\_

AD-753 366

BUCKLING OF CYLINDRICAL SHELLS SUBJECTED
TO AXIAL LOADING ‘

Louis R. Fuka

Texas University

Y

(

Prepared for:

Army Natick Laboratories

September 1971 ' l B |

DISTRIBIITED BY:

+ National Technical Information Service |

U. S. DEPARTMENT OF COMMERCE
5285 Poit Royal Road, Springfield Va. 22151

/




1
i

-
PR e -
i Ay
i K
§ /
T - s

’%’at?‘v;‘{ahéﬂ»#‘: ;nggw i}
3‘{«&'&MT§};"24 éi; L

12-50-4B
1

—~ .

BUCKLING OF CYIIRORICAL
SHELLS SUBIECTED T
AYIAL LOZDING

=

018 e

i
by

e Thow Lt
{nuls 2, Fuka

R

'f‘ha Unwersny of Texas af Austin
R
‘;AQSﬁﬁ, Toxas

|

Apuraved for public release;

distribution unlimited. -Sef;:&mbarl?71

Best Available Copy R ,f"

n\w ::,r.ravlf" . i



-
g

Y ot

#
»

Lpproved £0r public release; 4 stribubion ualimiuu*a

“ita*ion&ofﬁ*radb nemes in thic repn“t'does not
congtiinte an cffieial indsrsemnnu or approvax of 4
use of sack ttets, : ‘

Destroy this report when no lorger needed. Do not
return 1t to the originator. '

P



Approved for Public Release; AD

-

Distripution Unlimited,

TECHNICAL REPORT

72-50-AD

ﬁ Buckling of Cylindrical Shells
’ Subjected to Axial Loading

by

Louis R. Fuke

Engineering Mechanics Research Laboratory
The University of Texas at Austin
r Austin, Texas

Contract No. DAAGl7-70-C-0127

Project Reference
1F1 62203 D195

September 1971

A

Airdrop Engineering Laboratory
U. S. Army Natick Laboratories
Natick, Massachusetts 01760

rﬂﬂ ‘w
?
T
I.
i
[
%
s




FOREWORD

This work was performed under US Army Natick Laboratories Contract
No. DAAGL7-70-C~0127 during the period of 1 Apr 70 to 31 Mar 71. The
Project No. was 1F162203D195 entitled "Exploratory Development of
Airdrop Systems", and the Task was No. 13 entitled "Impact Phenomena',
Meggrs. Edward J. Giebutowski and Marshall S. Gustin of the Airdrop
Engineering Laboratory served as the Project Officers.

The effort is part of a conbtinuing investigation directed towara
obtaining a better understanding of the failure mechanism of energy
dissipater materials, and the response of airdroppable supplies and
T equipment to airdrop impact phenomena; and toward obtaining improved
airdrop energy disipater materials and techniques.

This report is concerned primarily with an analytical study of the
configuration change of an individual cell of paper honeycomb energy
dissipater material as it is crushed, in order to determine the relative
effect of changes in various cell design characteristics on level of
strength and uniformity of performance,
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73 assTRacT MAUHCIATITALILY XACT &qUAtions of the deileéctions required lor & circular
cylinder to buckle into a developable polyhedral shape are derived. From this
equation it is seen that the tangential displacement can be readily related to

the radial displacement. The exact formmlas for coefficients of a Fourier series
representing the radial displacements are derived for a buckled circular cylinder
having any longitudinal and circumferential mode numbers. This is in contrast to
earlier work in which approximate Fourier coefficients wers derived for large values
of circumferential mode number. (n210).

The analytical expressions are derived to study buckling of individual
hexagonal cells in paper honeycomb. The honeycomb cells are originally in the
developable shape represented by the circumferential mode nwmber n=6 and longitudinal
mode mumber m=0. With the guidance of the analytical expressions described above,
it has been observed that individual honeycamb cells constrained by surrounding
honeycomb cells in an impacted honeycomb pad, buckle in a modified form of the n=3
deflection shape. This modified deflection shape is determined as a function of the
width of the glue line joining the cells which remain intact after crushing, that
is thes effective glue line width.

The analytical expressions of the Fourier coefficients of the radial
displacements of the modified n=3 deflection shape are derived. The net radial
displecements of the impactsd buckled hexagonal shell are obtained by subtracting
the Fourier series representing the original hexagoaal cylindrical shape corresponding
tc the n=6, m=0 mode from the Fourier series represeniing the modified n=3 buckling
shape. This net deflection is ingerted in the strain anergy equations to obtain
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ABSTRACT (Continued)

the total elastic straln energy, bending and stretching strain energies,
and buckling stress, These (uantities are obtained for hexagonal shells
with variations in various geometrical parameters, such as radius/thickness,
radius/length, effective glue line width and the mechanical properties;
Poisson's ratio and Young's modulus,
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ABSTRACT = (
2
To obtain some insight into the failure mechanism =&

of paper honeycomb and to identify the significant para-
meters an analysis has been made of the buckling of a
thin walled, axially loaded cylinder with a hexagonal
cross section. The analysis begins with a derivation of
mathematically exact expressions for the radial deflec-
tions required to change a circularly cylindrical shell
into a developable polyhedral shape. This expression is
then put into the form of a Fourier series which repre-
sents the radial displacements of a buckled circular
cylindrical shell having any longitudinal and circumfer-
ential mode numbers. Hexagonal honeycomb cells have the
developable shape given by that Fourier series for the
circumferential mode n = 6 and the longitudinal mode

m = 0, From this analytical expression it is observed
that individual honeycomb cells in an impact loaded
honeycomb pad buckle in a modified form of the n = 3
deflection shape. This modified shape is determined as
a function of the width of the glue line joining the
cells. This is referred to as the effective glue line
width.

The net radial displacements cf the impact buckled
hexagonal cell are obtained by subtracting the Fourier
series representing the original hexagonal cylindrical
shape corresponding to the n = 6, m = 0 mode from the
Fourier series for the modified n = 3 buckling shape.
This net deflection is inserted in the strain energy
expressions for the total elastic strain eneray, inclu-
ding both bending and stretching strains. Using these
energy expressions the buckling stress is computed.

Buckling stresses are determined for hexagonal
cells in which variations in the geometrical parameters,
radius/thickness, radius/length, and effective glue
line width are introduced. 1In addition the mechanical
properties, Poisson's ratio and Young's modulus are
varied.

The effective glue line width is shown to be the
most significant parameter.
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INTRODUCT10ON

l. Background

Paper honeycomb, shown in Fig. 1, has beea used for
the past 15 years as an energy dissipation device for
cushioning supplies and equipment airdropped by parachute.
Its outstanding advantages are low cost, lightweight, and
a crushing strength that is essentially independent of
variations in parameters such as impact velocity and mois-
ture content. .

The configuratinon of the honeycomb pads presently
used for impact cushioning was chosen on an empirical basis,
because, unfortunately, the critical parameters in the
energy dissipating process have not yet been identified.

It is known that the crushing stress increases with the
honeycomb density, but how the cell size, paper weight,

and glue line width individually affect the crushing stress
has not been determined. One of the particularly puzzling
aspects of the behavior of paper honeycomb has been the
variation observed in the crushing strength of apparently
identical honeycomb pad specimens.

The purpose of this investigation is to study analy-
tically, the effects of cell size, wall thickness, and
glue line width on the crushing load of a honeycomb pad.

The primary objective of the study has been the development

of a rational guide for the design and construction of
honeycomb pads for various specific applications. It was

also intended that the analysis would lead to energy dissi-
pation configurations superior to those of honeycomb presently
in use.

Th.: approach taken in this investigation is primarily
analytical, guided by limited experimentation. An analy-
tical rather than experimental approach was taken because
of the difficulty in obtaining consistent test results
even with specimens produced by a rigidly controlled fabri-
cation process in which no parameter variations are included.

In order to aciieve this, finite deflection buckling
of a single cell is aralyzed as though the stresses stay
within the elastic ranje during the entire buckling process.
Actually it is not unreasonable to assume elastic buckling,
Plastic deformation has to occur for significant energy
dissipation, but it occurs for the most part after the
initial buckling has occurred.

The buckle pattern of cells in honeycomb pads crushed
statically or dynamically resembles the buckle pattern of
circular cylindrical shells subjected to axial impact as
shown in Fig. 2b. T the original approach to this problem
it was intended tha- critical parameters would be determined
by representing the honeycomb cells, which initially have
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rounded hexagonal cross section shapes, as cirazular
cylindrical shells subjected %o impdct iaading. Tpe dis-
covery of a Fourler series: expansion for the developable
surfaces made it possible to investigate the behavior of

a hexagonal cell. . : . ;

2. Previous Work
Much of the most significant analytical and experi-
mental work concerning longitudinal impact *loading of thin
circulir cglindrical and conical shells has been done by
Coppa. He found that the buckled shape of impacted .
cylindrical shells is oimilar to the develgpable polyhedral
shape qualitatively described by Yoshimura and. shown in
Fig. 3. i
. I . : ;
a. Shell Impact '
Coppa suggested thdt buckling of cylindrical and coni-
cal shells subjected to longitudinal impeact 1s & phenomencn
related to the propagation of stress waves generated at’ the
impacted end of the shell.
The induced stress’wave propagates through .the length
of the shell until it exceeds the critical buckling stress °
of a section of the shell, length. If the initial stress .
produced at the.impacted end 1s not large enough to exceed
the critical buckling stress, the initial:stress amplitude
is successively ipcreased by reflection at the ends of the
shell during stress wave propagation until a cr;tical loc«l
buckling stress is reached and local buckling commences.
This.stress increase phenomenon is produced during stress
wave propagetion by reflection from fhe higher acoustic 1
impedance boundaries at the shell ends. The acoustic
impedance 1s defined as the 'product of the square root
of the elastic modulus and the mass density .of a material.
Coppa's hypothesls 1s corroborated to some extent by the
experimental observation that in his cylinders and in
University of Texas honeycomb test specimens, the buckles
tend to occur first at the top' and bottom of ‘the shell or
cell walls. Honeycomb cells appear-to buckle at midlength
only after very extensive crushing. This characteristic
may be due to the buckle 1nhibit1ng effect’ of entrapped air.
b. Developable!Polyhedral Surface 3
Yoshimura pointed out that it is possible for a cylin-
drical surface to buckle into a developable polyhedral
shape as shown in Fig. 3b. This developable polyhedral
shape is composed of ‘a number of plane surface panels which
have no extensional strain. There is infinite curvature
at the sharp fold edges. Yoshimura suggested that the exaat
deflections for this developable surface might L2 represented
by a Fourier series with an infinite number of terms.
Furthermore, Yoshimura suggested that the deflections
of buckled, finite thickness, cylinders with the small radii

ity MWHMWWW&WQ%&MM&
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of curvatures that occur at the rounied fold edges as shown
in Fig. 2b, could be approximated by a truncated form of
the infinite Fourier series. Yoshimura used only a few
terms in his Fourler series representaticn of the displace-
ment3s required for the developable surface and described
the surface more in qualitative than in quantitive terms.
Hoff, Madsen and Mayer> derived an approximate formula
for the coefficients of a Fourier series representing the .
deflections of a cylindrical surface deformed into a poly-
hedral surface. This formula is apparently valid for
values of the circumferential mode number n equal to or .
greater than 10. Yoshimura's hynothesis of the develcpable
shape was verified by comparing the values of the coeffi-
clents of a Fourler series for describing the buckled shave
of very thin axially loaded cylinders. It was found that
the larger the number of terms used in the series, the
clcser the shape approached the developable shape qualita-
tively deseribed by Yoshimura.

3. Present Investigation

A few static and impact tests were performed on shells
in order to observe the buckling patterns and crushing
strengths under both types of loading. Observation of the
buckle patterns was helpful in thz derivation of formulas
for the displacements required to produce developable
surfaces.

The equations for the exact radial displacemnnts
required for a circular cylindrical surface to deform into
a develovable polyhedral surface are derived from geometri-
cal considerations. A formula for the coefficients of a
Fourier series expansion for the exact radial displacements
valid for all values of n is then derived. A simple relation
which exists between the radial and tangential displacements
eliminates the necessity of determining Fourier coefficients
for the tangential displacement. It is shown that the ini-
tial hexagonal cross sectlon can be expressed in a Fourier
series representation, which provides a better model than
the ¢iréular cross séétion shell initially assumed. The
buckled shane of honeycomb cells is found to be a modified
form of a developable surface into which a circular cylin-

der can deform. This modified shape is a function of the -

effective- glue line width between adjacent honeycomb .cells
in the honeycomb pad. Detalls of these derivationes are

given in the Appendix.
Once analytical expressions for the deflections in the

buckled shape are available, an energy method can be used
for computing buckling loads.
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PROCEDURE

A single honeycomb cell will be considered because it
is simpler to study analytically the response of single
cells than it is to study clusters of cells. Furthermore,
individual cells may be responding differently depending
on their physical location in the honeycomb composite.

In experimental investigations it is simpler to study the
behavior of groups or clusters of cells. The buckled shape
of a honeycomb cell resembles the developable polyhedral
surface which has slope discontinuities or zero radii of
curvature as shown in Fig. 3b. The actual buckled cylinder
with a finite thickness has folds which are more rounded.
The roundness of the corrers at the folds increases as the
cylinder thickness increases.

Theoretically, a function with slope discontinuities
or infinite curvature can be exactly represented by a
Fourier series with an infinite number of terms (constrained
only by the Dirichlet conditions).6 If this Fourier series
is truncated it will represent a surface with a finite
curvature at the position of the orxriginal slope discontin-
uities. The curvature at the folds increases with the num-
ber of terms retained in the series.

If the exact displacement equations could be repre-
sented identically by a Fourier series with an infinite
number of terms, there would be zero extensional strain
energy but infinite bending moment for elastic bending
at thz fold edges for the model shown in Fig. 3b. This
Fourier series when truncated to a finite number of terms,
should provide a good representation of the deflection
shape of a buckled finite thickness cylinder. An increasing
number of terms would be required as the cylinder wall
becomes thinner. This is because the thinner the buckled
cylinder, the closer it approaches the developable shape
assumed by a buckled infinitely thin circular cylinder.
Increasing the number of Fourier series terms used would
also decrease the extensional strain energy and increase
the bending strain energy. For an infinite number of
terms the extensional strain energy vanishes and the
bending strain energy approaches infinity.

One way to obtain the buckling load in a static
analysis is to set the external work done on tne cylinder
equal to the total strain energy in the cylinder. This
will in general not be the minimum buckling load. To obtain
the minimum the number of terms in the Fourier series for
the deflections is varied until a sufficient number of
buckling loads has been computed to establish the minimum.

The buckled shape is determined by the number of terms
included in the series.
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1, Developable Surface Deflection Shars

) Since the buckled sh:ape of a cylinder has symmetry and

! periodicity in the circumferential coordinate ¢ and the

axial coordinate x, as shown in Fig. 4, only the deflections

of one panel are necessary to obtain the coefficients for

the Fourier series representation of the displacements when

suitable coordinate transformations are made. The deriva-

tions of the exact radial and tangential displacement expres- .
sions are given in Section 1 of The Appendix. Egs. (1.1l1l) 3
and (1.12), the expressions for the radial and tangential . :
displacements necessary to transform a ¢ircular cylindrical . 3
shell into a developable polyhedral surface show that there

is a simple relation between the tangential displacement

and the first derivative of the radial displacement. Thas

T allows the tangential displacement to be expressed approxi- i
mately in terms of the Fourier series expansion of the

{ radial displacement. Then there is no necessiity for deter-
mining the Fourier coefficients for the tangential displace-

ment.

e LA TS ]

The radial displacement functions are expanded in a
double Fourier series in © and x in the following manner.
First, the two derived functions of the exact radial dis-
placement w, waith limits as a function of x, are represented
by a single Fourier series expansion in the circumferential
coordinate 6. This Fourier series has coeffic:ants a_ which
are a function of x. The formula for the a_ coefficiénts

is determined by integrating the deraived exdct radial dis-
placements over two regions of @ which have limits that

depend on x.

N
<
W(x,8) = J%‘;O‘J(") Cusine

The deflected shape obtained has slope discontinuities
] in the axial direction, but with a finite number of terms

in this expansion there is no slope discontinuity in the
circumferential direction. These a_(x) Fourier coefficients
are themselves now represented by a’Fourier series in terms
of x, ngh that

o
a,(x) = EQU Cos {m X
(=0 L
or
A= : .
w0 =3 & Q;, cos LMTX o5 ine
U o (=0 L
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The coefficients a,, in this Fourler series are
derived as shown in théJAppendix. When an infinite number
of terms are taken in this Fourier series it yilelds exact
displacement values and slope discontinuities as shown in
Fig. 3b. With a finite number of terms in the series there
are no slope discontinuities in either the circumferential
or axial directions.

A computer program to compute the Fouriler coefficients
a (x) and a j was written for the CDC 6600 computer. The

mputer wa% used to determine the coefficients, plot the

surface deformations and compare the Fourier series repre-
sentation of the radial deflection with the exact values
of the radial deflection. 5

Hoff, Madsen and Mayer-” have published formulas for
computing approximate values of the Fourier coefficients
for large circumferential mode numbers (n 2 10). A compu-
ter program was written in order to obtain the values of
these approximate coefficients. These approximate coeffi-
cients are compared in RESULTS, with the more exact values
of aiJ referred to above.
2. Honeycomb Deflection Shape

After the coefficients of the Fourier series represen-
tation of the radial displacement for the developable
shape are obtained, it 1s possible to determine the radial
displacements required to produce the original hexagonal
cylindrical shell shape of individual cells of the honeycomb
pad. The hexagonal cell is merely the n=6, m=0 mode of the
circular cylindrical shell as shown in Fig. 5. This shape
represents the nearly perfect hexagonal shape of precision
made honeycomb. In mass produced manufactured honeycomb,
the cell tends toward a rounded hexagonal shape, which can
be more closely represented by a smaller number of terms
in the Fourier series for the n=6, m=0 mode.

During this work, to establish the nature of the
buckling pattern in crushed honeycomb, an impact test was
performed in which the honeycomb pad was cut into four
pieces prior to testing. The cuts were made along the cell
edges and then the four cut pieces were butted together for
the test. This approach was used to avoid the distortion
in the buckle pattern which cutting after testing usually
produces. Three of the pileces illustrating the test config-
uration are shown in Fig. 1. The cell buckle pattern is
shown in Fig. 6.

From this photograph it may te observed that the buckling
pattern of the cells in the crushed honeycomb is such that
the radial displacement from the sides which formed the
criginal hexagonal cross section shape alternates from inward
to outward as one progresses around the periphery of the cell
wall and the maximum displacements appear to be equal.
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Fig. 6 Honeycomb Cell Displacement

Pattern After Crushing
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As mentioned previously, the initial honeycomb hexa-
gonal shape 1is equivalen’ to the n=6, m=0 mode of a circular
cylinder. Cross sections of a buckled cylindrical shell in
the n=3 mode have three sides which form an equilateral tri~
angle at the axial nodes. Howaver, there are six sides at
any cross section between the axial nodes. Maximum displace-
ments occur at the circumferential midpoints of the original
sides of the hexagon as shown in Fig. 7. From the exact
equations for the radial displacements it 1is found that
the difference between the maximum inward deflection at
these points for the n=3 mode and the n=6, m=0 mode, 1s
equal to the maximum outward deflection. Thus the alter-
nating inward and outward displacements ovbserved in Fig. 6
can be regarded as the displacements of a circular cylin-
drical surface in a mcdified n=3 buckling mode minus the
n=6, m=0 mode which represents the original hexagonal cylin-
drical shape of the cell shown in Fig. 5.

The shape of the modified n=3 buckling mode of the
honeycomb cells is found to be a funetion of the width of
the glue line bonding adjacent cell walls which remains
intact during buckling, that is, the "effective glue line
width." The cross section of a buckled circular cylindrical
shell at the midpoint (f_/2 in Fig. T) between the axial
ncdes of the n=3 buckling mode is a regular hexagon. If
there 1s noc extension of surfa.:s this section for the n=3
mode must be the same as the cross section for the n=6, m=0
mode. Thus there 1s no change from the original hexagonal
shape. The axial location of this section corresponds to
the axial nodes of a buckled honeycomb pad cell., The ends
of the honeycomb cells where displacements are constrained
to the hexagonal cross sectlon shape by the facing paper
willl always be axial nodes.

It is very difficult to tell by examination of buckled
honeycomp exactly what the geometry of the buckled cell is
Clearly there are alternating inward and outward radial
deflectlons. However, the hexagonal cells are restrained
at 4 points, i.e., there are 4 glue lines, not three as
snown in Fig. 8. Two of the four glue lines act as point
restraints rather than lines. Thus it seems very certain
that the buckling pattern cannot be identical to the one
for the n=3, or the modified n=3 modes. Nevertheless,
these shapes which can be represented in a reasonably
convenlent mathematical form can be used to approximate
the buckling behavior of honeycomb cells in a pad, and to
obtain an indication of the effects of the restralnt offered
by the glue lines.

To continue the analysis of the glue line effects it is
necessary now to express the radial deflections for the modi-~-
fied n=3 mede in an analytical form that can later be used
in strain energy calculations. The necessary equation can
be obtained by taking the equation given previously for

wk,® , 1l.e.,

WI(XQ)

OR
2 2 Gy, Cos “ZT= cos Jne
(20 g=» C
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and computing the coefficients a.,. for the deflections shown
in Fig. 8c for the modified n=3 #idde. These deflections

are obtained by applying purely geometrical considerations
and the requirement of no extensions in a developable surface.

When n is specified, the number of folds in the circum-
ferential directions is specified. This does not mean that
the paper honeycomb will necessarily buckle in this pattern.
Consequently if n is specified all conclusions regarding
buckling loads must be predicated on the assumption that
the actual buckling pattern will agree with the assumed
pattern. The number of longitudinal folds (buckles) is
not specified. The more folds or buckles there are the
higher the buckling load is likely to be.

It will now be shown that if a cell buckles into the
modified n=3 mode the effect of the glue line will be to
decrease the buckle length, and increase the number of longi-
tudinal folds, and hence the buckling load.

Consider Fig. 8a. This is one of the polyhedral
panels of the buckled cell surface viewed normal to the
surface. The solid lines indicate a panel for modified
n=3 buckling, and the dotted lines indicate the shape
for the plain n=3 mode. For this mode the panel is an
equilateral triangle with sides 2ma/3. (The inextensibility
conditions requires the total length of three sides to be
the same as the circumference of the cylinder, diameter 2a,
from which the developable polyhedral surface is formed.)
For the modified n=3 mode the triangular panels are changed
to trapezoids. If the glue line width is 2b, as seen in
Fig. 3b, the sides of the trapezoid have a length

27Q _ 4.6
3

as shown in Fig. 8a. The line AB in Fig. 8c is the line

AB shown in Fig. 8a. The projection of AB on the horizontal
in Fig. 8c is A& and A=% where L is the initial length of
the cylinder.. The horizontal projections of AB and A'B' in
Fig. 8c are in the same proportion as the sides of the tri-
angle and the trapezoid in Fig. 8a. Hence

(2Ze - 4%_@ = //(x
3

l\ _"’_-
or ’69( - (/ - ﬂa)l X = the buckle length of the modi-
fied n=3 mode. The projection of AA' on the horizontal is
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the same fractional part of zx as 2b is of 27a , that is,
3b

3%y as shown in Fig. 8ec.
To represent the modified n=3 mode the double Fourier
series for the radial deflection can be obtained from the
equation for the n=3 mode by simply modifying the argument
of the cos immx term to take into account the change in '

the verilodic Enterval which the glue line causes. Thus
for the modified n=3 mode

o0 00

P X

%(x,9)=22 ajj Cosz’:-_s—._‘.”)I cos 3/6
2 j* wa’"*

35
| where X = X= 175_’()(

The coordinate transformation is introduced to nut
the origin of the coordinate system at point A', the fold
in the buckling pattern.

The complete derivation of the exoressiors for the

aiJ coefficients is given in section 4 of the Avpendix.

3. Buckling Stress

The Fourier series expansion for the net deflectiocn
of the buckled honevcomb cell 1s inserted in the bending
and stretching strain energy equations as shown in Section
5 of the Appendix. To obtain a buckling stress the sum of Y
the bending and stretching strain energies 1s equated to
the work done by the avnlied axial force uo to the time the
buckling pattern is formed. These quantities are each
r functions of the deflection shape. The deflection shave is

also a function of the indices i1 and j in the double Four- %

ier series. The higher the values of 1 and J the closer the
developable shape is aoproached. The indices are increased
until a minimum buckling stress is obtained. This value
represents the stress required to buckle the shell into a
particular mode. (In this case the modified n=3 mode.)

The non-dimensional buckling stress, o/E is shown
as a function of geometrical parameters t/c, &/c, the glue

i line width, 2b, and Poisson's ratio in the RESULTS.
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. ‘ ! : !
1. Develovable Polyhedral Surface EFquations-~Exact Disnlacement . :
The shape of a circular cylinder which has buckled into i B
a polyhedral develonable surface is symmetric and ‘periodic
in the circumferential coordinate and the axial ccordinate x. ,
Thus only the eauations of the deflections.of a single nanel : ;
of the buckled surface are initially renuired to ohtain the b
Fourier series exvansion of the displacement of the entire
buckled surface when suitable coordinate trangformations zr« . .
made. . . !
The radial and circumferential 'displacements,  znd v
respectively, of a single panel have each heen determ: ncd i- .
purely geometrical analvsis as twd senarate functions < : !
k the circumferential coordinate 6 and axial coordinatle x.
Each function is valid in a region whose .circumferent ’ai
coordinate limits are a function of the axial coordirate: x. ! '
These functions derived in Section 1 of the Anvendtz cre:,
. 1 ' H
3

r _ ' ‘ ’ ’

wWi(x,08) = [;,+Cz(x)]C089‘+298/09 a E B . ﬁ
0<O6< [/_:i’i];,’f | o

V(x,9)=[a+c2(x)]s/n9 aecose -

1
¥

————

PP

W(x6) = [a+c(x)]cosrz' O)HZ-Gasin(2-6)-a

2[5 ]s0s 1

Vv (x,6) '--[.z *+C, {x)]sm (Z-6)r(2 -9).zcos( -6) -

where . |
.L : : : . i
| b= m = ' .
A+ 0 ‘
cy (x) = ( )X A= Rad/.z/ Displacement amplitude 3 ) .
ar x,6:=0 : '
C (x)=@- A C‘z (x)= Radial Dzs,o/accmenf amplitude
af X’ = ;’_ [

.
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and Q and A are the ampiitudes of the maximum radial
displaceme:xt at the longitudinal nodes in the outward

and inward directions resgectively. The values of the
amplitudes given by Coppa“ are:

a4 .
Q = S Z [Z-smZ]
(il)
&L
A = $in X [sinZ-FcosZ]

From Egs. (1) and (2) it may be seen that there is
a simple relationship between the tangential and radial

displacements. The tangential displacements can be
expressed in the following manner:

= -2, 25/n6 o<e<Z[1-%]
V(X,a) *
=—%’+zsin(%’-0) 'ﬁ”[’-i]sgé};

a. Fourier Coefficients of Double Fourier Series
The derived radial displacement functions w given in
Eq. (1) are expanded into a double Fourier series in *
and x as follows. Complete details of the expansion are
given in section 2 and 3 of the Apnendix.

First the two functions of radial displacement w
given in Eq. (1) are represented by a single Fourier series
expanded in 9. The Fourier coefficients a. are a function
of x.

oo
w(x,8) = 2 a;(x) cos;n6
. Zo

The deflected shape obtained has slope discontinuities in
the axial direction, but with a finite number of terms in
this expansion there is no slope discontinuity in the cir-
cumferential direction.

The a_.(x) coefficients are determined by integrating
the two fudctions of w from Egs. (1) ans (2) over the two’
applicable regions of ¢§(x) as presented in Section 2 of
the Appendix.The equation derived is:

- N E s' F B
(/’ cos ;,Z )( Svrn E_’y # ”n 29‘1)
(x)= (1-4 6,)C1) 2 e, cesti 2
”7 » 2 2
=
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where E = /-/:/‘n %
F = /-jn = |
= mux E |
%= T - I
These a. (x) Fourier coefficients are expanded in a %
Fourier serids in terms of x in Section 3 of the Appendix suct e
that o &
. :
&;(x) = &, cos Lm7X %
i=o / L E |
or E |
® @ (2) ;§
} w(x,6)= a,,.-/- cos ,”Z.WX Cos jn6 %
JFO =0 2
An infinite number of terms in this series gives the g
deflection of a developable surface with slope discontinuities
! at the surface folds. However a finite number of terms repre- 5 1
4 sents folds with finite radii of curvature. E
The formula for the Fourier coefficient a,. is obtained =
by integrating the Fourier coefficient a. (x} ifilthe region 2
' of one axial half wave length by taking into consideration §
the symmetry of the deflections in the axial direction. 2
This derivation is given in detail in Section 3 of the Anvendix. E
The equation is E]
t
;ig
' %
} » _ i.*j ‘- JV_o 78/n N4 2— %
[7+(-1) ](-/)u-_/]aa[—-”_&j :
. 2 fo 0 o g
a/:/. = , 2 (/—2_'!')—22{/‘-&,‘- %
[1#3(/n)~(in)" ] g
X .3
Y . v2, 7..9212 Y4 3
[/-(/n)]{[/-(/n)*(j"’)J"7(/0) }__ |

(9)




2. Computer Check

Numerical values of a have been computed and used

to plot the profile of the &éflections of a circular cylinder

buckled in the n=3 mode as shown in Fig. 9. Three curves are

shown. The labels I1=1,6,19 indicate the number of 1 terms

in the expansion. Normalized a,, values determined from the

derived exact formula can be com%gred in Table 1 wgth the

values of a, determined by using the Hoff, et al’ approxi-

mate formula Qn-‘lo). For large values of the circumferential

T - mode number n these normalized values are nearly constant for
all values of n, and thus essentlally independent of n. It

) can be seen that the values obtained from the approximate
formula are very good approximations to the exact values for

n greater than 7 or 8. At the lower values of n, there is
an appreciable difference.

3. Honeycomb Cell Shape Equations

As indicated previously the buckle shape of crushed
honeycomb cells is to be approximated by the modified n=3

radial deflection shape. A Fourier series which will repre-
sent the shape is

® o
W,_3 mod(x’a)""zz 2,:/-3 C0$3/'9ca_y£_’”_7"_)£—

- 66
i=0 j=o L(/-22) \
i where b is half the effective glue line width. The expression

for the coefficient aiJ3 is

Ca(-1) Hj(/—?f;)

a.. 3 .2 )
- 66,2 E2_ / 1
[1-Zm*el g

v

5 I
71- 66)%
ra L

. o +
'. [/—-CoS%’J[:‘ (—/)‘/cos‘(éz-é—g)+(—/)/cas§—é]

. o S Eh_HY N 0.0
* Sin [ (1) sin ( G = F )= (~1) sin EE T -2k s

+ Same f-/u}y with F for E

—
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The values of a 3 coefficients have been computed. To
test their validity tﬁé deflection shape produced by using the
a coefficlents for the degenerate case of zeroc width glue
liﬂé.has been compared to the displacement shape produced by
the a coefficients in the n=3 mode. The two disnlacements
agr'eej:'j

The net displacement of a buckled honeycomb cell is
equal to the Fourier serles expression for the displacements
for the modified n=3 buckling shape minus the original hexa-
gonal cross sectional shave which is the n=6, m=0 mode. <ince :
the original hexagonal shape is in the m=0 mode, the displaca- £
ment shape 1s not a function of x.

The original hexagonal cross sectional shane cvlinder
has non zero i and j terms when exvanded in 6j6, but when the
! hexagonal shape 1s exvanded in 3J8 the odd j§ terms eaual zero,
as shown in Section 4 ofthe Appendix. The net deflection i3
expressed in the form

- FFra [ m7X [1+(-1)"]
et a5 cos 122 (2D, con 37
| /é: é; T orw-g8) 2 Y

4, Buckling Stress

is determined by using the expression for the net deflecticn
to compute bending and stretching strain energy. A computer
orogram was written to determine the strain energies and the
external work done by the applied load. These values were
then used to compute the minimum buckling stress, as shown In
) Section 5 of the Appbendix.Buckling stress increases with cell
wall thickness and increased effective glue line width as
shown in Fig. 10. In this figure the buckling stress is
shown in non-dimensional form by dividing by Young's modulus E.
Cell wall thickness t is non-dimensionalized by dividing by
the cell wall width c¢. Note that the buckling stress increases
very rapidly with thickness for thin cell walls (assume c is
constant) at small values of t/c¢, and much less rapidly after ’
t/c exceeds 0.02. The analysis which has been provided is
most applicable for thin wall cells and becomes less accurate
as the wall thickness increases. This is because the cells
will tend to buckle in modes which do not represent developable :
surfaces as the wall thickness increases. The difference in
' the buckling patterns is readily observed by loading cylin-
drical shells of different wall thicknesses until they buckle.

# As indicated in the previous section the buckling s<ress
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Fig. 10 Buckling Stress Variation with Cell Thickness
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Note also, in Fig. 10, the significant increase in buckling
stress as the glue line width 1s increased. The same effect
is produced by decreasing the cell size. The results in Fig. 10
are for one axial buckle length ( g¢/c¢ = 1.0). However,
increasing the glue line width increases the buckling stress
significantly at other values of the buckle length (2 /c).
This 1s shown in Fig. 11. The upper group of curves in Fig. 11
indicate that for a constant effective glue line width, the
buckling stress increases as the value of &/c decreases, or
as the buckle length becomes shorter and shorter. However,
the lower group of curves ( & /c = 4.0 and 2 /¢ = 10) show a
reversal of this trend. Although this behavior seems at first
glance contradictory it 1s in fact what one might exovect.
There 1s a buckle length at which the buckling stress will have
a minimum value and this is the buckle length which willl be
observed no matter what the cell length is. If this were
not the case the buckle length for minlimum buckling scress
would always be determined by the overall length of the cell.
It has ofter been observed that 1f the loading of a cell
is stopped soon enough a number of folds (with a short buckle
length) will be formed somewhere along the cell, usually near ]
one end or the other, and the rest of the cell will be ;
unbuckled. This phenomenon has been observed for both static -
and dynamic loading. The results in Fig. 11 were computed by
assuming that the loaded cell would buckle at some arbitrary
value of g/c¢. Hence these results should not be interpreted
to mean that buckling will occur at any of these values of /¢
shown. It can be said, however, that for t/c = 0.001 if an
axial load is applied and slowly increased until buckling
occurs the buckling length will be bounded by the inequality
1 < 2/c < 10. . It should be noted that for 80-0 - 1/2
honeycomb the value of ¢ is approximately 0.25in, and t is
approximately 0.007in. Thus t/c = 0.028 and for &/c = 4,
¢=1.0in. This value of g% , the buckle length, is avooreciably
greater than the values. that have been observed. A possible
explanation of the discrepancy might be that the preferred
buckle length (minimum buckling stress) 1s sensitive to the
value of t/¢, and the results would therefore have been con-
siderably different had t/c = 0.028 been used in the compu-
tations. A more likely explanation is that the discrepancy
is simply a result of extrapolating from an idealized situa-
tion in which the honeycomb cell 1is uniform in all respects
and is assumed to behave elastically right up to the time of
buckling, to the real situation in which the cell is far from

uniform in all respects and buckling is more plastic than .
elastic. The results should be Interpreted as simply an :
indication of how the buckling stress is affected by the

various parameters, rather than an indication of the buckling

stresses and buckling lengths that might be expected under a

given set of circumstances.
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As indicated previously a constrained axially loaded
hexagonal cell in a honeycomb pad buckles in a modified form
of the n=3 mode shape. There are six buckles in the clrcum-
ferential direction. Except at the axial nodes, three of the
buckled sides each contain two of the straightened out axial
folds produced in the construction of the original hexagonal
cell. The maximum number of buckles in the axial directicn
can be estimated from the L/a ratio using the following
expression:

cell wall panel and the original cell wall.
For comparison it mav be noted that the crushed heorae-
comb cell in Filg. 6 has an

Hence _ ) L
a

From the photograph about 19 buckles can be counted alcns the
cell length. )

Poisson's ratio for paver is not very well knoun. TcC
determine i¢s influence on the buckling stress of paper
honeycomb tie computational results shown in Fig. 12 were
obtained. Obviously Poisson's ratio has an insignificant
effect on the buckling stress.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. Hexagonal paper honeycomb cells buckle under axial
loading into a pattern which approaches a developable sur-
face for very thin walls, and departs more and more from that
type of surface as the thickness of the cell walls increase.

2. The effective glue line width between adjacent
honeycomb cells has a significant effect on the buckling
stress of thin wall honeycomb cells.

3. Variations in the effective glue line width have
a greater effect on the buckling stress when the effective
width is near the maximum value it can have, 1.e., the cell
wall width.

4, The cell buckling stress increases very rapidly
with wall thickness at thicknesses less than 0.02¢ and much
less rapidly at greater wall thicknesses.

5. The buckling stress increase with wall thickness
becomes more pronounced as the effective glue line width
increases.

6. Changes in Poisson's ratio have an insignificant
effect on the buckling stress.

7. Honeycomb pads containing hexagonal cells constrained
by other hexagonal cells buckle in a modified form of the
circumferential mode number n=3 of a circular cylindrical
shell.

8. The approximate Fourier coefficients in the exoress-
ions derived for the radial deflections by Hoff, Madsen and
Mayers are quite good for surfaces with a large number of
circumferential buckles but rather poor when the number of
circumferential buckles is small.

9. A more precise analysis of the buckling of hexa-
gonal cells is not justifiable in view of the great differ-
ences between the characteristics of an actual cell and the
theoretical cell used 1n analysis.

Recommendations

To obtain a paper honeycomb which has uniform crushing
strength, special attention should be given to quality
control of the following parameters:

1. Glue line width

2. Cell wall widths

3. Paper thickness

To provide further authentication for this analysis
computations should be made of buckling stresses, for addi-
tional values of &/c¢ and t/c. Further carefully controlled
experimentation should be done using paper honeycomb with a
wider range of values of ¢ and t.
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LIST OF SYMBOLS |

X

a radius,

aj=aj(x) Fourier coefficient of Fourier series expansion in 9.
a.. Fourier coefficient of double Fourier series expansion. . A

1] s
3343 Fourier coefficient for n=3 mode. - F

Fourier coefficients for n=6 mode expanded 'in 637 and 2

Aoy Ass
136 1%5 339 respectlvely. _ . . |8

a radius vector.

>

maximum inward radial d’splacemenf also a dummy . '
variaBle.

Fourier coefficient normallzed w1th respect to n /a._
half width of effective glue line. |,
dummy variable.

ij

0O w o »

buckled honeycomb cell axial half :wave length, also ' :
cell wall width.

) cl(x) radial displacement at 0 L

-b i

n

o . ' H i
variable equal to 1 + jn, Young's modulus.
variable equal to 1 - jn.

cz(x) radial displacement at 0

thlckness.4
axial mode number.

PP

circumferential mode rumber.
variable subscript.
length -~
buckled panel axial 1ength.

one half buckled panel clrcumferentlal length.

cylinder length. ‘ ' ) - ! :
axial buckle mode number.

circumferential buckle mode number.-

axial load, dummy variabie.

{

maximum outward radial dlsplacement.
radius, radial coordinate.’
thickness.:

Hnﬂowbar‘%hxnzewuw-b‘mm

dummy variable.

£
=

axial displacement, axial displacement vector.
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Uiot bending, extensional and total strain energies. = |
v, V tangential displacemsnt, tangential displacement 3 1
vector. E
» w, W radial displacement, displacement vector.
; I . Yoet net radial displacement of buckled hexagonal cell.
. Wy rad@al digplacement required to buckle circular
cylinder into hexagonal cylinder.
* o W3 radial displacement in the n=3 mode.
} Wn=3 mode iiglgidgfsplacement of honeycomb cell in modified
X axial coordinate.
' ' ' Xy axial coordinate of a particular cross section.
X general axial location of axial cross sections. 1
; z tangential coordinate.
: : Z position vector in final coordinate system. {
. 8 angle locating slope discontinuity in final coordinate
b system.
Y circumferential period = 2n/n.
i ’ 8 total axial displacement of buckled cylinders.
E 63 Kronecker delta.
1 1 . Sx, EG ’
y ' €0 axial, tangential and shear strains respectively.
0 initial position polar coordinate at x = X.
" 04 initial position polar coordinate = n/n - ),
at x = 2x - X.
OB' 081 angle§ locating slope discontinuity.in initial
coordinate system 6 and ol, respectively.
v Poissons ratio,
£ final position coordinate system.
P mass density.
G buckling stress of honeycomb cell.
‘ g angle between axial generator and buckled panel.
X denotes differentiation with respect to x.
i
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t ‘APPENDIX
’ DERIVATION OF EQUATIONS :

The analysis of the buckl)i.ng of a hexagonal honevcomb

cell during axial loading requires five consecutive steps.
. Thege are:

1. Determination of the exact diesplacements which
transform a circular cylinder into a polyhedral developable
surface.

2. Deriving a formula for the coefficlents of a

. Fourier series for the radial deflection expanded in terms

of the circumferential coordinate 8.

ﬁ 3. Derivation of a formula for the coefficients of a

double Fourier series for expressing the radial deflection

in terms of the circumferential coordinate 6 and axial

coordinate x.

' 4, Derivation of a formula for the coefficients of a
double Fourier series for including in the radial deflection

of buckled honeycomb cells the effect of the effective glue

line width. .

b 5. Computation of the strain energy in cells buckled

in a specified mode and then using this energy to compute the

buckling stress for that mode.

These steps will now be discussed in detail.

1. Exact Displacements

‘ The initial coordinate system of a circular cylinde:
is shown in Fig. 3. A circular cylindrical surface can

k buckle- into a developable polyhedral surface such as the one
shown in Fig. 3 which has a circumferential mode number n=6

and longitudinal mode number m=8. In this polyhedral devel-

opable shape there is no extensional strain at any point in

) the surface. :

In order to determine the exact radial and tangential 1
displacements for a circular cylinder that has buckled into
a developable surface 1t is necessary to determine the
radlal displacement amplitudes as a function of x.

Fig. 4 shows orofile views along the longitudinal axis
of a general developable surface at angular coordinate loca-
tions 6 = 0 and 6 = n/n. The radial deflection amplitudes
as a function of x are determined in the following manner:

Consider the longitudinal cross section shape at 6 = 0
shown in Fig. la. Coppa, from geometrical considerations
and the condition of no extensional strain, has shown that
the radial deflection maxima are:

SR X

Preceding page blank




a ” .
@ =.5'/'n p [,; =S/n ,—,?/ (outward deflection)
n
=2 _ (o7 -TcosZ (
0 7 i 7 inward deflection)
7

These expressions apply only 1f the cross section is an eaua?
sided polygon, which it will be at the cross sections where
maximum deflections occur. For intermediate sections let c.’x,
be the radial displacement at 8 = 0. !

Consider 0Sx €4
Sx £4.
From Fig. 4a, 02(0) = ~A, c2( lx) = Q.
A+Q

Ax

#

From Fig. Ub, cl(O) Q, cl('!x) = -A.

A+Q@
¢ (x)=-"5=)x+Q = Q-A-cp(x)= c; (4~ X)

Mlso Ca(x)= C, (b~ x)

Furthermore, from Fig. U4 it can be seen that cz(x) and ¢, (x)
are periodic in x with a period equal to 2 .o Mg. Al éhows
some cross sections of the developable surface between the
axial nodes. Detailed views of the cross sections are shecwn

in Figs.2a and 2b. Note that the cross sections have 2n
variable length sides at any location between the axial nodes
form = 1,2,.....,M. There are six sides corresponding to the
circumferential mode number only at the axial nodes, x = m &_,
vhere six of the sides degenerate to zepo length, and the si¥
remaining sides are equal to 2 £ or 2r=, since there 1s no
extension from the original surfice. ATso note that the sides
degenerate to zero length in such a manner that it aopears that
the crcss section at an axial node is the same as an adjacent
node cross section, except that the sections are rotated

T/n radians with respect to each other.
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Fig. A1 Cross sectlions of Deformed Cylinder Between Axial
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Fig. A2a Detailed Cross Sections of Deformed Cylinder
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Fig. A2b

X = X3= 0.500 zx

Detailed Cross Sections of Deformed Cylinder

Between Axial Nodes
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Consider now a general cross section of a cylinder buck-
ling in an arbitrary circumferential mode n as shown in Fig. A3.
This is an exaggerated view of a portion of a cross section
between the axial nodes, such as the cross section shown in
the 'middle of Fig. A2b.

The radial and tangential displacements, w and v, shown
change the original cylindrical surface into a polyhedral
developable shape. In the initlal unbuckled coordinate system
8 is the angular coordinate,and £ 1s the angular coordinate
in the final buckled configuration coordinate system. The
angular coordinate locating the limiting edge of one of the

sides which is a function of x, is given by the angle B8(x), ’

measured 1n the final buckled coordinate system,
Consider first the deflection for £ < 8(x) for any

general poslition x = X along the cylinder axls as shown in
Fig. A3b.

The initlal position point & = from which the

6
final position point £ = 8(x) is mappeg(g}ter deflection can
be determined as follows:

at £ = g(x),
8 = eB(x)
and tan £ = tan 8

For inextensibility

tanp = 2 Cs
-a +C, (x)

6. = [a + c,(x)] tang (1.5)
4 2

From Fig. A3b i

r x
‘()"/-Ix) (-/-for 0O <

& *+ Ca(x) ’ = For A

[,y
X
LLN

DN

tanpg=1

IN

A

N
D
N

(1.6)
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Consider 0 £ x 5.2x

Substituting Eq. (1.6)in Eq. (1.5)
o) = Lazcetx] L (/gD 4 (1 F)
4 2 [a + ¢c200) ] 2
Z(8) +w(8) »v@) = Z(¢)

Consider the deflections for £ £ 8, that is, for

£
W 959'4=Zy[/"7’:}

>

] Zvert projection acos @ # v(B)sin 6+ w (B)cos @

=z (%) cos§
' Zhor projection = asin € - V(B)cos 6+W(9)sin e
=[arc, (x)] tank (1.8)
[ Also for inextensibllity
f [a +¢c,(x)] 7‘an7‘=26’ (1.9) |

Substituting Eq. (1.9) into Eq. (1.8)

asin@-v(8) cos6 + w (6) sin6 =286 (1.10)

”WQ‘ q}"j -iia.'" Way""m s '«"ﬂgﬂ’ 'Y%EW'Q?""‘; %&:’Muﬂ WE};!W iw »T’EM "QLTJ it
sienamannr

Multiplying Eq. (1.7) by cos 6 and Eq. (1.10) by sir. 8 and
adding yilelds

I

N —

w(@)=[a+c,(x)]cos6+aBs/ind -a (1.11)
p From Eq. (1.10) and (1.11)
l
; v(9)=[a+C2(x)]S//99—a@cose (1.12)
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] Note that
’ ~dw (1.13)
v(6) = + asm6 .
a6
Also note
L , y
!r W(e) = ;%'(9)*¢6039 2—;2’-—2&3//7 29 (1.14)
b Continuity in the circumferen?igl direction at the
r deformed cylinder ends demands that '’ :
2
.Q_Ydy-_-j v 4o = 0
dy 26

' Eq. 1.12 satisfies this requirement.

The deflections were determined from Fig. A3a in a
similar manner for B(x)ﬁéf% and were found to be:

w(x,6)=[a+ C,.(X)] cas(;—’,’—e)f( -8)asin( T-6)-a cosﬁ;-,’-e)

7’[/- -]- g< ;”7 (1

v(x,6)==-[a+c (x)]sin(F-8)HF-6)acos(%Z-6)

A=
¢l

= W m(Z-6
46+asﬂ(,, )

—~~
f—
ted
(9 AY
~

Egs. (1.11), (1.12), (1.15), and (1.16) together comorise
the exact radial and tangential displacements required for

a circalar cylindrical surface tc form into a developable poly-
ﬂ hedral shaped surface. The terminology "exact" is used to dis-

tinguish these equations from the series approximation forms
which are subsequently used.
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The displacement, u, of the developable surface in the
axial directlon is determined in the following manner. Refer-
ring to Fig. AL,

u=-x(r-cosp) =-x(1-v7-sin2g ) (1.1%)

where

sin$ =2 (A+Q)

From Eq. (1.1)

£1.1%)

Inserting Eq. (1.19) in Eq. (1.18) yields

u = —x[/—//-(‘—j_ﬁ’,;l’t‘a'?g,‘,i )?]

2. Fourier Series Expansion in o

The radial deflection given by Ea. (1.11) can be expoanded
into a Fourler Series in terms . of 8 in the following manner.
Since the radial deflectlon is periodic in 6 with period 2n/n
only the radial .deflectlon between the circumferential nodes
is required for the Fourier Series expansion. The radial
deflectlion at any axial location X can be expressed as:

@
w(X,8)=) 2;(X)cosjno+ b/.&}s/hjﬂ9+ao(x) (2.1)
s
Since the radial deflection is an even function in g, b3= 0
and
| 4

o

e
7)w(X, 6)cos jnOde (2.2)

Z
av;CX)==ﬁ§%§? (/- 7

From symmetry

LR R e R R TR R A




i

r. P e o cms cwm w

Fig. A4 Detailed Axial Section for u Displacement

Determination
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(2.3)

6 (x) ¥
r 4 -] 0
= .‘?ﬂ_” [ _[ (/- & )co.ynadaf[m(/—z%f (0,024, )cus bl 2 . 1)
/-4
where Y,
6;(X)=j;y[/—f] =,1,’[/-’1’Li‘] (2.5)

Now considering the symmetry of the deformation (Fig. 4)

Y

W (X) bor O(X) 2 6,(X) = W(4,-X) For §l4y=X) < &, l4X2.

And since it is also s
must be considered.
When

2

X
}C; 24‘2)
8 (X o then 6, (4-X)

==QQ/KZ;‘X7
<{ (/:=C> (2.

(zx-X) is the initial rosition angular coordinate at

ymmetrical about x = zx, only 0 X

—
—

2

where 0
x = ok

«?yX___ murX
akty nl

(2.

£ =X
g/ (#y-X) = —’g’ L/- “)'rje;"]:

and 8

zx-X) is the slope discontinuity angular limit in the
ini¢i

(
3} position angular coordinate at x = ¢ - X.
To faciiitate reduction of the second fntegral in Eq. (2.4)
transform it to the variable el(zx-X).

0, (Uy-X) =5 -6(x) {2.9)

¥

A A AR R R R T e T




ox)= X-6(4-X) = F-6 (4-X)

. ' L (2a0"
c/efx) = - g6, (fx-X) ' | ’

Substituting Eqs (2 6) through (2.19) into Lq

aix)= & [f(/--/’)w(x 6) cos /ndl®
a +

(2.4) yields

/——5')w(/ -X,8) cos jn (£-6)(- a'a)]
2 ﬂ(’ X) 0‘(x .
(X)" "( )[ w(X,e)coande

(2.1%}
, o

1

al/';_l’.! 9 )
f w4 Xé')cos/n(—-e)a/@,]

H . i
Now

cosjn (¥-8)=cos jn(7-6)=cos(;7jn8)= =1)%cos s 9, (2.22)
and from Eq. (1.il) :

wite-X,6)=[a+cs(h -/\)]LOS‘Q/ '+ 26,806, -2

(2113)
but from Eq. (1. 3)
. . | ‘
G2 (/X_?X)= C,(X) =05X51, . . (2,18)
Evaluating the first integral in Ea (2.11)'by use of Egs. {(1.11)
yields .
6, (x) )
/ .Wné?e SinFly o r smkb
[ w(X ) cosjn6de = /[-a-*Cz;X)‘/z[ ]f-é-[ £2
8=6y
4 Sin’¢ Fé aa[ cosE®@ cosFej 2 S/nn .s*m n6y
: i F a’o

y if.____”';_ E% s, (X)r 27 f’-'z-fa’ a+G)

a] 2 9’[ cos E&s (as/iq,j 2 S/n_/ne,

E=/+yn  F=/[-;n
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Eq. (2.17) reduces to

—

(1-cosA )

0 /W
=(/—Z’//') a:r(/)

v/

fsin;,’-’( ez

S/ 59‘, i S/n /-'9,,)

cosé}p7+ cos/régq)

.

3. Determination of Fourier Coefficients for Double Fourier

Series
The expression given in Eq.

Fourler coefficlent in Eq. (2.18) yields a deflection srane
which has no slope discontinuities in the circumferential

direction
This 1s because a
direction. 1In or&

tion which has no axia: direction slope discontinuity for a
finite number of terms, the radial deflection can be expressed
as a double Fourier series which is the same as exoandinp

J(x) in a Fourier series as a function of x or:

oo 0o )
w(x,6) =Z Z a,‘-/- cos "Z” cosjnd
izo j=
Using aJ(x) as 1t is defined in Ea. (2.1)
£

”
aj; = ﬁf (/-Jﬁa)a-(x)cosi'-’lﬂ‘a’x
9L/, 277 % /2

For aJ an even function in x

2
m 0 .
2= gz@[[(/—z'é)zj{x)]cosiﬂz’-’fo’x

(2.2) used with the cerived

but has slooe discontinuities in the axial directton.
(x) has slope discontinuities in the axial
er to obtain the radial disnlacement func-

(3.1)

(3.3)
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u.

Fourier Coefficlents for Honeycomb Cell

Inspection of the buckled cells of the impacted paper
honeycomb specimens, Fig. 6, shows that the radial displace-
ments from the sides which form the original hexagonal shape
are alternately inward and outward as one progresses around
the cell wall.

by the analytical expression for the radial displacement from

the derived Egqs. (3.8) and (3.1) by using the longitudinal mode
number m =

0 and circumferential mode number n = 6.
Cross sections of a buckled cylindrical shell in the
n = 3 mode have three sides which form an equilateral tri-
angle at the axial nodes. However, in the n=3 mode, there are
6 sides (2n) at any cross section between the axial nodes.
Maximum displacements in the buckled honeycomb occur at the
circumferential mid-points of the original sides of the

hexagon. The difference between the maximum inward deflection
at these points for the n

= 3 mode and the n = 6, m = 0 mode
1s equal to the maximum outward deflection, Fig. 7.

Thus
the alternating inward and outward displacements observed in
Fig. 6 are the same as the displacements of a circular cylin-
drical surface in a modified n 3 buckling mode minus the
n =6, m= 0 mode which represents the original hexagonal
cylindrical shape of the cell.

The modified n = 3 buckling mode of the honeycomb cells
is a function of the width of the glue line which remains

intact during the buckling, l.e. "the effective glue line
width," see Fig. A5, Here b 1is the half width of the effec-
tive glue 1line. The cross section of a buckled circular
cylindrical shell at the midpoint between the axial nodes of
the n = 3 buckling mode is the same as the cross section for
the n = 6, m = 0 mode. This means that the deflections are

the same and consequently there i1s no net displacement at
that section between the two deformation modes.

This axial
locatlcn corresponds to the end conditions of a honeycomb
pad in Fig. A6 cell, where displacements are constrained by

the facling paper. The radial displacements of the buckled
honeycomb are determined in the following manner:
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The original hexagonal shape can be represented
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5. 8train Energy Expressions

To obtain the critical buckling stress the strain
energy is calculated and then equated tc¢ the work done by the
force required to cause the buckling.
culation proceeds as follows.
x, in Eq.
TH1

The strain energv cal-

Transform the axial coordinate
(4.1) to a new axial coordinate x

., (see Fig. 8).
s 1s done in order to satisfy the naturai

boundary condi-
tions of zero deflection and simple support at the limits of

integration in the straln energy expression. The transfor-
mation relationships are:

_ 664y _ . i
XZ = fx - — R )(2 =0 at the limits

364,
Xz = X/ - ;{X_,_ ==

between the limits
2 Ta

Insert this expression in Eqs. (3.1) and (4.1) and

subtract to obtain the net radial deflection of the hexago-.2
cell.

Note that w(x,€) whenn = 6, m = 0 reduces to
o o0

ZZ & ;j6 cos ;6

/=0 j<0
which can be written
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u(x) is axial displacement function
u(o) = 0, the total displacement = u(L)

For one buckling length u is defined in Ea.

(1.20).
' __m L __54)
é;b¥'~ L (- 66') u (;' (1 ) (5.15)
Uy * U
r or —4 = (5.1€)
£fof

From Eq. (1.18) it can be seen that u is a function of sin ¢
which can be determined in the followlng mannev:
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