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ABSTRACT

A method is developed for calculating the mass flux
to a 1liquid droplet surrounded by its pure vapor as a
function of the Knudsen number, The Knudsen number X is
defined as the ratio of the mean free path to the droplet
size. When the mass flux is expanded in terms of the
inverse Knudsen number o ='K—1, we obtain a series of

the form

a4-F(2)a21na +

(0) (1)

r=r" + T

It is shown that the coefficients are determined by inte-
grals associated with sequences of successive collision;
among a number of vapor molecules and the droplet. 1In
particular, we derive the collision integrals for the
first three coefficients of the inverse Knudsen number
expansion for I'. These collision integrals bear a clgse
similarity to the collision integrals derived in earlier
technical reports for the density dependence of the
transport properties of gases. It will be demonstrated
in a subsequent technical report that the same method can
be used to calculate the aerodynamic force on an object

in a gas stream as a function of the Knudsen number,
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For a droplet to be in equilibrium with the surrounding
vapor, its rate of vaporization must be equal to the rate
at which vapor is condensing onto the surface of the
droplet. Such an equilibriﬁm is only possible when the
droplet has a very particular critical size [1]. Droplets
smaller than the critical size are called "embryos'; they
will tend to evaporate and disappear. Droplets larger
than the critical size will tend to grow. Nucleation
theories are concerned with predicting the rate at which
these growing nuclei are created per unit volume. For a
review of the theory of nucleation the reader is referred
to reference [2].

In this technical report we are concerned with the
rate of change of the liquid droplets once formed in the
vapor. In particular we shall consider the rate of change
Qf mass of liquid droplets surrounded by the pure vapor.
The theory to be presented is valid for droplets formed
either by homogeneous or heterogeneous nucleation.

We assume that the average distance between all liquid
droplets is significantly larger than both the radius R
of the droplets under consideration and the mean free path
£ of the molecules in the vapor phase. Under these circum-
stances we may neglect the interaction between different
droplets and it is sufficient for the problem of droplet

growth to evaluate the net mass flux of vapor molecules to
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an individual droplet of radius R and temperature TL,
surrounded by its vapor at temperature T,. When the density
of the vapor is not too large, this net mass flux can be
obtained by solving the Boltzmann equation in the vapor
phase, subject to the appropriate boundary conditions at

the surface of the droplet,

The mass flux to the droplet will in general depend on
the ratio a = % {(the inverse Knudsen number). In the free
molecular 1limit, a + 0, this mass flux is given by the
well known Hertz-Knudsen formula which is reproduced in the
next section, For a liquid droplet surrounded by a mixture
of its vapor and an inert gas, the mass flux in the contin-
uum limit is given by Maxwell's equation [3]. Only a few
investigators have studied the problem in the intermediate
regime. Brock [4] has considered the first correction term
to the free molecular flux for a binary gas mixture, but
replaced the Boltzmann equation with a linearized BGK
model equation. Shankar [5] and also Sampson and Springer
[6] approximate the distribution function by a two stream
Maxwellian; the adjustable parameters in this function are
then determined so that the distribution function will
satisfy a limited number of moments of the Boltzmann
equation., These approaches each involve approximations
whose nature and magnitude are not clear and which there-

fore make it difficult to estimate the range of their
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validity. It would thus appear to be useful to develop a
more rigorous solution to the problem. The research
reported here is an attempt in that direction.

We shall formulate a systematic expansion of the mass
flux to a liquid droplet surrounded by its pure vapor in
terms of the inverse Knudsen number a, This approach will
be adequate in the nearly free molecular regime, where a
is small compared to unity. This condition is encountered
in many situations involving either homogeneous or hetero-
geneous nucleation, where the radius of the critical size
clusters is indeed considerably smaller than the mean free
path {7]). When the rate of change of mass of the droplet,
I', is expanded around the free molecular limit (a=0), we

obtain

© , ), , 522

r=Tr + T a + T lna 4+ ... (1-1)

The successive coefficients of this series will be given
by integrals associated with sequences of successive colli-
sions among an increasing number of vapor molecules in the
presence of the droplet. We shall in particular derive
explicitly the collision integrals for the first three
coefficients in the expansion (1-1).

The structure of the expansion (1-1) is analogous to
the density expansion of the transport properties of gases
{8}. 1In fact, we shall show that the collision integrals

for the mass flux have a close similarity with the collision
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integrals derived in earlier technical reports for the
transport coefficients of a moderately dense gas [9,10].

A similarity of the same kind between the density expansion
of the transport coefficients and the Knudsen number expan-
sion for the drag coefficient of objects in rarefied g;s
flows was previously noted by Dorfman et al. [1i,12].

In Section II we shall formulate the problem and
specify the boundary conditions employed in the analysis.
In Section III we shall derive a set of well-defined inte-
grals that determine the coefficient P(l) of the first |
correction term. 1In the same section we develop a diagram-
matic notation to represent sequences of collisions between
the molecules, This notation will enable us to elucidate
how the integrals of the expansion (1-1) for I' are related
to specific sequences of collisions amoﬁg the molecules in
the presence of the droplet. In Section IV we shall show
that the next term is logarithmic in the Knudsen numher
and derive collision integrals for its coefficient 5(2).

In Section V we discuss the relationship between the new
cellision integrals and those derived earlier for trans-

port coefficients and drag coefficients.



AEDC-TR-72-172

II. Steady State Mass Flux to and From a Liquid Drop

We shall calculate the net mass flux to a spherical

liquid drop with radius R and temperature T, surrounded by

L
its pure vapor. The coordinate system is chosen so that

the center of the droplet is located at the origin. The
number density and temperature of the vapor at large dis-
tances from the droplet are maintained at n_ and T, .
respectively.

We shall follow the previous authors [4,5,6] by consid-
ering the rate of change of the number of molecules in the
droplet in the steady state approximation. That is, we
assﬁme that the droplet is sufficiently large so that we
can neglect the change in the radius and temperature of
the drop when a limited number of molecules condense onto
or evaporate from it., Then the single-particle distribution
function F(;,zl) of the molecules in the vapor phase will

satisfy the time-independent Boltzmann equation
r,v,) _ |32 - > " T Lt + -+
Vl.sg T ‘]/EV%/Edlzklz [F(r,v1 )F(r,v2 ) F(r,vl)F(r,vz)],
(2-1)

where ; is a vector from the droplet center to some point in

the vapor, 312 the perihelion vector specifying the geometry
« - -y ~

of a collision between two molecules and k12(v21,612) a

positive scalar factor, proportional to the differential
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cross section for a collision, in the notation of Chapman

and Cowling [13]. The velocities 3£,32’ are related to 31,32
by:

-»> S -> e ." ~

Vit =V + (v517075)649,

-» ' - —~> ~ ~

Vo' = Vg = (v51°615)64,, (2-2)

h -»> - - ->

where vij -y, = vj.

We need to solve the Beoltzmann equation, (2-1), subject
to the appropriate boundary conditions both at the surface
of the droplet and at infinity. Far from the droplet the
pure vapor will be in equilibrium, so that:

3 2
\—
1im 2G,9) = n, (g exe (- Bor) (2-3)
=] oo

-

where m is the mass of a vapor molecule and k is Boltzmann's
constant,

We have already assumed that the liquid droplet is a
sphere with radius R, To formulate the boundary conditions
at the droplet surface, we must specify the mechanism for
the interaction of the vapor and the liquid surface, This
interaction is usually described in terms of a mass accom-
modation coefficient, For simplicity, we shall follow
Shankar (5] and take this accommodation coefficient to be
unity, i.,e, all molecules that strike the surface will

stick to it. All molecules that leave the surface shall
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be assumed to be emitted diffusively with a Maxwellian

distribution having the droplet temperature T, and a

L
number density n, corresponding to the saturation pressure
Pv = nLkTL about a droplet of radius R. Thus the boundary
condition on the distribution function at the droplet

surface is:

3

k 2
)zexp (— L ) for 3-§>0. (2-4)

*> o m
F(R,v) = “L.(?FET’ KT,

L

The pressure Pv. and thus n; , is related to the saturation
vapor pressure Pp.s. for the vapor in equilibrium above a
planar surface of its liquid at temperature T;, via the
Thomson-Helmholtz equation [1].

We note that (2-4) represents the distribution function
at the droplet surface of molecules in the vapor phase,

-}-
Thus, strictly speaking, F(R,v) is to be interpreted in this

=S
report as lim F(R+3,3). With this in mind, the net mass
5*0

flux ' to the spherical droplet may be written in terms of

the distribution function as:
-
r = -4WR2m~/h; v-R F(R,V) , (2-5)

where R = R/R is the unit vector in the direction of B. The
number of molecules in the droplet will increase or decrease
depending on whether T' is positive or negative. Since the

net mass flux obviously vanishes when n, = n_ and T,L =T ,
L @ L o
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it becomes our task to evaluate I' when n, # n_ and/or
T, AT,

The purpose of this report is to elucidate the struc-
ture of the collision integrals that determine the variation
of ' with the Knudsen number, The assumptions that the drop-
let has a spherical shape and that the mass accommodatipn
coefficient is unity are not essential to our analysis,.but
are introduced for simplicity. The collision integrals to
be derived can also be formulated for droplets of any geo-
metry and the method can be generalized to the case where
the mass accommodation coefficient is smaller than unity.

In order to exhibit the expansion parameter in the

perturbation procedure, it is convenient to introduce

dimensionless quantities {14]). For this purpose we define:
5 2 . - <2kTw)'} . 3
R ( (- n ! @, ’
3
k w
12 > z o - >
4 =""§""‘ ’ f(p,.a)=——F(r,V) ’
12 6% _ n_
n T
* * L
n = -f-l—-:o' ’ T = T: » (2-6)

where ¢ is a length parameter characterizing the range of
the interaction potential between the molecules. The time-
independent Boltzmann equation may then be written in

dimensionless form:



AEDC-TR-72-172

El L § _@_ZE(P,QI) = Q;/\d-ézfdallez [f(ﬁ;—él')f(_fsygz')-f(ﬁ..él)f@:zz)] ?

3p
(2-7)
. 2
with a = m6"Rn_, (2-8)
The boundary conditions (2-3) and (2-4) becomne:
»> 58 2
lim f{p,&) = ﬂfexp(-g ) for all ¢, (2-9a)
pro
~A 7 E 3 *..'g" 2 +* A
f(p,€) = n (T } “exp(-~ ET) for €-p>0 . (2-9b)
T
and the net mass flux I' to the droplet is given by:
2 i ~
P = ~47R"mn_w_ fdﬁ Ep £(p,E) . (2-10)

Since the mean free path ¢ of the vapor molecules is
of the order l/ndznm, the dimensionless parameter a in (2-7)
is indeed the inverse Knudsen number R/£Z. In this report
we consider the nearly free molecular regime a<<l and
solve the Boltzmann equation by a perturbation procedure in
which we consider, successively, terms of higher order in a.
Unfortunately, the name "Knudsen number iteration" is some-
times associated with a procedure in which one attempts
to represent the solution of the Boltzmann equation by a
power series in a [15]. Such a procedure leads to diver-

gence difficulties which have the same physical origin as

10
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the divergences encountered when the transport coefficients
of a gas are represented by a power series in the density
[8,16). As already pointed out by Willis [17], it is not
necessary in the perturbation procedure to impose the
assumption that the solution be a power series in a. We
shall follow a modified Knudsen number iteration procedure
in which we collect terms that are of successively higher
order in a, but do not prejudice the result by assuming
that these terms are all powers of a.
The free molecular solution f(o)(ﬁ,g) is obtained in
the limit a » 0, so that:
£ éf(m @8 g (2-11)
op
This equation, together with the boundary conditions (2-9),
implies that f(o)(E,E) is a two-stream Maxwellian given by:

. ﬂr%'exp(-ﬁz) for £ € 1(p)
£ @, ;

-3 2
{n*(ﬂT*) ?exp(— g—;) for
T

For any 3, the regions I(p) and II(p) are velocity regions

defined by:

-
Z-g<o or

rf

Region 1
1E.E>O and szg|2 - €2> o, (2-13a)

11
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-5 *
Region II p-E>0 and |3x€|2 - g2 < 0 . {(2-13b)

For a given B, the zeroth order term f‘O)(B,E) is clearly
discontinuous in velocity space. Region II is the free
molecular cone of influence associated with the droplet as
illustrated in Fig. 1; molecules having a velocity in this
region have originated from the droplet and have arrived
at the position B without suffering any collision. Mole-
cules having a velocity in region I are unaffected by the
presence of the droplet and may be considered as having
arrived from infinity by free streaming.

As a short hand notation we shall write the two-stream

Maxwellian (2-12) as:

1 O¢H - 0¢85 +:1D¢0H (2-14)

1% exp (-£2) = £_(£) for £ € 1(p)
0 for £ € 1I(p) , (2-14a)

where f§0)(5,g)

nfw

n*(ﬂT*)_ exp(- §-—) for E e II(p)

(0)
and (E E..) 0 for E,, € I(p) (2- 14b)

12



£1

I (p)

Fig.

1.

~
-.:\.‘\~
P \_}> I (p)
_1(p) -
-~ d 6

The velocity regions I(p) and II(p) at a given position'z in the

vapor. Region II(p) is the free molecular cone of influence

associated with the droplet.

ZLL-ZL-HL-D03Y
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The net mass flux I' to the droplet in the free molecular

approximation reduces to:

r(o) - —4ﬂR2mnqu/hE E-ﬁ [ffo)(ﬁ:g) + fgg)(ﬁ’g)] =
)

5 kTw kTL
= 4R m [nw m) = I'IL -2—1-‘,-"—1- ] ) (2—15)

which is the familiar Hertz-Knudsen formula [18].

14
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IITI. First Correction Term to the Free Molecular

Approximation

In order to ohtain the first correction term f(l)(ﬁ,g)
to the free molecular distribution function we approximate
f(E,E) in the right hand side of the Boltzmann equation
(2-7) by the free molecular solution f(o)(ﬁ,g). We thus

consider:

- afdd,fab) e [t @ B EPL @ B EN-1 O BEN1 P 3,2y ].
(3-1)

Since the free molecular solution (2-12) satisfies the boun-
dary conditions (2-9) exactly, we require that all higher
order approximations f(i)(ﬁ,g) for i> 0 satisfy the boundary
conditions:

1im £ 3,2 =0 for a11 £, (3-2a)
p—boo

f(i)(ﬁ.E) ~ 0 for £-5>0 . (3-2b)

Equation (3-1) can be integrated to yield [14]:
t
f(]-) (-b’gl) = f(l) (E-Elttgl) + deJ (?S-EIT ’—El) ’ (3'3)
0

15



AEDC-TR-72-172

->
where J(0,£) represents the right hand side of (3-1). In
order to make use of the boundary conditions (3-2), we

select the 1limit of the integration such that:

>
w  for gl e I(p)

t = . . , (3-4)
T(ﬁ,gl) for £, € IX(p)

where T(ﬁ,E1)= -IELI- [5'@1- \/('ﬁ-'él)z + 1- pz] (3-5)
1

is the time it would take a molecule with velocity Ele IT (p)
to travel from the droplet's surface to the position 3.

This results in the vanishing of the integration constant

in (3-3) for the problem under consideration. We thus

obtain for the first correction term:

tD@Ep =t P GE + 1 DGED, (3-6a)

with

£ M G.E) - gférlajée a8y 5010 £ G 1r 1, E D@ Gty ey, B 4
- f(o)(E-Elrlz,zl)f(o)(5-21712,22)]f0rIEI € I1(p)

fél)(ﬁ,gl) - 0 for'E1 € IE(p) ,

(3-6b)

16
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and - -

(1) (.0 E,- )_g;/-d'rl /'dng 12!C12 [;f(o) ('E_EIle,El')_f(o) G"EITIZ,EZ')-F

_ (O (-5_21712"51”(0) @‘ElTIZ’EZ)] for -E‘l € II(p),

(1)(p E_, )y =0 for El [ I(p)

{3-6c)
The le-integration in these integrals extends over the
free trajectory traversed by a molecule 1 with velocityizl.
If we substitute the expansion f(ﬁ,z) = f(o)(ﬁ,g) +
+ f(l)(B,E) + . . . into the expression (2-10) for the mass

flux to the droplet, we obtain:

(1

T = r(o) +arTl + . . . (3-7)

with

o0
- A - ~
= -4ﬂR2mn£wm~/éle fhgldEz‘[Eo K P

12¢12 &1
G o+
€, 0<0
N+ -+ A -+
' [f(O)(p"ﬁlle’Ef)f(o)(P“g1712’€£)+

@ Gdr Lt @Gt i ] (3-8)

17
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(0)

The first correction term to T is proportional to the
inverse Knudsen number a provided, of course, that the
integral (3-8) is convergent.

In this report, we assume that the interaction poten-
tial between a pair of vapor molecules has a finite range
which is much smaller tham R. It is then possible to

(1)

decompose T° into a set of convergent integrals each of
which is related to a particular sequence of successive
collisions. TFor this purpose we use the relation

fw(gi)fm(gé = fm(gl)fm(gz) for the distribution function

at infinity and rewrite F(l) as:
P(l) = -4ﬂR2mn w [&T dE dg d6, E '
oo 9712/ 951 1212 *1°°
0 El-;;(()

e P @t e D et - e, (52')] ¥

- 47R mnawq/aT 2/&& dngﬁalz 12 El
1 p<0

JENCRERCIIIL Y- N RPLUYS R A1

(3-9)
As a next step we separate this integral into terms asso-

ciated with the contributions ffo) and fig) of the free

18
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(o)

molecular flow solution T For this purpose it is

convenient to distinguish in f_ contributions from inside

and outside the free molecular cone of influence. We

therefore write:

£,6) = £1G, 5 + £1,G.8) , (3-10)
where f?(B,E> = f§°)(ﬁ,E) (3-10a)
. 0 for E e I{p)
and 700, €) = : (3-10b)

3

T 2exp(~g2) for E e II(p)

The expression (3-9) for I'1 may then be divided into the

four terms:

(1) _ (1 (1) (1) (L
with
(1) 2 ) + g ~ + o -
Pyrrpr = ~47R "‘“w“’né,-[d'rlz fdeldizfdolz‘clz 1P (3-11a)
= d ~
€1°p<0

[fﬁ) (ﬁ‘gflz’gl‘)fgo) ('6'-5:1712’%2:) +

>

-1 BT e E T B |

19
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Pivipr = ~47R mwmeElekfhgldgz‘ A0y k15 Eq°F (3-11b)
El'ﬁ<0

[f§0)(5 g ED ) BT ¢

00 LA

- 56T et G |

D)\ anilan o fary, [, [a8 s g
&1'ﬁ<0

[ (0)(9 -€47 lz,e')f(o)(p ~ETyg Eg) +

o A T +1 o ~ > ,
15 B8 ED T G T i) |

r§1il = —47R mn:nﬁ[arlz /hg d§2\/;012 £yg Ly (3-11d)
€y p<o
| 259 G-t yr . D Bty B+
- fI(ﬁ-Elle’El)fII(ﬁ_ngIZ’EZ)] .
Note that the condition El-ﬁ<0 implies that in (3-9):

£ Gt 8 =106 7,8 (3-12)

20
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for a droplet with a surface whose radius of curvature is
positive everywhere. This has been used in obtaining
(3-11d).

The condition El-ﬁw implies that molecule 1 is imping-
ing upon the droplet with velocity El' From (3-8) it is
evident that the integral vanishes unless molecule 1 suf-
fered a collision with molecule 2 at a time T1o earlier.
This collision is characterized by the perihelion vector
812. The velocities El’ Ez are the velocities gfter this
collision and El" 22' the velocities prior to this
collision. The contribution to the integrand is dependent
on whether, prior to this collision, molecule 1 and/or
molecule 2 originated from the droplet or from infinity,

We thus consider the motion of two isolated molecules
in the presence of the droplet. All of the possible
collision sequences involving three or more successive
collisions between two molecules and the droplet are
schematically represented by the four diagrams of Fig. 2,
The lines indicate the trajectories of the particles;
the circle represents the droplet. The position of the
molecules at time 1 = 0 is indicated by the dots; the
velocities of molecules 1 and 2 at zero time are El and
EZ' At 7 = O molecule 1 is impinging upon the droplet,

and in all diagrams the time is taken to increase when

21
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Fig. 2.

The collision sequences among two vapor molecules and the droplet
that are associated with the coefficient r(l) of the first inverse
Knudsen number correction term. The lines represent the trajec-
tories of molecules 1 and 2 and the circle represents the droplet.

ZL41-2¢-¥1-3a3v
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the trajectories are traversed in the direction of the
arrows. We also require, in all of the collisional
sequences, that molecules 1 and 2 collide at time 7 = =Tig-
The diagrams in Fig, 2 differ in the dynamical history of
the molecules prior to the collision between 1 and 2. 1In
the R- collision (recollision) we require that molecule 1
originate from the droplet, in the C- collision {cyclic
caollision) that molecule 2 originate from the droplet and
in the RC- collision (recollision-cyclic) that poths mole-
cules 1 and 2 originate from the droplet. 1In the H-
collision (hypothetical collision) we require that 2
originate from the droplet, but here we identify the velo-
cities Ef, Ez‘ prior to the (12) collision with the veloci-
ties El’ Ez after the (12) collision. Ve shgll refer to
such a (12) collision as a non-interacting collision. 1In
each of these collision sequences, we wish to remain non-
committal about the possible occurrence of collisions that
are not indicated explicitly. This interpretation of the
diagrams is for convenience and has no effect on the
exactness of our calculation. For instance, in the R~
collision molecule 2 may or may not have originated from
the droplet prior to the (12) collision and molecule 2

may or may not impinge upon the droplet after the (12)

collision,

23
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Each diagram in Fig. 2 determines a region of inte-
gration for the variables -él' Ez’ T1g» 312 such that the
collision sequence indicated takes place. From (3-11la)
we see that the integrand of ri}!l. vanishes unless
particle 1 originated from the droplet and particle 2 from
infinity. If we now replace the distribution functions by
the appropriate Maxwellians and integrate over those
regions of the variables El’ Ez, T1a? 312 associated with
the recollision sequence of Fig. 2, we make an error since,
in so doing, we have also implicitly included integration

regions associated with the RC- collision. This contribu-

tion therefore needs to be subtracted. We thus obtain:

(1) -2 2 * gt ~ ~
Piprge = ~47 “R°mn o [dE d7 dE,d8 k1, £ 0B
(R)
) 2
% £
1 '2 '2 ?
. 2—3exp - ("1?“*€2 ) -exp -(gl + &22) +
T
T
an~2p2 ¢ £ db [
+ 4m "R°mn_a dgldledez 12512 gl-p
(RC)
2
% g
1 |2 12 '
. 9—-§exp - (-*—+ 52 ) -exp -(gl + 522)
TT T

(3-13)

The notation [ indicates that the integration region is

(R)
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limited so as to satisfy the conditions for a recollision
to occur, The other collision integrals in (3-11) can be

related to the diagrams of Fig. 2 in a similar way to yield:

1 -2.2 "2 > T A
Frrzpy = —4m™ “Rmn o J/dﬁld'rlzdﬁzdalzlclz ﬁl P

2
* £
'2;_ exp 1- (857 + Z)p -exp 4= £5B 1 |

_2 2 - ->
+ 4m “Rmn o, fa51d712d52d812’°12 €)p

(RC) 9
n* 72 E"2 (E 12 +g vz)
| B exp 4= (€17 + ;-Er -exp - (& 9 .
T*7
(3=-14)
(1) -2.2 -+ -+ <+ A
PII'II' = 471 “R mnwwm./‘dé_,ldv'lzdgzdﬁllez I‘;l-p
(RC)
12 2
%2 E g \
n 1 2 2 2
«| =~ exp -(--—+-—-— -exp 1-(E:°+ £;7) ¢
* S 1" "~2 ’
(3-15)
D) = _4n~2g2 G AT db.dB ks Eqep
111 —47 "R mn o 1971298590158 39 &7 P
_ (H) )
* 3 .
n 2  Sa 2., 2
|| P exp §- (El + s exp 1-(€;7+E€57)
7
(3-16)
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Upon rearranging the terms in (3-13) through (3-16) we
conclude that:

r r{P+ vl 4 D p D)

where Fél), Fél), Pél) and Féé) are given in Table I. The
collision integrals Pél). Fél), Fél) are associated, respec-
tively, with the R- C- and H- collision sequences which
involve three successive collisions among two molecules and
the droplet; réé) is related to the RC- collision sequence
with four successive collisions. It is shown in Appendix A
that these collision integrals are convergent, so that the

(1)

coefficient T of the term linear in a is finite.

26



AEDC-TR-72-172

TABLE 1 The collision 1an;:a1'a for the coefficient r(‘) of the contriburion proportional to o.

.2
= - - B £ 2 2 1
l‘:‘) ] -ﬁu'zl"un_u- f dE, d1;,d€,da, ),k B [Tﬁ:‘*?? “P('(-[—:,"‘ 5; - uF['(E; + 512))]
(R)
.2
_ R . . 2 ‘2 2 12
"élJ E —6," zm“‘-ﬂ'(f) ‘“:l"'h)z‘rzz"°1z"1z'él‘c ['r_:!ﬁ expl-(f, + 333} - “p(-“; e )}]
[
2
- . 4
r)(tx) = TRl f ol av, 48,05, ¢ 8,05 [-I%;ﬁ m{-(li * '-l‘% )" - up(-(l: * €:-)}]
an
2 2
Y N > o~ 2 3 2
r:::) z -4l o f dEldtmdzzdoulc“El-p [%:3— ul:p[-(.r—: + ".r':— 1+ u’P““; + g;z))
(RC)
E‘! 2 E'z
2
- T:%ﬁ up{-(i,-i- +6)) - Tﬁ:"ﬁ expl-(; + -,% )’]
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Iv. Second Correction Term to the Free Molecular

Approximation

-’
We consider the solutions f(o)(ﬁ,e) and f(l)(B,g) as
the first two terms of an expansion for the distribution

function:
£, =19¢ 0 + tVEEH + @D hH + ... @D

If we substitute this expansion into the Boltzmann equation
(2-7) and neglect terms which are obviously of higher

order, we obtain the equation:

-> (2) 74 RS
€y Z_f ®.8p - “fdgzdﬁlz’clz
p

At @ItV @Ep 1P Epe @ity

- @@ W@y

D EE1 @G|+
P 1O I PG ED + DG EPIDGEY
-1 @@ H:@at) - f‘é’(ﬁ,§1>f(°)(ﬁ,22)] +
(@@ eV ey - fcl)(ﬁ’gl)f(l)(ﬁ,gz)]} . (4-2)

(1)

In the previous section we showed that f leads to

a correction term linear in the expansion parameter a. If
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(2) 2

we .now were to assume that f is proportional to a“, we

would retain only the terms involving f(o)f(l) on the right
hand side of (4-2). This equation, thus truncated, would

yield in analogy to (3-6):

12 (7"21) = “ﬁ”m ergzdsm"lz
0
[ GE it P ety E 4
2D GEr  Ene @@ r Lt .
- @ (ﬁ_Elle’El)f(l) (BE1715:8p) +

-1 GE e @ (’ﬁ—Ele,Ez)] ' (4-3)

where the upper limit t of the Ti9™ integration is again

given by (3-4). The resulting contribution to the flux T'

would then read:

I = P(o) + ar(l) + azr(Z) + . .. (4-4)

with 1

29



[y

r(® o _4rR?mn @ a” t/‘d-é Z 'A_f;T dE d6 ,
0P, 1°1°P J9T12 [95290 1052
g1-5<o 0

[f(O)(5'E1712'Ei)f(1)(5‘51712’55) *
+ Dt EDe O G L
0 P PR -»>
= f( )(p-nglst]_)f(l) (P—€1712152) +

- f(l) (B"EITIZ:El)f(O) (ﬁ"—él'rlz:gz)] . (4"5)

In the previous section we showed that F(l} is deter-
mined by integrals associated with three or more successive
collisions among two molecules and the droplet. The
expression {4-5) can similarly be analyzed in a manner
that will be discussed later in this section. It turns
out that (4-5) can be decomposed into a set of integrals
associated with four or more successive collisions among
three molecules and the droplet. The leading terms are
determined by the integrals corresponding to the sequences
of four collisions depicted in Fig. 3. However, as shown
in Appendix A, the phase space associated with these events

behaves as Tié for large values of 7,, and thus the inte-

12
grals diverge logarithmically. Our original assumption,

2)

therefore, that it yields a contribution proportional to
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Fig. 3.

The collision sequences among three vapor mole-

cules and the droplet.

They are associated with

r{® in (4-5) and with the coefficient ©*(2 of
the correction term proportional to a,zlna.
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a2, is not justified and we need to consider the full
equation (4-2).

Since, on the right hand side of (4-2), the Boltzmann
collision operator operates on the unknown function f(z),
solving this equation poses a formidable task., It is,
however, possible to extract the contribution to the mass
flux which is of lowest order in a. For this purpose, it
sﬁffices to retain on the right side of (4-2) the expres-

£(0) £ (D)

sions involving and the term which is directly

proportional to f(z)(B,El):
@ dezdﬁllezf(z) G, 2 @8, . (4-6)

We thus consider- the equation:

AR AN

1 a_’ + G-V(El)f(z) (;;El) =
P

= a [at,dbe, [t PGP EN eV Ep@ 31y

-t @@ MG En- D3 Epe 961y,
(4-7)

where v(gl) is the collision frequency:
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v(g,) = fdzzd'éllesz(ez) . (4-8)

In writing (4-8) we have approximated f(o)(z,gz) in (4-6) by
the Maxwell distribution fm(&z). The justification for this
will be explained shortly.

The simplified equation (4~7) can be readily integrated

to yield:

->
£(2 (E,ﬁl) = fldde
0

(@Gt Epe D B,
+ 1D Gt i pe DGR -
- £(© (-5'21712’21”(1) (ﬁ‘nglz’Ez) +
- 1P @R, t e G- 1712'}:2)] ‘ (4-9)

This result is the same as (4-3) except for the inclusion

of the exponential factor e-alez.

This damping factor
will insure that the resulting collision integrals are
convergént.

With this damping factor introduced into (4-5), we
conclude that for large values of Tig the leading term

in the second correction to the mass flux T will vary

as:
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2 “WT12 A 2
a [dTr.,.e — = Aa"1lna + terms of higher order in a,
12 T12

(4-10)

The sitvation thus appears to be quite analogous to the
exponential damping of the collision integrals in the theory
of the density dependence for the transport coefficients of

a gas [19,20]. While the expression (4-9) for f(z) does not
represent a complete solution of the original equation (4-2),
it does contain all necessary information to determine the
coefficient of the contribution to the mass flux proportional

to azlna. The reason for this is twofold. First, the terms

containing f(l)f(l)

give a contribution to T" which 1is of
order aa. Secondly, the neglected terms in (4-2) 1involving
£$2) and also the replacement of f(o)(+,E2) in (4-6) by
fm(gz) modify the details of the exponential damping factor,
but do not change the coefficient A in (4-10). The mathe-
matical analysis to substantiate these assertions is quite
complex and is, to the extent feasible, presented in
Appendix B. 1In the main body of this report we shall con-
centrate orn formulating the collision integrals that will
enable us to calculate the coefficient of the contribution

proportional to azlna.

We thus consider:

I = P(o) + P(l)a + F(z)azlna + . . . (4-11)

where:
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-QyT
(2. 1 12
T -4ﬂR?mnaalig alna‘/ﬁglg J}Tlafhgzddlz K19€
£, f<0

0 ~ T -+ ' 1 ~ ¥
[f( )(9‘51712'51)1( )(P;Elle’Ez) +
(1) » 3 2 e (0) n T T
MR Gt L6 PIA PR G L PYLPY
© 32 r. TyeW et T
- f (P'E..]_lergl)f (P-E"].T].Z’E"Z) +
1) ,~ -+ 0} ,~ *

SRR S INE R I 30 ] ' (4-12)
is obtained by substituting (4-9) into (2-10). This result
differs from (4-5) due to the inclusion of the exponential
damping factor.

In order to avoid the repetition of unnecessary

details, we introduce a shorthand notation:

[f‘o) (i)f(l) (j):lﬁ 41rR2mn<n 11m -1—fde,1r;1 fd’rlzjdgzdclz
El p<0

e T12,00) (5 7 . F (D) 5 4
'clze p § (p-€1712’€i)f (P-E"lle’E"J) s (4-13)

so that

72 [f(o)(lﬁf(l)(z')] + [f(l)(lwfto)(z')] +

- [f(o)(l)f(l)(Z) J - [f(l)(l)f(o)(z) ] , (4-14)
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where all distribution functions in the integrands are to
be evaluated at the position p = §¥E1712.

We shall demonstrate that this coefficient 5(2) is
determined by a set of integrals associated with sequences
of collisions among three molecules and the droplet, ¥For

this purpose we first write, in accordance with (2-14) and

(3-6a) f(o) = f(o) + fig) and f( = f§1) + f§§) to obtain:
~ I~ n B 7
@ - 1ePan:WPen| + [$Dane®en] «

+ [12antPen] « [f{PanePesn] «

o |28 ane® @n] )]+ f(l)(l {0 (20 )7 +

+ [tQanPen] + [#PanePen] +

i
- [P0 P |+ [(Po P ] .

0 1 ] 1 0
_ [f§ 'y P | - [ £10 1y £{9 (2 1.

-~ -

(4-15)

Here we have used the fazct that in the integrand of (4-12)
-+ ,._-b- (0) . -> . (0) A ->
£) € T(|p=E 7 150) so that £770) (BB im0, E0) = £ (€7 508 )
(1) ;» 2 o (1) n
and f (p-e"l‘rl2'-€1) fI (P-E"].le’-é(l) .
1)

As a second step we decompose fI , Biven by (3-6b) in

e

the same manner as was done in (3-11) for T We then

obtain:
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AN R T S Y R I SO

I, 11" 1,1'I
(1) . (D) .
i SR DI TR TRCY M L AP L €O I (4-16)

-> P
where we have, for 51 € I([p—ng12|):

o0

(1) (1) = a /dT d-é ds ; .«
I IT'1’ i3 37 7i3"i3
0

rf(o)(p €112 g 3’Ei")f§0)(5‘ElT12'EiTia'Esu) +
P -> - o .A * + -+
fII(p-ngl2-€iT13’€i")fI(p-elle-giTi3’g3")] »  (4-18a)

(1) T [z
o @ T adjLTiB‘jdE3d613xi3

-5

[ G I I I S R T

> >

- f?(ﬁ-lelz_EiTiS’Ei")f?1(5_§1712"€1713'53")] ,  (4-16b)

[+ ]

(1) o = 3 e
fy, 10 a9 angTia\jhgsddisxis

0

[ £ (0)(9 €171 51713’51")f(0)(9 ~€1T19 51713,g3") +

[

°°(A+ Z +nf°°"-’ % T N
Frr(P=€1T19763T43: 84" 1 (P-€ 71967 3,85 )] , (4-16¢)
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0o

(1) (i) = aL/hT /EE d6 . .k
I I 11 £ i3, 37713713

[ (0) (p &1 12 E17-13,€ )f(o) (p E].le El‘rls,E ) +

0 -

- > > w LA - >
- fI(9'51712'51"13’éi)fu(p‘gfm‘gfia’53)] : (4~16q)

->

aA >
For £, € II(|p-§1112|) we take, just as in (3-6b):

££1)

LD
1,10°0 (8 = £

_ (D -
rppr (D) = £ qpeppe (D) I,I II

In (4-16a) through (4-16d), 643 is the perihelion vector of
a ccllision between molecules i and 3 taking place at the
AP S S 4 s 3 SN < E -
position p = p-ﬁlle—giTia. The initial velocities prior
-»> -
to this collision are gi" and §3" and the final velocities
-
after this cellision are gi and E3

Similarly the function f(D(p elle,g -}, given by

(3-6¢c), 1is decomposed as:

(1) - 1) )
£y (- €1 12’€ ) = frpap @)+ T o (D

(1) . (1) . (1) P
Fihnarar @ -y 1@ - I3y g O

(4~17)
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-> A T
where for § € II(|p—§1712|)
T(E-—é 1T12’€ )

a d7 4 13 dg3do
0

£

i1, @ = i3%i3

[ (0)(p”€1712 -€5T Ei”)f§0)(ﬁ-21712 E Ti3rEg") +

00 N

- fII(p-Elle-—éi’rlS’—éiu)f';(B-E]_le_ iTiB’ES")] ’ (4—178)
T(ﬁ_nglz’Ei)
(1) > +
fII,I'II'(i) = 0:)‘/ d7'13 fngdaisfci3
. [f:gO) (Ja'-él'rlz—é 3:& ")f(o) (p &1 12 g 3!&3") "

" 1 12 -E, Tla'gi")f?x(ﬁ‘E1712'E1Tia'E3")] ,  (4-17Db)

T(B-E lle’E i)
(1) - 4
fr o D = “Jr d713~];53d613“13
0
[ SN UL I S NS RN

foo (A_'E T _-E T E n)fw ('\_'E T -'é T E H)] (4_170)
11517127517 43°54 1 113'P517127517137%3 ’
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TGy 150y

gi)xr (= “6/‘ dTi3‘/hE3dai3ni3
{ 119 (& gt mig k0 10 Bof b ir i ) 4
- f?I(B;Elle;EiTiS‘Ei)f?(ﬁ;Eile;EiTi3’E3)] ’ (4-174)
T(5421712.Ei)
f§i311 i = “t/‘ dTis‘/HE3d313“13
(419 BEim 15 tim1: 802 GEyriptirigdy)
= f?l(a_nglz_EiTi3’Ei)f?I(B-EIle-EiTi3’ES)] . (4-17e)

Just as in (3-6¢), it is again understood that for

gl € I ( Iﬁ-Ellel)

(1) ' ) §)) .
B @ = f37 g ) = 25y gy (O =
(1) £ (D) .
=fyyqr 1 = f17 13 1 = 0.

In order to investigate the structure of the colli-
~(2)

sion integrals determining ' , we consider as an

example the term:
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] 2 i 1
(7 antpp @) | - i, 1in g

F -QvT

et 3.5 far.. [aE_ a8 ek I S S T
L, T 961817F jATyp [d60d0156 2'3 963905135513
gl-p<0 0

200Gy, 8D [ £33 171y E5Tyg £ 10 (b 112557 y30E3™) -

17 17 15mE g oy £33 7 i pn B |
= By (P87 1978 g Tougb s ) 11 (P8 1715-C5Tonk3™ |

(4-18)

which is obtained when (4-16a) is substituted into the first
term of (4-15). The integrand in (4-18) corresponds to
those phases of molecule 1, 2 and 3 such that:

(a) at p = P, corresponding to the time T = O,
molecule 1 is impinging upon the droplet;

(b) at § = ﬁ-nglz,corresponding to the time T = —Tlé,
molecule 1 collides with molecule 2; (the velo-
cities of these molecules prior to this collision
are El' and Ez' and qafter this collision El and Ez);

(c) at p = ﬁ-g1712—€2'72.3,corresponding to the time
T = -(Tl2 + 72'3L molecule 2 collides with mole-
cule 3. The velocities of these molecules prior

-+
to the collision are gz" and ES" and after the

- -
collision are gz' and 53;
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(d) before the collision between molecules 2 and 3,
the velocity of 2 must be within region 1I, which
means that molecule 2 originated from the droplet.

This collision sequence is shown schematically in Fig. 4
using the diagrammatic notation developed in the previous
section. The integral (4-18) represents an integral over
a;l phase points of molecules 1, 2 and 3 which allow for
the occurrence of the sequence depicted in this diagram.

In the previous section we referred to the collision

sequences that contributed to the first coefficient F(l)
as R-, C-, H- and RC- collisions. 1In order to specify the

% (2)

collision integrals for the coefficient T we need a more
systematic notation. We shall indicate an interacting
collision between molecules i and j by (ij) and a non-
interacting collision between i and j by (ij). A collision
between molecule k and the droplet will be denoted by (Ok)
where O refers to the droplet. A collision sequence is
represent by a left-to-right juxtaposition of these syn-
bols., In this notation the R-, C- and H- collisions
introduced in the previous section can be represented by
{01) (12) {(01), (02) (12) (01) and (02) (I2) (01), respectively,
and the diagram of Fig. 4 by (02) (23) (12) (01). Thus the

contribution (4-18) to F(Z) becomes:
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Fig. 4.

Example of a sequence of four collisions among three vapor molecules
and the droplet. 1In this example molecule 2, which has originated
from the droplet, first collides with 3 and subsequently with 1 in

such a manner that molecule 1 will impinge upon the droplet.
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5 (2) = [5€0) (10y (1) ,
" (02) (23) (12) (01) = [fl (A") £y 7y (2 )] -

. lim ~~  [d€,d7y0dt od8 df ,d5
=-47R"mn_w_ aig Tna 147390 §2d612d72-3 3doz.3
(02) (23) (12) (01)

,|2
~ -3 2 _3 _ 2 .
.’c12x2.3€1.pe m Zexp{—&i }I:n*,n. T* Texp{_.(T* + €3 '2)}+
- 'TT-SGXD{—(gz"2+ &3"2)}] , (4-19)
where the: symhol Jf means that the integration

(02) (23) (12) (01)
extends over all phases of molecules 1, 2 and 3 corre~

sponding to the collision sequence (02)(23) (12) (01).

If we substitute (4-16) and (4-17) into (4-15) we find
that 5(2) appears to be a sum of fifty-three terms each of
which may be associated with a sequence of collisions
among three vapor molecules and the droplet. However,
many of these terms correspond to sequences that involve
more than four successive collisions. As an illustration
we examine the two terms [f(l) I.(l')fio)(z')] and

I,II'I

[f§§)11'1'(1')f§0)(2‘)] which correspond to the collision

sequences shown in Fig. 5. These two terms both require
a sequence of collisions which in our notation can be

indicated by (01) (13) (12) (01). The term [f P)fgo)(20]

I,II'IIK
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Fig. 5.

Examples of sequences of five collisions among three vapor molecules

and the droplet, )
(2) Diagram corresponding to [fgfil,ll,(l')f§0)(2')],

. (1) 1ty £ (0) ror
(b) Diagram corresponding tO[fII,II‘I‘(l )fI /271,

TLVTL-HL1-DQ3Y
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-> ~ -

- . < 3 " b4 2
requires, in addition, that §3 € II(Ip—Elle—el 71.3]) which
means that not only 1, but also 3 must have originated ini-
tially from the droplet. The term [f(l) ' .(1')f(0)(2')]

I1,I1'I I
does not involve the latter condition, but requires instead
-
El‘ € II(Iﬁ_élTlﬂ) this constraint implies that the phase
of molecule 1 must be such that it also would have origi-
nated from the droplet if we ignore the velocity change

caused by the (13) collision. Both terms therefore involve

constraints related to five collisions. In fact, it can

be readily verified that terms in 5(2) which contain either
(0) —_— (L (1)
f11 and/or any of the following: fI,II'II" fI,II'I"

(1) (D (1)
fII,I'II" fII,II'II" fII,II 11’ all correspond to

sequences of five or more collisions among three molecules
and the droplet., However as discussed in Appendix A such

terms lead to integrals of the form:

-oVT
1 12 1
1im =— ﬁq’ e —_— =0, (4-20)
a0 Ina 12

with vy > 0 and, therefore, do not yield a contribution to
5(2)_ In order to determine the coefficient of the azlna
term it is sufficient to retain only the collision integrals

related to four successive collisions. We thus obtain:
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= (2) _=(2) ~(2) ~(2)
I ™" =T (02) (23) (12) (01) * T (03) (23) (12) (o) * T (03) (33) (12) (o)

= (2) ~(2) ~ (2) +
*T' 01y (13) (12) (01 * T (03) (13) (12) 01) * T (03) (T3) (12) (01)
7(2) ~(2) ~(2)
*T'(02) (@3) (12) (o1) * I1(01) (13) (12) (01) * I't02) (23) (T3) (o) *+

7 (2) 7 (2) = (2)
*' (03) (23) (1) (01) * T (03) () (T (01) * T (01) (13) (T2 (o1)*

~(2) ~(2) ~(2)
+I'(03) (13) (I2) (01) * T(03) (T3) (12) (01) * T (02) (&) (IT) (01)*

(4-21)

where
Fgg%)(23)(12)(01) =~ +[f§0)(1')f§?11-1-(2‘)] ,  (4-21a)
1:8;)(23)(12)(01) = +[ff0)(1’)f§}}.11.(2'>] ,  (4-21b)
F{ohy @ az op =~ ANl e L (20
Fgg)l)(la)(lz)(on = +lf§}}I.I.(1')f§°)(2')] ’ (4-214)

- (2) (1) () P
T 03) (13) (12) co1) = *lIEp 1epp (A2 2D]1 ,  (4-2le)

7 (2) (1) iy (0) e
F03) (T (12) c01) = ~tfr 1 1x(1DEy (21, (4-21D)

& (2) (0) (4 1y ¢(1) :
T(02) (35 (12) o1y = ~fffp  (ANE5y qp 1(2") ,  (4-21@)

7 (2) (D iy e (0) (o
Teo1) (D) (12) (o1) ~ ~Ifyr,rr (12 7291, (4-21nm)

7 (2) (0) 1y (1)

T (02) (23) (1) (o1 = ~1f1 W fy 71, (4-219)
7 (2) (0) (1) _
Fosy (23) (13) 01y = ~Ify  MIf 1) 4-211)
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P& (13) (12) (01) = ‘”i})u'x'(l)fx(o) @1, (4219
1"%%) (13) (12) (01) "~ ‘[fﬁ)l'u' WP @, (4~21m)
T2 ) @ oy = U P @1, (4-21n)
Ffﬁé) @ T o1 =+ WP @1, (4-210)

We conclude that the coefficient F(z) is determined by
a sum of fifteen collision integrals. They are associated
with the diagrams shown in Fig. 3 which represent all of
the possible sequences of four successive collisions among
three vapor molecules and the droplet. The explicit
expressions for these collision integrals are presented
in Table II. We note that the signs of the collision
integrals depend on whether the number of non-interacting

collisions is even or odd.
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V. Discussion

In this report we have considered an expansion for the
mass flux " in the nearly free molecular regime having

the form:

(1))

r=r + I‘(l)cc + F(z)azlna. + ..., (5-1)

where a is the inverse Knudsen number. The coefficient
F(l) is determined by a set of integrals associated with
sequences of collisions among twe vapor molecules and the

droplet. The coefficient f(z)

of the logarithmic term is
determined by integrals associated with the asymptotic
behavior of collision sequences among tharee vapor_mole-
cules and the droplet.

The structure of the expansion (5-1) suggests an
analogy with the density dependence of the transport
properties of a moderately dense gas. As discussed in an

earlier technical report [8], a transport coefficient of

a gas, such as the viscosity m, should be written as:
~ 2
n=no+n1n+n2n Inn+... , (5-2)

where n is the number density. The value Mo of the
viscosity in the low density limit is given by the
Chapman-Enskog theory as an integral over the parameters

of a collision between two molecules [13] ., The coefficient

N4 of the first density correction involves the effect of
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correlationg in the position and velocity variables of
three molecules. These correlations are of both a
statistical and a dynamical nature. The statistical
correlations refer to correlations in configuration space
irrespective of the velocities of the particles; for a
gas of hard spheres they reduce to excluded volume contri-
butions. The dynamical correlations are brought about by
sequences of successive collisions; their contribution to
Ul is given by collision integrals associated with three
and four successive collisions among three molecules [10].

The sequences of three successive collisions that
appear in the calculation of the first cerrection term M
are represénted schematically in Fig. 6. In earlier
reports [8,10] , we have referred to these sequences as a
recollision, a cyclic collision and a hypothetical colli-
sion. The events indicated by R, C and H in Fig. 2 are
obtained from those shown in Fig. 6 when molecule 0 is
replaced by the droplet. It appears, therefore, that a
close correspondence exists between the two expansions
(5-1) and (5-2). The collision sequences to be consid-
ered in the evaluation of the coefficients of (5-1) are
identical to those previously considered in the density
expansion for the transport coefficients if we identify
one of the molecules with the droplet. The expansion

3 2,-1

parameter in (5-2) is actually n6~ = 6/(n6") which is

the ratio of the size 6 of the molecules to the mean free
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R - collision

/

C-collision

/

H-collision

Fig. 6. Sequences of three successive collisions among three molecules
that are associated with the first density corrections to the

. transport properties of a gas [10],
schematically the trajectories of molecules O,

The lines represenf
1 and 2.
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path £; the expansion parameter in (5-1) is the ratio of
the size R of the droplet to the mean free path £.

This correspondence between the density expansion of
the transport properties of a gas and the inverse Knudsen
number expansion of the properties encountered in rafefied
gas dynamics was noted earlier by Dorfman and Sengers [11].
The density expansion (5-2) for the transport properties
is obtained by solving the generalized Boltzmann equation.
Dorfman et-al. have developed from this same equation a
theoretical formulation of the aerodynamic forces on an
object in a rarefied gas stream by treating the object as
a heavy particle [11,12]. Since in our droplet growth
problem the number of molecules in the vapor phase is not
conserved, we derived the mass flux T by solving ;he in-
homogeneous Boltzmann equation subject to the appropriate
boundary conditions. While the details of the collision
integrals are different, it turns out that the collision
sequences we obtained are precisely the same as thosé
derived for the drag coefficient of an object,

Collision integrals determining the first inverse
Knudsen number correction to the drag coefficient of a
sphere in a gas stream have been calculated by Kuperman
and Sengers [21], The results of these calculations will
be reported in a future technical report. It appears
that this procedure, with minor modifications, can be

adapted to calculate the coefficient F(l) in (5-1),
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APPENDIX A
PHASE SPACE ESTIMATES FOR COLLISION INTEGRALS

In the main text of the report we used the fact that
the collision integrals determining the coefficient F(l) are
convergent and that the phase space volumes associated with
the collision sequences shown in Fig. 3 diverge logarithmi-
cally, Here we discuss the evidence for these assertions,
The situation appears to be completely analogous to the
phase space volumes of the collision integrals for the
transport properties of gases, which were analyzed by
Dorfman and Cohen [16]. In order not to prejudice the
result by this analogy, however, we have made an independent
study of the collision integrals derived in this report. A
similar analysis of the collision integrals for the Knudsen
nunber dependence of the force on a macroscopic object in a
rarefied gas was made by McClure and Dorfman [12].

In order to make an estimate of the phase space vol-

(L

umes associated with the collision integrals for T , we

consider as an example the recollision contribution:

_ r -+ ~ >
gt - -4n k%m0, f‘”lz ,/““5*1"1‘22"‘512“1251"o
0 (R)
o &2 g 2,2
(2 expl- 46, - exp-e 24 6,53 | (a-D)
™2 T

> >
Since the integrals over the velocities gl and gz are well
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behaved as a result of the presence of the exponential

(1)

factors, the convergence of PR depends upon the behavior

of the 7 and 6 -integrations for large values of Tyo-

12 12
It is convenient to change the sign of the velocities

El and Ez and to consider the recollision event of Fig. 2
with the direction of motion of molecules 1 and 2 reversed.
Let us choose a coordinate system in which molecule 1 is

at rest at the origin just prior to the (12) collision and
in which the Z-axis is taken in the direction of ;El (see
Fig. 7). The droplet is then moving in the Z-direction and,
at the time of the (12) collision (T=T12) its center is
located at r = -p gl 12 . gl 1o for large values of Tio:
After the (12) collision, molecule 1 moves in this coordi-
nate system in the direction of 612 with a velocity

El'l = Ei-El. In order for 1 to catch up with the droplet,
the perihelion vector 812 must be restricted to a solid
angle proportional to r2 = |E1T12[_2. Thus the phase

space volume behaves for large values of Tyg 8S:

Ja

;dc [;T ———2 , {3-2)
T2

T12
(R)

which is clearly convergent when the upper limit of integra-

tion goes to infinity,

(1) (1)

and FH also involve three succes-

The integrals r

sive collisions and exhibit the same asymptotic behavior
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(L

as PR . The collision integral Péé) requires the occur-
rence of an additional. collision and, therefore, converges
even more rapidly. In fact, it turns out thai the RC-
collision sequence is only possible when the f12) collision
takes place close to the droplet.

We next evaluate the phase space volumes associated
with the sequences of four collisions among three vapor
molecules and the droplet shown in Fig. 3. As an examplé

we consider the term:

7 oo [+

I..(Z) --41r—TR2mn W [d‘r ﬁi'r /‘d.é d.é d-é ds., ,d6.
(02) (23) (12) (01) 0 oo 12/ '2'3 | 17227>37712772'3

(5

o o0 (02) (23) (12) (01)

, g [o* £,"°
A n 2
¢ ,C12K2!3g1'p exp(_gl' ) [—*—_:- exP {—( T* + g3" )} -~

=

- exp .{_(gznz + gsnz)}] ,

(A-3)

which corresponds to the diagram in Fig. 4 and is one of
the terms contributing to (4-5).

For the discussion, we again change the signs of the
velocities so as to reverse the direction of motion of

> > >
the vapor molecules in Fig. 4, Thus gl,gz,gs now refer
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I . T . o
to the initial velocities, €,',€,',€,"'(E,'=£,) to the
1 2 3 3 3
> >
velocities after the (12) collision and gl",gz",E3" to
the velocities after the (23) collision.

We take a coordinate system in which molecule 2 is at
rest at the origin just prior to the (23) collision and
the Z-axis is in the direction of -Ez' (see Fig. 8). The
velocities of the molecules in this coordinate system are

F -+*|* '+l

at various times: giz. &i-gz y 51.2. - Ei -52 and

- > 4

Eings = gi"-gz' (i=1,2,3). The center of the droplet

at the time of the (23) collision (7 = 712+72.3) is

-> ~ "‘. ~ '

located at r = -p - EITIZ - gz 72.3 = 1712- o Tgrg for

large values of Tig- After the (23) collision molecule 2
-

will move in the direction of 32.3 with a velocity €2"2..

In order for molecule 2 to catch up with the droplet, the

perihelion vector must be restricted to a solid angle

. -2 ~ 4 2 ] -2
proportional to r ¢ = |€1712 + £5,'To13] “. Then the phase

space volume behaves as:

-2

~ ~ ¥4 ]
delsz2'3 jd°2'3 delsz2'3| E171a *+ E5'Tgg)
(02) (23) (12) (01)

(a-4)

which diverges as:
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Coordinate system for the (02) (23) (12) (01) collision sequence.
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lim 1nT. (A-5)
12 T-»o00

[
H-
=
S &
-.4
=
N
Il

The phase space volumes associated with the other collision
sequences of Fig. 3 also require the occurrence of four
successive collisions and therefore exhibits the same
behavior at a function of T1o

In addition we encountered sequences of five or more
collisions among three molecules and the droplet. However,
because of the severe restrictions resulting from the
required occurrence of the fifth collision, it turns out
that the corresponding integrands fall off at least as
fast as 712-2. Thus the phase space volumes of these
dynamically more complicated collision sequences are

finite.
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APPENDIX B
ANALYSIS OF HIGHER ORDER TERMS

In Section IV we considered an expansion for the

distribution function:

fG.0 ~£O3H + Ve H +:@H ..., B

>
where f(z)(B,g) should satisfy equation (4-2)., For conveni-

ence, we rewrite this equation as:

(2)
e ,af G):El) : 4f [ o r Y 4 (2) ;
&5 -gfdezdomxm S)(5,8,9,61, 619 (B, E Nt @)+

> -+

&2) + ss (5’812’&1'

wer

2], &2

?> A -+
+ Sz(p!olerI!

where
8,(5,8,0,60 6 = 1O B ENIV G LN+ 1P 3,01 D 6,8+

-1 @@ eV GEin- D3P GEy,
(B-2a)

S, (51819061, 8) = £ O G EN2 P 3,8+ 2D 632D G,y
-1 @3 EH:@6.E)- 1P e iper k) |

(B-2Dh)
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with e,5 = t9¢5H - 1 @,

and
S33,8,0.81.8) =tV GNP I -t W i)W .2,

This equation can be written in integral form as:

t

> > - . > . . -av{(€.)T
£ D @Ep - FPGE vafar), [dyd8 500 L 12

> 2 > > o ~ 3+ >
'[Sz(p'nglz’ 612’5"1’§2)+ 33(P'€1712’ 512’51352)] ’

(B-3)
where
t
#P G = ";[ a712 fd-ézdglz’c 12;av 72 8, (P=E17 518151611 E0),
0
(B-4)

and the upper limit t of the le—integration is again given
by (3-4).

In deriving the contribution to the mass flux pro-
portional to a21na we neglected the terms 82 and S, in
(B-2). We thus identified f(Z)(B,El) in (4-9) with the
first term E(z)(z,zl) of (B-3) and assumed that the other

term in (B-3) would not modify the coefficient of this
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logarithmic term. In this Appendix we shall discuss the
evidence for this assertion. For this purpose we shall
show that the correction term to §(2>(5,E1), as- given by
(B-3), leads to contributions to the mass flux I' that are
of order higher than azlna. The mathematical assumption
implicit in thie procedure will be discussed at the end
of this Appendix,

The correction term to }(2)(5,3) is obtained by
iterating (B-3) once; that is, we approximate f(z)(ﬁ,E)_
in the S2 term by E(Z)(B,E). This then gives for the

a21na contribution to the mass flux T:

-»> -~ A >
-47rR2mnmm°° lim 21 fdglel‘p f(z) (P:@l) -
o+ a 1lno g ~¢0
1 Pe

- @ é5(2) . (B-5)

Here F(Z) is the contribution to the mass flux from

- -
f(2)(p,g) and is precisely the coefficient in (4-12). The

correction term 65(2) may be written as:

’

57 (2) 65{2) + éféz) (B-6)

where
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@ = [f(O) aAni® n] . [;(2)(1.)f(0) (2.)] N

- 1 ~
- [f(‘” @ P (2 | - [f(Z)(l) g(2) ] »  (B-6a)

6']::;2) = [f(l) (1')1'(1) (zo)j - [f(l) (1) f(l) (2) ]’ (B-Gb)

and we have again used the shorthand notation introduced in

(4-13). It remains our task to show that 6~(2) and 6552)

vanish due to the limit @+0 contained in these terms.

Considering first the 6P(2) term, we decompose 1(2)
to obtain:
iD ey =126, ) + 122G, (B-7)
where
t
- A —G.V(EQTis - . ->
“fd"'iqﬁﬁsd‘iia"iae 8y (h-€ 733049, 84,€3)
f(2) . B _ 0 -+
I (psgi) = for e"i € I(p),
-
0 for £, € II(p) (B-7a)
(
T(p i ) a.v(gl)'r
i3
fd"’sfdgad"is 13€ 8y (b migB 5.6 4,8)
2@ 3y =] °
17 (PrE5) =9 for ei e II1{(p),
0 for £, € I(p). (B-7b)

->
and T(B,gi) is given by (3-5). We thus have in analogy to

(4~-15) :
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o P = [P @) |+ [P @ @ [+ 1O i P )]s

+ [P a2 @e) |+ [+ Qi P@) |+ [32 @ O]+

s [1PWEP @ |+ [P0 Q@ |- [1 O @i @]+

- [P wEiP @ - [EP ey @ |, (8-8)

where gII(Z) = g(2) gives only a contribution when

A . (0) _ - (0) (0)
E eII(|p Ellel) If we now substitute f = fI + fII

and f(l) - f(l) + f;%)’ as given by (2-14) and (3-6), into
(B-7a) and (B~-7b), and then in turn substitute (B-7a) and
(B-7b) into (B-8), we find that 6P(2) is given by a sum of
integrals. Each of these integrals is associated with a
collision sequence involving five or more collisions among
four molecules and the droplet. The leading contribution is
determined by those integrals that are relaéed to sequences

of five successive collisions; these sequences are presented

in Table III.
As an example we consider the collision sequence

(03) (34) (13) (12) (01) which is schematically represented

in Fig. 9. The contribution from this event to 61"(2)

is given hy:
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TABLE 131

ascociated with 4T, (2),

Sequences of five successive collisions among four molacules end the droplet

Term in (B.6)

Collieion sequences

-[f§°)(1‘) ;iz) (zl)]

[}{z’u') f{"’(z')]

[:iﬂ)m ;{2) (2)]

[fg") a" Eﬁ) @]
[;&’(1') :i“)(z')]

[ Eg? @]

(03) (34) (23)(12) (01)
(04) ¢34) (233 (12) (01)
€64) (3%) (23) (12) (01)
(02) (26) (23) (12) (01)
(04) (24) (23) (22) (01)

€03) (34) (13) (12) (01)
(04) (35)(13) (12) (01)
(043 (38) (13){12) (01)
(01) (14) (23)(12) (01)
(04 (14) (13) (22 {01)

(03) (34) (23) (12) (01)
(04) (36 (23) (T2) (01)
(04) (3%) (13) (12) (01)
(02}¢z4) {23) (02) (O1)
{04)(24) (23) (12) (01)

(04) (7€) (23) (12) (01)
(03) (3%) (23) (12) (01)
(02) (28)(23) (12) (01)
(03) (34) (Z3)(12) (A1)
(04) (34) (23} (12) (01)

(o%) (T%)(13) (12) (0L1)
(03) (3%) (13) (12) (01)
(01) (T3) (13> (12){OL)
(03) (34) (33) (12)(01)
(04) (34) (I3) (12)(01)

(04) (28) (23) (12) (01)
(03) (3%) (23) (T2) (01)
(023 {Z%) (23) (12) (01)
(033 (34) (TI) (1) (01)
(04) (34) (Z3) (12) (01)

(02) (28 (23) (12) (01}

01) (13) (13) ¢12) (O1)

(02) (28 (33) (IT) (0L)

(04) (30) (73) (12) (O1)
(02) (26) (23) (22) {01)
(04) (24) (233 (12) (01)
(04) (2%) (F3)(12) (01)
(03) (38) (Z3) (12) (O1)

{04) 3T @3) (12) (o1)
(01) (18) (13) (12} 401)
(04) (14) (13) (22)(01)
(04) (1%) (13) (12) (01}
(03) (38) (13) (12) (01)

104 (3%) (73) (1) (01)
(02) (24) (23) (02) (01)
(a4) (24) (23) (A2) (01)
(04) (22) (23) (12) (0D

(03) (34) (23) (12)4{01)
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Fig. 9.

Example of a sequence of five collisions among four vapor molecules

and the droplet.
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=(2)

= - -5 2 . a
T (03) (34) (13) (12) (01) ~ ~47 K mnw, lim oo
o 00 )
d f ) > > 8 -5 ~ > n
0 .

-)-
N 2
Kygkyighgrgby P expl-av(T 5 +7;,4)] exp{—(féz‘2 +£4'7))

wl
SIS W SRS )
T
(B-9)

where we have replaced v(el) and v(&i) by the constant v
gsince this change will not affect the result. The meaning
of the velocities Ei,gi and Ejf is explained in Fig. 9.

The symbols Tij, 313 an§+x1j réfer to the collision that
produces the velocities ﬁi and éj. In order to study the
behavior in the limit a*0, we need to estimate the phase
and T

space for large values of T 1'3- Using the same

1
arguments as in Appendix A it is evident that 83.4
is restricted to a solid angle proportional to

% Z T -2 "
|€1'7'12 + E,.lTlla + 531‘3'4| . After carrying out the
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integration over Tgrgs the integrand will be proportional
re -1 .
to 151712 + §1'71.3|. Thus the asymptotic behavior of the

integrand is determined by an integral of the type:

. . ) /9? e—av(le + 7113)
I = ;jg TﬁEdelzudTl'S — — . (B~10)

0 ) 81712 + E17T1v3]

Using the coordinate transform x = VT o and y = avT{ig s

we see that:

o~ (X+Y)
I == lim fdx fdy 5 (B-11)
a+0 |E1x + Eiy|

which vanishes in the'limit a+ 0, Similar argumente can
be used to show that the contribution to (B-6) from all
sequences in Table III vanishes in the limit a+ 0.

If we next consider the term 6552) in (B-6b), we find
that it may also be decomposed into a sum of integrals,
each of which may be associated with a collision sequence.
These collision sequences, however, involve six or more
collisions among four molecules and the droplet. The phase
space volumes associated with these sequences are thus
smaller than those associated with the sequences in '
Table III and 6TS2) will likewise be zero.

In the main body of this report we extracted from
equation (4-2) an a21na contribution to the mass flux T

=(2)

and determined its coefficient T In this Appendix,
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we have demonstrated that the leading contributions from
the terms neglected are of higher order in a and do not

modify I (%),

A completely rigorous proof of this logarith-
mic term, however, should consider all of the higher order
terms and show that their sum is also of higher order than
a21na. For that purpose we would not only need the solu-
tion of (4-2) to all orders in a, but also the sum of the
higher order terms in (4-1). 1In this respect, the situation
is again analogous to the density dependence of the trans-
port properties of gases. For a three dimensional gas a
resummation of the most divergent terms encountered in =a
formal power series expansion in the density n leads to the
nzlnll term in (5-2) with a finite coefficient ﬁz [16,
20,22]. Again for a rigorous proof one would have to show
that a resummation over all the less divergent terms would
not change this result. Such a complete proof is not yet
available for the density dependence of the transport

properties, nor for the Knudsen number dependence of the

mass flux considered in this report.
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