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AN APPLICATION OF THE METHOD OF LINES

TO THE TRANSONIC AIRFOIL PROBLEM

I. Introduction

Background

The demands for faster and more efficient subsonic
aircraft have forced designers to reconsider the design
problems associated with transonic flow. Until recently,
the complications inherent in this flight realm could be
avoided by designing the aircraft for its optimum perfor-
marce either below or above the transonic regime. With this
approach the surrounding flow field could be considered as
being either entirely subsonic or completely supersonic;
hovever, these simplified approaches are impossible in the
design of the aircraft presently being askeu for. Cargo
and passenger planes that can fly at very high subsonic
speeds and interceptors required to fly at these same speeds
to most effectively deliver their weapoas will want their
optimum pertormance in the transonic portion of the velocity
spectrum. 1n>refore, solutions to the long standing transonic
flow problem are now  necessity and are of prime importance
in this the initial stage of research and development.

The first and perhaps most difficnlc hurdle that must
be crossed in transonic design problems is the deveclopment
of a solution technique for some mathematical model of the
flow field about a 2-dimensional airfoil in transonic flight.

There are several reasons why acrodynamicists have found this

1 Praceding page blank
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to be difficult and have avoided it whenever possible; all

of the reasons are related to what is physically occuring

to the flow in the region of the airfoil. By definition, the
transonic airfoil problem is concerned with determining the
pressure distribution over an airfoil when the flow field
around it is a mixture of subsonic (M < 1) and supersonic

(M > 1) flow regions. When these regions coexist in a field
it is referred to as a supercritical flow while a subcritical
flow is defined to be a flow in which the velocity is sub-
sonic at every point and a critical flow refers to flow when
M =1 at only one point in the field. There are two important
mathematical complications that arise when the flow is
supercritical. First, if the third independent variable,
spamely time, is not retairned in the differential equations,
then the basic form of the equations changes from elliptic

in subsonic regions to hyperbolic in supersonic regions.
Second, for both the steady and unsteady problem, as the
freestrecam Mach number approaches unity, nonlinear terms

must be retained in the small perturbation equations often
used as a mathematical model. In addition, a third major
mathematical difficulty appears in attempting to model the
effects of the shock wave that is normally attached to the
airfoil surface. To account for this shock either a compli-
cated systcm of conservation equqtions in divergence f{orm
must be used or additional relationships (Rankine-Huconiot
equations) must be included and thus amplify the complexity

of the problem. With all these added difficulties induced

-
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by the physical nature of the transonic flow field, the
mathematical problem has defied exact solution except for
extremely limited cases. Fortunately, though, the develop-
ment and availability of high speed computers has produced

approxizmate solutions by numerical techniques vhich in some

cases are in better agreement with flight data than wind tunnel

data.

Statement gg the Problen

The otjective of this work is to develop and evaluate
a2 particular numericzl solution technique for the two-
éimensional, inviscid tramnsomic airfoil problem. The method
is required to serve as an efficient and workable design tool
for the evaluation of ar airfoil in its transonic regime;
therefore, it nust yield acceptable results with nminimunm
corputer time and storage space. As presented here the
nethod is applied only to thin, symmetrical airfoils with
sharp leading edges. This pernits the present study to
concentrate on developing and testing the solution technique
and then, if warranted, future efforts could be concentrated
on extending the technique to problems of more extensive
scope. Nothing will be included to explicitly account for
the presence of shock waves in the flow, and the associated
viscous interaction with the boundary layer will not be
considered. This last assumption, though, is made simply
because it is required to reduce the mathematical problenm

te the scope of this presentation; the intent is not to
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imply that imviscid flow is a2lways a good assumption for this
velocity regime. Pearcy (Ref 9) has shown that the compli-
cated inte{action between the shock wave and the boundary
layer will result in flow sepzration and disturbances not
present in flow fields outside the transonic regime.
Therefore, it is agreed that these viscous effects could
indeed be a dominant feature for many practical problens;
however, at this time there is no practical way to approach
the full viscous problem within the scope proposed here.

It is hoped that the solution technique developed in this
presentation pay se extendable to the viscous problem but
the method as presented here will only be applicable to
transonic airfoil problems where the viscous effects do aot

drastically alter the flow field.

Other Solutions Currently Available

The a2pproach to this problem was selected after
examining existing solution methods. As inplied before,
exact solution techniques for the inviscid transonic airfoil
problem are available; however, they contain well-nigh
insurmountable difficulties except for extremely limnited
cases as shown by Ferrari and Tricomi (Ref 2:562). Because
of the lack of exact solutions many numerical methods have
been devised to produce approximate solutions. These, in
general, may be classified into one of three broad categories.
In the first category, the governing equations are trans-

formed into integral relations and solved by iterative

v
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procedures. This method kas been employed by Oswatitsch
(Ref 2:563-574) and morec receatly by Spreiter apd Alksne
(Ref 10) in solving the tramsonic problem for thin, sharp-
nosed a2irfoils. Although this technique could satisfy the
computation time objective, at the moment it is not extead-
able to arbitrary airfoil shzpes. The second category of
solutions transforms the differential equations into alge-
brazic expressions by z2a explicit or implicit finite-difference
schene. Magnus 2né Yoshiharz (Ref 7} have been particuliarly
successfurl with this techinique and can no¥ produce cxtremely
good results for several zirfoil shapes. The difficulty
associzted with these nethods is the long computer times

(on the order of 1 hour/input for the Magnus zand Yeshihara
rethod) and storage space required. This nzkes the pethod
unattractive as-a design tool znd infeasible to extend te
the nore involved problens. The third .category of solution
techniques reduces the system of goverming partial differen-
tial cquations to 2 set of crdinary differential equaticns
vhich may be solved by one of several available solution
procedures. Dorodnitsyn (Ref 1) origimally suggested this
approach to the transonic problem, and the recent successful
application of these methods by Tai {Ref 11) and Melnik 2and
Ives (Ref 8) prompted the decision to use a version of this

technique for the development of the proposed method. By

taking a very simplified method of weighted residuals
approach, Tai has showp *hat this method 1s not only appli-

cable to the transonic airfoil problenm, but also that it can




GAM/AE/72-7

produce excellent resvlts with very little ceaputer time.
Meanwhkile, Melnix 2rné Ives have used z simiiar approack znd
have shown that weightiang functions of the subdomzin type are

czpable of handling any arbitrary zirfoil shape if the Yiow

field is of finite domain.

Approach to the Probiem

Smali perturbation theory zand irrotationzality will be
used to provide the set of governing differential equztioms.
The two boundary conditions these equztions wxill be subject
to 2re: no flow normal to the airfeoil surface a2nd undis-
turbed flow at infinity. Prior to developing the solution
technicue, the form of the governing equations wxill be
chznged by noandizensionalizing the varizbles and =making a
coordinate transformation to reduce the domzin te 2 finite
region. 7This is doae to simplify application of the numerical
technique and to elinminate the difficulty associated with
applying the boundary condition at infiaity.

The particular solution techniaque to be applied is a
forn of the method of lines to reduce the set of governing
equations to a2 set of ordimary first-order differential
equations. This new set is then solved by the classiczl
Runge-Kutta fourth-order technique for the perturbation
velocities throughout the field. Finally, the solution
technique is evaluated by comparing the analytical results
with published experimental data for symmetrical airfoils

at zero incidence angle.

A Dol
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11. Formuelation of
Technigue

In developing ar approach to the trzesonic 2irfoil

problem three very basic but crucizl decisions must be made.
First, 2 set of governizng equations must be selected which

conpletely define the problem within some prescribed scope.

Kext, modifications of the set, such as coerdinate or variable
enhzace the
the soplution.

trznsformations must be considered if they will
a

solution or simplify the mechaxics of obtzining
Finzliy, from the variety cf available numericzl schemes,

one must be selected to solve the resulting system of
The product of these three decisions defires 2a

equations.
specific solutien techaique; therefore, the z2lternztives to

this preseatatiocn.

3
each of these choices will be discussed in explzininrg the

Q

rationale for the approach used i
Picking 2 set of governing ecuations for a solution

rmethod reauires a choice to be made based on the exactaness

denanded of the solution versus the anmount of mathematiczl
For inviscid flov

conrplexity acceptable in the method.
there 2re three different sets of relationships which are

The

connonly used to define the transonic airfoil problem and
the complexity of each of these sets is directly related to

how the shock waves are mathematically accounted for.

first set consists of the isentropic relationship

'vl-v
1
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2nd tke unsteady form of the comservation =quztions for mass

and momentum

- dp 2(pU) 3(p¥)

: 3t 5x 3y - °
3u 2y 30 _ 2P
Par * POz * PV 5y = - 5%

2y ¥ 3y _ ap
TR Al T T3

These are usedé throughout the flow field except across the
shock where the zdditionzl Rankine-Hugoniot relatioaships
azre required. Grossmar 2nd ¥oretti (Ref 4) used this choice
in thkeir solution technigue but this decision resulted in
adding appreciable complications when tke method was zpplied
to tramsoanic zirfoils. The second alternative is to use the
steady stat2 form of the same set of equations but written
in divergence forz because in this form the system is then
applicatle even across the shock wave. This set still
consists of three nonlinear partial differentiz2l equations
together with an algebraic relationship and therefore
rerains a very cooplex system to work with. Although Tai
(Ref 11) deveioped a2 solution technique based on the <ub-
donain method using this set of governing equations, a
sinpler syster is desirable for this preseatation. A third
possible choice exists when it is assumed that a good approx-

imation to .he flow field can be obtained without mathemati-

cally accecunting for the shock waves. Spreiter and Alksne
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(Ref 10) znd severzl otkers Rave useé this assumption while
working with imtegrazl solvtioms for slender, sharp-nosecé
bedies in the tramsonic regime. This choice seems parlicelariy
attrzctive-for this presentztion sizce the scope, a2s stated
ip the introduction, has already excluédeéd the iateraction
be*ween the shock znd the bouméary layer and beczmse, in
gererzal, no 2 prieri comclusion czm be érawxn comcerning the
magnitude of the change in the flow éue exclusively to the
inviscid shock effects. Further, since this is z prelimimary
stedy of 2 new solution teckrigue this assumption permits the
evalwuaticon of the technigue with the minimum mathematical
ccmplexity. Then, once the technicue is formulated usiag
the simpler set, the same primcipies could be applied te the
2ore exact equatioms if the sclutiom requireé it.

¥ith this decision, sma21l perturbation thecry 2aad the
irrotatioazlity coadition czn be useé to define a2 set of
goveraing equztions. Liepzann znd Roshko (Ref $:202-208)
develop the theory and give the form of the szall perturba-
tion relationship which is valid throughout the traasonic

Tegine:

2, du 3v 2 v+ 1 du
(1 ¥.7) P + 3y M, —ﬁ;_- u 3% gD

This equation when nondimensionalized and rearranged
(Appendix A) may be written
2 1 v

3 2 2 =
3% [(1 - M D)u - 5 M.%(y » Du”] + 37 =0 (2)
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Traditionaily, zhe pomlinezrity of Eq (2) z2rd tke change ix
sign of the first term for scme positive value of w as H_
zpproaches one hzs made this eauation difficult te solve.
In 2n 2ttempt to relocate tkese difficulities into 2 form

which might e more easily dezlt with mumericzlly the

folloxing definitioa is made
2= (-3 e - .;;wgz(y + 1)u? 3)

Therefore the £211 set of governing equations needéed to
completely define the problem comsists of Ig (53). the modi-

fied smzll perturbation relatiomskip,

3 * 3y -2 (4)

v du _ "
-3-;--3-}--0 (3)

Further, these partizl differentizl equztioms z2re subject to
boundary coaditions on the body surface z2nd a2t iafiaity. If

the 2irfoill surface is defined by the relation ¥

i(x),
then the comdition at the body surface of no flow normal to

the surfzce (Ref 6:208) ma2y be written

v df
TR 1 = £ {6)

u+ U,

£

Because small disturbance theory is being used for the
governing equations the only nathematical boundary cond:tion
that is specified at infimity is that u and v are

both finite. However, at infinity in the

10
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physicz? problem z= a2rd v boeth zre zero zmd this more
restrictive condition is generzlly zssumed wkepever there

are no regions of superscnic flow extending to thz infinity
boundzry. .Therefore for this solution techepique the boumdary

coadition whick wiill be imposeé a2t impfimity 1is
e=v=2=20 (7)

Based on the difficmlity experienced by other zutkeors
in 2pplying the bowundary cenditioms, 2t wa2s édecideé that a
<oordinate trzmsformation should be vsed to 2voié a2ssumptions
2s to where the Doundary comditions shouléd be z2pplied. New

independent varizbles were defimeé z2s

p ¢

&= —— (8)
Ix] + L

n =7 - £(x) (9)
Iyl + &

where L 1s some positive constzaat. As can be seen from

Fig. 1 2n2 2 on the followxing page, this transformatiom
accozplishes two importaat objectives. First, the domain

of the independent varizbles is reduced to a fiaite region;
therefore, the boundary conditions 2t infianity im the x-y
plane 2re applied at unity in the £-n plane. Second, the
thickness of any airfoil shape is reduced to zero in the new
coordinate syster such that the boundary condition on the

airfoil surface is applied 2t n = 0.

11




GAM/AE[T2-7

¥4 14
- GO = - — - F~-——"—""——- Pr————— —a
] g ] ]
] i : ] ]
; ' ; ;
] § [ g
] -
i — 1 = 2 | F—EJ .
- RS |
1] l,; | 8
B i I B F
2 [}
] L] 7 '
[ ] . ] 8
g 5 ! '
] ’ [} [
| ] :
-
S D e e e e e S
H
]
Fig. 1. Originzal Reference Fig. 2. Tramsformeé Reference
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This transformation is thorovghly discusseé zaé developed

in Appendixz A where the smz211 perturbzation relztiom is showm
to be
32 if'(d - @) 39 (- m?  3v (10)
28 L+ Da-lzhZen @+ HG-1ENH?%
and the irrotatiomality condition becomes
s s - - 2
8v _ _Lf*(l - n) v L(1 - n) du (11)

2

3 (L+ HA-1eH%Z aa @+ H1-1EDH2 an

The algebraic relationship remains unchanged, therefore,
Eqs (3), (10}, and (11) represent the full set of transformed
governing cquations. The boundary conditions which these

equations are sudbject to are

12




GCAMJAESF2-7

2t £ or m equzl + 1 z2nd

<
|

= £°(1 + ©w)

2t the bedy surfazce (m = 0). This last comdition is further
simplified by reczlling that by defimition v is much less
than one, therefore the boundary comdition czn be zpproxi-

mated by

v = £° (13)

at a = 0.

The most difficult decision that had to be made was the
choice of 2 numericzl method to solve the resulting set of
equations. Because of the objective to recduce computer time
znd storage space to 2 minimun 2nd due to the successful
applicatioas by Melnik and Ives (Ref 8) a2nd Tai, it was
decided very early-that 2 forn of the method of weighted
residuals should be used. ¥ithin this approach severa:i
alternatives were tried and a solution technique using the
subdonzin method was extensively developed. Unfortunately,
the lack of any rational procedure for initializing the
variables caused the nethod to be rejected. Thus, although
a detailed discussion of this technique is included as
Appendix B, this presentation uses the easier to apply

nethod of lines.

13
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Tke purpose of the method of lines is to reduce =
system of partial differential equatioans to 2 set of first-
order orcdinary Giffereatial equations. The method of lines
presumes that the derivatives in the n-direction can be
represented by 2 finite-difference approximation (details
are included in Appendix A). To use this concept, the
h-damain is divided by (¥ - 1) parallel lires, equally

spaceé between | = 0 and n = 1.

;1 =1, 2, ..., (N"l)

e

Representing the derivetives with respect to n by
central differences, the governing equations (3}, (10), and

(11) for the ith line nay be written:

1

Q = (1 - Ml - = H2(y + 1)uy? (18)

i

an. (N - i
i £ )L (9.

g 2(L+ £)(1 - Jgph?

-85

.32
L(N - i)
2 (vi+1 - Vi-l) (15)
IN(L + £)(1 - |ED)
dv: .
i . f'(N - 1)L
(Vieg - Vi) #

dg 2L+ (1 - |g?

L(N - i)2
2N(L + £)(1 - |&])?

(U1 - viy) (16)

14
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Khen this system is collected for all (N - 1) lines the
resulting set of (3N - 3) equations involve (3N + 3) unknowas:
uj, vj, and Qj; j=20,1, 2, ..., N. Three of the six

additional relationships which are required to uniquely

define the problem are obtained from the boundary condition
uy = vy = 2y =0 (17)

at n = 1. Two more relations are obtained by writing

governing equations (3) and (10) along the body surface

2, = (1 - M2)uy - % MoZ (Y + 1ug? (18)

df LN
- (£1(-30, + 42, - 2,) -
dE 20+ A - [ED? L

(-3vg + 4vy - vy)) (19)

where the n-derivatives are approximated by forward-
differences. Finally, the last required equation comes
from the boundary condition on the surface, Eq (13), which

is rewritten as,

vg = £'(x) = £ (-——51:- (20)
1 - |g]
Therefore, the complete problem now consists of 2N first-
order ordinary differential equations which must be solved
simultaneously with (N + 3) algebraic relations.
This set can be conveniently solved if initial values

can be determined for starting the solution of the ordinary

15
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differential equations and if a unique value for u can be
found for a given Q from Eq (3). If Eq (3) is solved for

u by the quadratic formula

(1 - M5 2M_2(y + 1)
we=—3——— 12+ / 1- ——a (22
Mo (y + 1) (1 - M%)

then, a choice of signs must be made to uniquely define u.

A typical plot of u versus § from Eq (3) for a M_ less than

one is shown below in Fig. 3 where u, refers to the value of

2

u at which ;
Ju

namely,

(1 - M%)

N = g @3
M, (v + 1)

and Q. is the corresponding maximum value of Q. Comparing

Eq (22) and Fig. 1 it can be concluded that the proper sign

in Eq (22) is negative if u < u. and positive if u > u,.

OMEGA

e o wae o oo o w- -

) 4

b

Fig. 3. Typical Relation of u to Q as found from
Eq (22) Including the Critical Values of u,

16
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From experimental data presenteé by Knechtel (Ref 55 it can
be observed that for subcritical flows u is a2lways less thare

w. wkile for supercritical flows u exceeds this value over

some portion of the zirfoil. Typical examples of the
2 ¥F I

o-distribution on the surface of 2 subcritical (}_ = 0.806)

[:%

2ndéd 2 smpercriticzl (¥, = 0.909) 6% circular arc airfoil are

-

given in Figs. 4 2nd 5 bpelow. Also shown in these figures

are the vaiues of u, for each case 2nd the corresponding

distribution of 2 reauired when the proper sign is used in
Eq (22).
8.25; v = 8.2861 U =
onEGR — OHEGR —
&
< 0.181 [ 0. 184
[« [«]
s W
r b >4
o o
o o
=z =
< B.11- T 0,111
> > Lt
0.031 0.03
~0. — -0. v —
G 0.5 1.0 0-0475 0.5 1.0
X/C X/C
Fig. 4. Suberitical Fig. 5. Supercritical
(Mo = .806) distribution (Mo = .909) distribution
of u, corresponding of u, corresponding
f-distribution from Eq (22) 0-distribution from Eq (22)
and critical value of u for and critical value of u for
a 6% circular arc airfoil. a 0% circular arc airfoil.

17
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Shen the set of governimg equations is solved by 2
marching method suck 2s Renge-Imtta, the proper sigs in
Eq (22) czn be predicted by the valwe of ﬁi a2nd Qi' 2t the

points wbkere the wzlme of v; is found to equzl w© There-

c-

fore, if the proper initial conditions of v; 2md 2; can be
determined Eq (22} is solved for the corresponding e, -

Then the Runge-Kutta fourth-order soiution techmigue can be
2pplied to solve the 2N ordinary differential equztions for
the value of v; and ﬁi sone Af downstream 2né theredy
setting up the zzarching teckhanicue in the g-direction. Fron
this method the values of v a2néd v a2re fonné a2t every point
in a bg x bn grid which covers the entire flow field. W¥ith

these values three important pzarameters of the field are

found: the pressure distribution over the airfoil surface

the ratio of local to free strean velocity at each grid point

v
. = /&ui + 1)2 + viz (25)
i

and the Mach number distribution throughout the f.eld

\Y
M= g Mell - 5 O - D2ug +ug? v vy ?)

The solution technique can then be evaluated by a comparison

with experimental data.

18
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I¥f. Reswmits

The resuilts zad conclus:oms obtzinmed throwgh the course
of this stwdy %iil be givern in cEromologiczl order se that
the smbject matter czn be divided wp imte four ma2inm topics:
subcriticzl 2irfoil studies, suvpercritical 2irfoil! efforts,
atzempts to generzlize the imitizl conditioms, znd zpplica-

tions of the metkod to subsoaic and suvpersomic wavy walils.

Sudcritical Airfoil

t was zssuned in the formmlatiom of the solution
tecknique -that oniy synmetrical airfoils 2t zero imciéence
angle would be comsidered. Therefore, beczuse of awvailizbility
of experimentzl dzta a2ccunulzateé by Knechtel (Ref 5) the 6%
circular arc airfoil was selected 2s the reference zirfoil
and the subcritical case of M, = 0.806 was chosen for the
first test of the proposed solution techrique.

The difficuities in generating initial conditions for
upstreaz of the airfoil for this problea will be discussed
in detail later in this section but a method was constructed
at this point for determining the initial conditions by
starting the solution at a point on the airfoil (0 < x S 1).

Based on the form of the experimental Cp dis<ribution and

the curve of the boundary condition vy = f' (as shown in

Fig. 6 on the next page) it was assumed that the distribution
of any ui(E) (recalling that the subscripts on u, v, or §

refer to their value on the line n = ) is symmetrical with

E

respect to the line x = 1/2 while the distribution of any
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i Disiridution ef uwg 2mdé vg Over
2 Circmlar Azrc Airfoil.

vi(i) is symmetriczal with respect to the poiant x = 1/2,

y = £(1/2). ¥ith these assumptions the

120

nitial values of

uy and v; can be guesseé 2t 2 point a2n=sad of x = 1/2, then
knoxing what the vazlues of u; and v; should be at some point
downstrean, these initial guesses are refimed by an iteratiom
process. In application, from the experizental data the
point at which C, = 0 was selected as the initizl value of

x, the values of u: at this point sere assumed to be zero,
and the values of v; ?ere guessed. Since the assuped
symmetry required all v; to be zero at x = 1/2, these guesses
for the initial conditions were refined by iterating between
the initial x and x = 1/2 until all the v; changed signs

¥ithin a region x = 0.5 ¢+ 0.002. When this condition was

met it was found that the entire flow field (0 < x € 1)

20




—

CAMAESF2-7

possessed the symmetry im oy 2né w; 25 was origimally
2sscaed. Harinpg this comformaztionr of the assunptions made

on the field, the method wzs nsed to gemerate the imitial

conditions reguired by the method of lipmes solutiom using
53, 4, 5, 6, 2284 8 limes. For the swbcriticzl zirfoil the
resmiting CP distributi--s a2re compzred to each other im
Fiz. 7 or the next page. The éistribatior obtzimed from
the 8-1ime solut.on was slightly lower than thzt obtained
with the 6-1ime solmtiom but they were so cliose that the
experimentzl dat-. could not de read accurztely enough to
éeternine whick wvas the better soluticm. Comsecquentiy, it
w2s coacluded that 6-lines were suwfficient.

The conclusion whick caa be draun fron these resuits is
that the metkod of lines, givem the proper initizl comédition,
produces very a2ccurzte solutions with iow order zpproximatioms.
Further, since only 12.2 seconds of CDC 6500 computer time
w2s required tc generate all the u;, vy, H;, velocity ratios,
a2né C) distribution for the 6-line case, the solution techni-
que satisfies the time restraint objective required of the

rpethod.

Criticai and Supercritical Airfoils

With the approach estzblished on the subcritical airfoil
the technique was next tested at the critical Mach number
for this airfoil, M, = 0.832. Using the 6-line approximation
the results were found to be in excellent agreement with

the experimental data; the Cp distribution was again

21
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Determined Distribution for a Subcritical Circular Arc

Airfoil.
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coimcidentzl To the experimentzl wvazlves znd 2t Tthe grid
point x = @.302, ¥ = 0.0237 <he Mzc:k coaber was foumrd to be
0.5982 25 compared to the esperimezizliy predicted walme of
¥; = 3 at éhe peint x = @.5, ¥ = @.035.

For z third test of the solwvtiom techmique the swper-

critical czse 2t ¥, = O.85 was selected beczmse it still

zppezars to meet the symretry Tequired im predictimg the

(&1

()

mitizd cenditioms. As discussed im Secticom i1, there is 2
change of sigos im the w-2 relzationship giwem inm Eq (22)
whkenever 2 sonic iime is crossed im the flow field. The

COmPpUIEr Program wa2s 2dle to determime the peimts 2t whichk

this change was 1o occxr z2zd properiy predicted the sige but

the same poimts

L)

refer to Figs. 4 zm

(~Y)
N
oo
[T 1)
4]
~
"
8
]
(4]
0
1)
b

adéitionzal complicztion. Consider the differenatizl eguatiom
20, £1(1 - i/¥)L 39 a-imia 3vs

3

-—

3 L+ 9 - 2?2 =a L+ - jeh? ea

Letting ¢* be the value a2t which tte

w

ign change is to occur,

thea over a smz21ll region surrounding this point, & = £* = €
ov:
the values of coefficieats and 37 =2aY be considered coastant

and this expression is simplified to

r'1Y3 i Qﬂi

3t =G e -6

r)rv‘
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28
Therefore, for z charge im sigm fo occmr Im 521 withim

the regiom L* « £ IT cam be seem Thas z Tery zccorate

2R ) ) )
zp roximztiom To 55; is reguwired. Tryimg & limes im tke
solntion techmique (which msed 2 secord erder approximaiion
for the derivwztive) failed to be accorzce excmgh to get =2

-
change In sigm of Tz_.wmem the sign chargpe occmsred inm the

&
v-2 relztionship which implies that z lzrger mouber of limes

is peeded. This wornld mot pose zny serions complica2ticn

(31}

except thzt the method wsed to determime imitizl cozditioms,
althomgh «~ficiem: for =z smzil pomber of iimes, becomes a2
vesy tedicos 2nd lemgtky process if more tham eight 1imes

27e required. Since there was no wzy to dete—mipe beforehaxmd
box maay ilimes would Pe required to get the accuracy needed
2nd beczuse of the time constraimt om the study, the

developnent of this solution had te be set aside ip order

to work om mere gemerzlized problems.

Initizl Conéitions

By comsidering omly problems with symmetriczl 2irfoils
2t zeyo incideace zngle 2nd by restrictiiag a to values of
n 20, it %ili be reczslied that the boundary comnditioams

corresponding to the infinity coanditions are
u; = vy =85 =0if £ =2 1orn=1 (27)
while at the boundary

f£' if 0 $E € ——
Vo = (28)




g

)

CINJRES 727

Simce the solwmiior lechmigue wses z mzrmiimg metied 2m the
f-divecticn zvd Booxdzry conditiems zre zvzilazble at both

£ = ¢« b, this supgests that the imitizk comiilicms are well
estzbnis&cé ard the solotier cam progress imze Eifficmity
beczwse of two compliczrioms axbich reswit from welaztimg the
boundary zmd imftizl coxditioms to the rezl physiczl problzm.
First, if the solmticn was started from § = -3 zmd the
iritizl conditioms were zil set equzl to zero as predicted by
the bommdary cemditiens the set of ordimary differemtizi

eqgnaticns would 21l eauzl zere a2nd the techaique wowuld
predict zo ceéisterbed Tlox everywhere uvpsirezm of the leadimg
edge. Since it is koowm that the presence of the z2irfeil

does disturb the flox vpsiream, if the velocity is iess than

supersonic, it is mecessa2rvy o siorT the solutiom freom 2

point z2way from the Doumdary £ = -1 where the izitizl cozd

hi

tiens 2re mct zil zoro. Second, simce in gemerzl £ £ 0 a2t
the trailing znd leading edge of zm 2irfoil, the boumdary

conrdition a2t _

0 czuses disceatiauities ia vg at ezch of

[TV

these points. 1If it is attempted to march past these points
the juzp in value of vy is propagated throughout the set of
governing eguz2tions 2nd the system is fouand to be umstabdle.
To zvoid this instability attexmpts were made to slightly
alter the shape of the 2irfoil at the leading and trailing
edges such that v, changed fron 0 te f' over a smz2ll region
rather than at a2 single point.

In develoving this theory for predicting the initial

conrdition smoothing functioms of the type

25
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wa,:E’(c)%;@sxse:
vg = £°(0)(2 » 2); -e <z £ @
vg = £°(c) %_, §E ; -E<x €€

W

% £*{c)fi + cos w1 + EJ]; D<sx e

were tested a2t the lezdiing edge while the initizal co=ditioas
2t & = -0.9 were perturdeé im 2 wvarietly of combimatioms and
magmitedes. Witk this datz it was hoped to correlate the

e

chaznge in initizl conditions to the change in the s
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2nd smoothing functioms conzlé be foumé to give stable solu-
tions pzst the lezding edge. The sclution over the sub-
criticzl 2irfoil was produceé by the method descri~ed
previously 2t this time a2nd with this 4-1ine solution in

conjuiiction with the forcing function
vo = £'(0.9)[(2.0 - x)/0.1]

a concentrated effort was made to march ~rf the backh of the
airfoil and correlate the change in iritial conditions at
x = 1/2 to the flow field that resulted at x = 2. It was
found that a perturbation on the order of 1074 inposed on
any one of the initial conditieons would substantially alter
the flow at x = 2 and that although the magnitude of all the
u; and v; decrcased downstream of the trailing edge they

eventually would diverge and no sct of initial conditions

26
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could be fommnd to force convergenmce to undistorbed flow far
doxnstrezn. Becamse of the sepsitivity of the Flow field
to the imitizl comditions, the wvalwe of w; znd v; marching
o2 or off both ends of the smoothimg fmnctions are critical
to thke solntion. Conseguertly, no wz2y couid be foend to
sepzrate the influence of 2 ckarmge ir initial conditions
from the error imjected by the smoothiag functions and with-
out this separation mo rztiomzle coulé be founé for the

selection 0f either one.

¥avy ¥211 Solutioms

It was rczlized very late in the stedy that the solutiomn
techaique couié be zpplied equally well to an infinite wavy
wa2ll., The exzact solutions for Cp, u, and v for both the
subsonic z2nd sepersonic case are developed by Liepzmann and
Roshko (Ref 6) and offer 2 very efficient means of testing
the propesed soiution technique. Although these exact solu-
tions cannot be used to determine the applicability of the
nethod to transonic probleas, they can serve to evaluatc the
accuracy of the solution technique in predicting the flow
field as given by the exact solutions if the method 1is
started with the correct initial conditionmns.

To perform this evaluation the system of equations were
first reduced to the simplified problem solved by

Licpmann and Roshko by approxinating the Q-u relationship

given in Eq (22} as

27
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2nd by simplifying the y-n coordinate transformation to

= .Y
L

so the boundary condition at y = f(x) could be approximately

applied at y = 0. The wall function, f(x), was defined by
f(x) = 0.01 sin 27x

where the wave amplitude was selected as 0.01 with a wave

length of 1. By choosing x = 0 as the starting point the

initial conditions were defined as

e
ol

]

o

- 1"— 1/2
(0.01) (2m)e N-1 (27) (1-M)
1 .

<
]

Pobs
"
o

-
b
-

2, ..., (N-1)

for the subsonic case and

uy = - (0.01)(2m) (M,2-1)"1/? cos [-2m 5%; M, 2-131/7)
vy = (0.01)(27) cos [-27 %if (Mm2~1)1/2]

i=20,1,2, ..., (N-1)

for the supersonic case where N i1s the number of lines to
be used in the solution. Finally, in order to test the
technique on both cases, M = 0.2 and M_ = 2.0 were arbitrar-

ily selected as the subsonic and supersonic Mach numbers.
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Because finite-differences are used to approximate the
derivatives and since u and v are changing most rapidly in
the vicinity of the wall, it is necessary to have a good
distribution of lines in this region if the solution is to

be accurate. Solving Eq (29) for y and letting n = i/N

implies that

from which it can be observed that the value of I determines
how close the ith line is to the body. With a large number
of lines (N > 15)'many of the lines are naturally close to
the body due to the coordinate transformation and a change
in L (0 < L < 3) has little effect on the solution. For a
smaller number of lines L becomes increasingly important and
for less than § lines a substantial change in the solution
was observed as L was varied between 0 and 2. Figure 8 on
the page following this section shows the 4-line solution
for the subsonic wavy wall with L = 0.5 while Fig. 9 shows
the improvement in this solution as L is changed to 0.65.
In general, an optimum value of L could be found for every
value of N but in each case tested L = 0.5 gave reasonable
results. Therefore, L = 0.5 was selected as the reference
value of L used in all solutions,

As was pointed out in the formulation of this solution
technique, the boundary condition at infinite was defined to

be

n
<
n
o]
1
()
[e~)

uy l¢] = 1 orn =1
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Fig, 8., Solution Obtained for the Cp Distribution over a
Subscnic Wavy Wall Using 4 Lines with L = 0.5 as Compared

to the Exact Solution,
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Fig. 9. Soluticn Obtained for the C, Distribution over a
Subsonic Wavy Wall Using 4 Lines with L = 0,65 as Comparcd

to the Exac:

Solution.
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For the subsonic wavy wall the exact solution agreed with this
condition and consequently the solution required only 4-lines
to get the accuracy as shown in Fig. 9. However, with the
supersonic wavy wall the exact sosiutions predicts that u and
v vary sinusoidally at infinity and although this solution
gives the range of these values it can not be used to predict
specific values for u or v at particular points on the
boundary. When u, v, and Q were set to zero at n = 1 errors
resulted in the solution. However, as the number of lines
was increased the solution converged rapidly and in Fig. 10
the Cp distribution obtained using 20 lines is shown to

compare very weil with the exact solution.

L]
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Fig. 10. Solution Obtained for the C, Distribution over a
Supersonic Wavy Wall Using 20 Lines with L = 0.5 as Comparcd

to the Exact Solution.
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IV. Conclusions ané Recomnendaticns

Conclusions

From thke results obtzined for the subsonic a2nd super-
sonic wzvy wa2ll 2né the soletions founé for the circular arc
airfoil it can be comcluded thzt the proposeé soiution
technique is cap=ble of producing extremely accurate results
with very short computer times provided it is furnished with

correct initial conditions.

Recomnendations

The following recomnendations are proposed for future
work:

1. 1t is suggested that for this problem an umnsteady
systen of governing equations should be used. With this
three-dimensional coordinate system the marching method can
be set up in the time direction and a method of weighted
residuals could be used to approximate the derivatives in
the x and y directions. 1In this form, the problem of
detcrmining generalized initial conditions can be separated
from the problem of handling the discontinuities in the x-y
plane and their individual effects can be evaluated and
controlled.

2. A coordinate transformation of the form used in this
development should be used to control the domain of the
independent variables. Although the opportunity was not
available to demonstrate the advantage of shrinking the

airfoil thickness to zero, it is suggested that this benefit

34
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be retained becauwse of the thick a2irfoils wsed ir the
traasonic regime.

3. The iptroductionr of 2 to separxate tke rnomiisezrity
from tke éiffcrentia] equation made the system much ezsier
to work with 2nd it is suggested that this szme tecihmigue
should bec zpplied whemever similar nomnlizear terms zppezr

in the differentizl relations.

4. The methoé of lines, as useé im this éevelopment,

is highly recommended 2s z techmique for reducing the partizl

differentizl equations. Besiédes being a very straightforwzrd

pethod to 2pply it has an outstanding zdvantage in thzt the

resulting unknowas cam be easily identified with the physiczl

problen.
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Appendix A

Betziis of the Solptior Techmigue Formmiztiom

-

This zpperdix serves zs z2n extension to the development
2s presented im Sectiom Il of the maim body. Its purpouse
is to give 2 deta2iled discwssion 2né formulatiom of the
important mzthematiczal steps in zreas where detzails of thke
solutior techrigume might be desired by some readers. Toree

primary subjects will be covered: (1) the noerdimensiomali-

N

ztion of the basic govermimg eguations, (2) the coordimzte
transformation, 2nd (3) tke zpplicatior of the methoé of

lines.

Konéimensionalization

The set of governing eguations which were selecteé for

this presentation are the smz211 perturbztion relatioanship

2, 2u v _ 2 y+1 du
SR T I e -

which may be written by rearranging the derivatives as

[} 1 y+1 v _
sz [ - 1. D)u - 5 M2 = u?)+ 3 = ° (29)
plus the irrotationality condition
oV Jdu
TX- - ':,—}7 =0 (30)

In these equations M, and U, arec the free strecam Mach number

and uniform velocity, Yy is the ratio of specific heats, and
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o zwd v 2re the perturbztions whick zre defimed by

U= (B, » u)ex * wey

where U is the loczl totzl velocity vector. These differem-
tizl goverminmz equations are subiect to the boundary comdi-

tioms 2t x or ¥ egozls imfirmity where

n=v =0 (31)

and on the sprfzce of the body xhere

V —
a +« Ug

ﬂh'&

2

zné y = £(x) defines the skape of the zirfoil.

To generalize these relatiomships it is desirzble to

Pt

(1)

n their nonéimeasionzl form. 7o do so the

=

express them

lengths are nondimensionziized with respect to the chord

length
xX* = 5_
C
e = Y
¥ Cc
f*r = £
o

and the velocities are nondimensionalized with respect to

the free strecam velocity

*:.u__
u Uw
v
r = V_
v o
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(:} Nzkimg these defimitioms znd substitotimg imto Egs (29)

throog® (32) chzmges the form of these expressions to

du=

- y ==

"J% [ - % 2%)e - 5 %2 (rs1)o2] » e - 2 (3}
3v* 3a* -

5x* ~ SyF - ° (34)

gt = v* =0 £ <= (353

v _ @f= e y* = £ (36)

a* + 1 éx*

b
)

Dropping the superscripis for simplicity of notztioa gives

the equatioms z2s they are useé in the main body.

Coordinate Transformztion

®

It was édecided to use 2 coorédimate transforzmation
because it is desirzbie to limit the dom2in of the indepen-
dent variables. The specific traasforaztion chosea to

2ccomplish this objective is;

£ = —-——lexé - (37)
n =Y - f(x) (38)

[yl + L

where L is some positive constant. The relationship between
the original independent variables and the new coordinates 1is
shown graphically in Figures Al and A2. As can be scen from

“
‘(1» these figures, as the |x| or |y] go to infinity the |£&]| and
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Fig. A1. Relationship Fig. A2. Relatiomsaip
between the indepeandent between the Independent
¥arizbles x - g. Varizbies ¥y = 7.

In] 2re restricted to vzlues of less than one therefore
these traasformations reduce tne domzin of the indepeancdent
variables to fimite regions. Also Fig. A2 shows the addi-
tional benefit of reducing the thickness of any airfoil inm
the x-y plane to zero in the £-n plane but it should be
noted that the plot of y-n is dependent on the value of x
because f(x) appears in Eq (38).

In order to transform the governing equations into
the new coordinate system the partial derivatives must be
expressed in terms of £ and n. If some dependent variable

is defined by

g(x,y) = G(g,n)

then the partial derivatives with respect to x and y may be

written by the chain rule as
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36 25 3G 3n
3€ 3x ' Fa Ix
3G 2% 3G 5n
S€ 3y * 3n Iy

(40)

From Eqs (37) 2pd (38) the partials of £ 2nd n with respect

to x zad y are evzluated to be

or in terms of the new

For flow fields symmetrical about n = 0, only the upper

half plane is considered and Eqs (39) and (40) may be

Wwritten as

]

B A C I LID

S{E1
¢

L

—————————— e

(x] + 1)2

-f
Iyl + ¢

L+ |£]
(vl + 1?2

independent variables

(1 - Jg]2
L

L+ |f]

(1 - JnlH?
L+ |f]

41

A



GAM/AE/72-7

3¢ (1 - |eh% 36 _ £r(1-n) 36 (41
O x =1 3% C T LeF 3m

. 3 (1-m)2 36
) 3= = e (42)

Returning to the differential governing equations as

given in Eqs (33) and (34) and defining
2= (1 -M,2u - %.102(y+1)u2 (43)

then with the definitions given in Eqs (41) and (42) the

governing equations in the new coordinate system are

(1 - tepy? 00 _ £r-m) 22, a-m?av |

L 3t L+f 9n L+f  9n
(- leh2av _g£ra-my av o (a-m? u
O L 3E L+F  an I°f 9n °

To get the form of these equations desired for application
of the method of lines solution technique, derivatives with

respect to £ remain on the left hand side such that

3 _ _ f£r(1-mL 3 . (-mi v (44)
3 (Lef)(1 - |EN2 M (+£)(1 - |E[HZ N

P 2
v f'{1-n)L ov + (1-n)°L du
*F % I T (45)
T wepa - [ED2 N e a - g2 "

Finally, the boundary conditions as given in Eqs (35) and

(36) become

‘(:> us=vs=Q=0 e@|florn=1
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€:) and

in the new ccordinate system.

Applying the Method of Lines

In general, the functions u and v are changing much
more rapidly in the &-direction than in the n-direction.
Therefore, to use the method of lines the derivatives with
respect to n are chosen to be represented by a finite-
difference approximation. Along any line parallel to the
n-axis, except for n = 0, the first-order partial of a
function G(&,n) with respect to n is approximated by

: €:} 96 _ G(&,n + 48n) - G(&,n - 4An)
. an 24n

(46}

which is the second-order central-difference. For the line
n = 0, since only values of n greater than zero are con-
sidered, the partial is approximated by the second-order

forward difference

36 5%_ [-3G(E,0) + 4G(&,An) - G(&,2An)] (47)
n=0 n

[

where in both Eq (46) and (47) the 4n refers to the distance
between evenly spaced lines, Dividng tle n-domain by (N-1)

of these parallel lines between n = 0 and n = 1,

™ = 1 2
,Q;; n =0, IRy |
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then the value of n along the ith line is written
_ 1
i * RN (48)

Introducing subscripts corresponding to the value of n and
<

using Eq (48) implies that the partials in Eqs (46) and (47)

may be written

N
an = 7 (6541 - Giaal (49)
3G N
WS 7 [-3Gy + 4Gy - G,] (50)

Applying these definitions in the governing equations as
given in Eqs (44) and (45) reduces these partial differential
relationships to a set of first-order ordinary differential

equations of the form

df; £1(1 - i/N)L

(Q
e (E)(1 - |EH?

N =

s - %op) -

a-i/Mm% N
(L+£)(1 - |g)? 2

(Vvise1 - vi-1)

df2 -~
© - £INL (<309 + 49, - ©
d&  2(L+f)(1 - |[E])?

2)

LN
2(1+£) (1 - |2

(-3vg + 4vl - v2)
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i _ £ - i/l x

& W0 - g2z Ui

a-irmiy  w

(L+£) {1 - JgH2 2

v, £INL

2(L+£) (1 - |g])?

LN
2(L+6) (1 - |g]h?

45
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(®541 - v5.3)

(-3ug + 4u; - u,)
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Appendix B

A Solution Technique Based on the Method

of Weighted Residuals

This appendix presents an alternate solution technique
for the transonic airfoil problem. This is the original
approach developed for this study but had to be abandoned
when no rationale procedure for initializing the variables
could be found. Since the solution technique appears power-
ful enough to warrant further investigation if the initiali-
zation problem can be overcome, a complete formulation of
the theory is given here.

The set of governing equations used by this technique
are the same as those used with the method of lines. After
nondimensionalizing and applying the coordinate transforma-
tion the set consists of

30 _ Lf' (1-n) 3 L(1-n)2 dv

it (51)
B e - ED2 T ena - [ghE D

%! _ LE'(1-n)  dv L(1-n)? du (s2)
3
o - g2 e - g2
(1 - M%) /// M2 (y41)
- 1+ 1 - o Q 53
* M 2 (y + 1) - (1-M_2)2 (53)
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The boundary conditions to be satisfied are: at the body

surface, n = 0,

(8
2_2. = —'———‘—'L 2 £ ; . '(54)
(1 - |lgh
and at infinity, £ or n = ¢1,
‘u=v=QRz=0 (55)

For this formulation the dependent variables u, v, and Q are

approximated by a series expansion in n where the terms -are
arranged such that the series automdtically satisfy the

boundary condition at n = 1

M .

u(g,n) = -21 a; (E) (1-m)* . (56)
1=

. N j

v(E,n) = ]} b5(8)(1-n) (57)
=l ]

| P X

2(g,n) = kzl o (8)(1-m)* (58)

Substituting these into Eqs (45) through (52)

P ' -1
v '(1-n k _
by T TR G- 1eD?
p N , . |
£ ) e fa-mb o) biJ(l-n)J*l} (59)
k=1 j=1 °
47 J
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~-L

N ]
- b-'(l-n)) =
5%1 ) (L+ £ - [gD?
al N 3 j 4 i i+l
[ £y ij(l-n)J + ) a;*(1-n) (50)
j=1 i=1
2
M ) (1 - M)
! ;0-mt = —————
i1 M 2y + 1)
2M 2(y + 1) P K
1+ 1 - >3 L cx(1-m)" | (61)
(1 - M 5% x=1
N L )
J bt = ———— " (62)
j=1 2 - gh?

In this set of equations at a given n there are a total of
(M + N + P) unknowns; namely, all the coefficients aj, bj,
and ci. Therefore, a unique solution for this sytem requires
that the same number of independent equations be derived

from Eqs (59) through (62). The method of weighted residuals
offers many techniques by which this system of equations may
be developed (Ref 3). Of these techniques, the collocation
method is the easiest to apply and was selected for use here.
Basically, this method assumes that an approximate solution
for the coefficients aj, b.

J
(59) through (62) are satisfied at a finite number of n-values.

, and c; can be obtained if the Egs

The collocation method allows the user to select the number
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of each type of equation a2nd the particular values of n to
be used in obtaining tkese equztions. 1In this application
the equations were selected in the following manner. By

ailowing n to take omn the values

in Eq (59), P ordinary differential equations are obtained

involving the cy' terms. In Eq (60), n is defined to be

n-= ;n=1, 2, ..., (8-1)

which together with the boundary condition in Eq (62) gives
N ordinary differential equations involving the bj' terms.
Finally, M algebrazic relationships are obtained from Eq (61)

by letting n take on the values

n=’l;,—1—;m=1,2,...,n

Collecting this set gives the complete new system of governing

equations

p k
z Ck‘ (1 - E-i) = -L
=1
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R 3j
a _ ~-L
Lo (-3)

Ly i+}
Y oa;i (1 - —:-) (64)

N L

) byt = —— (65)

j=1 (1 - 1gh

i pal i =D

‘l ai 1 - -———-M = ————-——-—-2

i=1 M “(y + 1)
M 2y + 1) P k

1+ 1 - ———5 ) (1-“_%.1_) (66)
(1 - M,7) k=1

The sign choice in Eq (66) is made in the same manner as
discussed in Section II of the main body where the critical

value of u for this case is

2

Ue * ,z aj - - ~—E*_—————
i=1 c M “(y + 1)

To solve this system observe that if initial conditions
are known for the coefficients bj and Cy then Eq (66) can be
solved for the corresponding values of a;. Everything is
then known on the right sides of Eqs (63) through (65) and

the system of ordinary differential equations can be solved
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by the Ruage-Xvtta methoé to set up the marching method used
throughout the field. Unforturately, no ratioanzle coalé be
found for determianing the initizl conditions needed to start
this solutio; technicue. ¥ith the method of limes the
dependent variables to be determined were the perturbations
at various values of n (u; and v;). A knowledge of typical
distributions of u and v then could be used to deterzine

the required initizl condition when the solution was started
on the zitfoil surface. FKith this collocation technigue
though, the variables to be solved for are the coefficients

of series (aj, b and cg) and since it was unknown how a

j’
typi:al distribution of these terms might 1look, it was not
possible to use a similar rationale for determining the

initial conditions.
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