Access Files

8.7.1 XFORM DELREC

This transform is used to delete a record in a random access file. The
covering template is TRA(n,m) that is, the general random access template
with a definite choice made between named (n = 2) or numbered (n = 1y,

records and with a definite number {m) of directory entries. The current node
must be of type DI or DIN.

8.7.1.1 DELREC2

Which means tnat the current state, which must be pointing either to a
record or to a DNIL node, is made to point to a DNIL node.

8.7.1.2 DELRECl : DELREC3

Most of the file structure remains unchanged. The DNIL node or
record which is the F successor of the current node is deleted, and all arcs
exiting from that node or record are deleted. In its place a new DNIL node is
substituted. This node 1s the F successor ¢f the current node. The current
node is made the B successor of the DNIL node, and the FS node is made

the RS successor of the DNIL node. No other nodes or arcs are affected.
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8.7.2 READ, READSKP, READNS, WRITE, WRITER, WRITEF

These commands are designed for sequential files. Because SCOPE
random indexed records are the same as sequential reccrds, these commands
may be used to continue reading or writing a record once it has been located
in the index. They may also be (mis~) used to read or write past the end of
the current record, with unpredictable results. This is certainly to be dis-
couraged in a transferable system.

8.7.3 READIN, READIN /name/, READIN m

As discussed in the section on sequential files, READIN is more a
user program subroutine than a data management macro and we will discuss
only how it vses more basic data access macros. READIN moves data from
the circular buffer to a secondary buffer called the working storage area and
calls READ if the circular buffer becomes empty before this transfer is
complzte. If the parameter /name,’ or the integer is specified the current
head position will be moved to the beginning of the corresponding record, the
circular buffer will be eniptied, and a READ will be issued. We will give
macros here which will search the index and position the head.

DEXNAM assumes a keyed index format. It uses the special command
COMPNAM nam, ST, SF
where name is a 7 character name, and ST and SF are statement labels. The

current node must be of type DIN. If nam matches the current index key,
control will pass to statement ST, otherwise control will pass to SF.

DEXNAM MACRO ¢NAM
MOVEH RS
51 MOVEH A
ONNOWE (DIN) GOTO (NEXT)
COMPNAM ¢NAM, NEXT, ¢Sl
DEXNAM MEND

Note that the ONNODE instructioi, will force an error if the name is not found.
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DEX m for .n a nonnegative integer is not a single macro but rather a
set of macros: DEX0, DEX1l, ... where DEXM m stands for DEXm.

There are two basic forms:

form =0 DEXO0 MACRO
MOVEH A
DEX0 MEND
and form > 0 DEXm MACRO
MOVEH RS
MOVEH A
m times
\_MOVEH A
DEXm MEND

Now that DEXNAM and DEXM have been defined, we can say that
READIN /name/ calls DEXNAM /name/ and READIN m calls DEXM m before
issuing a READ.

8.7.4 WRITQUT, WRITOUT /name/, WRITOUT m

This is the companion to READIN, WRITOUT will clear the circular
huffer, transfer data from the working storage arca to the circular buffer, and
issue a WRITE. WRITOUT m will call DEXM m before issuing the WRITE,
WRITOUT /name/, however, apparently dces not call DEXNAM /name/. In

fact it is quite unclear from the manual just what it does.

8.7.5 REWRITE, REWRITER #, REWRITEF

Just as with READ, READSKP, etc., these three commands may be used
at any point in a random indexed file. If a programmer .nakes direct .z~ ot
these commands, however, he must inake certain that he does not damage the
indexed structure. WRITIN is a user level su»routine that uses REWRITE(R,F)
in a iranner consictent with the indexed file structure. For trarsferable pro-

grams, we would not recommend direct use of REWRITE on random indexed files.
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8.7.6 WRITIN, WRITIN /name/, WRITIN m

WRITIN is like WRITOUT, but with two differences. First WRITIN calls
REWRITE whenever WRITOUT would have cailed WRITE., Second, WRITIN
/name/ does call DEXNAM /name/ before issuing the REWRITE.

8.8 File Structure Ten.plates

Earlier we defined templates separately for each SCOPE file structure.
It will be instructive to fit these templates into a template name grammer. We
can then descrive the process of specifying file structure as a series of
REFINE TEMPLATE commnands.

The most general template name is SFILE. This contains all legal
SCOPE file structures. It has only one explicit parameter, R, which can take
the values U or 1. It is stored in the r bit of the FET. The two possible
refinements are then:

(SFILE, R = 0) = SEQSF
seque.stial SCOPE file

(SFILE, R = 1) = RISF
random indexed SCOPE file

Here we have defined the alias names SEQSF and RISF, which may replace
(SFILE, R = 0) and (SFILE, R = 1), respectfvely, any place they occur.

RISF nas one explicit parameter, KEY, which can take on the integer
values 1 or 2 corresponding to records with no keys and records with keys,

respectively. We will again develop aliases:

(RISF, KEY = 1} = RISFNK

(RISF, KEY = 2) = RISFK
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Both RISFK and RISFNK have the same explicit parameters: PRUSZ and LI. Both
take positive integer values. PRUSZ is a field in the FFT and specifies the
number of characters in a PRU. LI is the number of entries in the index,

SEQSF has one explicit parameter, DT.GRP, which can take on the
values 1 2, or 3. Itgroups file structures by device type: 1 for mass storage,
2 for tape, and 3 for other types (mostly telecommunications and unit record).
(SEQSF,DT.GRP = 3) is not supported by SCOPE data management and will not
be considered further here. (SEQSF,DT.GRP = 2) has one explicit parameter,
DT.DN. This may take on the values S, L, and STD, with the following
aliases and meanings:

((SEQSF,DT.GRP = 2), DT.DN = STD) = STDTAPE
SCOPE standard 1,/2" magnetic tape

((SEQSF,DT.GRP = 2), DT.DN = S) = STAPE
Stranger tape
{(SEQSF,DT.GRP = 2), DT.DN = L) = LTAPE

Long record stranger tape

The device type, or DT, field of the FET contains an encodement of
DT.GRP and DT.DN.

(SEQSF,DT.GRP = 1) = MSEQ is a sequential file on a random access

mass storage device.
MSEQ and STDTAPE each have one explicit parameter, PRUSZ. STAPE

and LTAPE each have ore parameter, MLRS. Both PRUSZ and MLRS are fields
of the FET.
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9. HONEYWELL (GE) 600 GEFRC (GEneral File and Record Control)

9.1 Introduction

The Honeywell GEneral File and Record Control program (GEFRC) oper-
ates on any Honeywell 600/6000 series machine in cooperatioa with the
GEneral Comprehensive Operating Supervisor (GECOS). GEFRC provides input
output servic.ng in a simpler form than IBM 0S/360 or CDC SCOPE. Although
simple in foim, GEFRC provides coriplete input/output service for all the
common peripheral devices such as unjic record equipment (card, printer,
paper tape), magnetic tape subsy stems, and disk and drum subsystems as
well as remote devices such as teletypes and batch remote stations.

Since the format of a file varies greatly with the type of device to
vhich it is assigned, a Standard System Format (SSF) has been designed. For
certain devices, the restrictions of the SSF are relaxed. Files which use the
SSF can be moved from any device to any other device within the system with-
out changing the user's program.

In this chapter we shall discuss the GEFRC file structure, the form of
various control blocks, GEFRC buffering, and the detailed i/o instructions
themselves: logical record orocessing, device positioning, physical record
processing, input/output ~diting, and file preparation.

9.2 File Struacture - Standard System Format

A Standard System Format (SSF) file is a sequence of zero or mora
blocks (physical records) preceded by a header racord and followed by a trailer
record. Under «ertair. circumstances a file may be unlabeled; i.e., not have
header and trailer records. This is true for unit record equipment and may be
true for magnetic tape. An SSF hlock is variable in size, with a maximum of

320 words. The first word contains block serial number and bhlock size fields.

Again, certain devices support fixed size blocks which do not have the block

serial number field. Their size is determined from the maximum block size

field of the fcb (see 9.3 below). An SSF record may be in one of three forms:

variable, fixed, cr mixed. In all three cases, a record is a sequence of n
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- words; the only difference in the forms is the method used to determine n.
Variable length records are in fact of lennth n + 1. The first word is the

recoid size control word (RSCW), which contains certain control information

(file mark if size is zero, logical record type for media conversion, report
code) and the size, n, of the record. Fixed length records are of size n

where n is determined irom the reccrd size field of the fcb. Mixed length
records are of size n where n is determined by invoking a user provided
routine to look at the record to determine its size. The address of this routine
is contained in the fcb, It may be observed that all three formats are really
special cases of mixed. In the case of fixed records, a system provided size
routine is called which determines the size from the fcb; in the case of vari-
able, a system provided size routine is called which determines the size from
the first word (RSCW) of the record. In all three cases the record js in a user
provided buffer rather than on the device itslef.

In the following sections we give the templates and macros for standard
system format records, blocks and files.

9.2.1 Records

Arecord may be fixed length, mixed length, or variable length,

9.2.1.1 Fixed Length Records

where n is the same for all records in the data set. We shall denote this

template by




9.2.1.2 Mixed Length Records

where n is determined by invoking a user provided routine immediately p.ior
to reading the record. We shall denote this template by

m,n

9.2.1.3 Variable Length Records

F ’_-F ) -I F\RE

where n is determined by reading the value in the size node. Note that a
variable length record could be read as a mixed length record of size n + 1 if
the user implemented a user routine to c¢cxtract the number stored in the first
word of the record. Similarly, fixed length records could be read as mixed
length records. We shall denote the variaple length template by

9.2.2 Blocks

A block is a linear sequence of records of one uf the three types:
fixed, mixed, or variable. A block m«y or may not have block sequence

numbers.
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9.2.2.1 Standard Block

A standard block contains a block size node an‘. may be represented as

@ £ >@ E) r,n* i

| m

e

where m is the length of the block in words and r is f, m, or v. The biock
contains i records of type r. Foran r of fcom, %n*i-:m. Foran r of v,
?(n+1)*i=m. For standard system format, m must be less than cr equal t-
320. A GEFRC limit is m=4094. We shall denote the standard block template
by

SB,m |

9.2.2.2 Non-Standard Block

A non-standard block does not contain a block size node. The block
size information must be determined from the fcb, and is fixed in size for the

file.
BR i r.n*i ! >-
This template may be denoted by

NSB,m! ’
I

where m is the record size and r the record type, as for standard blocks.

9.2.3 Files

A file is a linear sequence of either standard or nonstandard blocks.

A file may or may not have header or trailer records.
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9.2.3.1 Standard File

~ oo

Fo F¥N_ LA LT ILF F.
(F5) EADER b,m*i, TRAILEE=—5E)

di=0

where b is either SB or NSB. The structures of HEADER and TRAILER are
given below. The template may be denoted by

SF

9.2.3.2 Non-Standard File

OBt [ 6@

where b is either SB or NSB, and EOT is physicai (device) end of file. The

template may be dencted by

)

9.2.4 Header and Trailer Labels

GEFRC includes a complete facility for processing standard labels and
for performing associated unit switching at the end of magnstlic tape reels.
The procedures included are specifically designed for the standard Case nd
as such will not periurm label functions on nonstandard labels., We have not
attempted to model multi-reel files or multi-file reels and will give only

verbal explanations for the appropriate routines,

Header and trailer labels are standard, 14 word blocks.
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9.2.4.1 Header

wora number format description
1-2 GEPP600BBTLY label identifier
3 KXHKXX installation identification
4 Pxxxxx tape reel serial number
5 Pxxxxx file serial number
6 PHxxxx reel sequence number
7 Byyddd creation date
8 BBBxxx retention days
9-10 KXKKXXK file name
11-14 (arbitrary) not used - available for

user program

$.2.4.2 Trailer

word number format description
1 BEORKY end-of-reel
or
BEOFUKY end-of-file
2 XXXKXX block count
3-14 (arbitrary) not used

9.3 File Control Block

Like most file systems, GEFRC uses a {ile control block (FCB). The
FCB is a fixed format block of information about the file. This information
comes from various sources: the programmer when the FCB is set up, the file
control cards via the operating system (GECOS), the low level input output
system (IOS), and GEFRC itself. GEFRC uses another storage block, the file
designator word (FDW) to contain information about open and close options.
For our purposes we will ignore the existence of the FDW and assume that all
information about the file not contained within the file itself is contained with
the FCB.
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The existence of the FCB in a form accessible to a programmer causes
serious problems in the accurate description of the system. Since fields of
the FCB are accessible and can be modified by a programmer, questions as to
the legality of such access occur. For example: consider a file with a
MAX-BLOCK of 400, a RECORD-rORM of FIXED and a RECORD-SIZE of 80. A
GET command retuin:s a logical record of 80 characters. What happens if, on
the fly, the programmer changes the RECORD-SIZE field to 100? Three
possibilities come to mind: 1) the change is ignored, 2) GEFRC aborts with
a more or less cryptic error message, or 3) the logical record size changes
from 80 to 100. This type of question occurs because it is not clear from a
manual just when certain information is conveyed from the program (FCB) to
the file system. If the RECORD-SIZE field is locked at only at open time, then
a change will be ignored; if it is looked at with each GET, then it essentially
is an argument to the GET and the change to the RECORD~SIZE should take
effect.

We will attempt in our model of the {ile system to replace the FCB
completely with the template and appropriave refinements. If we succeel, we
shall have a model of the file system which is hopefully easy to follow and
unambiguous and which may lead to quantitative analysis in the future. If we
fail, the failure should shed light on a) defects in the model, and b} warts in
the GEFRC file system. The goal is similar to the goal of those who build
models of programming languages: we are attempting to build an abstract
syntax for file systems and an abstract machine to perform operations on the
file system.

For reference, the more important fields of the FCB (and FDW) are

given below,
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9.3.1 File Control Block

9.3.

2

NAME
FILE CODE
BUFFER 1

BUFFER 2

MAX BLOCK

RECORD FORM
RECORD SIZE

BLOCK SERIAL
NUMBERS

ERROR
LABELS
MODE
DENSITY
MULTIFILE
RETENTION
PREHEADER
POST HEADER
PRE TRAILER
POST TRAILER
FILE NAME

File Designator Word

FCB
10
OPEN
CLOSE

symbolic name of file control block

symbolic name of file to link with control card
symbolic name of buffer, if not present implies
physical input/output only

symbolic name of buffer, if present implies
double buffering

size of largest block, must be =4095,

default is 320

variable, fixed, or mixed, default is variable
decimal number if fixed record form, symbolic
name of procedure if mixed record form

included in file or not

symbolic name of user error routine

standard labels present or not (tape only)
binary, bed, or mixed (card input only)

low or high for magtape

for tape only, more than one file for this reel
number of days

symbolic name of user routine

for header checking (input) or putting into
header (output)

file control block name
input or cutput
rewind on open or not

rewind on close or not




PRIME for buf’ered input file, whether or not to fill
buffer at open

SIZE for buffered output file, programmer will call
putsz (0) on close

REQ abort if file not present or not

FILE position to file n on multifile tape

9.4 Buffering

GEFRC requires that the user take responsibility for buffering. The
user must decide whether or not he wants buffering and if he does (necessary
for logical record processing) whether he wants single or double buffering. It
is also the user's responsibility to set aside space for any buffers and buffer
control words which may be needed. With logical record processing, & block,
or physical record, is the unit of transaction with the device. It is a single
block which resides in a buffer. Logical records are treated by manipulating
the current record index (the address of the l:gical record) and the record size,
both of which are fields within the fcb.

We have found that it is not necessary to have all this machinery to
explain, logically, what is happening. We give here our model oi the GEFRC
butfering scheme. A buffer is determined by three items, the CRI or
current record index which is the address of the buffer, the BSR or buffer size

register which is the number of words in the buffer, and the CW or current

word which is that buffer word currently of interest. The words in the buffer
are numbered starting from zero. Thus the maximum legal value of CW is
BSR-1. The address of the word indicated by CW is CRI :CW,

N

J

CR Cw 3

I
buffer IT"[:W:: vemm

'

BSR
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There are various commands which operate on buffers:

GVBUF - frees the buffer pointed to by CRI

GBUF - allocate a buffer of size BSR. Set CRI to point to thz
buffer. Set CW to zero.

READN - put contents of current node into word pointed at by CW.
CW e+ CW+1

WRITEN - put contents of word pointed at by CW into current node.
CW e« CW +1.

To handle the GEFRC block structure, two commands and a predicate
are needed:

BLOCKOUT - does XFORM to create a block in the file, and sets
block length to zero.
RECORDOUT - does XFORM to create a record in the file, and does

block length ¢ block length + BSR.
BUFFERNOTFULL ~ if block length + BSR = MAXBLOCK then true else false.

9.5 Logical Record Processing_

The user may read logical records from input files and write logical
records to output files. The GEFRC routines which perform these logical
reads and writes also accomplish the necessary blocking, deblocking, and the
physical record reading and writing in accordance with information in the file
control block. As an option, the logical read and write requests may cause
the logical records to be physically moved between the buffers and specified
working storage locations. After a file has been processed, it must be closed.
When a file is closed, the buffers are emptied and label processing and
repositioning occur as specified by the calling sequence and ihe file control
blcck,
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9.5.1 GET

The GET macro obtains the next logical input record from a designated
input file. The calling sequence is

CALL GET (fcb, eof [ ,stor])

where fcb is the name of a file conirol vlinck

eof is the name of a user's end-of-file routine

stor is the name of a working storage area into which the record is w0

be copied (optional).

Following a call to GET, the ¢ -rent record index points to the record in the
buffer and the record size field contains the number of words in the record.
Logical record processing assumes that an RB ncde is the cuirent node. Each
macro must assure that, at its completion, this is true. The GET macro is as
follows:

GET MACRO (fcb, eof [ ,stor))
ONNODE (RB,ELSE) GOTO (NEXT, eof)
GVBUF
MOVEH F
BSR « record size (Note 1)
GBUF
FORi+ 1,...,BS5R DO [ MOVEH F; READN]
MOVEH F; MOVEH F
ONNODE (RB,BE) GOTO ($DONE,NEXT)

¢L MOVEH F
ONNODE (BB, TRAILER, EOF) GOTO (NEXT,¢DONE,¢DONE)
MOVEH F
ONNODE (RB,BE) GOTO (¢DONE,¢L)

¢DONE [ copy buffer tc stor ] (Note 2)

GET MEND

Note 1: The determination of the record size depends on the record type. For
fixed length records, the length was placed into BSR at OPEN. For mixed

length records, a user routine (specified in the fcb) is invoked:

BSR ¢ user_routine
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For variable length records, the value in the size node is read:

BSR « cont {size_node)

Note 2: If user storage location is specified, contente of buffer is copied to
that location.

9.5.2 GETIBK

The macro GETBK obtains the first logical record in the next physical
record from a designated input file. The calling sequence is

CALL GETBK (fcb, eof | , stor]).

The GETBK macro performs the same functions as the GET macro except that all
logical records remaining in the last accessed physical record are ignored.
The GETBK macrc is as follows:

GETBK MACRO (fcb,eofl ,stor])
¢L MOVEH F
ONNODE (BB, TRAILER,EOF,ELSE) GOTO (NEXT, eof ,eof, ¢L)
MOVEH F
ONNODE (RB,BE,BSN) GOTO (¢LL,¢L, NEXT)
MOVEH F
¢LL GET (fc. .eofl ,stor )
GETBK MEND
9.5.3 PUTL_

The PUT macro allocates space within a buffer for the designated out~
put file for inserting the nevt locical record of that file and, if desired, moves

that logical record to the al.ocated area. The calling sequence is
CALL PUT (fcbl stor i)

Following a call to PUT, the current record index points to the logical record
and the record size field indicates its size. The record size field must have
been set prior t. the cal. to PUT., Note that PUT does not transmit the record;
rather it allocates o buffer space for the record. The record is not transmitted

unti! the next call to PUT. Thus a programmer may modify a re<ord in the




output buffer (see PUTSZ, 9.5.6 below). The PUT macro is as follows:

PUT MACRO (fcb[ , stor ]
RECORD OUT
MGCVEH F
FORi«1,...,BSR DO [ WRITEN;MOVEH F]
GVBUF
BSR + record size
ON BUFFERNOTFULL GOTO ¢X

BLOCKOUT
¢X GBUF

[ copy stor to logical record ]
PUT MEND

9.5.4 PUTBK

The PUTBK macro allocates space at the beginning of a buffer for the
designated output file for inserting the next logical record of that file and, if
desired, moves that logical record to the allocated area. The calling sequence
is:

CALL PUTBK (fch [ ,ster})

The call to PUTBK performs as a call to PUT except that the logical record will
be first in a new physical record. This implies that the physical record which
has been under construction in the buffer may be shorter than the usual
physical record for this file. The PUTBK macro, which follows, uses a call
to PUT with a large record size to force termination of the current physical
record, followed by a cal! to PUTSZ (9.5.6) to reposition at the beginning of
the block, followed by a call to PUT to actually allocate the record:

PUTBK MACRO (fcol,stor )
t + record size
record slze + MAXBLOCK
PUT (fcb)
PUTSZ (feb, 0)
record gize « t

PUT (fels L stor )
PUTBK MEND
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9.5.5 COPY

The COPY macro moves the last accesse " logical input record from the
designated irHut file to the next available position in the desigr-ted output
file. The calling sequence is

CALL COPY (fcb-out, fcb=in)

The CALL COPY command performs the same function as CALL PUT except that
the current record index of the input file is useu 'n place of the usual working
storage location (stor in CALL PUT). The size of the record is determined by
the record size field of the output file control block. The input file control
block (fcb-in) is not modified or checked in any manner. See description of
PUT for return and excepuion condition information. The COPY macro is as

follows:
COPY MACRO {fcb-out, fcb-in)

PUT (fcb-out, current record index feb- 1n)
COPY MEND

9.5.6 PUTS?

The PUTSZ macro is used to update the file control bilock of the desig-
nated output file to reflect the true size of the last logical record placed in
that file. The calling sequence is:

CALL PUTSZ (fcb, size).

"*his macro is generally used in the case where an output record of unknown
length is to be constructed in the buffer. Either CALL PUT or CALL PUTBK is
issued with the record size field of the file control block set to some maximum
record size value, Space for this maximum size record is thus reserved.

After the record has been constructed and its actual length determined, the
CALL PUTSZ command is issued to undate the file control block with the

apnropriate pointers. The PUTSZ macro is as follows:

PUTSZ MACRO (fch, size)
BSR + size
PUTSZ MEND




9.5.7 RELSE

The RELSE macro causes the next referenced logical record of the des-
ignated file to be the first logical record of the next physical record. The
calling sequence is

CALL RELSE (fcb)

If the file designated by fcb is an input file, then any logical records remain-
ing in the current physical record will be ignored. The next logical record
request will obtain the firsi logical record in the next physical record. If the
file designated by fcb is an output file, then the physical record currently
under construction will be written. This physical record may be shorter than
the usual record created for this file. The next logical record on this file will
begin a new physical record. We shall describe two macros, RELSEIN and
RELSEOUT, for the two cases.

The RELOFEIN macro is similar to the GETBK macro without the final GET:

RELSEIN MACRO (fcb)
¢L MOVEH F
ONNODE (BB, TRAILER,EOF,ELSE) GOTO (NEXT,¢LL,¢LL, L)
MOVEH F
ONNODE (RB,BE,BSN) GOTO (¢LL,¢L, NEXT)
MOVEH F
¢LL
RELSEIN MEND

The RELSEOUT macro is essentially the PUTBK macro without the final
PUT:

RELSEOQUT MACRO (fcb)
t+ reccrd size
record size + MAXBLOCK
PUT (fcb)
PUTSZ (fcb,0)
record size « t
RELSEOUT MEND
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9.6 Device Pesitioning Commands

These commands handic the positioning of input/output devices. Some
of these commands apply only to unlabeled or multifile tapes., Since we have
not attempted to model these, only verbal descriptions wili be given.

9.6.1 REWIND

REWIND MACRO (fcb)
MOVEH R
MOVEH F
REWIND MEND

9.6.2 WEF (multifile)

The WEF macro writes a file mark or an output file, A file mark is a
single character record. If the character is 178, it is interpreted as a standard
erd-of~file. Otherwise it triggers a call to a user provided routine. The
calling sequence is:

CALL WEF (ficb, file mark).

9.6.3 FSTFM (multi. 'e,unlabeled)

The FSTFM macro forward spaces an unlabeled multifile tape to a
h
position immediately following the nt" succeeding standard end-nf-file. The
cailing sequence is:

CALL FSTFM (fcb,n).

9.6.4 BSTFM (multifile ,unlabeled)

"he BSTFM macro back spaces an unlabeled multifile tape to a position

th

immediately following the n*"' preceding standard end-of-~file. The calling

wvequence is:

CALL BSTFM (fcb,n).




9.6.5 FSREC (tape cnly)

The FSRECT macro is used to space over the next n physical records on
the designated magnetic tape file in a forward direction. The calling sequence

is:
CALL FSREC (fcb.n, eof)

The tape is positioned immediately after the nth physical record which follows
the initial position of the tape. For a huffered file, if the last command issued
for that file referencad a logical record, then the initial positicn of the ta~: is
agssumed to be immediately after the physical record that contained that logical
record. If a file mark (any single character record) is encountered before n
physical records have been bypassed, then return is to the location as eof in
the calling sequence.

9.6.6 BSREC (tape only)

The BSREC macro is used to space over the n last accessed physical
records on the designated mag.ietic tape in a backward direction. Tke calling
sequence is:

CALL BSREC (fcb, n, eof)

The tape is positioned immediate ly ahead of the nth

physical record which
preceded the Initial position of the tape. For a buffered file, if the ! .
command issued for that file referenced a logical record, then the :ial posi-
tion of the tape is assumed to be immediately after the physical record that
contained that logical record. If a {ile mark is encountered before n physical
records have been bypassed, then return is to the .ocation given as eof in the

calling sequence.

9.6.7 FORCE

The FORCE macro is used to force an end-or-reel condition on a rmag-

netic tape file. The calling sequence is:

CALL FORCE (fcb)
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If the file is an output file, an end of file (file mark = 178) will be written on
the current tap=. If buficred, the physical record under construction in the
buffer will be written prior to writing the file mark. If labeled, the trailer

label will be written on the current tape. Unit switching will then be performed.
The header label on the new tape will be checked for an expired retentii =

period and the new label, if so indicated, will be written. If the file is an
input file, unit switching will Le performed. If labeled, the header label on

tne new tape will be checked.

9.7 Physical Record Processing

GEFRC physical record processing is low level and quite powerful.
Input/output is initiated via call to READ or WRITE. This call causes an input/
output operation to be started. This operation will occur in parallel with user
program execution. Synchronization is obtained by use of a zall to WAIT.
Input/output may be either consecutive or random, and may include a scatter
read or a gather write. These options are specified by the use of a list of data
control words (DCWs). It is also possible to specify a "courtesy call" routine
to be executed at completion of the input/output request. A program running
in courtesy call has certain special properties (for example, it cannot be
swapped). Because it is av such a low level, we have not attempted to model
GEFRC physical re.-ord processing.

9.8 Input/Qutput Editor Functions

GETFRC includes a set of high level routines specifical'y designed to
provide for certain special purpose requirements of the language processors.
These include providing a limited output formatting capability fc. both printed

and punched output. It includes the ability to convert 1..put from COMDEK
‘ compressed)to Hellerith format, to merge an ALTER filc with the primary source
language input and to create an updated COMDEK output file from the merged
input. In addition, the output routines included here provide an accurale
interface with the standard output file. We do not attempt Lo describe these

routines in Jdetail but include them here tor the sake of completeness.
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9.8.1 IOEDIT

The IOEDIT macro initializes the edit functions such as PRINT and
PUNCH with parameters which do not vary with each call to these routines.
Parameters include heading lines for printed reports, format information for
columns 73-80 of punched output, and page numbering information.

9.8.2 RDRIC

The RDREC mar o0 obtains the next logical input record from the des-
ignated file (with decompression from COMDEK format, if necessary) or from
an Alter file of changes to the designated file; and, if required, compresses
this logical record into the COMDEK format and insert it into the file desig-~
nated as K*,

9.8.3 WTREC

The WTREC macro inserts a logical record in the next available position
in the designated output file if the record is to be a printed line or a punched
card,

3.8.4 PRINT

The PRINT macro inserts @ line into the one current printed report whose
pages are automatically titled and subtitled, numbered, and controlled by an
interral line counter.
9.8.5 EPRINT

The EPRINT macro causes certain special editing of a printed lir.e prioi
to writing via the PRINT routine.
9.8.6 PUNCH

The PUNCH macrc inserts a punched card image 1n the next available
position in the designated output file.
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9.9 File Preparation Commands

The file preparation commands are OPEN, CLOSE, SETIN, and SETOUT.
These commands prepare a file for proper use by the other commands. We
shall describe the macros in English only.

9.9.1 QPEN

The OPEN macro initializes a file so that it may be properly accessed
oy the other macros. It is implemented by successively refining the general
file template to provide information about labels, block serial numbers,
blocking, record format, maximum blocksize, and other information needed in
the fcb.

9.9.2 CLOSE

The CLOSE macro disconnects a file when no further activity is to be
performed on it. It is implemented for output files by writing an end-of-file
record, emptying the buffer, and wriling a trailer record. The CLOSE is com-
pleted by an XFORM which essentially causes the file system to forget the
structure of the file.

9.9.3 SETIN

The SETIN macro sets a currently open file to be an input file. This is
done by use of XFORM to change the input-output status of the file.

9.9.4 SETOUT

The SETOUT macro sets a currently open file to be an output file. This
is done by use of XFORM to change the input-output status of the file.
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