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ABSTRACT 

A method is developed for calculating the mass flux 

to a liquid droplet surrounded by its pure vapor as a 

function of the Knudsen number.  The Knudsen number K is 

defined as the ratio of the mean free path to the droplet 

size.  When the mass flux is expanded in terms of the 

inverse Knudsen number a - K~ , we obtain a series of 

the form 

r=r«»   +r<l>a+F<2Vl„a+   .... 

It is shown that the coefficients are determined by inte- 

grals associated with sequences of successive collisions 

among a number of vapor molecules and the droplet.  In 

particular, we derive the collision integrals for the 

first three coefficients of the inverse Knudsen number 

expansion for T.     These collision integrals bear a close 

similarity to the collision integrals derived in earlier 

technical reports for the density dependence of the 

transport properties of gases.  It will be demonstrated 

in a subsequent technical report that the same method can 

be used to calculate the aerodynamic force on an object 

in a gas stream as a function of the Knudsen number. 

111 
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For a droplet to be in equilibrium with the surrounding 

vapor, its rate of vaporization must be equal to the rate 

at which vapor is condensing onto the surface of the 

droplet.  Such an equilibrium is only possible when the 

droplet has a very particular critical size [1] .  Droplets 

smaller than the critical size are called "embryos"; they 

will tend to evaporate and disappear.  Droplets larger 

than the critical size will tend to grow.  Nucleation 

theories are concerned with predicting the rate at which 

these growing nuclei are created per unit volume.  For a 

review of the theory of nucleation the reader is referred 

to reference [2] . 

In this technical report we are concerned with the 

rate of change of the liquid droplets once formed in the 

vapor.  In particular we shall consider the rate of change 

of mass of liquid droplets surrounded by the pure vapor. 

The theory to be presented is valid for droplets formed 

either by homogeneous or heterogeneous nucleation. 

We assume that the average distance between all liquid 

droplets is significantly larger than both the radius R 

of the droplets under consideration and the mean free path 

I  of the molecules in the vapor phase.  Under these circum- 

stances we may neglect the interaction between different 

droplets and it is sufficient for the problem of droplet 

growth to evaluate the net mass flux of vapor molecules to 
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an individual droplet of radius R and temperature TT, 

surrounded by its vapor at temperature T .  When the density 

of the vapor is not too large, this net mass flux can be 

obtained by solving the Boltzmann equation in the vapor 

phase, subject to the appropriate boundary conditions at 

the surface of the droplet, 

The mass flux to the droplet will in general depend on 

the ratio a = -r  (the inverse Knudsen number) .  In the free 

molecular limit, a ■* 0, this mass flux is given by the 

well known Hertz-Knudsen formula which is reproduced in the 

next section.  For a liquid droplet surrounded by a mixture 

of its vapor and an inert gas, the mass flux in the contin- 

uum limit is given by Maxwell's equation [3] .  Only a few 

investigators have studied the problem in the intermediate 

regime.  Brock [4] has considered the first correction term 

to the free molecular flux for a binary gas mixture, but 

replaced the Boltzmann equation with a linearized BGK 

model equation.  Shankar [5] and also Sampson and Springer 

[6] approximate the distribution function by a two stream 

Maxwellian; the adjustable parameters in this function are 

then determined so that the distribution function will 

satisfy a limited number of moments of the Boltzmann 

equation.  These approaches each involve approximations 

whose nature and magnitude are not clear and which there- 

fore make it difficult to estimate the range of their 
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validity.  It would thus appear to be useful to develop a 

more rigorous solution to the problem.  The research 

reported here is an attempt in that direction. 

We shall formulate a systematic expansion of the mass 

flux to a liquid droplet surrounded by its pure vapor in 

terms of the inverse Knudsen number a.  This approach will 

be adequate in the nearly free molecular regime, where a 

is small compared to unity.  This condition is encountered 

in many situations involving either homogeneous or hetero- 

geneous nucleation, where the radius of the critical size 

clusters is indeed considerably smaller than the mean free 

path [7].  When the rate of change of mass of the droplet, 

r, is expanded around the free molecular limit (a->0), we 

obtain 

F = r(0) +r
(1)a + f

(2)a2lna+ ... (1-1) 

The successive coefficients of this series will be given 

by integrals associated with sequences of successive colli- 

sions among an increasing number of vapor molecules in the 

presence of the droplet.  We shall in particular derive 

explicitly the collision integrals for the first three 

coefficients in the expansion (1-1). 

The structure of the expansion (1-1) is analogous to 

the density expansion of the transport properties of gases 

[8].  In fact, we shall show that the collision integrals 

for the mass flux have a close similarity with the collision 
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integrals derived in earlier technical reports for the 

transport coefficients of a moderately dense gas [9,10]. 

A similarity of the same kind between the density expansion 

of the transport coefficients and the Knudsen number expan- 

sion for the drag coefficient of objects in rarefied gas 

flows was previously noted by Dorfman et al. [11,12]. 

In Section II we shall formulate the problem and 

specify the boundary conditions employed in the analysis. 

In Section III we shall derive a set of well-defined inte- 

grals that determine the coefficient r   of the first 

correction term.  In the same section we develop a diagram- 

matic notation to represent sequences of collisions between 

the molecules.  This notation will enable us to elucidate 

how the integrals of the expansion (1-1) for r are related 

to specific sequences of collisions among the molecules in 

the presence of the droplet.  In Section IV we shall show 

that the next term is logarithmic in the Knudsen number 

- (2) and derive collision integrals for its coefficient r   . 

In Section V we discuss the relationship between the new 

collision integrals and those derived earlier for trans- 

port coefficients and drag coefficients. 
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II.  Steady State Mass Flux to and From a_ Liquid Drop 

We shall calculate the net mass flux to a spherical 

liquid drop with radius R and temperature T. surrounded by 

its pure vapor.  The coordinate system is chosen so that 

the center of the droplet is located at the origin.  The 

number density and temperature of the vapor at large dis- 

tances from the droplet are maintained at n and T , 

respectively. 

We shall follow the previous authors [4,5,6] by consid- 

ering the rate of change of the number of molecules in the 

droplet in the steady state approximation.  That is, we 

assume that the droplet is sufficiently large so that we 

can neglect the change in the radius and temperature of 

the drop when a limited number of molecules condense onto 

or evaporate from it.  Then the single-particle distribution 

function F(r,v,) of the molecules in the vapor phase will 

satisfy the time-independent Boltzmann equation 

^ÖF.Cr.v,) -ji;^dfl12k12 [FCf.Vj^FC^^^-F^^^FC?,^)], 

(2-1) 

->• 
where r is a vector from the droplet center to some point in 

the vapor, <5,2 the perihelion vector specifying the geometry 

of a collision between two molecules and k.2(v21,ö,2) a 

positive scalar factor, proportional to the differential 

6 
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cross section for a collision, in the notation of Chapman 

and Cowling [13].  The velocities v-Avg' are related to v,,v„ 

by: 

V = *1 + (*2l'S12)312' 

V ~ *2 " (^21-612)S12' (2"2) 

-»■    ->■   -> 

where v. . -  v. - v.. 

We need to solve the Boltzmann equation, (2-1), subject 

to the appropriate boundary conditions both at the surface 

of the droplet and at infinity.  Far from the droplet the 

pure vapor will be in equilibrium, so that: 

lim F(r,v) = „„ (^^exp (-?£-),     (2-3) 

where m is the mass of a vapor molecule and k is Boltzmann's 

constant. 

We have already assumed that the liquid droplet is a 

sphere with radius R.  To formulate the boundary conditions 

at the droplet surface, we must specify the mechanism for 

the interaction of the vapor and the liquid surface.  This 

interaction is usually described in terms of a mass accom- 

modation coefficient.   For simplicity, we shall follow 

Shankar [5l and take this accommodation coefficient to be 

unity, i.e. all molecules that strike the surface will 

stick to it.  All molecules that leave the surface shall 
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be assumed to be emitted diffusively with a Maxwellian 

distribution having the droplet temperature TT and a 
Li 

number density n corresponding to the saturation pressure 

Pv = nL
kTL about a droplet of radius R.  Thus the boundary 

condition on the distribution function at the droplet 

surface is: 

*<*■*> - "L (siO:"p (" ser)for iho-       <2-4> 

The pressure Pv, and thus nL, is related to the saturati on 

vapor pressure P    for the vapor in equilibrium above a 

planar  surface of its liquid at temperature TT via the 

Thomson-Helmholtz equation [1] . 

We note that (2-4) represents the distribution function 

at the droplet surface of molecules in the vapor phase. 

Thus, strictly speaking, F(R,v) is to be interpreted in this 

report as lim F(R+o,v).  With this in mind, the net mass 

flux r to the spherical droplet may be written in terms of 

the distribution function as: 

T - -47rR2m /dv v-R F(R,v) , (2-5) 

where R = R/R is the unit vector in the direction of R.  The 

number of molecules in the droplet will increase or decrease 

depending on whether r is positive or negative.  Since the 

net mass flux obviously vanishes when nT = n and T, = T , 
L    oo       L     oo' 

8 
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it becomes our task to evaluate r when nT 7* 11 and/or 
Li       00 

L    00 

The purpose of this report is to elucidate the struc- 

ture of the collision integrals that determine the variation 

of r with the Knudsen number.  The assumptions that the drop- 

let has a spherical shape and that the mass accommodation 

coefficient is unity are not essential to our analysis, but 

are introduced for simplicity.  The collision integrals to 

be derived can also be formulated for droplets of any geo- 

metry and the method can be generalized to the case where 

the mass accommodation coefficient is smaller than unity. 

In order to exhibit the expansion parameter in the 

perturbation procedure, it is convenient to introduce 

dimensionless quantities [14].  For this purpose we define: 

p = R        '       ^00 = {^r-J '       * - or ■ 
00 

k,Q .       oo 

7T5   Ü) 00 
00 

* nT * TL 
n     =    ^ , T* =    ^        , (2-6) 

DO 0° 

where ö is a length parameter characterizing the range of 

the interaction potential between the molecules.  The time- 

independent Boltzmann equation may then be written in 

dimensionless form: 



AEDC-TR-72-172 

^.pCMi) = *fä2Jrt12K12 [fCp.ipfCp.tp-tCp.ijfi-p,^)], 
hP 

(2-7) 

2 
with a = 7T0  Rn   . (2-8) 

00 

The boundary conditions   (2-3)   and   (2-4)   become: 

lira  f(p,£)   = ifrexp(-£2)   for   all  $, (2-9a) 
p-+oo 

f(p,£)   = n*(7rT*rTexp(- £J)   for |-p>0   . (2-9b) 
T 

and the  net  mass flux r  to the droplet   is  given by: 

p  =  -^AIWI^    Jut t-p   f (p,£)    . (2-10) 

Since the mean free path £  of the vapor molecules is 
2 

of the order lArö n^, the dimensionless parameter a in (2-7) 

is indeed the inverse Knudsen number R/Ü.  In this report 

we consider the nearly free molecular regime a<<l and 

solve the Boltzmann equation by a perturbation procedure in 

which we consider, successively, terms of higher order in a. 

Unfortunately, the name "Knudsen number iteration" is some- 

times associated with a procedure in which one attempts 

to represent the solution of the Boltzmann equation by a 

power  series in a  [15].  Such a procedure leads to diver- 

gence difficulties which have the same physical origin as 

10 
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the divergences encountered when the transport coefficients 

of a gas are represented by a power series in the density 

l8,16].  As already pointed out by Willis [17], it is not 

necessary in the perturbation procedure to impose the 

assumption that the solution be a power series in a.  We 

shall follow a modified Knudsen number iteration procedure 

in which we collect terms that are of successively higher 

order in a, but do not prejudice the result by assuming 

that these terms are all powers of a. 

The free molecular solution f  (p,%)   is obtained in 

the limit a ■*■ 0, so that: 

|.<^0) <?,!>_ 0 . (2-11) 
ap 

This  equation,   together with the boundary conditions   (2-9), 

implies  that  f       (p,i)   is  a  two-stream Maxwellian  given by: 

w"5" exp(-?2) for % e  I(p) 

f(0)(p\f)   -      \  m _£ ,2 _> (2-12) 
Ln  f      v 

3 >* 

(7TT )    2 exp(- ^y)    for  | e   II (p) 
T 

For any p,   the regions   I (p)   and  II(p)   are velocity regions 

defined by: 

Region  I 

p • %< 0     or 

lp.?>0 i+„ti2        J. 2 and   |px£|      -  ^   > 0   , (2-13a) 

11 
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Region II      P-|>0 and     |p*||2 - %2  <  0 .        (2-13b) 

■* (0) w- ■*■ For a given p,   the zeroth order term f  '(p,£) is clearly 

discontinuous in velocity space.  Region II is the free 

molecular cone of influence associated with the droplet as 

illustrated in Fig. 1; molecules having a velocity in this 

region have originated from the droplet and have arrived 

at the position p without suffering any collision.  Mole- 

cules having a velocity in region I are unaffected by the 

presence of the droplet and may be considered as having 

arrived from infinity by free streaming. 

As a short hand notation we shall write the two-stream 

Maxwellian (2-12) as: 

f(o)<pi) = f<o)(p,i) + fj;)<?.f) ,     (2-i4) 

where   fJUJ(p,|) = 
0 for 1  €   II (p) , (2-14a) 

and '{?«■?> ■  {o" 

-i     2 

n*(7TT*) a exp(- $-L)   for \  e II (p) 
t-       T 

for i  e   I(p) . (2-14b) 

12 
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CO 

Fig. 1.  The velocity regions I(p) and II (p) at a given position p in the 

vapor.  Region II(p) is the free molecular cone of influence 

associated with the droplet. 
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m 
O 
o 



AEDC-TR-72-172 

The net mass flux r to the droplet in the free molecular 

approximation reduces to: 

T(0)   - -47TR2mn 03 
ad    ooj j*tu[t™cp,h ♦fx

(;>(pIt)] 

(2-15) 

which is the familiar Hertz-Knudsen formula [18] 

14 
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III.  First Correction Term to the Free Molecular 

Approximation 
(I)  + ■+ 

In order to obtain the first correction term t       (p,|) 

to the free molecular distribution function we approximate 

f(p,f) in the right hand side of the Boltzmann equation 

(2-7) by the free molecular solution f^ ' (p,f).  We thus 

consider: 

t .öf{1)<p>£"i> 
dp 

- a/dI^dSia*ia[f^ 

(3-1) 

Since the free molecular solution (2-12) satisfies the boun- 

dary conditions (2-9) exactly, we require that all higher 

order approximations f * (p,£) for i> 0 satisfy the boundary 

conditions: 

lim f(l)(p,l) - 0 for all | , (3-2a) 
p+oo 

f{l)(p\|) -0  forf-ßX) . (3-2b) 

1 

Equation (3-1) can be integrated to yield [14] : 

t 

f(1)(^,?1) =f
(1)(p-|1t,|1) + jfdTj(p--f1T/ei) ,       (3-3) 

15 
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where J(p,£) represents the right hand side of (3-1).  In 

order to make use of the boundary conditions (3-2), we 

select the limit of the integration such that: 

t = i 
for fj, e   I(p) 

TOD.IJ)  for |x e II (p) 
(3-4) 

where '(?,?!)- TYjtp^a-  v/cHj)2* l-p2]     (3-5) 

is the time it would take a molecule with velocity g» € II (p) 

to travel from the droplet's surface to the position p. 

This results in the vanishing of the integration constant 

in (3-3) for the problem under consideration.  We thus 

obtain for the first correction term: 

*(1,<P.ll) " *!(1) Cp.Xj   + f^tf,^) ,       (3-6a) 

with 
CD 

0 

f^tf,^) - o tor%i  e II(p) f 

(3-6b) 

16 
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and 
i(p.ii> 

t <}>(?. fx) - ^T1^df^81^12[f^^1r12,11^
(0)^41T12t2'>+ 

-  f^tf-t^j.t^f^Cj-ljT^ij)]  lorlj  £   II(p), 

^«.ti) -o for £,  c   I(p)   . 

<3-6c) 

The T,2-integration in these integrals extends over the 
-*■ 

free trajectory traversed by a molecule 1 with velocity (•,. 

If we substitute the expansion f(p,£) = f* ' (p,%)   + 

+ f*  (p,£) + . . . into the expression (2-10) for the mass 

flux to the droplet, we obtain: 

- r<°> ♦ a r<» ♦ } (3-7) 

with 

00 

f
(°>(p--rir12,«1')f<

0)(,--|1r12,!2V 

-f^CiS-fjT^.^f^ (p-?,r ,„?,) 
->       -»■ 

1T12'^2' (3-8) 

17 
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The first correction term to r   is proportional to the 

inverse Knudsen number a provided, of course, that the 

integral (3-8) is convergent. 

In this report, we assume that the interaction poten- 

tial between a pair of vapor molecules has a finite range 

which is much smaller than R.  It is then possible to 

decompose r   into a set of convergent integrals each of 

which is related to a particular sequence of successive 

collisions.  For this purpose we use the relation 

'■te]?*-^ = foo(^i)f00^2
) for the distribution function 

at infinity and rewrite r   as: 

00 

[f(0)(?-?1T12,fpf(0>(p-f1r12,?2')-f„(«1')f„(«2')] + 
00 

(3-9) 

As a next step we separate this integral into terms asso- 

ciated with the contributions fj0) and fff   of the free 

18 
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molecular flow solution f  .  For this purpose it is 

convenient to distinguish in f contributions from inside 

and outside the free molecular cone of influence.  We 

therefore write: 

ijv = fjtf,!) + f^oU.) , (3-10) 

where ^Cp,h =f{j0}(p,h (3-10a) 

and iu(P,V   = i 
o for i  e   I(/o) 

7r~2exp(-£2) for i  €   II (p) 

(3-10b) 

The expression (3-9) for T        may then be divided into the 

four terms: 

(1) _  (1)      (1)      (1)      (1) 
I    - 1 JJ.JI + J J.JJ, + 1 n'u' - ' i n ' (3-11) 

with 

(1) 
II'I r,.,T, -4TTR mn a> 

co oo . [* 12 f^hf** 12*12 %l'p 

[*ri)(^iTii»fi>fx0)<^iTia'?2) + 

(3-lla) 

19 
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rI*II'      47rR 

?1-/S<0 

(3-llb) 

£ n 
- *i»-fcri2^i>*IiCp-eiTi2'^ 

r(D 1
II^II' -47TR"mn_CD_ ,'dr,„   fd£..d£2 /< oo  oo. J      12 

■tf 
«18*12 ?1*P 

e1p<o 

I   II 

- fixö-?iTi2'?i)iTi(^iTia^2,)] ' 

-4,rR2mnwfdT12 Jdl^ Jdc12K12 «j-p 

|j.p<0 

[fI
(0)(MlT12,i1)fI

(;)(p-i1T12,i2)+ 

-*;<M1ru.t1>*;1<M1T1,.ii>]. 

(3-llc) 

(3-lld) 

Note that the condition £.-p<;0 implies that in (3-9): 

f(0)<P-Vl2^1>   "  4°y®-hTl2'tJ (3~12) 

20 
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for a droplet with a surface whose radius of curvature is 

positive everywhere.  This has been used in obtaining 

(3-lld) . 
-»■ 

The condition £,-p<0 implies that molecule 1 is imping- 

ing upon the droplet with velocity £,.  From (3-8) it is 

evident that the integral vanishes unless molecule 1 suf- 

fered a collision with molecule 2 at a time T.2 earlier. 

This collision is characterized by the perihelion vector 

6,p.  The velocities £,, £2 are the velocities after  this 
-*■        ■+ 

collision and <;,', £„' the velocities prior  to this 

collision.  The contribution to the integrand is dependent 

on whether, prior to this collision, molecule 1 and/or 

molecule 2 originated from the droplet or from infinity. 

We thus consider the motion of two isolated molecules 

in the presence of the droplet.  All of the possible 

collision sequences involving three or more successive 

collisions between two molecules and the droplet are 

schematically represented by the four diagrams of Fig. 2, 

The lines indicate the trajectories of the particles; 

the circle represents the droplet.  The position of the 

molecules at time T = 0 is indicated by the dots; the 

velocities of molecules 1 and 2 at zero time are £, and 
-*■ 

£    At T = 0 molecule 1 is impinging upon the droplet, 
m 

and in all diagrams the time is taken to increase when 

21 



H 

> 
O 
n 
H 
3 

RC 

Fig. 2.  The collision sequences among two vapor molecules and the droplet 

that are associated with the coefficient r   of the first inverse 

Knudsen number correction term.  The lines represent the trajec- 

tories of molecules 1 and 2 and the circle represents the droplet. 
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the trajectories are traversed in the direction of the 

arrows.  We also require, in all of the colllsional 

sequences, that molecules 1 and 2 collide at time r ■ ~Ti9> 

The diagrams in Fig. 2 differ in the dynamical history of 

the molecules prior to the collision between 1 and 2.     In 

the R- collision (recollision) we require that molecule 1 

originate from the droplet, in the C- collision (cyclic 

collision) that molecule 2 originate from the droplet and 

in the RC- collision (recollision-cyclic) that both  mole- 

cules 1 and 2 originate from the droplet.  In the H- 

collision (hypothetical collision) we require that 2 

originate from the droplet, but here we identify the velo- 

cities ?,', f2' prior to the (12) collision with the veloci- 

ties £,, 42 
after tne (12) collision.  We shall refer to 

such a (12) collision as a non-interacting collision.  In 

each of these collision sequences, we wish to remain non- 

committal about the possible occurrence of collisions that 

are not indicated explicitly.  This interpretation of the 

diagrams is for convenience and has no effect on the 

exactness of our calculation.  For instance, in the R- 

collision molecule 2 may or may not have originated from 

the droplet prior to the (12) collision and molecule 2 

may or may not impinge upon the droplet after the (12) 

collision. 
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Each diagram in Fig. 2 determines a region of inte- 
■t  ■*       ^ 

gration for the variables ir   £2, T12, O12 such that the 

collision sequence indicated takes place.  From (3-lla) 

we see that the integrand of ri-,.,,  vanishes unless 

particle 1 originated from the droplet and particle 2 from 

infinity.  If we now replace the distribution functions by 

the appropriate Maxwellians and integrate over those 

regions of the variables £Jf £2, T12, ö12 associated with 

the recollision sequence of Fig. 2, we make an error since, 

in so doing, we have also implicitly included integration 

regions associated with the RC- collision.  This contribu- 

tion therefore needs to be subtracted.  We thus obtain: 

(1) -2„2 
TTT'TI = -4TT R mn oo 
111 CO  I 

■W-(W) 

»Jd*ldT12d?2d612'C12 V? 
(R) 

,2 

r _exP -(S£2+12
,2> 

—2   2 
+   47T      R   ItlKO 

00   co Jd*ldT12dS?döi*>'c^ ti'P 
(RC) 

■2M"12""12  '»l 

n exp -(^+^22)hexpJ-<^2+^ 

(3-13) 

The notation /  indicates that the integration region is 
(R) 
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limited so as to satisfy the conditions for a recollision 

to occur. The other collision integrals in (3-11) can be 

related to the diagrams of Fig. 2 in a similar way to yield: 

(1) -2„2. L TVlV   ■ "47T"  R "V. Jd^ldT12d^2d812K12 ^l'P 
(C) 

.2     1 r  * n  

LT 2 

exp 
i. 

- (^2 ♦ Mk-) i- - exp - -cei2+ 42
2) 

-2  2 +  47T     R  mn a) 
00     00 

1 
„*2 

exp - 

/di1dT12d|2d312K12 Ij-ß 
(RC) 

I'2 

" (^ * 3") •exp " -ai2+e2'2) 

(3-14) 

II   II » °° 
/d^dr^digdÖ^^ 1rp 

(RC) 

n' exp '-(£♦£»- exp -<*i2+!2
,2n 

J 
(3-15) 

'l(1II    = -47T-2R2mnA 

n 
*3 

, T 

exp 

J^idTi2^a-8ia*i2 ^l"? 
(H) 

2 t 
- («i" + 3-. -exp - -«i +e2 > 

(3-16) 
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Upon rearranging the terms in (3-13) through (3-16) we 

conclude that: 

r(1) - r<1}+ r<» + r»> ♦ r<» ,      o-W) 

where r*1 , T^     ,   T^   and r^ are given in Table I.  The 

collision integrals Vj. ', r^ ',   T^   are associated, respec- 

tively, with the R- C- and H- collision sequences which 

involve three successive collisions among two molecules and 

the droplet; r^/ is related to the RC- collision sequence 

with four successive collisions.  It is shown in Appendix A 

that these collision integrals are convergent, so that the 

coefficient r   of the term linear in a is finite. 
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TABLE 1      The collision integrals far  the coefficient r'1^   of.  the contribution proportional to a. 

r'2 

r(l)    = •■  - -    - -    - -    - r -* 

(R) 

(C) 

r<,}   *   *»i-*i»«A/  «t,*i2*V3,2«„t,-« [tW? -Pf-U* + t4 » - «ff-«2 + C|»l 
" (10 J 

ac 
(RC) 
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IV.  Second Correction Term to the Free Molecular 

Approximation 

We consider the solutions f* '(p,£) and f^(p,£) as 

the first two terms of an expansion for the distribution 

function: 

If we substitute this expansion into the Boltzmann equation 

(2-7) and neglect terms which are obviously of higher 

order, we obtain the equation: 

(2) 

Öp" 
51     £+ -1 Jai;2a012/<:12 

♦ [f^cUp^oUi) + f
(2)(?,?i)f(2) (?,?■> + 

+ [fWö^f^AtjP - f^fp^f^^)]} .  (4-2) 

In the previous section we showed that f'1* leads to 

a correction term linear in the expansion parameter a.  If 
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(2) 2 
we now were to assume that f   is proportional to or,   we 

would retain only the terms involving f^ '£* ' on the right 

hand side of (4-2).  This equation, thus truncated, would 

yield in analogy to (3-6) : 

t 

*(8) <?.«!>   =a/dTl2/^2d812K12 
0 

- f<1)fi5-!1T12,!1)f
CO)05-t1Ti2.V] ■     (4"3> 

where the upper limit t of the T,«- integration is again 

given by (3-4).  The resulting contribution to the flux r 

would then read: 

r «r(0) + ar
(1) + aV

2> + . . .       <4-4) 

with 
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t1-M   o 

■ [*f0><«ru.i1')«<1><«1Tli.li) ♦ 

-tll)CA1r13,%1)t
mCpA1rli,ta)]  . (4-5) 

In the previous section we showed that r   is deter- 

mined by integrals associated with three or more successive 

collisions among two molecules and the droplet.  The 

expression (4-5) can similarly be analyzed in a manner 

that will be discussed later in this section.  It turns 

out that (4-5) can be decomposed into a set of integrals 

associated with four or more successive collisions among 

three molecules and the droplet.  The leading terms are 

determined by the integrals corresponding to the sequences 

of four collisions depicted in Fig. 3.  However, as shown 

in Appendix A, the phase space associated with these events 

behaves as T~2 for large values of T12 and thus the inte- 

grals diverge logarithmically.  Our original assumption, 

■'2) therefore, that i v  yields a contribution proportional to 
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(02HZ3MI2)(CH) (051(25)021101) (03) (23)021 (Oll 

(011(131(12X01) [03KI3HI2H0I) (O3)03}[l21(00 

tOZKZ3)(l2M0l) (0i)[i3)(iz)(oi) (02)(23Kl£)(0l) 

(03)(23MIZ>(0I1 IO3)l231(IZ)(0l) (0I)(I3)(I2)(0I) 

Fig. 3.  The collision sequences among three vapor mole- 

cules and the droplet.  They are associated with 

r*2^ in (4-5) and with the coefficient f(2* of 
2 

the correction term proportional to a. lna. 
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2 
a  , is not justified and we need to consider the full 

equation (4-2). 

Since, on the right hand side of (4-2), the Boltzmann 

collision operator operates on the unknown function f^ *t 

solving this equation poses a formidable task.  It is, 

however, possible to extract the contribution to the mass 

flux which is of lowest order in a.  For this purpose, it 

suffices to retain on the right side of (4-2) the expres- 

sions involving f* 'f^ ' and the term which is directly 

proportional to f^  (p,£-.): 

a Ja%2dS12K12f
i2} Cp^t^ CP,t2)   .        (4-6) 

We thus consider the equation: 

dp 

= a/dI2dS12«12   [f «> $,%{)f(X) 0.1,7 ♦f(1)<p.lf)f
(0) tf,1') + 

- f(0)(p>i1)f(1)(p,i2)- f^iU^^Cp^)], 

(4-7) 

where v(i^)   is  the collision frequency: 
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v(^) -  /4adBia*ia*w<e^  • (4-8) 

In writing (4-8) we have approximated f Cp,£,9) in (4-6) by 

the Maxwell distribution f^,«^)■ Tne justification for this 

will be explained shortly. 

The simplified equation (4-7) can be readily integrated 

to yield: 

t 

f(2)(p,^)  -«jdT12jde2dc12K12« 
0 

■ [f<°><s-i1TU.ji)<w<«1TI11^ + 

+ f<1)Oo-e1T12,?1
,)f(0)<p-i1Tia,|3i + 

"*W)<«lT„.t1>*a)<«lTl>.V* 

- fa)(p-i1T12,e1)f(0)(io-i1T12,i2)] .       (4-9) 

This result is the same as (4-3) except for the inclusion 

of the exponential factor e~  12.  This damping factor 

will insure that the resulting collision integrals are 

convergent. 

With this damping factor introduced into (4-5), we 

conclude that for large values of T   the leading term 

in the second correction to the mass flux r will vary 

as: 

33 



AEDC-TR-72-172 

-a vT 

°-2ß 12  A     2 dT „e      -— = Aa lna + terms of higher order in a. 

(4-10) 

The situation thus appears to be quite analogous to the 

exponential damping of the collision integrals in the theory 

of the density dependence for the transport coefficients of 

a gas [19,20].  While the expression (4-9) for f^2'   does not 

represent a complete solution of the original equation (4-2), 

it does contain all necessary information to determine the 

coefficient of the contribution to the mass flux proportional 
2 

to a lna.  The reason for this is twofold.  First, the terms 

containing f ft^  '   give a contribution to T  which is of 
3 

order a .  Secondly, the neglected terms in (4-2) involving 

i«)  Ä„,4  „ T „„  +K«,  ...1 r..».**.»**..** ~4>     *(0).,,  „ and also the replacement of fl  (p>|o) in (4-6) by 

foo(^2) modify the details of the exponential damping factor, 

but do not change the coefficient A in (4-10).  The mathe- 

matical analysis to substantiate these assertions is quite 

complex and is, to the extent feasible, presented in 

Appendix B.  In the main body of this report we shall con- 

centrate oil formulating the collision integrals that will 

enable us to calculate the coefficient of the contribution 
2 

proportional to a lna. 

We thus consider: 

F ~r(0) + r
(1)a + ?

(2)a2lna + . . . (4-11) 

where: 
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-avT12 
12e 

trß<o        ° 

• yo)<^Virtpf(1)<^Wtt> + 

+ f(1>(p41T12,i1')f(0)Cp41T12J|2')   + 

-  f<0)(p-i1r12,l1)f(1)(p-i1T12Si2)   + 

- f(i)(p-i1r12,i1)f(o)(p-i1T12,i2) ].     (4-i2) 

is obtained by substituting (4-9) into (2-10).  This result 

differs from (4-5) due to the inclusion of the exponential 

damping factor. 

In order to avoid the repetition of unnecessary 

details, we introduce a shorthand notation: 

(j)]=-47TR2mnA lim 7£säf*t1X1-ßf*r12 ßt2^. f(0), } (1) 

iL-p<o   ° 

-aVT12,(0),2 * „   ? wCD/S Ki2e   f  (^iTi2»ei)f (WiTia,ftj) '   (4"13) 

so that 

(2) f(2)- [f<0)(Df(1)(2')] + [f^\r)f^(2')] + 
- [f <0) (1)1(1> (2) J - [l(1> (1)1 (0> (2) ] ,    (4-14) 
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where all distribution functions in the integrands are to 

= (2) 

be evaluated at the position p - P~£iTio- 

We shall demonstrate that this coefficient rN~/ is 

determined by a set of integrals associated with sequences 

of collisions among three molecules and the droplet.  For 

this purpose we first write, in accordance with (2-14) and 

(3-6.) f(0) = fl
(0) + fJP and f

(1) = f<» + f<« to obtain: 

p(2> m rf(o),ltw(D (l')fjx^(2') 

+ [fJ0)(l')fI
(J)(2T) 

+ [f^)(l')fj1)(2') 

+ [*W(l')fg>(a'> 

- [f»>(l) f<1>(2) 

- [f <«><!) f<J><2) 

fj1>(r)f{;)(2-) 

fg^Df^fZ') 

fii)(r)fii)(2,) 

f,(1>(l) fI
(0)(2) 

f^(l) f{?(2) ] 

(4-15) 

Here we have used the fact that in the integrand of (4-12) 

?! e KIP-V^D so that f<0) (p-^r^,^) - f<0) (p-ljT^,^) 

and f(1)(p-11T12,11) - f^^p-ljT^,^). 

As a second step we decompose fJ ', given by (3-6b) in 

the same manner as was done in (3-11) for r 

obtain: 

(1) We then 

36 



AEDC-TR-72-172 

(4-16) 

where we have,   for £,    £  I(|p-£,T12|): 
00 

*i"rr(i) =aJdTi3jd*3dSi3'ei3 

•   [fi?)<?-Vl2-Vl3'V'>fI0)tf-Vl2-Vi3'V>  + 

" *II<P-*lTl2-«lT13'«i")*I«-«ri3-*iTi3'53"']  ■     (4"16a' 

00 

'ifril'W   5a/dTi3/d*3d8i3K 
13 

(0) ,* t t t        (01   ~ -*■ ■+ * 
.fI     ^lT12-*iTi3'*l'>fn   «P-«lT12-«iT13'*3,,>   + 

" fI^l-l2^i-i3^i")fII(^lT12^i'ri3^3,,)]   »      <4"16b> 

CO 

fia)inr(i) Sa/dTi3/d?3d2i3'ei: 

>ff ^iTi2-ti-i3^i"^n frVitfViS'V> + 

"  fV'-Vl2-Vi3'V>^-Vl2-Vi3'V^   '    C4-16C) 
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*l"   II(i)   " " fiT 13 /««S*8i3<i3 
0 

• [*{0)*-tiTirttTia^i>*iS)<P-tiTi^iT«'V + 

- fI<P-«lT12-«iTi3'«i)fII(^lT12-«lT13'«3)]   • (4-16d> 

"*■ -► 

For  i±    e    II (| p-|1T12|)   we  take,   just  as   in   (3-6b) : 

f(1) (i)   - f(1) (i)   = f(1) m   = f(1)        m   - o rifirr
w     ri,i,n,u;     ±

I,II'II
,U)

     
fi,i nU)     °- 

(4-16e) 

In (4-16a) through (4-l6d)t $^     is the perihelion vector of 

a collision between molecules i and 3 taking place at the 

position p = P~*iTi2"^i
Ti3'  The initial velocities prior 

-*■      ■*■ 

to this collision are £/' and £" and the final velocities 
■*■ -*■ 

after this collision are £. and %„. 

Similarly the function *fi^-^lr12,^i*,   given by 

(3-6c), is decomposed as: 

**S!irir<« -fii!in<» " fii!n ii <« ■ 

(4-17) 
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where  for ^ e    11(| P"f 1
7"12l ^ 

f(1) (i)   = 1IIfII,I,li; dr 

0 

af        dTi3y^3dBi3Ki: 
0 

TII   ^P M   12 ^I  13**1  ;II     kp  *1T12 MTi3'*3  ;  + 

-fII(^lT12^1Ti3^I,,)*I^lT12^iTi3^3") ,      (4-17a) 

fii!i'ii'(1) =    aJ       *'isj**sd8ia«is o 

[fi0) G-VM-VU'V)*« ^WVu-V> + 

*!ö-Via-'iTi8^i")fTi^<iTu-'iTi8'V>] ■    (4"17b) 

f(1)        (i) rII,II,II,llJ &I        dTi3/d?3d8i3Ki: 

[*H   ^V^VlS'V^I^ <P-Vl2-Vi3'V>  + 
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T<HlTU'*l> 
fn!ll   I(i>   -      *J dTi3/

dV8i3Ki3 

fIl!lI   II(i>   ■      «f dTi3/d?3d8i3Ki3 

'   [*S)Ö-tlTl«-Jru.i1)*J?<?-t1Tla41ria.i3)  + 

"  fn(^lT12-?iTi3'?i)fTl(^lT12-?iTi3'?3)]   •        <4"17e> 

Just as  in   (3-6c),   it   is again understood  that  for 

'iKirr(»-*iiirir<« "'.'üin,.'« - 

"lull l<» -'g|n „CD -o. 

In order to investigate the structure of the colli- 
~(2) 

sion integrals determining r   , we consider as an 

example the term: 
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ff0)(l,)f£jI.1,<21) 2 1 
-47TR mn ü)     lim =p-— 00 oo       _ Ina. 

a-+0 

-avr,„     ^ r+ -t ~ r      r->o      _avTi2   r      p + * 
* ■ /0«1*1-P JdT12jd|2d812'C12e     7*2-3 J^3M2^V2 
f1-p<o   0 a 

" fTl^-^lT12^2,T2^^2")fI(^lT12^2T2'3^3") 

(4-18) 

which is obtained when (4-16a) is substituted into the first 

term of (4-15).  The integrand in (4-18) corresponds to 

those phases of molecule 1, 2 and 3 such that: 

(a) at p - p, corresponding to the time r  ■= 0, 

molecule 1 is impinging upon the droplet; 

(b) at p - p-|,T-2, corresponding to the time T = -T.„, 

molecule 1 collides with molecule 2; (the velo- 

cities of these molecules prior to this collision 

are t,^   and £ ' and after   this collision £, and £„) > 
■+*-*■■*■ 

(c) at p ■= p-|1T1-^,r,_, corresponding to the time 

T - ~(Ti2 + T2'3^' molecule 2 collides with mole- 

cule 3.  The velocities of these molecules prior 

to the collision are £ '" and t3" 
a*>d after  the 

collision are iQ'   and £„ ; 
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(d) before the collision between molecules 2 and 3, 

the velocity of 2 must be within region II, which 

means that molecule 2 originated from the droplet. 

This collision sequence is shown schematically in Fig. 4 

using the diagrammatic notation developed in the previous 

section.  The integral (4-18) represents an integral over 

all phase points of molecules 1, 2 and 3 which allow for 

the occurrence of the sequence depicted in this diagram. 

In the previous section we referred to the collision 

sequences that contributed to the first coefficient r 

as R-, C-, H- and RC- collisions.  In order to specify the 

~(2) collision integrals for the coefficient I"   we need a more 

systematic notation.  We shall indicate an interacting 

collision between molecules i and j by (ij) and a non- 

interacting collision between i and j by (Tj).  A collision 

between molecule k and the droplet will be denoted by (Ok) 

where O refers to the droplet.  A collision sequence is 

represent by a left-to-right juxtaposition of these sym- 

bols.  In thiB notation the R-, C- and H- collisions 

introduced in the previous section can be represented by 

(01) (12) (01), (02) (12) (01) and (02) (12) (01), respectively, 

and the diagram of Fig. 4 by (02)(23)(12) (01).  Thus the 

~ (2) contribution (4-18) to r   becomes: 
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Fig. 4.  Example of a sequence of four collisions among three vapor molecules 

and the droplet.  In this example molecule 2, which has originated 

from the droplet, first collides with 3 and subsequently with 1 in 

such a manner that molecule 1 will impinge upon the droplet. 
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?(2) 
1 (02)(23) (12) (01) >J0)«,)*fti.,.«1) 

= -47rR2mnA   lim y^     Jdfl<iT12df 2döl2dT2,3<li3dö2 ,3 
a (02) (23) (12) (01) 

*    ^-avT12  .1 2   r   *  -3  *-J &!>" 9 
'':12c2,3^l"pe W 2exp{-^fiS}[n*Tr  *T* TeXp{-(-|-+Ig"^) } + 

- TT"3exp{-(£ "2+ e«,,2)> (4-19) 

/ where the symbol  J means that the integration 
(02) (23) (12) (01) 

extends over all phases of molecules 1, 2 and 3 corre- 

sponding to the collision sequence (02)(23)(12)(01). 

If we substitute (4-16) and (4-17) into (4-15) we find 
~(2) that r   appears to be a sum of fifty-three terms each of 

which may be associated with a sequence of collisions 

among three vapor molecules and the droplet.   However, 

many of these terms correspond to sequences that involve 

more than four successive collisions.  As an illustration 

we examine the two terms [fJ1i-i-.■<l')fj     (2')]  and 

[f{j n-ji (l')fj[  (2') ]  which correspond to the collision 

sequences shown in Fig. 5.  These two terms both require 

a sequence of collisions which in our notation can be 

indicated by (01) (13) (12) (01) .  The term [fj „ ..-.(Df 50) (2 V 

44 



Fig. 5.  Examples of sequences of five collisions among three vapor molecules 

and the droplet. 

(a) Diagram corresponding to [f J1^ , IT , (1 ')f J0) (2')] , 

(b) Diagram corresponding to \tff      , , (V)l (0) (2')1 . 
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"* -t -*■ 
requires, in addition, that £3" e II ('p-I1

T
12

_^i tri 13I ) which 

means that not only 1, but also 3 must have originated ini- 

tially from the droplet.  The term [f^      ,   ,(l«)fJ0^(21)] 

does not involve the latter condition, but requires instead 

fj' e II (Ip-^T |) this constraint implies that the phase 

of molecule 1 must be such that it also would have origi- 

nated from the droplet if we ignore the velocity change 

caused by the (13) collision.  Both terms therefore involve 

constraints related to five collisions.  In fact, it can 

be readily verified that terms in r  ' which contain either 

fJJ) and/or any of the following:  «i*xni" fi*iri.> 

f*1)       *W *<!>       .,,' ' fII,I'II" fII,II'II" fII,II II' a11 correspond to 

sequences of five or more collisions among three molecules 

and the droplet.  However as discussed in Appendix A such 

terms lead to integrals of the form: 

1     r     "avri2     i 
Ü5ra JdTl2e       T^y= ° * (4_20) T

12 

with 7 » 0 and, therefore, do not yield a contribution to 

r     In order to determine the coefficient of the a2lna 

term it is sufficient to retain only the collision integrals 

related to four successive collisions.  We thus obtain: 
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p(2)   ~(2) -(2) ?(2) 
r I (02) (23) (12) (01) + 1 (03) (23) (12) (01) + l (03) (23) (12) (01) + 

+r(01) (13) (12) (01) +1 (03) (13) (12) (01) + l (03) (15) (12) (01) 

^(2) = (2) .z&) 
+r(02) (23) (12) (01) + l (01) (T3) (12) (01) + £ (02) (23) <T2) (01) + 

^(2) __ ~(2)     _ ^z(2) _ 
+I (03) (23) (12) (01) + ' (03) <23) (T2) (01) + l (01) (13) (12) (01) + 

^(2) _ ~(2) ,=(2) 
+r(03) (13) (12) (01) + r(03) (13") (12) (01) + l (02) (2?) (T2) (01) ' 

(4-21) 

where 

p(2) 
1 (02) (23) (12) (01) 

= (2) 
1 (03)(23) (12)(01) 

f(2)     _ 
1 (03) (23) (12) (01) 

f(2) 
r(01)(13)(12)(01) 

p(2) 
r(03)(13) (12) (01) 

?(2) 
r(03)O3")(12)(01) 

r(02) (27) (12) (01) 

K<2) 
r(01)(T3)(12)(01) 

f(2) 
1 (02) (23) (12) (01) 

f(2) _ 
J (03) (23) (12) (01) 

+ [f{0)(r)f^)
II,I1(2')] 

+ [fI
(0)(l')f^)

I?ir(2')] 

-[f<0)(i')fj*> n(2')] 

+ [fJJ)
I1.,.<lf)*J°)(2')] 

+[fi!)rir(1,)fi°)(2')] 

"Hj]\  II(l
,)fJ0)(2')] 

"[fii?ii I(i
1)*{0)C2')] 

-[fJ0)(l)f1
(^)

IItI,(2)] 

-If{0)(l)fI
(^I,II,(2)] 

(4-21a) 

(4-21b) 

(4-21c) 

(4-2Id) 

(4-21e) 

(4-21f) 

(4-2 lg) 

(4-21h) 

(4-211) 

(4-21J) 
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1 (03) (23) (12) (01) 

~(2) 
r(01)(13)(12) (01) 

p(2) 
r(03)(l3)(T2)(01) 

S(2) 
1 (03) (13") (12) (01) 

1 (02) (23) (12) (01) 

+ [f<0)(l)fI
<^I n(2)] 

-Ifi!ii'r(1)fi°)<2)1 

-[fi^rii'(1)fi0)(2)] 

(i)  (1)f(o) 
i,i nki;xi +[tyT TT(Df;

u;(2)] 

♦ [^(Df^X, ,(2>] 

(4-21k) 

(4-2 U) 

(4-21m) 

(4-21n) 

(4-2lo) 

~ (2} We conclude that the coefficient r   is determined by 

a sum of fifteen collision integrals.  They are associated 

with the diagrams shown in Fig. 3 which represent all of 

the possible sequences of four successive collisions among 

three vapor molecules and the droplet.  The explicit 

expressions for these collision integrals are presented 

in Table II.  We note that the signs of the collision 

integrals depend on whether the number of non-interacting 

collisions is even or odd. 
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:<i» TABLE It  ThK collision Integral« for ch* coefficient r   of the contribution proportional to n3 in a 

S = *4> h  «2».». /d.u  ■ /•Vii*i*i>*iJ>Vu 

' (02) (23) U 2) (01) 

r (03X23) (12) (01) 

f (03X23X12X01) 

r(01)(13)(12)(01) 

r(03)(U)(12)(01) 

r (03X13X12X01) 

(02) (23X12) (01) 

'(01) (13) (12) (01) 

'(02)(23)(12)(01) 

(03X23) (12X01) 

r<2>   -^ — 
'(03) (23X12X01) 

rC2l _ 
r(01)(13X12)(01) 

r(2) — r(03) (13X12) (01) 

;o  
'(03) (13) (12) (01) 

Ci)  
r(02X23)(12){01) 

-d 11m 
n-0 

-S 11a 
o-»0 

+9 lln 
a»0 

-6 11» 
a*0 

-6 Ho 
a-0 

+B lln 
a-»0 

+a 1U 
3-0 

+a 11. 
o-»0 

+s 11= 
B~0 

+« 11» 
o-»0 

-6 111! 
ir*0 

+a 11m 
a-MJ 

+3 Ho 

-6 lln 
a-»D 

-B llm 
j-0 

(02) (23) (12X01) 

i.2 

ick /dV3*i:V3 V» •«?«-<««„ + «;S51 [r&T«"'-«;''-^   » - «H-«J,2
+ s,'2»] 

(03) (23X12) (01) 

,i 

TSS /dVi*»Vi *i-» "PWO«,« + t[2)) [^SsV «P<-«JS + r? >i - «wl-fcj + e*)j] 
(03)(23)(12)(01) 

,11* 

(01) (13X12) (01) 

A /*i«i"ii"i'i«■Ä «»«-«'»"ii+ <3
2>> [THTT «*<-<<; ,J+^ »- •«pi-«;'1* c;,z)j] 

(03X13X12) (01) 

E2 

(03X13) (12X01) 

lk /*Vi«i»V» V* ^-*"ii * «i'*« [tiTTT «Wf-ep* tj» - «pi-«;' + t|)l] 
(02) (23X12) (01) 

Tnl   /"'I'l'll'l'! V» «PW««,, + «i*» [TTTV «P -<T7+ C3)} " •"rf-Kj* ♦ <*»] 
(011(13X12) (01) 

IT. /*II-Iü,I V« ■^•fcwii * *!» [iBiTi"p(-«i4 + «,'*» - «pt-«;1' ♦ I;
,,

H] 
(02X23X12X01) 

• ■1 

(03) (23X12) (01) 

lh   / ""lllll^l V* «P<-<««12 + «i» [iTTTT «P<-«J  ♦ TV » " «P«-«| + «t»] 
(03X23) (12X01) 

e"2 

(01)(13X1Z)(01) 

(03)(13)<12)(01) 

(03X13")ß2)(01) 

ih ft**?»*» v5 "•••*«„+ «t» [T^TT «H'4J- 
+ ^» - «p«-"-! +11,»] 

(02)(23)(12X01) 
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V.   Discussion 

In this report we have considered an expansion for the 

mass flux r in the nearly free molecular regime having 

the form: 

r = r(0) + r(1)a+r<2'c2ina+ .... (5-1) 

where a is the inverse Knudsen number.  The coefficient 

T    is determined by a set of integrals associated with 

sequences of collisions among two   vapor molecules and the 
- to) 

droplet.  The coefficient r  ' of the logarithmic term is 

determined by integrals associated with the asymptotic 

behavior of collision sequences among three   vapor mole- 

cules and the droplet. 

The structure of the expansion (5-1) suggests an 

analogy with the density dependence of the transport 

properties of a moderately dense gas.  As discussed in an 

earlier technical report [8], a transport coefficient of 

a gas, such as the viscosity r),   should be written as: 

r\  - T)0 + T^n + 7)2n In n+ . . . , (5-2) 

where n is the number density.  The value ru of the 

viscosity in the low density limit is given by the 

Chapman-Enskog theory as an integral over the parameters 

of a collision between two molecules [13].  The coefficient 

T]^  of the first density correction involves the effect of 
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correlations in the position and velocity variables of 

three molecules.  These correlations are of both a 

statistical and a dynamical nature.  The statistical 

correlations refer to correlations in configuration space 

irrespective of the velocities of the particles; for a 

gas of hard spheres they reduce to excluded volume contri- 

butions.  The dynamical correlations are brought about by 

sequences of successive collisions; their contribution to 

T], is given by collision integrals associated with three 

and four successive collisions among three molecules [10]. 

The sequences of three successive collisions that 

appear in the calculation of the first correction term T), 

are represented schematically in Fig. 6.  In earlier 

reports [8,10], we have referred to these sequences as a 

recollision, a cyclic collision and a hypothetical colli- 

sion.  The events indicated by R, C and H in Fig. 2 are 

obtained from those shown in Fig. € when molecule 0 is 

replaced by the droplet.  It appears, therefore, that a 

close correspondence exists between the two expansions 

(5-1) and (5-2).  The collision sequences to be consid- 

ered in the evaluation of the coefficients of (5-1) are 

identical to those previously considered in the density 

expansion for the transport coefficients.if we identify 

one of the molecules with the droplet.  The expansion 

3       2—1 parameter in (5-2) is actually nö  = ö/(nö )   which is 

the ratio of the size 6  of the molecules to the mean free 
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Fig. 6.  Sequences of three successive collisions among three molecules 

that are associated with the first density corrections to the 

transport properties of a gas [10] .  The lines represent 

schematically the trajectories of molecules 0, 1 and 2. 
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path £;   the expansion parameter in (5-1) is the ratio of 

the size R of the droplet to the mean free path i. 

This correspondence between the density expansion of 

the transport properties of a gas and the inverse Kmidsen 

number expansion of the properties encountered in rarefied 

gas dynamics was noted earlier by Dorfman and Sengers [11]. 

The density expansion (5-2) for the transport properties 

is obtained by solving the generalized Boltzmann equation. 

Dorfman etal. have developed from this same equation a 

theoretical formulation of the aerodynamic forces on an 

object in a rarefied gas stream by treating the object as 

a heavy particle [11,12].  Since in our droplet growth 

problem the number of molecules in the vapor phase is not 

conserved, we derived the mass flux r by solving the in- 

homogeneous Boltzmann equation subject to the appropriate 

boundary conditions.  While the details of the collision 

integrals are different, it turns out that the collision 

sequences we obtained are precisely the same as those 

derived for the drag coefficient of an object. 

Collision integrals determining the first inverse 

Knudsen number correction to the drag coefficient of a 

sphere in a gas stream have been calculated by Kuperman 

and Sengers [21] .  The results of these calculations will 

be reported in a future technical report.  It appears 

that this procedure, with minor modifications, can be 

adapted to calculate the coefficient r    in (5-1), 
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APPENDIX A 

PHASE SPACE ESTIMATES FOR COLLISION INTEGRALS 

In the main text of the report we used the fact that 

the collision integrals determining the coefficient r   are 

convergent and that the phase space volumes associated with 

the collision sequences shown in Fig. 3 diverge logarithmi- 

cally.  Here we discuss the evidence for these assertions. 

The situation appears to be completely analogous to the 

phase space volumes of the collision integrals for the 

transport properties of gases, which were analyzed by 

Dorfman and Cohen [16].  In order not to prejudice the 

result by this analogy, however, we have made an independent 

study of the collision integrals derived in this report.  A 

similar analysis of the collision integrals for the Knudsen 

number dependence of the force on a macroscopic object in a 

rarefied gas was made by McClure and Dorfman [12]. 

In order to make an estimate of the phase space vol- 

umes associated with the collision integrals for r , we 

consider as an example the recollision contribution: 

00 

0    (R) 

* P 

■ [S- exp{-<-£- +v2)}- exp{-^i,2+^2,2)>]-  (A_1) 

-*■ -*■ 

Since the integrals over the velocities £. and £„ are well 
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behaved as a result of the presence of the exponential 

factors, the convergence of r„  depends upon the behavior 

of the T12 and 8,«-integrations for large values of T 

It is convenient to change the sign of the velocities 

£. and 4o an^ to consider the recollision event of Fig. 2 

with the direction of motion of molecules 1. and 2 reversed. 

Let us choose a coordinate system in which molecule 1 is 

at rest at the origin just prior to the (12) collision and 

in which the Z-axis is taken in the direction of -£. (see 

Fig. 7).  The droplet is then moving in the Z-direction and, 

at the time of the (12) collision (T=T13). its center is 

located at r = -p-%iTi2 ~  ~^1T12 for lar£e values of T12. 

After the (12) collision, molecule 1 moves in this coordi- 

nate system in the direction of 6,2 with a velocity 
■+ •*■■*■ 
l-jii   = £i~£-i-     In OI*der  for   1  to catch up with  the  droplet, 

the  perihelion vector  6,2 must  be restricted  to a  solid 

-2       i"*" -2 
angle proportional   to r " -   l^iTi2' Thus  the phase 

space volume behaves  for  large values  of T,„  as: 

ATl2/
dE12   \fdT12— 2   ' <A"2> 

(R) T12 

which   is clearly  convergent  when  the upper   limit  of   integra- 

tion  goes  to  infinity. 

The   integrals  r\;       and rJj       also  involve  three succes- 

sive collisions and  exhibit  the same  asymptotic  behavior 
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as r„  .  The collision integral rL requires the occur- 

rence of an additional collision and, therefore, converges 

even more rapidly.  In fact, it turns out that the RC- 

collision sequence is only possible when the (12) collision 

takes place close to the droplet. 

We next evaluate the phase space volumes associated 

with the sequences of four collisions among three vapor 

molecules and the droplet shown in Fig. 3.  As an example 

we consider the term: 

P(2) ^    ._^„2 
1 (02) (23) (12) (01) -47T     R mn en 

00     DO 

00 00 

/dT12JdT2'3 /dM^3dS12dV; 

'12*2'3*1'P   €XP 

(02) (23) (12) (01) 

t.2 

^i2^[^-p{-<-^^v2)}- 

-  exp{-(^"2  +  43"2)} 

(A-3) 

which corresponds to the diagram in Fig. 4 and is one of 

the terras contributing to (4-5). 

For the discussion, we again change the signs of the 

velocities so as to reverse the direction of motion of 
■+-*■-*■ 

the vapor molecules in Fig. 4.  Thus £,,£_,£„ now refer 
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to the initial velocities, Ix' »I2'»l3'C^'-gg) to the 

velocities after the (12) collision and l1"»I2"'^3" 
to 

the velocities after the (23) collision. 

We take a coordinate system in which molecule 2 is at 

rest at the origin just prior to the (23) collision and 

the Z-axis is in the direction of -f' (see Fig. 8).  The 

velocities of the molecules in this coordinate system are 

at various times:  |i2, - l±-i2',   ?i'2' " V'V 
and 

^i"2' = ^i"-^' ^ = i'2»3)-  Tne center of the droplet 

at the time of the (23) collision (r  = T.^T,,,) is 

located at r - -p - f^ - ?a'Ta,, = ^ -!2*T2,g for 

large values of r^.     After the (23) collision molecule 2 

will move in the direction of 62,3 with a velocity £_„_,. 

In order for molecule 2 to catch up with the droplet, the 

perihelion vector must be restricted to a solid angle 

-2   i"*"      "*      -9 
proportional to r  = UiTi2 + *>2T2"3\      •  Then the phase 

space volume behaves as: 

/dTi2dV3 M-s    "■/*"udTa-J Via + VVsl 
(02) (23) (12) (01) 

-2 

(A-4) 

which  diverges   as: 
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T dT 
lim 
T-^DO 

u    ' 12   T-x» 

r QTi2 
/ —— =   lim InT. (A-5) 

The phase space volumes associated with the other collision 

sequences of Fig. 3 also require the occurrence of four 

successive collisions and therefore exhibits the same 

behavior at a function of T.„. 

In addition we encountered sequences of five or more 

collisions among three molecules and the droplet.  However, 

because of the severe restrictions resulting from the 

required occurrence of the fifth collision, it turns out 

that the corresponding integrands fall off at least as 

— 2 fast as r12  .  Thus the phase space volumes of these 

dynamically more complicated collision sequences are 

finite. 
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APPENDIX B 

ANALYSIS OF HIGHER ORDER TERMS 

In Section IV we considered an expansion for the 

distribution function: 

ICP.V - f<0)(?,!) ♦ f(1VP>!) + t(2)Cp,b * . . ., (B-i) 

where f   (p,£) should satisfy equation (4-2).  For conveni- 

ence, we rewrite this equation as: 

*1 • M_(2)^- «/i?2d812K12 [»lÖ.8irir?a)-* (2) CP,tl)iJi2) + dp 

+ s2(p,c12,^1,^2) + s3(p,612,ilti2) J ,  (B-2) 

where 

- f(o» 0,1^* <» (P,i2) - f(1) (U,)t w) a,i2), 

(B-2a) 

s2 o.Su.tx.1,) - *(0) <?,«,•>*(2) <*.%>♦ *(2) rp.i^f<0) (ü.IJJH 

-fW^,,»^.t(»o.11)t(ib.ta) , 

(B-2b) 
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with gCp.b ■ f<0)(p,I) - f„ce>, 

and 

s3(?Jo12J|ri2)-f
<1>a)?1')f

(l)^>i2-)-f
(1)^,i1)f(i)cp>?2) 

This  equation can be written  in  integral  form as: 

SW(p,lj)   - f^Cp.Ip +*fir12fdi2rt12K12e ^    1 Tl2 

.■* ± 
■[s2(p-i1T12,(512,i1,42)+ s3(?-i1T12,o12^1,e2)], 

(B-3) 

where 

~(21   -* + f P-fc     A -^(ÜT19 + _> 
f        <»*!> = aJdT12jd*2dö12*12e ■l*-*lT

1a'812'«l'*2)' 
0 

(B-4) 

and  the upper  limit  t of the T12-integration  is  again given 

by   (3-4). 

In deriving the contribution  to the mass flux pro- 
2 

portional to a  lna we neglected the terms S«, and S„ in 

(B-2) .  We thus identified f(2) Cp,\{)   in (4-9) with the 

~ (2) ■+ ** first term fv  (p,£j) of (B-3) and assumed that the other 

term in (B-3) would not modify the coefficient of this 
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logarithmic term.  In this Appendix we shall discuss the 

evidence for this assertion-  For this purpose we shall 

show that the correction term to f   (p,\-,),   as given by 

(B-3), leads to contributions to the mass flux r that are 
2 

of order higher than a lna.  The mathematical assumption 

implicit in this procedure will be discussed at the end 

of this Appendix. 

The correction term to f  (p,£) is obtained by 
(21 • -t 

iterating (B-3) once; that is, we approximate f   (p,£) 
~ (o)  ■+ •* 

in the S„ term by fv '(p,£).  This then gives for the 
o 

a lna contribution to the mass flux r: 

-47TR2mncocüce lim -^— fct^-p   * (2) $*%{> - 
a-0 a lna|^<0 

= r(2) + öf(2) . (B-5) 

~ (2) Here r is the contribution to the mass  flux from 

f        (p>£)   and  is  precisely the coefficient   in   (4-12).     The 
~ (2) correction term &T may be written as: 

ör f <2>   =  6?p>   +   a™     , CM) 

where 
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ör «,.[ f(0)(l')f(2)(2') ]♦[ i
(2)(r)f(0)(2'>| + 

- |f(0)d) i(2)(2) J  - [f(2)(l) g(2) ] ,   (B-6 a) 

ör (2) _ rf(D(r)f(i)(2 •)J  - [f(1)(D f(1)(2) ] , (B-6b) 

and we have again used the shorthand notation introduced in 

(4-13).  It remains our task to show that 6r52^ and 6?^ 

vanish due to the limit a-»-o contained in these terms. 

Considering first the 6T^   term, we decompose f(2) 

to obtain: 

(2) ^(2) *(2)/> t iw(».I1) -5}« 0.1p +J»J(jie1). (B-7) 

where 

~42) (P,I±) 

x 

'o/dri3j5 d^3dÖi3iCi3e 

-av<y- i3 
Sl^iTi3'6i3^i^3) 

for  i± e   i(p), 

for  g± e   II(p) (B-7a) 

'T <£,?<) 

fII   <*>•*!> 

aJdTi3Jd* 
-av(|jT 

S2(p  ?i7
i3»-i3»si,s3J iTi«vö i?'S) > ?«») 

for ?4 e   II (p) 

for ?! 6   I(p). (B-7b) 

and TCp,^)   is  given by   (3-5).   We thus have  in analogy  to 

(4-15) : 
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arja)-[f1
(0)(r)f«2)(2')] + 

+ if^aof^o') 

j(2)(r)f(0)(2l) *[f<«(i')fj;>w) 

fi:'(r)f)"(2') ]+ [f^(r)f^'-;(2') | + (0)m~(2),OI. 
II v J   I 

7(2),ltw(0),on 

orcnf^C*)]- [fj0)<i)fj2)(2)] (2)^(0), 
ii u,Ii: 

- [f<°)<l)ig>(2)l.[ff»(l>KTT(2) J LXI 'II (B-8) 

where gTT(2) = g(2) gives only a contribution when 

I2eII(|p-|1T12|).  If we now substitute f<0) = f<°> + f<°> 

and f*1* - fj1^ + ff*j', as given by (2-14) and (3-6), into 

(B-7a) and (B-7b), and then in turn substitute (B-7a) and 

~ (21) 
(B-7b) into (B-8), we find that 6lv *   is given by a sum of 

integrals.  Each of these integrals is associated with a 

collision sequence involving five or more collisions among 

four  molecules and the droplet.  The leading contribution is 

determined by those integrals that are related to sequences 

of five successive collisions; these sequences are presented 

in Table III. 

As an example we consider the collision sequence 

(03)(34)(13)(12)(01) which is schematically represented 

~(2^ 
in Fig. 9.  The contribution from this event to ölv 

is given by: 

65 



AEDC-TR-72-172 

TABLE III  Sequences of five successive collisions among four molecules end the droplet 

associated with sr,tJ'. 

Tern    In  (B.6) Collision sequences 

-ff<e>Cl') f(>>(z<)l (03) (34X23X12X01) (04) (24) (23) (12) (01) (04) (34X23) (12) (01) 

(04)(34)(Z3K12)<Ol) (03) (it) (23) (12) (01) (02)(24>(23X12)(01) 

(04X3^) (23X12) (01) (02)(24)(23)(12)(01) (04) (24X23X12X01) 

(02X24) (23) (12) (01) (03) (34) (23) (12) (01) (04) (24) (23X12) (01) 

(04) (2«) (23) CM) (01) (04)(34)(23)(12)(01) (03) (34) (23X12) (01) 

[f|i)(l') f<°>(2')] (03)(34)(13)(12)(01) (04)(14)(13)(12)(01) (04) (34) (13) (12X01) 

(O4)(34X13)U2)(01) (03)(34)(13)(12)(01) (01) (14) (13) (12X01) 

(04)(34X13)<12)(01) (01) (IT) (13) (12) (01) (04)(14)(13)(12)(01) 

(01)(14)(13)(12)(01) (03) (34) (13) (12X01) (04) (14) (T3) (12) (01) 

(04)(14) (13X12X01) (04) (34) (13) (12) (01) (03)(34)(13)(12)(01) 

[|C0)(1) f(2)(2)] (03)(34)(23)(12)(01) (04X24) (23) (12) (01) (04)(34)(23)(12)(01) 

(04)(34)(23)(12)(01) (03X34) (23) (12) (01) (02)(24)(23) (12)(01) 

(04)(34)(13)(12)(01) (02X24) (23) (12X01) (04)(24)(23) (12)(01) 

(02 }U4) (2 3X12X01) (03) (34) <23) (12X01) (04)(24)(23)(12)(01) 

(04X24) (23) (12) (01) (04)<34)fi3) (12X01) (03) (34) (23) (12X01) 

[«(•)(!•)  f<2)<2')l 
II                 11           J (02)(24X23X12){01> 

[f(2)(l>)   i(«)l2')| (01X14)03) (12)(01) 

[t«aj f<^<2)] <02)(24)(23)(12)C01) 
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and the droplet. 
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01 (03) (34) (13) (12) (01)   = ~47r    R mnA,  lim IHä a-* 0 

00 CO CO 

•/dT12^Tr3oJ
dr3M/d?id?2d812dV6l'3dM63'. 

^l^l'S^U*!"* exp{-av(r12 +T1?3)} exp{_ (^'2+q-J)} 

ä«"{-(l*2^42)}-«pf«3"2^42)}J. 

(B-9) 

where we have replaced v(£,) and v(£,') by the constant v 

since this change will not affect the result.  The meaning 

of the velocities §JI?V and f." is explained in Fig. 9. 

The symbols T. ., Ö.. and K  refer to the collision that 
-+     + 

produces the velocities £ . and f- ..  In order to study the 

behavior in the limit o+O, we need to estimate the phase 

space for large values of T.  and T,,..  Using the same 

arguments as in Appendix A it is evident that on,. 

is restricted to a solid angle proportional to 

i"t       *t        "tii -2 
l*lT12 + ^1T1'3 + ^3T3'4l  '  After carrying out the 
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integration over "7"3,4> the integrand will be proportional 

to j|-iTi2 + ^l^i'al""-  Thus the asymptotic behavior of the 

integrand is determined by an integral of the type: 

oo » -av(r12 + r1,3) 

1  = lim ÖnTT fdT12  /dTl'3 "? ^*     ' (B"10) 

°*u   0    0       l<lT12 + *1 l'3l 

Using the coordinate transform x = avT,2 and y = an:,3 , 

we see that: 

1     1 F     F e"(x+y) I = i lim y1- /dx /dy —£ ?   , (B-ll) 

which vanishes in the limit a-»- 0.  Similar arguments can 

be used to show that the contribution to (B-6) from all 

sequences in Table III vanishes in the limit ct+0. 

If we next consider the term örX       in (B-6b), we find 

that it may also be decomposed into a sum of integrals, 

each of which may be associated with a collision sequence. 

These collision sequences, however, involve six or more 

collisions among four molecules and the droplet.  The phase 

space volumes associated with these sequences are thus 

smaller than those associated with the sequences in 

"• (2) Table III and &TX      will likewise be zero. 

In the main body of this report we extracted from 
o 

equation (4-2) an a lna contribution to the mass flux r 

~(2} 
and determined its coefficient r   .  In this Appendix, 
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we have demonstrated that the leading contributions from 

the terms neglected are of higher order In a and do not 

modify I*   .  A completely rigorous proof of this logarith- 

mic term, however, should consider all of the higher order 

terms and show that their sum is also of higher order than 

2 a lna.   For that purpose we would not only need the solu- 

tion of (4-2) to all orders in a, but also the sum of the 

higher order terms in (4-1).  In this respect, the situation 

is again analogous to the density dependence of the trans- 

port properties of gases.  For a three dimensional gas a 

resummation of the most divergent terms encountered in a 

formal power series expansion in the density n leads to the 

2 ~ 
n In n term in (5-2) with a finite coefficient 7)„ [16, 

20,22].  Again for a rigorous proof one would have to show 

that a resummation over all the less divergent terms would 

not change this result.  Such a complete proof is not yet 

available for the density dependence of the transport 

properties, nor for the Knudsen number dependence of the 

mass flux considered in this report. 
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