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1. INTRODUCTION
A dilicult problem.to consider conceptually.is wave

propagation in medin which vary with both position
and time, In such media our standard concepts of
frequency, wavenuniber, and group velocity no longer
apply. Tha'. is; we find that frequency can be defined
only as the tims derivative of the phase function and
that the quantity so-defined is e function of both the
position and the time at which the observation is
made, We also findd that the group velocity no longer
retains its-conventional meaning, In spatially-homo-
gencous, time-invariant media the group velocity is
interpreted as the velocity at which wave packets
centered around some wavevector k, propagate
[Jeffreys and Jeffreys, 1962). In space-time varying
media this is no longer true, In fact, as we shall'sce,
values of « and k do not propagate with the group
velocity Vyw; it is rather different quantitigs (which
are functions of w and k) which arc propagated at
this velocity, The same- conclusions hold true for
energy flow (i.c., the encrgy flux does not propagate
with the group velocity),

In this paper we will study the propagation of
clectromagneiic waves in lossless media which vary
slowly with position and time, We will therefore
cmploy the four-dimensional  WKB  (Wentzel-
Kramers-Brillouin) method, The WKB method was
first applied in three dimensions by Sommerfeld and
Runge {1911]. That iy, in media in which the propertics
depende d on position x but nut on time, Sommesfeld
and Runge considercd  solutions of the form
exp (fwt - [ kedx), A, o sonsequence of the fact that
the phass function must oc uniyuely defined, Summer-
feld and Runge then concluded that ¥ xk = 0 was
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required, This is the original version of the’Sommer-
feld-Runge law, This rcsult can be extended:to the
Tour-dimensional case, ns has been done by ‘Whitham
(1960} and Pocverlein [1962], That is, in-spacc-time
varying media -the etistence -of a uniqucly defined
wave function, exp [t * (w dr — kedx)}.requires that
Vo — ok/ot = G This is the four-dimensionu!
Sommerfeld-Runge law,

In-the present paper we will first give an clementary
derivation of the four-dimensional Sommerfeld-Runge
law, We will' then examine its implications, and
finally indicate its use in studying clectromagnetic
wave propagation in isctropic, lossless medin-wliich
vary slowly with position.and time.

2. GENERAL THEORY

2.1, Discussion of the Generalized Sonmerfcld-Runge
Law

In a medium which varics stowly (¢.g., in & diclectric
the conditions for slow variation are that k¥ 3> V +k,
W 3> 00/0, w 3 0/0ilne), and k B {1/6|V 4,
where ¢ is the permittivity of the dielectric) with both
position gad time, the WKB approximation for the
clectric field strength can be written as

E(x, ) = e,(x, t) exp [i j; (kedx = 1 dt)] (1)

where e.(x, ¢) varys slowly with position and time
compared with the exponent, and L is « line integral
in four space between some initial point (x,, 1,) and
the observation point (x, 1), Uhe functions w and k
are gencrally related through a dispersion reletion
of the form

w = Pk, x, ) @
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or

k= K, x 1) Q)

where k = [k]. For example, in & plasmu we ‘have
ko= 7wt = w,(x, 0], where ¢ is-the speed of

light, and*w, is the clectron phsnm frequency., Now:
‘since the exponent in (1) represents a phase function,
‘its value must be unique, That is, the line integral.&

should be independent of the path, which fmplics
that the integrand is a-perfect differential, Thereforg,
there must exist some function ¢, suzh thattk = Vo
and w = —34/at. As u conserquence of these relations
we then have

o/ + D = 0 {4)

Equation 4 is ‘the four-diménsional. version of the
Sommierfeld-Runge law, This result can siternutzly

-be derived-by. employing results on-wavg conservatio,.

as-has been done-by Lighthill and Whitham 11955,
Equation 4- has also been- considered--by M ultham
(1960], Pocverlein [1962], and Landau and “yschitz

[1959].

2.2, Discussion of the:Properties of Equation 4

22,1, Generalized group velocity, To discuss the
propcrucs of (4) in a mediym which varies with both
position and time, let us substitute (2) into (), Using
the fact that ¥ x¥ = 0, we get

0k/ot = (Ve )k = —=(V i), 5
where

Ve Vil = (9»1" ) ©)

Ok it

The quantity Vin (6) can be interpreted gsa generals
ized group veloglty us we shall sce in the following
discussion, Uyon defning dfdt = gfot - V.V

equation 5-can be rewritten as

dk/dt w2 (W), (7

From (7) we sce that if ¥ does not depend explicitly
on position, then dk/dt = 0, This.means that if one
moves along the ray with the velocity V, he will
observe constant values-of k (i.¢., the obseever muving
with V, measures constaut values of' wavelength),
Therefore, if W is a function of k and 7, but ees not

depend explicitly on x, then k i a constant of the

motion, so that wave packets sharply centered pround
some wavenumber k. will be propagyted with V-
oW/ ok gvaluated at ke -« k..

To exanting the other limit when tae proparties of

the medium Vary with position but not witlr time,
it is convenient to use (3) in (4). For this sase we obtain.
((assuming the mediun is isotropic)

/0t 4 V-V = -(aw/on,..("of) ®

From (8) it is clear that ftx depends.on o and x, but

doés not cxplicitly.«ié[wud on time, then-

dwfdt = 0. (0)

This. mes ms thut the.observer moving along the ray
‘with the velocity V will observe constant values of w
{e, constunt wave period), Snell's law follows
inyiedintely from (9), Therelore wave packets sharply
centered abont some frequency w, will propagate with
the.group velocity V (evaluated ot ¢ = ),

For the gencral case when the propertics of the
medium depend on-both positior: and time, neither
w nor k-will be invariant as one moves along the my
with the group velocity V., (However, in the next
subscetion e do show that there are velocities
V& o¢ Vand V6 3 V with which values of k and 4
are propagated in space-time varying media), In-this
case.other quantitics wiil be invariants of the motion,
Consider efich scatar component of (5), We have

k[0t 4 0 Ty = ._.g:t o)

To solve (10) we consider the subsidinry set

dt = dxy /Wy s dR,/ Vo= dnd Voos = dby JQIV/0%)
‘ {11

Let :us denote the partienlar intograls of (113 by
f(kh X, 1) = Oy, g(f\u X, 1) = Cyy Wky %, 1) = Cy
Yki, %, ) = C Then it can be shown:that (Sneddo,
1957] () the general solutjon af (10) is given by

Cy =~ MC,, Cu C) (13)

where @ ls an arbitracy function, determined by the
boundary conditions impiosed and (b) the nvarjsnty
of moton, for an observer moving witls the soloity V
given by (0), are €, Co G, and C That Is, each
C, satistivs

dC,/dt - @'t 4 NN, - 0 1

Therclore, Tor media which vary swith buth pe-ation
and time, the ponoralized pronp sologity & oned
in (6) 1+ the sclosity with which the ypaitities € ase
propagated. 1 only et it of spatidly Jonaos
peneowrs, timtedinvaiong oot i s 0 U
constantis-C, can e pdontificd with .o i k

t



In section 3.1 we will caleulate the constants of
motion: for several éxamples of medin which viry

witls position and time.

2,22, The angle between V oand k, In <this. sub-

scction we will demonstrate thut in isotropic lossless:

media the normal, k = (k/k), to the phasc surface
&(x, 1) lies.in the same direction.as the group velocity
V. We will also calculate the angle between kand'v

Jor the case of u simple-anisotropy.

St constder (3) for thie case wherg thie dispersion
refesion can be written ng

k = Ko, 0,:%;-9) (14)
vhers 648 the angle which the vector k makes with

the 2 uxis, (Thi:correspoads to the ease in which the

dispersion relation-is given by the Appelton-Hartree
formula), Using (14) in 46), we find, upon differens

-tinting Impheltly; that.the-group=veloclty-ls.

V- & {du/okytk — (O/Kk)D K790)] (15)

Upon taking the dut nnd cross products of k with (15)
we obtain for the angle y between % und V

YL

Ml

For isoteapic medin.(k fndependent -of 0) the ungle
y = 0, Equaticn 16 is n well-known result from the
study of Whistlers [Holt and Havkell, 1965; Kelso,
1964), We have shown here that $he result also applics

tan ol m kX V]/KeV =k k

to medin which vary slowly with both. position tnd.

time, provided we understand that V is not the velogity
with which-valses of k and « ure propagated, Do

final fosull ofinterest Is to use (16) and {15) to caleulate

the magnitude of the proup velocity, We-get-
[ ] [/l cos )™ (17

3.3, The equation of motion of k. In this subscction
we shall demonstrpte that the cassieal equation
prescnted by Landaw and Lifschiez [1959] for “the
motion of the normal 1o #x, 1), can be gencralized
to include spase-time varying media. For Isotropie
media we write, ming & - ke in (5)

gtk oan | ket dn < -1 Wy, UR)

We rot use the gisperstont rdethon of (34 in the
secofnl fornt o the Tdehand skde of (18). W oblain,
Al §oproupdig fonmig
,:‘tn; (e ( Rl:‘ )‘f’d‘ N’f‘

ko VM L ViR (W

whete 'OV - 0040 v T Now substifnte (8) tor
oo dewt oty Th s olas

55 U16)
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(/i) 4= V(Y K)a,i -qs;:-(\?mk,. (20)

Taquation 20 is valid for an-arbitrary:lossless isotropic

medivm, To obtain the analog. ¢ the ray-normal
cquation of Landau_ond Lifschitz {1959), we next
specialize (20) to dicleetrics, For this- cas¢ "X = w/o
where v = V = phase velocity, 1 dhis limit (20)
becomes ‘

dkfdt = k(k+V0) = —Tu(x,.1) @1

‘Equadion.21 determines the-motion of thiray normal’

i didlectrics which. vary slowly- with both position
und: time, As demonstrated by Landau and Lifschitz,
who obtained the ssme cquation for the case when
v varies with position only, (21) predicts a bending
of the rays toward the region where v is smaller,

We slso note from {20) and (21) that if o is inde-

-pendent ofposition:-but-does depend on-time;we-have:

dk/dt = 0 {22)

Therefore; as expected, the ray. does not change its
direction of propagation in media which vary: only
with time,

2.2.4, Temporal discontinuities. 1t 5 often desirable
to knoly ihe behavior of w and k when the properties
of the medium are sudenly altered, For example,
suppose-we have a dicleetric-in which ¢ = ¢(x)or
t < tpand e = ofx) for £ > 15, 'To study the behavior
of wand k when temporal discontinuities occur fet us
Integrate (4) from 4 = & to £y 4« & (note that (4)
is-notstelctly valid for § = 0),-We obtain

z l[l‘
Koyt ok ) = Kot = B = [ (Tar @)

In tlic limit ug & = 0 the right-harid side of (23)
vanishes, wnless Vo has o deliafiniction behavior;
therefore,

kixy ty = 8) = k(x, 1, =~ 8) (24)
Since (24) implies that both:the maghitade and direc.
tion of ke cannot chaage instantancously then from (3)
we may write
Katxety + x| 9]
- Kfulg, 0, = &), x. 1, = 8] {2%)

For n decdoctede, in which £« 2w(x, f{p.dx, 0)''4
(25) yichis
wix, 14+ 8 Hlex)elx)) Twlx, - 8 (26)

The po-itise sign in (2% is appropoate for-the wave
teaveling nlong k, white the negative sga s npvro.
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‘priate for. the reflected componcnt which travels
-along -k, This laiter component is negligible in
the WKB limit. In the limitof a spatially homogencous
dxclcctnc, (26) rcduces to the prwwus result of
Morgénthaler [1958]

2.3, Velocity of Propiigatysaof Values of k and

One:of the points'we have made is that.in a space.
time varying medium neither o nor k-is an invariant'
ds one moves with ‘the group velocity V = V.
However, it is possible'to definc a new velocity V*?
such:that k will be.constant when-the obscrver moves
with £his’ vcloclty Fo obtain V¥, let us suppose that
the sclution ol 5) g given By k(x, ); Then we can
«lefine . vdocuy V/ through the equation

(V/ W)k = (V W), 27

A AL 4

] ILthns were.dane, (5) could be rewritten-as ]
‘ ok/0r (V4 V) ]k = 0 (28)

»from which we immediatély ideziiil‘y

V= vy (29)
Equation 27-can be solved for V*'by standard matrix
methods, It is interesting to.considez:the one dimen-
sional limit (ie, dfax = 9/9y = 0). Then (27)
becomes

Ve c\(m) = @W/0), 0

whicl is -readily. solved for V', Using this result,
along with (6), in (29) then' gives

=0+, /)
' (Ok)..n.{" .0:’5,4/ 02/ G

Therefore, we- have demonstrated it is possible to
defing & velocity ™ such that the observer moving
with this velecity sees constant values of k. A similar
argument holds for w.

2% Approximate Solution of Equation 8

In many instances it s diflicult to obtain exnct
solutions of (5) pmlb(8) for space-time varying mexlia,
This is especiolly true when dispersion is present.
However, when the frequency shift in propagating
through the medium is small compared with the
‘transmitter frequency, it is possible to solve (8) by
jteration, Let us consider the limit when

W™ f QK00 ds << 4 (32)
where, as before, k = K(w, x, ) and ds = fedx.

The -integral-is along the ray .path in the medium
between the transmiiter and thé observer, For the:
specidl case of u dicleetric, this requires that, .in

-addition to the condition that the nicdium vary slowly,

the paih lcngth in the ‘medium cannot be so Jarge
that [ K ds>> 1, When (32) is satisfied, we may neglect
the right-hand side of (8),.and"conclude-as u lowest
order approximation that o is- a constant -of the
motion, Furthermore, if (as.is usually’ the case) we
specify that w = w, for-all time at the position of the
transmlttcr, then oo w, for all x and t(fnr which (32)
is still satisfied), Using w =2 w, then gives

|V¢ f"' l(wo/‘-')"(wm X, ’)“ (33)

where 1w, x, £) is the index of refraction,:defined by
|kj = {w/c)n. Equation 33 is, of-course,:the siandard-
eikonal used in ray optics. Similarly, Tor ¢ we have,
substituting |k| = (wo/cIn(wa,. X,.1),

o ifwo/cf*n(wu. x, ke dx — wg!,JA (34)

where, as before, k is the unit veclor normal to the

phase surfuce, and is determined” by solving (33).

Finally, since « = —a¢/0r we heve for the first
iteration to the instantandous frequeticy

- (wo/c) f {[dn(we, %, 0J/01) ds  (35)

where dv = kedx = path length along the ray.
Equation 35 is the result used by ionospheric re-
seareuers-in stud)mg tlm Dopplw shift through:an

'lonospl\crlc region which varies slowly with path

position and time [Weckes, 1958; Kelso, 1960, 1964;
Ginzburg, 1964; Bennett, 1967), 1t is cvident, from (32)
and- (35) that (35) is valid only when the Doppler.
shift is small compared with the transmitter frequency,
For most problems of -propagation through the
carth’s jonosphere, (35) is an adequate approximation
for the instantaneous frajuency, -However, there are
laboratory plusmas and some planetary atmospheres
(c.i., Jupiter) where (35) may not be a good epproxis
mation, In addition, the constraint of (32) may not
hold in -many space-tinic varying diclectrics, I the
next section, we will study the exact solutions of
(5) undl (8) in some diclectric materials,

3. APPLICATION 'TO I1SOTRONMIC,
LOSSLESS DIGLECTRICS
3.1.-Calculation of the Invariants, w, and k in Diclectrics

We will now use the results of scction 2 to study the
propagation in lossless- diclectrics with permittivity




varying slowly with position and time, To simplify
the problem we will also assume that the propagation
is in the same dircetion as Ve, which we choose to be
along the = axis in a rectangular coordinate system,
For this case (8) becomes

dw/t -+ B (w/dz) = —w(@/3)(In B)  (36)
where 8 = (p,e)'/% From the theory presented in
(11) and (12) we know that the solution of (36)
will have the form C; = ¢ (C.) where Cy = f(w, 2, 1)
and C. = g(w, 2, 1) are the particular integrals of

d=/B87" = —dw/{w{0(in B)/d1]) 3N

We discuss the solutions of (37), below, for several
special cases,

3.1.1. 2 separable. When g is separable we may
writc B = f,(2) B.(r). In this case, upon combin-
ing the first and third members in (37) we get

dt =

wB.(f) = C (38)

Thercfore, the observer moving with the velocity
V = #-* finds that vg2(f) is an invariant, Similarly
combining the first and sccond members of (37)
we get

f Bil') dz — f dr'/18.)] = C, 39)
so that the genceral solution of (36) when g is scp-
arable is

wlz, 1) = [ﬁ,_.(t)]"«l'[f B.(2') dz — f :/r'/ﬁg(t)]
(40)

where the arbitrary function, & is determined by
specifying boundary conditions on w along any curve
in the z — ¢ planc. Yor cxample, if 8. did not de-
pend on time, and we specified = o at 2 = 0 for
all ¢, then & = constant, and therefore w = con-
stant, as would be expected.

3.1.2. Taylor expansion of 1. The situatizn when
f is scparable, studied above, does not usually
occur in practical situations. However, there are
often problems in which it is appropriate to cxpand
Bz, 1) in Taylor scrics in cither £ or f. For cx-
ample, we can consider the case in which we desire
to study the propagation only over the time interval
ty <t £t In that interval we may cxpand 8 in
Taylor serics in ¢ as

Bz, 1) = Bux) + Bi) + -+ 41)

EM PROPAGATION IN VARYING MEDIA 1157

For the variation of (41) the constants C, and
C. ure

w exp [Sf2)) = C, (42)

r exp [—SG)] = f ‘& Bu@) exp [-- SG)] = Cp (43)

where S(2) = f* 8,(2) dz. Upon using (42) and
(43) in the general solution C; = ¢(Cy) we get

w(z, 1) = exp [— SO

-{I exp [— S(z)) —f d='8u(2') exp [—S(:')l} (44)

The wavenumber A(z, ) is related to w by k = wf.
We can determine the arbitrary function &(-++) by
specifying boundary conditions on . For cxample,
supposc wc specify that w = w,, for all ¢, at z = 0.
(This condition is appropriate for the casc of a planc
wave of frequency o, transmitted into a space-time
varying half-spacc). This requires that, in (44), the
function ® = constant. We therefore obtain

@ = wy eXp [—j;. B8.(=") (I:']

In the limiting casc when 8, and g8, arc indcependent
of z this result can be readily shown to be identical
with the previous result of Morgenthaler [1958].

It is also possible to obtain the constants of mo-
tion for other variations in 3. For cxample, sup-
pose f is a function of z — v, Then it can be
shown that w(z, 1) [1 — v, B8(z — v,0)] is an in-
variant of motion, except in the limit when o, ap-
proaches the phasc velocity in the unmodulated
medium. (This is known as the sonic region and
has been discussed in detail by Hessel and Oliner
[19611).

3.2, Time of Transit in Space-Time Varying Diclectrics
Since the phase and group velocitics in a space-time
varying medium are [unctions of position and time,
it is not immediately evident how long it would take
for a disturbance to travel a distance L aiong a ray.
To study this problem let us consider the motion of
the point at which the phase ¢ = 0. In particular, lct
us supposc ¢ = 0 for 1 = ¢, al some point x, on a
given ray. Then the time ¢, at which ¢ = 0 will reach
another point x,, along the ray is u solution of

(45)

(X100}
f kedx ~wdt) =0 (46)
(

Koots)

To study the solution of (46) let us specialize to the
casc when k and Ve lic along the = axis, If we assume
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that the initial point x, is = = 0 and the observation
point is at = = L we can rewrite (46) as

Lty
f Kd: —wdt) =0 47)
{

0,0,
Since the line integral in (47) is independent of the
path, it can be taken along any curve joining (0, ¢,)
to (L, ;) in the -t planc. For instance, we shall
find it convenient to write

L ‘e,
f Kz, 0) dz = f oL, )dt =0 (48)
L] te

Equation 48 is an integral equation to be solved for
the transit time (¢, — ¢,). To understand the mean-
ing of (48) let us first suppose that g8(z, ¢) is inde-
pendent of ¢, and that at «(z = 0) is specified to
be equal to wy, for all ¢. Then since w(z = 0) =
w(z = L) = w, (48) becomes the obvious result

L
t, — 1, = J/; dz/ V(2) (49)

where V(2) = {pn, (2)]/5 In the other limit when
B(z, t) is independent of z, we get (assuming k(¢ =
1) = k, for all 2) that £, is a solution of

L =f V(') dt’ (50)

which is the result obtained previously [Fante, 1971].

As an cxample of the application of (47) to
diclectrics which vary with both position and time,
let us consider the case when 8 is given by (41),
along with the boundary coadition that v = w,, at
z = 0, for all t. Using (45) in (48) then gives for
the transit time

At = ¢, — 1,

A
=em[ﬁLHﬁ B.") exp [~ S d  (S1)

whete

mﬂ=£mm&

3.3, Discussion of Transmission Through a Dielec-
tric Slab

The results of scctions 3.1 and 3.2 can be applied
to consider the transmission of planc waves through
a lossless diclectric slub of thickness L in which the
permittivity varics slowly with space and time. Let
us denote the solutions in the slab by

E = ez, 1;2,,1,) exp [l f wdt £ k d:)] (52)

where » and k are the appropriate solutions of (36)
and e,(z, 1) is the appropriate solution of (69). For
example, if Az, 1) = B1(2) B:(1) then

"n(:- 13 240 ’n)
= ¢ (O B/ BN LBV BN (53)

Now suppose the slitb occupics the region0 € z < L,
and a plane wave E, = exp [iw,(t — =/¢)] is normally
incident upon the slab from the region = < 0. Then
the field transmitted through the stab at time ¢,, into
the region = > L, will consist of 1 number of com-
ponents, First, there will be a wave which (from = < 0)
crosses the z = 0 boundary at time r, and is trans-
mitted dircetly through the diclectric, arriving at
= = L' at the time r,. Next, there is a wave which
crosses the = = 0 boundary at time 7, and arrives
at z = L* at the time ¢, after being internally reflected

“at time 7, by the = = L boundary and at time =, by

the = = O boundary. Next, there is 2 wave which
(from = < 0) crosses the z = 0 boundary at time =,
and arrives at = = L' at the time 1,, after being
reflected twice at the = = 0 boundary (at times r,
and ;) and twice by the = = L boundary (at times
7y and 7,), ctc. Let us define R(0, ) as the internal
reflection coeflicient at = = 0° boundary at time r,
R(L, r) as the internal reflection cocflicient at = = L~
at time 7 (for the case in which the medium is spatially
homogencous RO, 7) = R(L, 7) = {[«(r)/e)* — 1}
{l(r)/ e} -F 1477, T(7) as the transmission cocfMi-
cient, fromz = 0" to = = 0" at time r, and 7(r) as the
transmission cocflicient from z = L™ to = = L°,
Then, the transmitted {ield at = = L* can be written as

Eiz = L, t = 1,) = T@)T(r,) A(r)) exp (iwyry)
+ T(r3) A(r)R(0, 7)R(L, T3) exp (iw,73)
o T(r) A(r)RO, TIRL, 7)R(O, 12)R(L, 7,)
-] (54)

where A(P) = ec = L', t = 1,2, =0, = 7).
From (54) it is clear that the nature of the transinitted
ficld will be known once the times 7y, 73, 73, -+ - have
been determined. Extending the discussion of section
3.2 we see that these are solutions of the equations

cCXp (iwnfa) L.

L 1,
f k(z, t,) dz = f «(0, 1’ dt’ (55)
n Ty

0 "
—f k(z, ) dz = f w(L, t') dt’ (56)
L ’

4 rs
f k(z, 7)) dz = f w(0, t') dt’ oén
L e
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Therefore 7,, r,, and 7y could be chtained by first
solving (55) for ,. Then, using the sclution of (55)

. in (56), the resulting equation could be solved for T3

Equation 54 can also be applied to the casc of
vansmission into an infinite half-span.. We can
ontain this Kimit by seiting 7(1,) = 1 and A'Z, 7) = 0.
We therefore abtain for tie field at « point z, at time i

Ez,, 1) = (1) A(1,) exp (fwory) (58)

where 7, is the solution of the equation

f Uk 1) b s f w0, ) (59)
0 r

When g{z, 1) is given by (41), we can use the
results of section 3.2 to axpress =, as

T = L =~ eXp iS(:.)] Jf ' Bo(z) exp [~ S(')) o2’

N 7 [ 7 (60)
Ouee 7y is known, T'(sy) can be obtuincd by apply-
ing the usual WKB methods to the profile ¢(z) =
P'uﬂl [ﬂn(:) + T /}‘(:)]2.

As an example of the application of the more gen-
cral result of (54) let us consider the case in which
the diclectric slab is spatially homogencous. Then
(54) becomes
Ez = L't = 1) = Pu)NT(r)A(r) exp (iwar))

+ T(13) A(r2)R(7)R(7,) exp (lwots)
+ T(Ts)A(‘Ta)R(fl)R(T.‘)R(Ta)R(‘N)

“exp (koors) + -+ -] (61)

where

A(r) = {le(r))/ et )} (62)
and r,, is the solution of
f 'v(f’) dt’' = mlL m= 1,23, ... 63)

‘To cxamine the various frequency components pres-
ent in the transmitted wave of (61) we can Tavlor-
expand the functions r,,(¢). That is

) = 1.+ (¢ ~ r.)(Or..,/OI)., 4 .. (64)
where

(()1ml'0‘)l. = [U('l)]/[v(fn)] = ‘[e(fn)],/(‘('n)nlu (65)
Using this result we may rewrite (61) as:

E@e L' )= 37 Bexp i~ 1)) (66)
]

whete

NN - - PRSP -~
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r 34
B = Ty 2|

281

cexp (lwo?y-y") ’Ho R(r)

] 2D ] - [1...)
Q‘ “”[D(T_')l-l) e ) 2 67

From (665 we sce that the transmitted signal con-

- sists of compor s at the instantancous frequencics

@y, Q2 Q30 Qy, -+, This interpretation assums that
Byis a s! wly varying function of time in conpanizan
with exp (i), which is the case in the WKB
approximation. The importance of the frequency
componcnts at Qz, Qa, @4, *++ in comparison to that
at @, will depend on the amplitude of the reflection
cocflicicnit R. For R < 1 only @, will be significant,
but for R necar unity this conclusion is clearly not
true.

Therefore, we see that, because of the spatial
boundarics, the transmitted signal has components
at , Q2 Qg -+ and not just at Q, as found by
Morgenthater [1958], who did not account for bound-
ary cffects. For rclative permittivities near unity
the components at Qu, @3, -+ will be negligible
compared with those at ;. However, for large rela-
tive permittivitics the higher-order frequency com-
ponents will be significant.

4. RAY TRACING METHODS

In the general case when the direction of propa-
gation is not along Ve it is not a simple matter to
solve (5) or (8) for cither space-time varying diclectrics
or plasmas (in fact, for plasmas we cannot generally
solve (5) or (8) even when W, is along the direction
of propagation), In mary cases it is acceptable to
use the approximation of (35), but for others this
may not be possible. In such cases it appears most
apprepriate to approximate the temporal behavior of
the medium in a stepwise fashion, For example, in a
diclectric during the interval 0 < ¢ < 1, the permit-
tivity can be approximated by ¢ = ¢(x) for 0 <
t<te= e)fort, <t <ty o, e = ex(x)for
tyer < 8 <ty where J(¢; - ¢,2) /el € 1. Ina
plasma we would approximate the clectron plasma
frequency w,(x, 1) by: w, = wa(x) for 0 < ¢ < t,
Wy = wfX)fory <t < Ly o, w, = w,y(x) for
fver <0<ty TS assumed that [(w,;, — w,,.1)/
wol K Uforj=1,2 ... N,

To illustrate the method we will consider a spice-
time varying plasma, We suppose that the plasma
oceupies the half-space = > 0, and is spatially stratified
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in the = direction only, We then assume that a signal
with lrequency spectrum shurply peanked ubout w = w,
enters the medium at an angle 0, relative to the z uxis,
We will follow the progress of two distinet points
P and P’ on the envelope of this signal (in a diclectric,

~ P and P could represent two separate values of phase,

the progress of which we follow), If P is located at
2w O when 1 = ¢, then by Snell’s law we have that
the ray path followed by 2 in tie time interval (¢4, )
is determined from
(1 = w,."(0)/w’1" sin 0,

= [l — w,'@)/w]"sin 9)  (68)
The point P moves along this path with the group
velocity [Vi(2)] = I = w,*()/w,’)"* so that during
the time interval 1, — 1, the distance S; travelled along
the ray by this point is the solution of

L
fH = ¢, = f ds/ Vi(2) (69)

where the integration is along the ray path (in iso-
tropic media the ray and group paths are identical),
Consider, also, unother point 7 on the signal envelope.
IfFP isatz = 0atr = 1/, then P traveises the puth
given by (68), cxcept that the distance S’ travelled
along the ray by this point during the interval ¢, — 1,/
is the solution of

Nyt
[ o= 1) = f ds/ Vi(2) (70)
n

Now suppose that at ¢ = f; — (6 — 0) the point P
is located at x = x, (i.c., x = x, is the coordinatc of S;)
and the ray path at this point makes an angle 0, with
the = axis, We also assume that at ¢ == ¢, —~ 5 the
point P’ is located at x = x,’ at which point the ray
makes an angle ,” with the z axis, At ¢ = ¢, the plasmw
frequency is suddenly changed from w,,(2) 10 w,(2).
By virtue of (24), ¢ cannot change instantancously
(since k cannot change in cith r magnitude or direction
at finitc temporal discontinuitics in the propertics of
the medium) so that 6(¢ — ) = 0t + 4). Thercfore,
in the tinie interval 1, < 1 < ¢, the ray path lollowed
by 2 is determined from

2 e
{l - [QL-;—(:-')]} sin 0,

.y |41 1/2
- {1 - [‘i’!-i(:z]} sin 0¢z)  (71)

Wy

while the path followed by P’ is given by

’ 0173
{1 - ]} "o
F

-3 1] 14
- {1 - [‘31;4-72]} sin 0z)  (72)

4

where the new frequencies wg and w,)’ associated
with 2 and /7 (recalling that since 2 und /” truvel with
the local group veloeity, the frequency associated
with these points remains constant during the intcrval
<< ty)are

Wy = [wl‘: - wm”(:l) + wllg‘l(:l)],/'.’ (73
[0 = w,’(2)") 4+ w,n’ )" (74)

Therefore, in a space-time varying medium, not only
will different portions of the signal acquirc different
instantancous frequencies (even though both 2 and P’
entered the medium with the same frequency), but
different portions of the signal will also traverse
different ray paths, as is cvident from (71) and (72).

It is clear, then, that in a space-time varying plasma
we must ray-trace independently for cach point on the
signal envelope, since the ray trajectorics for different
portions of the signal are different (except, of course,
in the limit when the dircction of propagation is
along Vw, or Ve). For cach point P lollowed, the
above procedure can be repeated continually during
other time intervals (e, £, <1 < tfyy 1y <t < yyL00)
until the location and frequency of P ut 1 = 1, has
been obtained. Of course, if in any regime of space
(or time) we reach the situation where w is close to w,.
the WKB mcthod is no longer valid, and we must
perform a more carcful analysis (sce, c.g., Kelso [1964)
and Ginzhurg [1964)).

5. COMMENTS ON ENERGY FLOW

il

(&"4’

In a space-time varying medium we have found that
virlues of w and It arc not propagated with V = V,w;
therefore, we should not be surprised to find that
cnergy fux does not flow with this velocity cither.
To consider this problem let us first discuss lossless,
isotropic diclectrics, We can then demonstrate, upon
using (1) in Maxwell's equations and employing the
slowly varying assumption, that e, satisfics

k(Vyee,) -+ e (V k) +- 2(k-V)e,

= — e e ((Da/01) 4 20(AY/00D] - 2(de,/00))
(75)

where ¢ = In e, We note that (75) reduces to the
results of scetion 3.1.3 in Born and Wolf [1959] in the
limit when e does not depend on time, We now
consider the Himit when kx¥e = 0, We then have
from (75) that



(d/deyk'Pe,) = (k'Pe)@/0n(In ™) (16)

where v = [u,e(2, 0177 and d/dt = 9/dt + v 3/0=.
Equation (76) may be formally solved for ¢,, by
integrating nlong the characteristic to give

| 172
ez, )= [%9:'.-?5)'] e, (0, ty)

. exp [j: 0/0¢")(In &%) (It’] a7

where ¢, is the time at which the signal present at (2, 1)
was located at = = 0, and the integral in (77) is along
the characteristic, Using (77), we obtain for the flux
1= (e/w)"* e’

l = [I‘(ot ’I)]/(w“o) Ico(oo ’l)lz
'
» exp [3 f (0/0¢")(Inv) dr’] (78)
N

We next return to (8), specialized to a diclectric, The
formal solution for w is

w = w(0, 1) cxp [/ (2/01")(in v) (Ir’] (79)

where the integral in (79) is again along the charac-
teristic, Using (79) in (78) we find that

16" = [0, 1)/w] L [e0, 1)]*/1w7(0, 1]}
= constant (80)

since 4, is an invariant (i.c., (3/0¢ + v 0/92)t, = 0)
Thercfore I/w® is an invariant of motion in a space-
time varying dielectric, so that, once w(z, f) has been
determined, the energy flux I(z, 1) follows immediately
from (80). For the case in which ¢ depends on z only,
we have, from previous considerations, w = con-
stant, so that for timc-invariant media we retrieve from
(80) the well-known result that the lux / is invariant,
In the limit when the diclectric depends on time, but
not on position, then & = w(p.€)’’’> = constant,
Using this in (80) gives the result that, in spatially
homogeneous diclectrics, «(/)/ = constant.

Let ue now consider the case of dispersive media
and attempt to discover whether a result similar to
(80) can be found, We consider a lossless, isotropic
plasma in which the wavevector k lies along Vw,. 1f
we write the vector potential A = A, exp (/¢), where
V:A = 0 (radiation gauge) and E = —9A/dt we
obtain

(d/de)k' A) = /3t + V 3/0z)k'" A,)
= (K'2A4,)0/000(n V') (8D)
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where Vo= (¢*k/w) = group velocity, and c*k* =
w' = w,’ In obtaining (81) we have assumed that
the plasma is clectrically neutral so that V+E = 0,
If (81) now is formally integrated along the charac-
teristic we obtain

/2
Az, ) = [’i,f%—',')l] A0, 1)

“exp [f‘ @/ar")in VV*) (/r'] (82)

where ¢, is the time when the group was located
at z = 0. The encrgy flnx (Poynting vector) / =
(k/wp,) le.)* = (wk/u,) |4.]? is given by

k(o k(0. 1))

I/u)’ le(oo l)l

cexp [f 0/3¢'YIn V) tlt'] (83)

We note that in a plasma //w* is not an invariant
since w is no longer given by

exp [f 0/0¢")(In V) (Il’]

Howcever, it is possible to obtain an approximate
invariant involving the encrgy. Following Srepanov
[1968] we consider a pulse with time duration #, at
position z, so short that w can be considered constant
from 7 to ¢ 4 #. We then have upon integeating (83)
fromstos 4 #

t+? (R}
w ™! f Tdio=pu, ™' f dt’ k0, 1,) | A0, 1))|*
] [

¢ eXp [f 0/01"’)In V) (Il”] (84)

To perform the integral in (84) it is appropriate to
change the variable of integration from ¢ to 1,. This
requires calculating (9¢'/91). The time, 1,(z, ), at
which the signal present at (z, 7) was located at z = 0
is an invariant of motion, and thercforc satisfies
(0/ot + V 98/az)t, = 0. Il we differentiate this
cquation with respect to time we find that

@/0t + V 3/3z)(0t,/0¢) = [(0/01) In VI(dr1,/01) (8S)
Upon solving (85) for (a1,/0¢) we have

(91,/d1) = exp [_/; 0/ar')(In ¥) dt'] (86)

Using (86) in {84) we may write
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X2 5
W/ 2 ()™ f dt, k(0, £,) | A.0,-t9)F

87

where #, is the duration of the pulse at z = 0, it is
Planck’s constant, and W = [,**' I df' = cnergyin
the pulse.. Equation 87 states that, for a short pulse,
the number ofquanta in a wave packet is approxi-
mately invariant (since # and 4, arccinvariants),

= constant

6. SUMMARY

We have studied the sproperties of the WKB
solutions in lossless, isotropic space-time varying
media.. It was found that, in principle, onc can always
obtain constants of the -motion which- lead- to a
complete deterntination of the frequency and wave-

number, once appropriatc boundary conditions have:

been spccnﬁcd Onwe w and k arc known onc can
rcaduy study the transmission through spacc-tlmc
varying ‘Rtedia, as was illustrated in scction 3.3.
However, in general, the.constants of motion are not
always -casily obtained. In such problems we have
shown in section 4 that onc can obtain solutions by
modeclling the medivim by a series of temporal steps.
That is, the index of refraction n(x, ) is approximated
by m(x)in0 <t < ty, m(x)in £, < 1 < 1, cic, and
ray-tracing techniques arc applied during cach time
interval.

To 'keep our discussion relatively simple, e have

avoided’ considering the cffect of absorption. When

dissipation is present equation 4 must still be valid,
since the function ¢(x, ¢) is required to be unique even
if losses are present, However, when absorption is
present both « and & are complex numbers, if the
iedium varies with both poesition and time, In addi-
tion, the real and imaginary parts of-the k vector may
be in diffevént directions. When-absorption is present
the group veiocity no longer has any physical mean-
ing. In fact V = V¥, may be complex and may even
have a magnitude greater, than the speed of light,
even in the limit of spatially-homogencous, time-
invariant media,

When the absorption is small it can he included by
perturbation methods. For cxample in: time-invariant
media the ray paths are dctcrmmcd neglecting absorp-
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tion. The absorption is then included by multiplying
the field by exp (— S k"+dx) where the integral is along
the ray path, and' k” is the imaginary part of k.
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