WAKE CHARACTERISTICS STUDIES
Chester E. Grosch, et al
Ocean and Atmospheric Science, Incorporated

Prepared for:
Office of Naval Research
Advanced Research Projects Agency

22 November 1972
Final Report

Wake Characteristics Studies

by

C. E. Grosch, B. Harris, E. Y. T. Kuo, and R. Gershman

Submitted to:

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22202

November 22, 1972
Technical Report

Chester E. Grosch, Bernard Harris, Edward Y. T. Kuo, and Russell Gershman

November 22, 1972

Distribution of the document is unlimited.

None

Advanced Research Projects Agency

The work effort under the contract is briefly summarized. Details are covered in the list of technical reports.

Three general areas related to nonacoustic detection were investigated:

1. Diffusion from the wake
2. Signal processing
3. Analysis of oceanographic experiments
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
<tr>
<td>Turbulence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Final Report

Wake Characteristics Studies

by

C. E. Grosch, B. Harris, E. Y. T. Kuo, and R. Gershman

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 1910

ARPA Order Number: 1910
Program Code Number: 1E20
Contract Number: N00014-72-C-0127
Principal Investigator and Phone Number:
Name of Contractor: Ocean & Atmospheric Science, Inc.
Effective Date of Contract: August 1, 1971
Contract Expiration Date: July 31, 1972
Amount of Contract: $104,728.00
Scientific Officer: Director, Fluid Dynamics Program

Short Title of Work:
Wake Diffusion Modeling

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by ONR under Contract No. N00014-72-C-0127.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.
This is the final report under Contract No. N00014-72-C-0127 for the Office of Naval Research, sponsored by Advanced Research Projects Agency (ARPA Order No. 1910), by Ocean & Atmospheric Science, Inc. The work effort is briefly summarized below. Details are covered in the attached list of technical reports. Three general areas related to nonacoustic detection were investigated:

1. Diffusion from the wake
2. Signal processing
3. Analysis of oceanographic experiments

The basic objective of the first task was to study the diffusion of a passive scalar in the turbulent wake of a self-propelled body, and out of that wake under the influence of the ocean turbulence. In order to accomplish this task, a number of detailed calculations were carried out. The late stages of the diffusion were modeled by calculating the diffusion from a well-mixed and essentially non-turbulent wake under the influence of the background ocean turbulence. In order for this study to be meaningful, it was necessary to examine the validity of various diffusion models and to examine the related data on diffusion coefficients. The existing knowledge of oceanographic diffusion processes and data on measured diffusion coefficients in the ocean (both near surface and at intermediate depths) were reviewed. Based on the existing diffusion data, related turbulence data for the oceans, and basic turbulence theory, it was possible
to obtain reliable estimates of the ocean diffusion coefficients at inter-
mediate depths, which are the region of interest. Finally, the diffusion
in the early wake was modeled with a point source. Using this model,
equations were derived which allowed the calculation of the concentra-
tion of the scalar through the stage of wake growth and subsequent
collapse and deformation.

The second task was that of signal processing. Several theories
have evolved about how the passage of a submerged object can alter the
surface wave power spectra. The evaluation carried out under this con-
tract is of a system and signal processor which examines the consequent
alterations in the directional wave power spectrum and uses the maximum
likelihood ratio to decide if such passage has occurred.

The third task, oceanographic experiment analysis, was com-
bined of several subtasks. These included a critical review of available
methods for measuring short surface gravity waves and capillary waves,
an analysis of the potential for using the acoustic techniques to probe the
fine structure of the thermocline, and a review of the state of knowledge
of the thermal structure of the air-sea interface.

The detailed technical discussion of the results of this research
is contained in the technical reports, Table I, prepared under this
contract.
<table>
<thead>
<tr>
<th>OAS Report No.</th>
<th>Title and Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>71-057</td>
<td>Equalization of the Thermistor Response B. Harris</td>
</tr>
<tr>
<td>71-062</td>
<td>Preliminary Evaluation of an Active Sonar System for Measuring the Fine Structure of the Thermocline. B. Harris</td>
</tr>
<tr>
<td>72-065</td>
<td>Some Comments on the Modeling of the Collapsing Wake. E. Y. T. Kuo and C. E. Grosch</td>
</tr>
<tr>
<td>72-070</td>
<td>Preliminary Analysis of Using a Vertical Array Sonar System to Measure the Fine Structure of the Thermocline. B. Harris and R. M. Chervin</td>
</tr>
<tr>
<td>72-073</td>
<td>Some Comments on the Modeling of the Turbulent Wake of a Self-Propelled Body in a Stratified Fluid. E. Y. T. Kuo and C. E. Grosch</td>
</tr>
<tr>
<td>72-083</td>
<td>Signal Processing of Ocean Surface Effects (Secret) B. Harris and R. Gershman</td>
</tr>
<tr>
<td>72-089</td>
<td>Bi-mode Hypothesis and Horizontal Oceanic Turbulent Diffusion I. Theoretical Predictions E. Y. T. Kuo</td>
</tr>
<tr>
<td>72-092</td>
<td>Turbulent Diffusion in a Stratified Fluid with Application to the Ocean. C. E. Grosch</td>
</tr>
<tr>
<td>OAS Report No.</td>
<td>Title and Author(s)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>72-093</td>
<td>A Simple Diffusion Model in a Collapsing Wake. E.Y.T. Kuo</td>
</tr>
<tr>
<td>72-105</td>
<td>Thermal Structure of the Air-Sea Interface. C.E. Grosch, E.Y.T. Kuo and M. Bernstein</td>
</tr>
<tr>
<td>72-106</td>
<td>Final Report: Wake Characteristics Studies. C.E. Grosch, B. Harris, E.Y.T. Kuo and R. Gershman</td>
</tr>
</tbody>
</table>