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AN APPLICATION OF THE METHOD OF LINES

TO THE TRANSONIC AIRFOIL PROBLEM

I. Introduction

13ackground

The demands for faster and more efficient subsonic

aircraft have forced designers to reconsider the design

problems associated with transonic flow. Until recently,

the complications inherent in this flight realm could be

avoided by designing the aircraft for its optimum perfor-

marce either below gr above the transonic regime. With this

approach the surrounding flow field could be considered as

being either entirely subsonic or completely supersonic;

Q hovever, these simplified approaches 2re impossible in the

design of the aircraft presently being aske4 for. Cargo

and passenger planes that can fly at very high subsonic

speeds and interceptors required to fly at these same speeds

to most effectively deliver their weapoas will want their

optim'tm performance in the transonic portion of the velocity

spectrum. lhczrefore, solutions to the long standing transonic

flow problem are now i necessity and are of prime importance

in this the initial stage of research and development.
4

The first and perhaps most diffi",,!t hurdle that must

be crossed in transonic design problems is the development

of a solution technique for some mathematical model of the

flow field about a 2-dimensional airfoil in transonic flight.

10 There are several reasons why acrodynamicists have found this

Preceding page blank
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to be difficult and have avoided it whenever possible; all

of the reasons are related to what is physically occuring

to the flow in the region of the airfoil. By definition, the

transonic airfoil problem is concerned with determining the

pressure distribution over an airfoil when the flow field

around it is a mixture of subsonic (N < 1) and supersonic

(M > 1) flow regions. When these regions coexist in a field

it is referred to as a supercritical flow while a subcritical

flow is defined to be a flow in which the velocity is sub-

sonic at every point and a critical flow refers to flow when

M = 1 at only one point in the field. There are two important

mathematical complications that arise when the flow is

supercdritical. First, if the third independent variable,

;tamely time, is not retained in the differential equations,

then the basic form of the equations changes from elliptic

in subsonic regions to hyperbolic in supersonic regions.

Second, for both the steady and unsteady problem, as the

freestream Mach number approaches unity, nonlinear terms

must be retained in the small perturbation equations often

used as a mathematical model. In addition, a third major

mathematical difficulty appears in attempting to model the

effects of the shock wave that is normally attached to the

airfoil surface. To account foi this shock either a compli-

cated system of conservation equations in divergence form

must be used or additional relationships (Rankine-liu,,oniot

equations) must be included and thus amplify the complexity

of the problem. With all these added difficulties induced

2
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by the physical nature of the transonic flow field, the

mathenatical problem has defied exact solution except for

extremely limited cases. Fortunately, though, the develop-

ment and availability of high speed computers has produced

approximate solutions by numerical techniques which in some

cases are in better agreement with flight data than wind tunnel

data.

Statement of the Problem

The objective of this work is to develop and evaluate

a particular numerical solution technique for the two-

dimensional, inviscid transonic airfoil problem. The method

is required to serve as an efficient and workable design tool

for the evaluation of ar airfoil in its transonic regime;

"therefore, it must yield acceptable results with minimum

conuuter time and storage space. As presented here the

method is applied only to thin, symmetrical airfoils with

sharp leading edges. This permits the present study to

concentrate on developing and testing the solution technique

and then, if warranted, future efforts could be concentrated

on extending the technique to problems of more extensive

scope. Nothing will be included to explicitly account for

the presence of shock waves in the flow, and the associated

viscous interaction with the boundary layer will not be

considered. This last assumption, though, is made simply

because it is required to reduce the mathematical problem

to the scope of this presentation; the intent is not to

3
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0 imply that inviscid flow is always a good assumption for this

velocity regime. Pearcy (Ref 9) has shown that the compli-

cated interaction between the shock wave and the boundary

layer will result in flow separation and disturbances not

present in flow fields outside the transonic regime.

Therefore, it is agreed that these viscous effects could

indeed be a dominant feature for many practical problems;

however, at this time there is no practical way to approach

the full viscous problem within the scope proposed here.

It is hoped that the solution technique developed in this

presentation may be extendable to the viscous problem but

the method as presented here will only be applicable to

"transonic airfoil problems where the viscous effects do aot

drastically alter the flow field.

Other Solutions Currently Available

The approach to this problem was selected after

examining existing solution methods. As implied before,

exact solution techniques for the inviscid transonic airfoil

problem are available; however, they contain well-nigh

insurmountable difficulties except for extremely limited

cases as shown by Ferrari and Tricomi (Ref 2:562). Because

of the lack of exact solutions many numerical methods have

been devised to produce approximate solutions. These, in

general, may be classified into one of three broad categories.

In the first category, the governing equations are trans-

formed into integral relations and solved by iterative

4
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procedures. This nethod has been employed by Oswatitsch

(Ref 2:S63-574) and more recently by Spreiter and Alksne

(Ref 10) in solving the transonic problem for thin, sharp-

nosed airfoils. Although this technique could satisfy the

computation tine objective, at the monent it is not extend-

able to arbitrary airfoil shapes. The second category of

solutions transforns the differential equations into alge-

braic expressions by an explicit or implicit finite-difference

schene. Magnus and Yoshihara (Ref 7) have been particularly

successful with this technique and can now produce vxtre=ely

good results for several airfoil shapes. The difficulty

associated with these nethods is the long conputer times

(on the order of I hour/input for the Magnus and Yoshihara

Q method) and storage space required. This nakes the nethod

unattractive as a design tool and infeasible to extend to

the more involved problems. The third.category of solution

techniques reduces the systen of governing partial differen-

tial equations to a set of ordinary differential equations

which may be solved by one of several available solution

procedures. Dorodnitsyn (Ref 1) originally suggested this

approach to the transonic problem, and the recent successful

application of these methods by Tai (Ref 11) and Mlelnik and

Ives (Ref 8) prompted the decision to use a version of this

technique for the development of the proposed method. By

taking a very simplified method of weighted residuals

approach, Tai has showp *hat this method is not only appli-

cable to the transonic airfoil problem, but also that it can

5
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produce excellent results with. very little conputer tine-

Heanxhile, Melnik and Ives have used a similar approach and

have shown that weighting functions of the subdonain type are

capable of handling any arbitrarY airfoi! shape if the flow

field is of finite domain.

Approach to the Problen

Snail perturbation theory and irrotationality will be

used to provide the set of governing differential equations.

The two boundary conditions these equations will be subject

to are: no flow normal to the airfoil surface and undis-

turbed flow at infinity. Prior to developing the solution

technique, the forn of the governing equations will be

changed by nondizensionalizing the variables and making a

coordinate transfornation to reduce the domain to a finite

region. This is done to simplify application of the numerical

technique and to elininate the difficulty associated with

applying the boundary condition at iJnfinity.

The particular solution technique to be applied is a

form of the method of lines to reduce the set of governing

equations to a set of ordinary first-order differential

equations. This new set is then solved by the classical

Runge-Kutta fourth-order technique for the perturbation

velocities throughout the field. Finally, the solution

technique is evaluated by comparing the analytical results

with published experimental data for symmetrical airfoils

.(3• at zero incidence angle.

6
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o II.1 Formulation of the Solution

Technique

In developing 2n approzch to the transonic airfoil

problem three very basic but crucial decisions nust be made.

First, a set of governing equations must be selected which

completely define the problea within sone prescribed scope.

Next, nodifications of the set, such as coordinate or variable

transfornations must be considered if they vill enhance the

solution or sinplify the necha2ics of obtaining the solution.

Finally, fron the variety Of available nunerical schenes,

one nust be selected to solve the resulting systen of

equations. The product of these three decisions defines a

specific solution technique; therefore, the alternatives to

each of these choices will be discussed in explaining the

rationale for the approach used in this presentation.

Picking a set of governing ecuations for a solution

nethod requires a choice to be nade based on the exactness

denanded of the solution versus the anount of nathenatical

complexity acceptable in the nethod. For inviscid flow

there are three different sets Df relationships which are

connonly used to define the transonic airfoil problen and

the conplexity of each of these sets is directly related to

how the shock waves are nathematically accounted for. The

first set consists of the isentropic relationship

P 0 Y

To - To

• • =s • • • • 7



o and tke unsteady form of the conservation equations for mass

and monentum

+----- -4 0--

P u U au PI9u 21p

p + pU a - + p v - -

These are used throughout the flow field except across the

shock where the additional Rankine-ilugoniot relationships

are required. Grossnan and Moretti (Ref 4) used this choice

in their solution technique but this decision resulted in

adding appreciable convl~cal-ions when tb. nethod was applied

to transonic airfoils. The second alternative is to use the

steady stata form of the sane set of equations but written

in divergence forn because in this form the system is then

applicable even across the shock wave. This set still

consists of three nonlinear partial differential equations

together with an algebraic relationship and therefore

remains a very complex system to work uith. Although Tai

(Ref 11) developed a solution technique based on the sub-

domain method using this set of governing equations, a

simpler system is desirable for this presentation. A third

possible choice exists when it is assumed that a good approx-

imation to The flow field can be obtained without n~thenati-

"C) cally accounting for the shock waves. Spreiter and Alksne

8
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(Ref 10) and several others have used this ZssUption while

Working with integral solutions for slender, sharp-nosed

bodies in the transonic regime. This choice seens pzrticularly

attrzcti;ve for this presentation since the scope, as stated

in the introduction, has already excluded the interaction

bew-een the shock and the boundary layer and because, in

general, no a priori conclusion can be drawn concerning the

magnitude of the change in the flow due exclusively to the

inviscid shock effects. Further, since this is a yrelininary

study of a new solution technique this assnmption pernits the

evalt!ation of the technique with the ninimun nathenatical

conplexity. Then, once the technique is formulated using

the sinpler set, the sane principles could be applied to the

Q nore exact equations if the solution required it.

With this decision, snaIl perturbation theory and the

irrotationality condition can be used to define a set of

governing equations. Lieunann and Roshko (Ref 6:202-20S)

develop the theory and give the forn of the snall perturba-

tion relationship which is valid throughout the transonic

Tegine:

(1 - H.2) uu . av=2 l D (1)

ax ay aC ýx

This equation when nondinensionalized and rearranged

(Appendix A) may be w:itten

2 =2y + )2J •[(1 - mc2)u - M.2(y _ 1)uj + = 0 (2)

9



fw

GA3RIAE/72- 7

Traditionally, the 00alimearitr of Eq (2) 2nd the change im

sign of the first t•-n5 for sene positive Value of U as H=

a2proaches one has made this equation difficult to solve.

In an 2tteMt to relocate these difficulties into 2 form

which might be aore easily dealt With nUn-TricallY the

folloving definition is made

N2
(1 2 1=) _z ( * 1)2 (3)

Therefore the full set of governing equations needed to

conpletely define the vroblez consists of E; (3) . the modi-

fied snail perturbation relationship,

ar (4)

Q and the condition of irrot2ationality

av •
ýix - •Y

Further, these partial differential equations are subject to

boundary conditions on the body surface and at infinity. If

the airfoil surface is defined by the relation y = F(x),

then the condition at the body surface of no flow nornal to

the s;urface (Ref 6:208) nay be written

v dfu * U= a = C1 e.6)

Because snail disturbance theory is being used for the

governing equations the only nathematical boundary condztion

C- that is specified at infinity is that u and v are

both finite. Hlowever, at infinity in the

10
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physical problen, and w both are zero zad this more

restrictive condition is generally zssuied whenewer there

are no regions of sntqersonic flow extending to tha infinity

boundary. Therefore for this solution technique the boundary

condition which will be imposed at infinity is

a - - = 0 (7)

Based on the difficulty experienced by other authors

in upplying the boundary conditions, it W2s decided that a

coordinate transformation should be used to avoid 2ssunptions

as to where the bouz.ary conditions should be a-plied. Uew

independent Variables were defined as

o _ X (8)

f (x) (9)

lyl + J.

where L is sone positive constant. As can be seen fron

Fig. 1 and 2 on the following page, this -rartsfornation

acconplishes two inportant objectives. First, the donain

of the independent variables is reduced to a finite region;

therefore, the boundary conditions at infinity in the x-y

plane are applied at unity in the ý-n plane. Second, the

thickness of any airfoil shape is reduced to zero in the new

coordinate syste such that the boundary condition on the

airfoil surface is applied at n = 0.

31
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Q ~~u= 2 = (1V

at F, or V1 eC002 1 amd

V= PO( a)

at the body surface (q- = 0). This last condition is further

sinplified by recalling that by definition a is nuch less

than one, therefore the boundary condition can be approxi-

nated by

v = f'(13)

at r 0 = O.

The nost difficult decision that had to be nade was the

choice of a nunerical nethod to solve the resulting set of

equations. Because of the objective to reduce conputer tine

and storage space to a nininun and due to the successful

applications by Melnik and Ives (Ref 8) and Tai, it was

decided very early that a forn of the nethod of weighted

residuals should be used. Within this approach several

alternatives were tried and a solution technique using the

subdomain nethod was extensively developed. Unfortunately,

the lack of any rational procedure for initializing the

variables caused the nethod to be rejected. Thus, although

a detailed discussion of this technique is included as

Appendix B, this presenta±tion uses the easier to apply

method of lines.

.0

13
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SoThe purpose of the nethod of lines is to reduce a

system of ozrtial differential equations to a set of first-

order ordinary differential equations. The nethod of lines

presunes that the derivatives in the i-direction can be

represented by a finite-difference approxination (details

are included in Appendix A). To use this concept, the

n-donain is divided by (N - 1) parallel lirnes, equally

spaced between q = 0 and 1. = .

NTji =• ;i 1 , 2, ... , (N-1)

Representing the derivetives with respect to n by

central differences, the governing equations (3), (10), and

(11) for the ith line nay be written:

= (I _ 112)u- 1 it 2 (Y + )ui 2 (14)

dfi f'(N - i)L

dt 2(L + f)(1 - I,])2 i~l ll_1)

L(N- i)2  ( - i) (15)

2N(L + f)(1 - II)2

dvi f'(N - i)L
2 (Vi+1 viI)+

dý 2(L + f)(1 - R I) 2  
4-

L(N - i)2

2N(L + f)(1 - RI) 2

14
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When this system is collected for all (N - 1) lines the

resulting set of (3N - 3) equations involve (3N + 3) unknowns:

UP, vj, and Qj; j = 0, 1, 2, ... , N- Three of the six

additional relationships which are required to uniquely

define the problem are obtained from the boundary condition

uN = VN = R2N = 0 (17)

at n = 1. Two more relations are obtained by writing

governing equations (3) and (10) along the body surface

= (1 - M 2 )u 0 - j. 2 (Y + 1)u0
2  (18)Sd 0  LN

62, , [f'('3N O + 4 Q,1 - 92 )] -
dý 2(L + f)(1 - IJE)2f.0

(-3v 0 + 4v 1 - v 2 )] (19)

where the n-derivatives are approximated by forward-

differences. Finally, the last required equation comes

from the boundary condition on the surface, Eq (13), which

is rewritten as,

v0 = f,(x) = f, ( )L (20)

Therefore, the complete problem now consists of 2N first-

order ordinary differential equations which must be solved

simultaneously with (N + 3) algebraic relations.

This set can be conveniently solved if initial values

can be determined for starting the solution of the ordinary

1_..__._2.5
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differential equations and if a unique value for u can be

found for a given ý2 from Eq (3). If Eq (3) is solved for

u by the quadratic formula

(1 M 2) /2M 0, 2 (y ÷ 1)

? + (22)
M.2( (Y 1) (1 - Mc2)2

then, a choice of signs must be made to uniquely define u.

A typical plot of u versus S1 from Eq (3) for a M.,, less than

one is shown below in Fig. 3 where uc refers to the value of

u at whichD = 0; namely,au

(1 - I(2)

Uc 2 (23)
Moo (y + 1)

C) and f2c is the corresponding maximum value of S1. Comparing

"Eq (22) and Fig. 1 it can be concluded that the proper sign

in. Eq (22) is negative if u _ uc and positive if u > uc-

cc1

Cb

Fig. 3. Typical Relation of u to Q? as found from
Eq (22) Including the Critical Values of u.

16



Fran ex.erinent•al dat2 presented by Knechtel (Ref 5) it can

be observed that for subcritical flows u is always less than

W while for supcrcritical flows u exceeds this value over

sone portion of the airfoil. Typical examples of the

u-distribution on the surface of a subcritical (H. = 0.806)

and a supercritical (M., = 0.909) 6% circular arc airfoil are

given in Figs. 4 and 5 below. Also shown in these figures

are the values of uc for each case and the corresponding

distribution of R required when the proper sign is used in

Eq (22).

0.2iDU . 0.26' Of

00.18

0 1 0

D0.11 03 0.11

8.03 0.03

-ooaoo5 I~ -D.%o 0.5 1.€

X/c X/c

14g. 4. Subcritical Fig. 5. Supercritical
(M,, = .806) distribution (M, = .909) distribution
of u, corresponding of u, corresponding
fl-distribution from Eq (22) fP-distribution from Eq (22)
and critical value of u for and critical value of u fo-
"a 6% circular arc airfoil. a 6% circular arc airfoil.

17
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-o Sken the set of governimg equatioms is solved by a

marching method such 25s Rnge-!utta, the proper sign in

Eq (22) can be predicted by the value of 21 and 2i* at the

Points heýre the v2ale of ui is foUMd to equal u0 . There-

fore, if the Droper initial conditions of wi and cai CM be

determined Eq (22) is solved for the corresponding ui-

Then the Runge-Kutta fourth-order solution technique can be

applied to solve the 2N ordinary differential equations for

the value of ri and qj some he dounstream and thereby

setting up the zarching technique in the e-direction. From

this nethod the values of u and v are found at every point

in a A' x An grid which covers the entire flow field. With

these values three inportant paraneters of the field are

Qfound: the pressure distribution over the airfoil surface

Cp = - 2u 0  (24)

the ratio of local to free streau velocity at each grid point

( /ui + 1)2 + v, 2  (25)

and the Mach number distribution throughout the f.eld

14. - V~ •[l - 1
U0  2 (Y - 1)(2ui + ui)2 + vi2) 2 (26)

The solution technique can then be evaluated by a comparison

with experimental data.

0
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S ~ 111. Results

The resu1ts and conc1usioms obtzioed :Wrouh the course

of this stmdy V•il be givem in cromologica order so that

the subject matter can be divided up inte four main topics:

subcritical zirfoil stdies, supercritical airfoi! efforts,

attempts to generalize the initial conditions, and applicz-

tions of the Method to subsonic 2Man supersonic wawy walls.

Subcriticzl Airfoil

It was assumed in the formulation of the solution

technique.that only symmetrical airfoils at zero incidence

angle would be considered. Therefore, because of Zvailability

of experimental data accumulated by Knechtel (Ref 5) the 6%

0 circular arc airfoil was selected as the reference airfoil

and the subcritical case of A. = 0.806 was chosen for the

first test of the proposed solution technique.

The difficulties in generating initial conditions for

upstream of the airfoil for this problem will be discussed

in detail later in this section but a method was constructed

at this point for determining the initial conditions by

starting the solution at a point on the airfoil (0 5 x 5 1).

Based on the form of the experimental Cp distribution and

the curve of the boundary condition v0 = f' (as shown in

Fig. 6 on the next page) it was assumed that the distribution

of any ui(J) (recalling that the subscripts on u, v, or

refer to their value on the line n = - ) is symmetrical withO N
respect to the line x = 1/2 while the distribution of any

19
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6. -. TVJi Cal Distribution of u0 2Md Y00Over

a Circular Arc Airfoil-

vij() is synmetrical with respect to the point x = 1/2,

y f(1/2). VitL these assumptions the initial values of

ui and vY can be guessed at a point ahead of x = 1/2, then

knowing What the values of ui and vi should be at sone point

downstrean, these initial guesses are refined by an iteration

process. In application, fron the experinntal data the

point at which CZ = 0 was selected as the initial value of

x, the values of ui at this point ezere assuned to be zero,

and the values of vi were guessed. Since the assured

symmetry required all vi to be zero at x = 1/2, these guesses

for the initial conditions were refined by iterating betueen

the initial x and x = 1/2 until all the vi changed signs

within a region x = 0.5 ± 0.002. When this condition was

.0met it was found that the entire flow field (0 < x 5 1)

20



- possessed the sy etryeim im zi . i as was • riginal!y

zssr~ed. S-awiMX this corn rrnatiow of the5 ass=MrioMs mnade

orn the field, the Method wzs =sea to gernerate the irnitial.

comaitioms required by the Method of limes solotiom usimg

3, 4, S, 6, zod $ lines. For the subcritical zirfoil the

resultnMg CP distrib=ti-s are c•.zred to each other iM

Fiz. 7 on the next page. The distribution obtzined fron

the S-lime sol=zron was slightly lower than that obtained

with the 6-line ;olution but they were so close that the

experineatal dat-. could not be read accurately enough to

determine which ats the better solution. Consequently, it

was concluded that 6-lines were sufficient.

The conclusion which can be drawn fron these results is

Q that the nethod of lines, given the proper initial condition,

produces very accurate solutions with low order approxinations.

Further, since only 12.2 seconds of CDC 6600 conputer tine

was required te generate all the uz, vi, Mi, velocity ratios,

and C. distribution for the 6-line case, the solution techni-

que satisfies the tine restraint objective required of the

nethod.

Critical and Supercritical Airfoils

With the approach established on the subcritical airfoil

the technique was next tested at the critical Mach number

for this airfoil, 14.0 = 0.83!. Using the 6-line approximation

the results were found to be in excellent agreement with

the experimental data; the C distribution was again

21



coo

i a*.

92f

MI

Cj)

cr0

'0.00 0-20 0.40 0-60 0.80
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Fig. 7. Comparison of C p D~istributions Obtained w'ith the
S~Proposed Solution Technique versus the Experimentally

Determined Distribution for a SuI)Critical Circular Arc
Airfoil.
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~~'!I Xaci @.tZ~ ew3z~er VMS f=C to B~e

S52as cc=area to tle ezverime:aD1ly 7redficted raice of

=1at tle zxoimt X = 0-5, p

For a trbir'- test of tbe SoDm:io'm tc~hiqme tle SrPer-

Critical case at 3k, = OLSs was SeEected beczase it Still

zvpear-s to =:eet the sy~etry reor- -; Pr&-cImg trbe

imitiz! coemition's.. As aiscmssed iam Sectiom 11, :kere is 2

cbaMZC OZE SigM5 ;M ta e U-f? relat-iOMSbit g;iweM in EC (2!)

Whemerer a- sonic liae is crossed5 ft the flHOW field-. The

ccz~ter prqgrzn was able to deteraniae the tvoiats 2-4. vbicb

this Clhange Uas to OCeI. -= prapparly Predicted the sign but

the r&AA&ed requirenent for the slove of 2- to be zero at

Q the sane points (refer to Figs.. 4 and 5) introduced zz-

additional conplication.. Comsider the differeatizl equtatioa

21 i P~.- i;/!Z)L aI) (I - ii) 2 L v

ac (L + f)(l - IgI)2 a., (L + f)U (12-

Letting be the value at which the sign change is to occur,

then over a snail region surroundin~g this point, ±£

the values of coefficients and - a be considered constant

and this expression is simplified to

1 1 2

23



C Ter-effor&, for x rmmee iw Si~ to 0"=r

tic reTio= & ncmBe seem tfixat 2 z~ crt

gv.r~ozintkas rec~ire, *Try;iMz 6b limes im t~i&

solkitiom techimiaCe (wmehi tased z secomd ord~er zpproraxtiom

ifor tyre dratireT) ffailed to b~e Zacrrate emomma to get 2

ChImgse im si;;gm off L" 13ifem the 5simm CiaMZMe OCCO-n-en im tale

r--2 relzrioins~hiip~iiinEe nta re ~e off ýimes

is meeded.. VMiS vo=d mot pose aM.T Serio1Wc.5io

except tiast tFe uetrnod iased to deternime imitfia! cozditioins,

2talto~gi -fiie for 2 5=211l m~ber- Off limes, becones a

we--w ted-iCOs 2M6 le~gtkW P-rOCeSS if. n~Oe tbaM eigbt lin=es

are rMeCEi!ed.. SiMce there U2as MO WZy to eeiebefrad

00OM n~aa limes would be required to get the 2CCt~r2CY Meeded

0 2an beCa2aSe o'f the tine comstraimt on tbe study, tbe

derTelopnrent off this solution hiad to be Sets aSide im order

to work on nore generalized problens-

InitLial Conditions

By considering only problens with synnetrical airfoils

at zero incidence angle and by restricting ni to values o-Af

ni k 0, it will be recalled that the boundary conditions

corresponding to the infinity conditions are

U= i= C.i= 0 if t I or nt = 1 (27)

while at the boundarY

f' if 0

v0 0 if Eý < 0 or I > - -( 9

24
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F. E•, t5• s smgTests trt tie iwfitiu im - ziroe re well

estm.lisTmed zM& ta lc Dltiom C2M proress imo (1ei ircl'

B~C:1- eof two C=Vlicatioms .01iel restilt fram relzrimg tle

boturzay =6 imihezl COM(Hems to tle real piA s Czl esoM±

First, if thle solariam Wras stzrted ffrC F, = -3 aMdC the

imit- l comditioms ve-re 211 set eoCl to zoero 2 Predictea by

t~ae boadrr Codirionms the set of ordimar' differemntizl

C02tioers would all Co0a2 zero a the techinicne Would

predicton zm =distcared fis ever there pstnrea of the leading

tdge. Since it is moven that the presence of the airfoil

does distur-b the flov u~istrezz, if a-be relocit- is less than

tShpersojnie it iS MeCeS0rw to sp2rte the solution fron a

Pot away from tie bona dary Ft= -1 where the iritio I condi-

tions are act all zcro.. Second, since in general fP 0 at

the traililg and leading edge Of an airfOil, the boutdary

condition at n = 0 causes discontinuities in Tver a each of

these points. if it is rttenvted to narch past these points

the junp ;.n value of vo is propaVgated throughout the set of

governing eqUations and the systen is found to be unstable.

To avoid this instability attenpts Wecre nade to slightly

alter the shape of the airfoil at the leading and trailing

edges such that v0 changed fron 0 to P over a small region

rather than at a single point.

In developing this theory for predicting the initial

condition snoothing functions of the type

25



'W0 = (0) 0*

-WO cos =( 1 * 0C
2 9

were tested a: the lez-ing edge while the initiza comditio,35

at E, = -0.9 were ve--trbed im a wzriety of c bimations and

a.gmitades. Vith this data it was hoped to correlate the

change in initial conditions to the change in the sal=tino

owe_ tbhe airfoil but Mo combination of initial conditions

an6 snoothing functions could be found to give stable solu-

tions past the leading edge. The solution over the sub-

critical airfoil uas produced by the nethod descri'ed

previously at this tine and with this 4-line solution in

conjunction vith the forcing function

Vo = f'(0.9)[(1.0 - x)/O.1]

a consentrated effort was nade to narch -'ff zhe back of the

airfoil and correlate the change in ir.itial conditions at

x = 1/2 to the flow field that resulted at x = 2. It was

found that a perturbation on the order of 10-4 imposed on

any one of the initial conditions would substantially alter

• the flow at x = 2 and that although the magnitude of all the

ui and vi decreased downstream of the trailing edge they

eventually would diverge and no set of initial conditions

26



"c could be fowmd to force comwergemce to undisturbed flcv far

downstre?. Becamse of the semsitirity of the flow field

to the imitial conditions, the value of u; and wi marching

om or off both ends of the smoothing functions are critical

to the solution. Consequently, no way could be found to

senarate the influence of a change in initial conditions

from the error injected by the smoothing functions and with-

out this separation no rationale could be found for the

selection of either one.

Wavy V2al Solutions

It was r2alized very late in the study that the solution

technique could be applied equally well to an infinite wavy

wall. The exact solutions for Cp, u, and v for both the

subsonic and supersonic case are developed by Liepuann and

Roshko (Ref 6) and offer a very efficient neans of testing

the proposed solution technique. Although these exact solu-

tions cannot be used to determine the applicability of the

nethod to transonic problems, they can serve to evaluate the

accuracy of the solution technique in predicting the flow

field as given by the exact solutions if the method is

started with the correct initial conditions.

To perform this evaluation the system of equations were

first reduced to the simplified problem solved by

Liepmann and Roshko by approxinating the S1-u relationship

* given in Eq (22) as

.0• = (1 - tm)u

27
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and by sinplifying the y-4 coordinate transfornation to

S= y÷
+. L

so the boundary condition at y = f(x) could be approximately

applied at y = 0. The wall function, f(x), was defined by

f(x) = 0.01 sin 2irx

where the wave amplitude was selected as 0.01 with a wave

length of 1. By choosing x = 0 as the starting point the

initial conditions were defined as

ui= 0

/Li2

ovi = (0.01)(21r)e N-T

i = 0, 1, 2, ... , (N-1)

for the subsonic case and

ui = - (0.01)(21r)(MO2-_1) -1/2 cos [-21r Li-- Co

vi = (0.01)(27r) cos [-2T Li (% 2 _)1/2]

N-i

i = 0, 1, 2, ... , (N-l)

for the supersonic case where N is the number of lines to

be used in the solution. Finally, in order to test the

technique on both cases, M.0 = 0.2 and = 2.0 were arbitrar-

ily selected as the subsonic and supersonic Mach numbers.
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Because finite-differences are used to approximate the

derivatives and since u and v are changing most rapidly in

the vicinity of the wall, it is necessary to have a good

distribution of lines in this region if the solution is to

be accurate. Solving Eq (29) for y and letting n = i/N

implies that

iL
Yi ý N - i

from which it can be observed that the value of L determines

how close the ith line is to the body. With a large number

of lines (N > 15) many of the lines are naturally close to

the body due to the coordinate transformation and a change

in L (0 < L < 3) has little effect on the solution. For a

(smaller number of lines 1. becomes increasingly important and

for less than 8 lines a substantial change in the solution

was observed as L was varied between 0 and 2. Figure 8 on

the page following this section shows the 4-line solution

for the subsonic wavy wall with L = 0.5 while Fig. 9 shows

the improvement in this solution as L is changed to 0.65.

In general, an optimum value of L could be found for every

value of N but in each case tested L = 0.5 gave reasonable

results. Therefore, 1. = 0.5 was selected as the reference

value of L used in all solutions.

As was pointed out in the formulation of this solution

technique, the boundary condition at infinite was defined to

be

.Ui V i i 0 0 = 1 or n
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0
SUB6ONIC WAVY WALL

NULMBER OF LINES= 4.0
flACHGO. 200

I-n EXACT 6OLUTMON

0 -i tIOa 0o LINEs -

M
CD)

o~c

0 C

cw,

:0O . 0 O 4 .0 .8

u-i

C/C

, Fig. 8. Solution Obtained for the C Distribution over a
Subst.nic W•avy W•all Using 4 Lines witg L = 0.5 as Compared
to the Exact Solution.
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SUSSONIC 9IRVY ,1RLL

lIMIftME. OF LIHES= 4.0
flR~ffzO. 200

-aCT ,OfLUT ItI 0

* t~41162V eF LIKES -

C)

tLj

Z..

C)/

'0.00 0.20 0.40 0.60 0.60
x/c

Fig. 9. Solution Obtained for the C Distribution over a
Subsonic Wavy Wall Using 4 Lines witrh L = 0.65 as Compared

(-J. to the Exact Solution.
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Q For the subsonic wavy wall the exact solution agreed with this

condition and consequently the solution required only 4-lines

to get the accuracy as shown in Fig. 9. However, with the

supersonic wavy wall the exact solutions predicts that u and

v vary sinusoidally at infinity and although this solution

gives the range of these values it can not be used to predict

specific values for u or v at particular points on the

boundary. When u, v, and S were set to zero at n = 1 errors

resulted in the solution. However, as the number of lines

was increased the solution converged rapidly and in Fig. 10

the Cp distribution obtained using 20 lines is shown to

compare very welU wiith the exact solution.
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c i
SWERSCRIC ULAVY %:'LL

NUB.3ER OF LINES= 20.0
t.CEf=2. 000

c-. " EUCT SO(_UT1IC1

C; - r."N3 CF LINES

02

CD

C)

C;

LLJ

a-
C.

L_

0 I J o

CD

CX

0

, FPig. 10. Solution Obtained for the C[ Di stribution over a
Supcrsonic W~avy' Wall Using 20 Lines with L = 0.5 as Comparcd

.C• to the Exact Solution.
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- IV-. Conclusions and ?ecoZMemdations

Conclusions

Fro= the results obtained for the subsonic azd super-

sonic wavy wall and the solutions found for the circular arc

airfoil it can be cancluded that the proposed solution

technique is cap.ble of producing extrenely accurate results

with very short computer times provided it is furnished with

correct initial conditions.

Recommend at ions

The following recommendations are proposed for future

work:

1. It is suggested that for this problem an unsteady

Q system of governing equations should be used. With this

three-dimensional coordinate system the marching method can

be set up in the time direction and a method of weighted

residuals could be used to approximate the derivatives in

the x and y directions. In this form, the problem of

detcrmining generalized initial conditions can be separated

from the problem of handling the discontinuities in the x-y

plane and their individual effects can be evaluated and

controlled.

2. A coordinate transformation of the form used in this

development should be used to control the domain of the

independent variables. Although the opportunity w'as not

available to demonstrate the advantage of shrinking the

C• airfoil thickness to zero, it is suggested that this benefit
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"o &be retained beCausc of the thick airfoils used in the

tra..sonic regine.

3. The introduction of 2 to separate the nonliaezrity

from the differential equation made the system nuch easier

to work with and it is suggested that this sane technique

should be applied whenever sinilar nonlinear terns appear

in the differential relations.

4. The method of lines, as used in this developnent,

is highly reconuended as a technique for reducing the partial

differential equations. Besides being a very straightforward

nethod to apply it has an outstanding advantage in that the

resulting unknowns can be easily identified with the physical

problen.

0
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pat;is of the So!otiom yecbmiqme Forr=Ezriom

This a2'emdix serwes as an extemsiom to the dewelo.memt

as presemted im Sectiom II of the Maim bo•.y Its p.rp&se

is to ;iwe 2 detZileC disCOssioM 2Md fora=•tiom of the

iMport•nt Mztheaatical steps in areas where details of the

solution techmique night be desired by sone readers. Three

primary subjects will be corered: (1) the nondiaensioaali-

zztion of the basic governing equations, (2) the coordinate

transforuation, and (3) the application of the nethod of

lines .

N-ondinensionalization

The set of governing equations which were selected for

this presentation are the snall perturbation relationship

,1 -,.2) ýu + ý- = 14.2 *Iu A

which may be written by rearranging the derivatives as

a[(1 - mc.2) u -_ . u22]*--" = 0 (29)

plus the irrotationality condition

•v •u
av a = 0(30)W - '9 oCo

In these equations M, and U. arc the free stream Mach number

• G and uniform velocity, y is the ratio of specific heats, and
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w z z re taie VMC arc e zeifimeta bF

Vhere ;S is re IOCZI total reIOCit~ eC~tor. ThMeSe differCM-

tizi gower-im!- Coarztioris zre subject to tale boomdary commdi-

tions at x or 2• y erzc s io• i yr Where

a = = 0(31)

2126 om the surfrace of the body- where

V = df (32)
.u~ + x- a (2

and y = f(x) defines the shave of the airfoil.

To generalize these relationships it is desirable to

Q exress then in their nondin-ensional forn. To do so the

lengths are nondinensiotalized with respect to the chord

length

X, x
C

y=Y

C

f- f
c

and the velocities are nondimensionalized with respect to

the free stream velocity

UCO= ©L

U-.
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o YUzkj! t~hese defimitiozs zaSobstiziati-M imto Eqs (29)

trcog (32) chMzes te for= off these expressiams to

S[{I •z). _ . • = o 33)

= 0 (3=)

- @ = f* (36)
U * + dx*

Dropping the superscripts for simplicity of notation gives

the equations as they are used in the nain body.

Q Coordinate Transfor-aation

It was decided to use a coordinate transformation

because it is desirable to linit the donain of the indepen-

dent variables. The specific transfornztion chosen to

acconplish this objective is;

t = 1 x L( 7xI1 ' L

Sy - f(x) (38)

jyl + L

where L is some positive constant. The relationship bet-een

the original independent variables and the new coordinates is

shown graphically in Figures Al and A2. As can be seen from

these figures, as the Ix1 or lyl go to infinity the l&l and
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Fig. Al- Relationship Fig. A2. Relationship
between the independent between the Independent
Variables x - V2riabICs Y

• TIni are restricted to values of less than one therefore

0these transforlations reduce the donain of the independent

variables to finite regions. Also Fig. A2 shous the addi-

tional benefit of reducing the thickness of any airfoil in

the x-y plane to zero in the ý-n plane but it should be

noted that the plot of y-n is dependent on the value of x

because f(x) appears in Eq (38).

In order to transforn the governing equations into

the new coordinate system the partial derivatives must be

expressed in terms of C and q. If some dependent variable

is defined by

g(x,y) = GU,)

then the partial derivatives with respect to x and y may be

written by the chain rule as

40



GAN/AE/72-7

T X " n- dx(39)

-g aG aG ;
-04 y- +15-i WY(40)

From Eqs (37) 2nd (3s) the partials of • and n with respect

to x and y are evaluated to be

ac L
c:(Ixl L)2

S jyj L

an L + IfI

j-Y 2(lyl + L)

or in terms of the new independent variables

at (I - Ifl)2
-= L

an -f'(l - Inl)

an C l 11 2"Y- L + IfI

For flow fields symmetrical about n = 0, only the upper

half plane is considered and Eqs (39) and (40) may be

"0 written as
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ag (1 - !1) 2 3G f,(l-n) 3G (41)03= L LJ -f+ -f (41)

ag (1-nh)2 3G (42)
Y - L+f •-? -5-n

Returning to the differential governing equations as

given in Eqs (33) and (34) and defining

S = (1 - mo 2 )u - -1 MC2 (y+l)u 2  (43)
2

then with the definitions given in Eqs (41) and (42) the

governing equations in the new coordinate system are

(1 - 1d) 2 a.Q f'(1-n) aS + (l-rI)2 av _ 0
L - L~f an L+f F-f

bC -!)2av f'(l-n) av (1-TO)2 a!!
0 1L L-f -T1 L-f

To get the form of these equations desired for application

of the method of lines solution technique, derivatives with

respect to 4 remain on the left hand side such that

a_• f I'(L-n)L (-n) 2LV 44)
TC (L+f)(1 - 1ý1)2 Tn (L+f)(I - 10)2 (44

av f_ (I-_)L av + (1-0) 2L au
S(L+f)(1 - Ifl) 2 a (L+f)(1 - I14)2 B (45)

Finally, the boundary conditions as given in Eqs (35) and

(36) become

Su = v = Q = 0 @J1or n = 1
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and
0v

- f' @ = 0

in the new coordinate system.

Applying the Method of Lines

In general, the functions u and v are changing much

more rapidly in the i-direction than in the n-direction.

Therefore, to use the method of lines the derivatives with

respect to n are chosen to be represented by a finite-

difference approximation. Along any line parallel to the

n-axis, except for n = 0, the first-order partial of a

function G(E,n) with respect to n is approximated by

DG =GG(,r,n + An) - G(E,n - An)(46)
• •-2An

which is the second-order central-difference. For the line

n = 0, since only values of n greater than zero are con-

sidered, the partial is approximated by the second-order

forward difference

a-G -= 1 --( ,O) + 4G(ý,An) - G(E,2An)] (47)

where in both Eq (46) and (47) the An refers to the distance

between evenly spaced lines. Dividng tIe n-domain by (N-I)

of these parallel lines between n = 0 and n = 1,

0) 1 21
-0, 1 2 , ... , 4
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then the value of n along the ith line is written

i
n.i ( (48)

Introducing subscripts corresponding to the value of nj and

using Eq (48) implies that the partials in Eqs (46) and (47)

may be written

_ •G *•-jj = •- [G i +1  - i l](49)

aGo N
S= N- [-3G0 + 4 - G2  (50)

Applying these definitions in the governing equations as

given in Eqs (44) and (45) reduces these partial differential

relationships to a set of first-order ordinary differential

equations of the form

f '(l - i/N)L N (,i+ l

( L+f)(l - 2 2 1 -

(1 - i/N) 2 L N (vi+1 vi_1)

(L+f)(1 - Il) 2 2

dfo f0NL
d9 2(L+f)(1 - RI)2 ( 3 O 4 2 -

LN

2(L+f)(1 - Il) 2 (-3v + 4v - v 2 )

.4
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0 ~dr1  ( i/N)L

dý (L*V 10 (1 CI) 2 2 L

(I -i i 2 L -N (
(L~f)( 1 - R)2 2 i - ui-1 )

dYE, f N L - ( 3 v
dt 2(L+f)(I - I 2 (3 0 .4 1 -V 2)

LN (3 u
2(L~f)(1 - k1 2 (3 0 * u 2)
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Q0 Appendix B

A Solution Technique Based on the Method

of Weighted Residuals

This appendix presents an alternate solution technique

for the transonic airfoil problem. This is the original

approach developed for this study but had to be abandoned

when no rationale procedure for initializing the variables

could be found. Since the solution technique appears power-

ful enough to warrant further investigation if the initiali-

zation problem can be overcome, a complete formulation of

the theory is given here.

£, The set of governing equations used by this technique

are the same as those used with the method of lines. After

nondimensionalizing and applying the coordinate transforma-

tion the set consists of

a Lf'(l-n) -s _ L(l-n)2 2v
S(L+f)(l 1 • ) 7 (L+f)(I - 1ý1)2 -- (Sl)

av Lf' (-n) av L(l-n) 2 Du

(L+f)(1 - Ij) 2 -+ (L+f)(I _ k 2  (52)

(1 - t 2 ) M 2 2 )(y+1) 53)
Li = 1 + 1 - 2( )

M. 2 (y + i)_ "1.-I 2) 2

so
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The boundary conditions to be satisfied are: at the body

surface, ri - 0,

a~ v L f - 5 4
- (1 -j- C54)

and at infinity, • or n = ±1,

"u = v = =0 (55)

For this formulation the dependent variables u, v, and P2 are

approximated by a series expansion in n where the terms are

arranged such that the series automatically satisfy the

boundary condition at n = 1

a M

0u(,n) = • ai(g)(l-f)i .(S6)

N
v(un) = I b3 (i)(1-n)0 (57)

j=l1

, = k Ck(d)(1-f) 
(58)

k=l

Substituting these into Eqs (49) through (52)

P-L
L ck'(l-n)

k=l (L) + f)(1)

SP kk( k N I- ]~
f I CL j qk_) bj.,(1.) 659)

j k=l j=1

47



GAM/AE/72-7

N
I bi'(1-n)J = -L
j=l (L + f)(1 - lU) 2

-j N .1 i~l1
bf [ bJ(1-nrj + aii'(1-ni) (60)

M M.2

-1 il- ~ l

Sai(l-n)i= 2i-I *M (Y + 1)

2MO2y+ 1) pk
1 1 -+ Ck(l-n) 1 (61)

-(1 - 12)2 k=l

N L f. b , )2 (62)
, j:1 ~(1- I1•

In this set of equations at a given rj there are a total of

(M + N + P) unknowns; namely, all the coefficients ai, bj,

and ck. Therefore, a unique solution for this sytem requires

that the same number of independent equations be derived

from Eqs (59) through (62). The method of weighted residuals

offers many techniques by which this system of equations may

be developed (Ref 3). Of these techniques, the collocation

method is the easiest to apply and was selected for use here.

Basically, this method assumes that an approximate solution

for the coefficients ai, bj, and ck can be obtained if the Eqs

(59) through (62) are satisfied at a finite number of n-values.

The collocation method allows the user to select the number
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' 0 of each type of equation and the particular values of n to

be used in obtaining these equations. In this application

the equations were selected in the following manner. By

allowing q to take on the values

, = R ; p = 1, 2, ..- , P

in Eq (59), P ordinary differential equations are obtained

involving the ck' terms. In Eq (60), n is defined to be

n1= ; n = 1, 2, ... , (N-l)

which together with the boundary condition in Eq (62) gives

N ordinary differential equations involving the b-' terms.

Finally, M4 algebraic relationships are obtained from Eq (61)

0by letting n take on the values

nM-1
! , m = 1, 2, ... , 14

Collecting this set gives the complete new system of governing

equations

P Ck 1 -1 k
,k k (L + f) (l - IEI)2

k ' l ck' -k_ _ _ __ _ _ _

) + bj (1 - )1 (63)k=l P P~

,0
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9 N n ' J -L

j=1 \ (L + f)(1 - t•l) 2

fi bbj ( aii )i] (64)
j=l 3 (1

Sbj = fL (65)

j=1 (1 - I[) 2

Si (l 1
i2

2M• 2 (y + 1) p( k 1
L (1 -

2  Ck (- 1 (66)

The sign choice in Eq (66) is made in the same manner as

discussed in Section II of the main body where the critical

value of u for this case is

- l1 _ 2

Uc =ai 1-= Sc () j2 (y + 1)

To solve this system observe that if initial conditions

are known for the coefficients bj and ck then Eq (66) can be

solved for the corresponding values of ai. Everything is

then known on the right sides of Eqs (63) through (65) and

() the system of ordinary differential equations can be solved
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by the -.ngc-Xtta method to set up the marching method used

throughout the field. Unfortunately, no rationale could be

found for determining the initial conditions needed to start

this solution technique. With the method of lines the

dependent variables to be determined were the perturbations

at various values of n (ui and vi). A knowledge of typical

distributions of u and v then could be used to determine

the required initial condition when the solution was started

on the airfoil surface. With this collocation technique

though, the variables to be solved for are the coefficients

of series (ai, bj, and ck) and since it was unknown how a

typi-al distribution of these terms might look, it was not

possible to use a similar rationale for determining the

O initial conditions.
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