- AD~753 260

CONDITIONAL' RATE-DISTORTION THEORY '

Robert M.:Gray

Stanford L!niver%ity

Prepared for:

National Science Foundation
Joint Services Electronics Prpgr.am
H

October 1972

t

National l'ocllnicﬂ Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

'




by
Robert M. Gray

October 1972

[E TN,

i
- .

ko

b Y
"

o me il A
e Y

Rcue.d by u A
NATIONAL TECHNICAL
INFORMATION SERVICE

U 3 Department of Co
pringfleld YA ”!Sl ]

Y o T STt ST PR SRR FI T A e Xy



At i D AR i A

T PR T
TR N

e

[2

5
3
e
5
s
X
3
4
E:
N
Brc
7
A
#

UNCLASSIFIED
e Socasty Clasnificstion

DOCUMENT CONTROL DATA-R & D
ty elassilicacion of titlo, of sbsNeet ool indosing annetat! ust 0o entered whon the everstl - t is slassitieod
1 ORISINATING ACTIVITY (Corporale anihar) 28 REFPORT GECURITY CLASHFICATION
Stanford Electronics Laboratories Unclassified
Stanford University, Stanford, California

Ju. L L 1-111 4

3 REPORYT TITLE

CONDITIONAL RATE-DISTORTION THEORY

4. DESCRIPTIVE NOTES (Type of rapert ond inclveive detes)
Technical Report No. 6502-2

S. AUTHONID) (ﬂnl nome, middie Witlal, laot aene)

Robert M. Gray

. REPORY DATE 78, YOTAL NO. OF PAGSES 78. NO. OF REFD
October 1972 . K- 2 é:g/ 8
45, COMTRACT ON GRANT NO

8. ORIGINATOR'S NEPORT KUMBER(S)
N00014-67~A-0112-0044 & NSF Grant

b PROJEC T NO GK ~31630
Sy- -
6502 U-SEL~72-047

) oTHER a}p‘ BRT SO0} (Any ether numberc Maf may be sseigned

e Technical Report No, 6502-2

'0 DISTAIBKTION SYATRMENY  This document has been approved for public release & sale; its
distribution is unlimited.

Reproduction in whole or in part is permitted for any purpose of the United States

RCovernment o e
1t SUPPLEMENTARY NOTES 2. .=.“.°l”l0 MILITARY ACTIVITY

Joint Services Electronics Program

(U.S. Army, U.S. Navy & &,S. Air Force) and
the NMational Science Foundation

3 A:C!llc'

The basic definitions, coding theorems, and properties of joint, marginal,

and conditioral rate-distortion functions are presented.

D |'&.§.“i473 UNCLASSIFIED

T Becurlty Claasilication

e A S TSN

" b
P S U TY Sy o 12 13/ J)



SN vt St i T T e ""'—'i"*
|
UNCLASSIFIED %
Tecurlty Classification . i
te e LINK A LINK B LiINe &
KEY WOROS
RO € wy noLE wy ROLE w1
RATE-DISTORTION THEORY
INFORMATION THEORY
SOURCE CODING THEOREMS
COMPOSITE SCURCES
4
i
"y
|
.‘
l
o
- " -
NG
UNCLASSIFIED

Secwrity Clausification

NPT




SEL~72-047

CONDITIONAL RATE-DISTORI'ION THEORY

by

Robert M. Gray

TR

7 October 1972

3

. This document has been approved for public

2 release and safe; its distribution is unlimited.

TEE

Reproduction in vhole or in p-r;

is permitted for amy purpose o g
3 the Urited States Government. !;‘} g ) LU
] T

t 3
H

|

~ner

ELo SAN @ 19T i
il
Technical Report No, 6502-2 R Ll

A
!
§

This work was supported in part by the
Joint Services Electronics Program
(U.8, Army, U.S. Navy, and U.S, Air Force)
g under Contract N00014-67-A-0112-0044
E and by the National Science Foundationm
Grant GK~31630

¢
-
Information Systems Laboratory
Stanford Electronics Laboratories
Stanford University Stanford, Califorunia




Introduction

The conditional rate-distortion function has proved useful in source
coding problems involving the possession of side information such as in
simple networks and sources with memory. Many of the basic properties of
conditional rates, however, are lengthy but relatively straightforward:
extensions of the usual theory. Hence, these results have not appeared
in the papers corcerned with the applications of conditional rates. The
purpose of this report is to present these basic definitions, coding
theorem3s and bounds so as to provide a complete background reference for
the journal papers on composite bounds for data compression performance
attainable with sources with memory [8] and on source coding for simple

networks [5].

Qg;initicns and Preliminaries

Joint Rates

The joint rate-distortion function of a vector source g = (Ul’Uz'

+++U ) and a vector-valued distortion measure Dy, @) = {Dk(g,g),k=1,

A
.osym} defined on AU x Q(U) is defined as follows:

R,(®) = inf 1(u;h
~ p(Elw e 9,

where

p @ lu) e 99 ®
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¥ N p, (8 Jw)
E 1(U;0) = ji .25 p, (@lwQu) log—"
T ueAw Geat® v YT D
,"z ) | w(@) = Z p, (i [wew)

)
Where Q(E) is the set ¢£ letters for which w(g) may be strictly
positive,
It can be shown straightforwardly that Ru(g) is a convex U func-

tion of % as Callager has shown for the scalar source and distortion

oS

‘?i : measure case [1, pp. 445-446].

‘)ig Since the argument of the multiple~cénstraint rate is a vector, the
;f;”j inverse rate-distortion function or distortion-rate function will be a

: ié % surface in m-space for each value of its scalar argument. The distortion-
:é rate function is given by the surface QU(R) = {é‘: RU(Q) = R}. Since

'-% RU(Q) is a convex function of A, the :urface QU(R; will be the lower
éi . boundary of a convex region in m-space, i.e., if ;1,92 € @U(R), then

A + (1 -, 29 (R)  forany 0SASL
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Although RU(Q) is defined for the same source as is H(Y), coding

theorems can be proved showing it to be the equivalent entropy rate

(rather than entropy) of a reproduction (compressed) sequence {gk} of !
the i.i.d. vector socurce sequence *Ek} subject to a vector-valued

fi%elity criterion. Such coding theorems are immediate extensions of

those for the usual rate distortion function with a single argument 3 ,

{1, Section 9.3], [2, Chap. 3] and hence are stated here without proof,

after the necessary notation is introduced.

Let be an i.i.d. sequence of vectors (n-tuples) Ek =

(N) _
(uk’l.uk’z,...,uk’n). Denote a block of N vectors by u = (51,..”

{Ek}k=1

BN); the superscript N will be suppressed whenever possible. Assume
the distortion measure hbetween blocks of vectors is a single-vector dis-

tortion measure, i.e,,

-1
RN(B' g) =N

B

where Q(Ek’gk) is the per-vector distortion measure.

An encoder with parameters (N,M) is defined as a mapping
I A -;IMQ a,2,...,M .
A decoder corresponding to fE is defined by the mapping

AN
fD : ..M-afl(y) .

An encoder-decoder is applied as follows: 1If fE(g(N)) =1 eIM, then

(N ~
B( ) = fD(i)e Q(E)N. The encoder-decoder has average distortion o] if

E D (B,g) £ 8, 1in which case we have a code with parameters (5,N,M).

A nonnegative number R 18 called G~attainable if for arbitrary e >0

3
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M and N sufficiently iarge, there exists a code (e +3 S,N,M), € = (g,

€, +¢05€), where
M < exp{NIR + €1} .

Thaore. 1: {Source Coding Theorem)

Given an i.i.d, vector source {Ek} and a single~vector vector-valued

distortion measure, then the rate RU(Q) + € 1s g-attainable.

~

Theorem 2: (Converse Source Coding Theorem)

Given the source and distortion measure of Theorem 1, no rate smaller
than Ru(g) is d-attainable. The converse theorem can also be stated as
followsj It 8< Q(R), then the rate R 1is not S-attainable.

Unlike as in Berger {2, Chap. 3], the above theorems are stated in
terms of d-attainable rates rather than o-admissible codes. The above
terminology adapts more readily to the coding theorems and examples con-
sidered here and in [5] and (8]. )

The evaluation of RU(Q) is in general complicated. The immediate '
extension of the Kuhn-TUc;er minimization of single constraint rate dis-

tortion functions [1, p. 459], [2, p. 37] yields

Yot

RU(§) = H(D) + max 2 ¢ log £ (p) - B BT 1)
: £=0, 235 (yeh® :

where T stands for transpose and where £ =1£(p) = {fu(p), ue A(E)}eﬁ(g)

if

\ b s RN AT is T Skttt S XS o

1) ) =0
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Necessary and sufficient conditions on £ to yield the maximum in (1)

are
(i1i) that there exist a nonnegative solution w(ﬁ) to
AT
> u® 1.6 e TUPL < ow; weaw
and

(iv) that (ii) hold with equality for all { such that

w@@ > 0.

When A(LJ) = Q(ﬁ), we can lower bound RU(Q) by solving (ii) with
equality for all QGA(H) and inserting the r;sult into (1). This f
will yield RU(Q) if the auxillary conditions (iii) and (iv) are satis-
fied. The re;aining maximization over P simply involves taking deriva-
tives and will yield parametric expressions for Ru(g) and g The
AQU) = Q(ﬁ) condition is crucial since only in th:s case does (ii) with
equality become IIA(E)" equations in IIA(E)“ unknowns, where "A(LI)"
denotes the size of the alphabet. The properties of this bound--called

the extended Shannon lower bound (ESLB)~~are an immediate extension of

the Kuhn~Tucker minimization and are summarized below sans proof.

Theorem 3: Define the vector Q(R) = {cpu(g), geA(H)> as the non-

negative solution (if it exists) to

() E =1 (2a)

~ ~

where

E = {exp {- B(B,ﬁ)gT): u,i eA(g)} (2b)
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and R ={Ql,...,p } igs a vector having nonnegative eniries. Define

M
(L)(ES) = H(U) + ma z Q(u) log cp (N 3p p (2¢)
- £ ; 2 lue A
Since @(p)e F(p) we have
Ry(® 2 RL(JL) ® (3)

Furthermore, (3) will hold with equality iff there exists a nonnegative
solution w(f) te (iii) with £ = Q.

To be properly careful we should worry about the existence of a
nonnegative solution to the "A(E)" equations in |\A(H)“ unknowi:s de-
scribed by (2). A straightforwerd extension of arguments in [6] based
on a fundamental result of Jelinek [4] yield the following sufficient

condition for tightness of RU(Q) for a region of small Bo.

~

Theorem 4: Given the vector source U, a distortion measure satisfying
D(u,@) > D(u,u) =9, and an available reproduction alphabet Q(ﬁ) = A(U),
there exists a surface gc(g) containing strictly positive elements such

that

(L)

Ry® =Ry (®, 252,

~

The surface g%(y) is called the cutoff, or critical distortion surface.
As discussed in [8], the most useful types of per-vector distortion

measures are compound and weighted-average distortion measurss. The

joint rate with a weighted-average distortion measure with weights

(. ,...,an) can be obtained from the joint rate with a compound distor-

tion measure as rollows: Consider a weighted-average m-valued distortion

), 1i=1,...,n. We

measure with per-letter distortion measures gi(ui,ﬁ

i
have from the definitions that

|

I
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R, (AN = inf R,.(A ,...,A) (4a)
2 (e fy) €D yto

n

.D(é) = [él""'éh] : 2 e B = A (4b)

k=1
Since Ruggi,...,gh) is a convex U function of (Eﬁ”°"£h)’ Gallager's

Theorem 4.4.1 {1, p. 81] can be extended to show that the above infimum

occurs at the value of (Si"'°’£h}’ say (ﬁf""'ﬁﬁ]’ which is in (D

and satisfies the following condition: Define £k = (Ak,l’ék,Z""’Ak,m)’
then
d d
— R(Al.“ A) Z =—— R (N
d U'~1’ n dA U'~
%5 7 () Y% 27
k=1l,...,n

with equality for all k such that A; j > 0. The above condition can
13

be abbreviated to the statement that the slopes of RU(Q;,...,QC) in

the jth coordinate in each of its n-vector arguments equals the slope

of R (4) in its jth

~

Despite the apparently circuitous way of finding a vaighted-average

coordinate.

distortion measure, (4) later proves quite useful in [8], ‘t shouia be
pointed out that, even though the equal-slope condition appears horrendous,
rate-distortion functions are usually evaluated as parametric expressions

for the rate and distortion in terms of the slope. Hence, in actuality,

this condition usually simplifies such evaluations.
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) Conditional Rates

Given the two-dimensional source XY described by Q(x,y) and
A(XY), the induced marginal source Y described by Q{y) and A(y),
and for each yeA(Y) the marginal source xy described by Q(xly)

and A(X]y), define the conditional rate-distortion fumction of X

given Y as

Ryl v @ = Inf 105;X| 0
P(R]x,) € By (2

where

v = zpmf's p (R]x,y) : E D(x,%) =

fiA
>

z p(R[x,) Qx,y) R(x,D

o -
XX,y

The following theorem relates the conditional rate-distortion function

to a weighted sum of marginal rate distortion functions.

Theorem 5

Ry (N = Inf R, (ADNQ(Y)
x|y~ Z x|y %y
{féy} € :D(Q y € A(Y)

where Rxly(é) is the marginal rate- listortion function of the single

source Xy, and

DY .= ‘[Qy, yeA(N] : z & 0 =4
l y €A(Y)

——— ——

First choose a set {éy§ such tl.at

Zéy A =2 (5)
y

8




d
4
S
2
Ei
£

T AR i e A T S A A DT S L N LA N o S

and then choose ||A(Y)|| test channels pt(ﬁlx,y) € ley('z\_\'y) ,  Ye A,

A “~
where Px| y('éy) = pt(xIX,y) : E D(x,X) = éy . Then

ZQ(y) z D(x, %) p, R|x,y) Qx|y) € S o 8 =2

y x,% y

and hence pt(ﬁlx,y) € le ¢+ Thus for any such set of test channels

> 1Rl A = 1RID 2Ry (O

y

so that choosing each test channel p (X|x,y), yeA(Y), to yield

Rxly('éy)’ we have

Z 216%)] Rxl y('éy) = Rle(Q) (6)
ve A(Y)

for any set %Q‘y ’ yeA(Y)} satisfying (5).
Next choose a test channel pt(z?lx,y) € ?xly(é). This test channel

will result in some set of conditional distortions defined by

9; £ 2 pt(§|x,y) Qx|y) D(x,%)
X,x

such that

> maws s
ye A(Y)

For any such test channel




1% X)) = Z 1%y Qy) ‘ . ' \
' ' ! Voo i 1
Y e A(Y) . I ' :
1] I )
= S R, (AF v
= z le ~y) Qy) |
Ye A(Y) ; | '
1 .
i i i \ '
: ] !
= « Inf 25 1 Ry (A) Qy) . ;
~y ~  yeAlD o
£ 1 ‘ !
3 ’ i \ '
3 ! 1
E i i , L
3 Choosing p (ﬁlx,y) to yield RXIY(Q) gives ; ‘ ) )
1 Ry o =  Intf z R, (A) Qy)
Xl\’ ~ % J e XN, 1X!y ~y Qly
f \’:y ~ y € A(Y) )
x I ! fl
3 . . ; . '
3 which, with (6) proves- the theorem.
; Similar to (4), Gallqgeryé Theorem 4.4.1, [1, P 87] implies %hag , ]
3 | ,
E: the infimum in Theorem 5 is achieved by adding up the rate-distortion ’
% i .

functions at points of equal slope in all coordinates, i.e.,

' |
i ' ! )

A . R (A = z R, (A)0  (72)
3 v = 2 Rxy@em
d . y €A(Y) ' .
E 1
4 where ‘ ) | i
3 (4} 2D, S (7b) ‘
1 and for each k=1,.,.,m
B . H |

’ P4 ' ; ’ N -
: %dfaﬂ-}ﬂY%)’ yeAWL- (7c)
f; In general X and Y may themselves bg vector sources. For simplicity, '
fj however, we shall here remain with scalar notation. '

! ) I )
10
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The appropriate coding theorems for conditional rate-distortion
functious are slightly more complicated to state than Theorem 1 due to
the presence of the side information. Some of the definitions must be
modified accordingly. An encoder with parameters (n,M) is now defined

as a mapping

n
. fE : AXY) - IM

A decoder corresponding to fE is defined by the mapping

n n
fD : IMX A(Y) - X)) .

An encoder-decoder with parameters (n,M) is applied as follows: Let

£.(y) =iel then R = 2,(1,y). The encoder-decoder has average

M’
distortion A if

E{px®isa

where the expectation is now over the joint ensemble XY. In such a
case we have a code (Q, n, M). As before, a rate R is said to be
A-attainable (conditioned on {yki) if for arbitrary € >0 and n-

sufficiently large, there exists a code (4 + €, n, M) where

M S exp{n(R + €]}

Theorem 6: (Conditional Source Coding Theorem)

Given an i.i.d. sequence of dependent pairs {(xk,yk)} and a single-

vector distortion measure, assumz that both encoder and decoder are al-

1

lowed to observe perfectly the sequence {yk} . Then, the rate RX!Y(A)

~

is Q—-attainable, and no rate smaller than RXlY(A) is A-attainable.

11
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The above theorem can be proved using a fairly straightforward
extension of the usual techniques t2, Section 3.2]. We get a coding
theorem for frese, however, by noting that (7) is almecst identical to
Berger's (6.1.21) {2, p. 184] and hence is the (multiple~constraint)
rate-distortion function of an i.i.d. composite source with "switch"
e Q(y) and ||A(Y)|! subsource pmf's Q(x|y), yeA(Y).

Note the obvious similarity between (7) and the corresponding

. entropy relation

iy

HX|Y) = 2 H(X| ) Q(y)
ye A(Y)

T

T

L One implicit difficulty with conditional rzies is the choice of the

appropriate reproducing alphabet for each ye A(Y). There are twe

natural choices-~either the corresponding conditional source alphabet

P

Axly) or the full alphabet

3 A = U AKxly.
: y e A(Y)

For greatest ease in evaluating RX]y(é) it is desirable to have iden-
tical source and available reproducing alphabets, as previously noted.
Specifically, the ESLB is well defined only for this case. Thus, the
happiest possible state of affairs would be if Q(ﬁly) =AEX|y) for
each y. Unfortunately, however, the assumption usually required is that
;‘ the reproduzaing alphabet Q(f[y) be A(X) for each y. Thus, in gen-

eral, we mey have

ax|y) ¥ aR|y) = A

12
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and hence actual evaluations of Rx|y(A) may be quite complicated be-
cause the matrix E of (2b) is not square and not invertible.

1f A(X):A(le), all yeA(Y), then fs(ly(é) usually can be

evaluated straightforwardly. An equivalent assumption is that the alpha-

bet A(XY) 1is the cartesian product of the marginal alphabets, i.e.,
A{XY) = A(X) x A(Y). In order to ovbtain some reasonably general bounds
and evaluations for the rate~distortion functions in the theorems, we
occasionally assume that A(XY) = A(X) x A(Y). This assumption is not
made in the more general theorems. IF A(XY) = A{X) X A(Y) the ESLB of
RX|Y(Q) is well defined as the weighted sum of the individual ESLB's:

= t
Ry 1y @) In Z Rey @) Q07
y

‘éy} € D)

(L (L)
> Ing 4
Ry e D) z x|y Gy 807 = Ryly @

where lsﬁ';(é) is given by (2) with U = Xy. The infimum is obtained
by adding up the functions at points of equal slope in each component.

As in Theorem 4, we have the following result:

Corollary 1: If A(XY) = A(X) XA(Y) and (4) is satisfied, then there

exists a cutoff distortion surface P (X|Y) >0 such that

_ o(L) <.
Ry|v@) = Ryjy@) &S 9.l

Difference Distortion Measures and Examples

The calculations involved in evaluating conditional rates are often

simpler when dealing with difference distortion measures. Roughly

13
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speaking, given a conditional rate~distortion function and a difference
distortion measure, there exists a simple upper bound which actually

yields the conditional rate iff the source satisfies a certain property.

Theorem 7: Let a product ensemble XY and a difference distortion

measure be given, Then for any function f(y) defined on A(Y)

O

D SRy sy

Relv(® = Ry-s(n) | ¥

with equality iff y and x - £(y) are independent.

Proof : Define =z = x - £(y). Given a source pmf (x|y) we will

%y

have also the scurce pmf
QZ|Y<zly) = Qg (= + £(y) |y)

since x = z + £(y). Furthermore, any test channel pil)(:?[x,y) € ?xh_(_g)

induces a test chann=1 péz)(‘ilz,y) = pél)(ﬁ + £(y)|z + £(y),¥) ¢ ?Zly(é)
since
n Ay
Ba@ vyl = L 43 - 2 P @lzy) o, (i)
z €A(Z]y) !
2ealy)
_ o (1),a <
= d(x - x) P, R|x%,¥) Qle(XIy) SRYaY
x eAlX]y)
2 ca®]y)

(1)

For the test channel p, (X]x,y) we have

HK|y) - HX[Ry) = HEX + £(y)iy) = HX + £ X + £(),3)

1x; K |y)

1(2; Zy)

14
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Choosing p(l)(ﬁlx,y) to yield Ry (A) we have
t [y <~
(Aa) = 1(Z; 2]y) 2R, (A) (8)

By defining x = z + £(y) and repeating the previous procedure with
; and 2z interchanged we obtain
i Ry 1, (8) S Ry (&) (9)
: ly '~ Zly =
¢
f Eq. (9) implies the left hand equality in Theorem 7. The right hand
3 inequality follows from Thearem 2.1 of [81.
fe
3 This thecrem can be used to provide an alternate evaluaticn of the
. conditional rates in the examples of [8]. In the binary example f(y) =y
i and the source x can be viewed as the mod-2 sum of two independent
) random variables y and 2z where
.
-2 1
Q(Y) = ‘2—' Yy = 0, 1
- 5 1-5 {
5 V] z,0 !
5 Qz) =@ -p) *"p ¥ |
*% The Gaussian case can be viewed similarly. Perhaps a more interesting
i view of the Gaussian case is to choose the function f(y) such that
é x - f(y) and y are independent. It is well known that this ies ac~
g complished by choosing the conditional expectation
o
f(y):Exly =mx+r.6;(y..nw).
?w Thus RX[Y(A) = Rx-f(y)(A) is simply the marginal rate-~distortion func-
f tion of a zero mean Gaussian random variable with variance 05(1 - rz).
E 15
oA \\

LB e 5, et .
BT Lo s e R N
. K * (Rt S e AP TI -, -

N b TENA HER PRV 2 E STy, 2verariste S as

PN L

DA ey e 4, PP TR S e 2o




It is worth observing that in both of the preceding examples the
conditional rate of x givemn y 1is the marginal rate of the "innova-
tion" Vv =x - R(y), where X(y) is the best estimate of x given vy,

i.e., the estimate that minimizes E d(x,%(y)).
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