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ABSTRACT

An analytical investigation of the motion of ions in a
L fluid was conducted to provide insight in the use of ions as
a fluid flow diagnostic tool., Assuming small space charge
density, potential fields and flows were considered. The
specific cases studied were fine corona wire to a circular -
- cylinder, Both steady and non-steady flows were considered
and the trajectories of the ions leaving the cornona wire
were mapped.
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NOMENCLATURE

Symbol Definition :
a "Pole", function of (r,,rz,S) ]
% Unit vecter in n-direction b
C, Lift coefficient
i D Diameter of cylinder 1
| dy Distance from origin to wire \‘;
] d Distance f:om origin to cylinder B
| ) |
E Electric field strength
' Ey x-component of E !
U Ey y-component of i? I
Fy Lift force 4

f,e,h,i,k,2 Functions

£',8',h',1",

k',2' Dimensionless functions
K Ion mobility
K, Mobility at original conditions

V 4
Dimensionless parameter (n,.n,)r,u E

= 0 = T = o3
=

P Pressure

P, Pressure at original conditions

Ly Polar coordinate

n Corona wire radius

b Circular cylinder radius

S Center spacing between wire and cylinder
Sp Strounal Nusber (1) :}
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Symbol

t'

Y

Definition

Time

t
n

Free stream velocity

Corona wire potential
Drift velocity of ions

Fluid velocity

Ion velocity

Ion velocity in x-direction
Ion velocity in y-direction
Complex potential for fluid
Cartesian coordinates

s sove)

Dimensionless lengths (x' =

Rl b

Angles ions leave corona wire
Angle ions intersect cylinder
Permi.ttivity

Bicylindrical coordinate
Value of 7n at corona wire
Value of n at cylinder

Polar coordinate
Bicylindrical coordinate
Circulation

Vorticity

Fluid mass density

Electric charge density
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L Symbol Definition )i
Ppe Fotential for fluid ;

L Vi Stream function for fluid !

L w Circular frequency .
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I. INTRODUCTION

During the summer of 1968, Dr. Henry Velkoff of the Ohio State
University performed experiments measuring the ion flow from a corona
wire to a circular cylinder immersed in a fluid stream at varying
Reynolds numbers. The experimental data shows oscillations in the ion
flow (at approximately the Strouhal frequency) at certain locations on
the cylinder and non-periodic variation of the current at other loca-
tions. The intent of the tests wvas to determine the efficacy of the
"ion flow" technique for diagnosis of separation, transition, etc. The
intent of this thesis is to analyze the same phenomenon from the stand-
point of the ion trajectories.

ITI. STATEMENT OF PROBLEM

Consider a circular cylinder of radius (r,) in a fluid stream of
velocity (U). Directly upstream of the cylinder is a corona wire of
radius (r,), center spacing (S), and potential (V). The ions possess a
mobility Ks and are leaving the coroma wire at an angle (o) and inter-
secting the cylinder at an angle (7). The problem is complicated by
the unsteady behavior of the flow and the (possibly) varying mobility.
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Figure 1 - Statement of Problem




This work will compute the jon trajectories, tauking into consideration
the unsteady nature of the flow and the variation in the mobility.

IIT. ANALYSIS

Corona Phenomena

Corona 1s the expression used to describe the class of luminous
phenonmena associated with the current jump at a highly stressed elec-
trode preceding a spark breakdown of the gap. Associated with corona
is an electrode of small radius. If such an electrode is placed near
one of low curviture, the electric field induced is extremely high at
the highly curved electrode. As the potential difference between the
electrodes is raised, ionization of the air in the immediate vicinity
of the highly curved electrode occurs; however, no spark crosses the
gap because the field is too low farther from the curved electrode.

The resulting corona discharge will be of positive or negative character
depending upon the electrode polarity. If the highly curved electrode
or wire has a negative potential, the positive ions formed near the
wire acquire relatively high energy from the field and essentially bom-
bard the cathode wire. These positive ions, while forming a space
charge near the cathode which gives the negative corona its oscillating
characteristic, will produce the necessary electrons to sustain the dis-
charge. The electrons that are formed will travel relatively slowly to
the anode because of the reduction in field strength away from the wire.
These electrons will generally not have enough energy to cause further
ionization and may be expected to attach themselves to neutral molecules
of electro-negative gases forming large, even slower moving, ions. A
wire of positive potential will attract the ionized electrons with great
intensity causing electron avalanches toward the wire. This frees a
positive ion space charge which moves toward the cathode sustaining the
discharge although reducing the field at the wire. The space charge
present in the region about a corona discharge causes a marked distor-
tion of the electrostatic field (as Poisson's equation predicts). The
fact that the highly ionized region constituting the corona envelope
occuples only a very small volume near the wire permits lne theoretical
determination of the electric field from Laplace's equation rather than
from Poisson's equation. (References 2, 8).

Electric Field Equations

Appendix B consists of an analysis of the electric field between
two infinitely long conducting cylinders of different radii (r,, r,),
center spacing (S) and electric potential difference (V). The results
of this anmalysis (which assumed zero charge density) are

'\3_\..'_.1 il




E = - ap m{cosh 1n-cos 6g)
E, s - v, | x(xZ+y“-a%) _ (x-2) |
(ny =n2) l[(xaﬂrz-a"') + (2ay)®]  [(x-a)® + ¥=])
. Vv . \ x2 + y° + &? - 1 '
i BT ) Y | G5y )2 + (2] (e = ¥21§
! where
| L \ o o TOPE? + ay)®
; (x-a)® + y°
E | U o rar —2——-—;'L-—
= - sinh-! 2
e - o ()

N2

sinh-1( &
r-

1 :
& =3¢ [S4 =25 (r; %+v57) + (rgz-rlz)"]

Also,

& = (8% )

dp = (aZ+ ry~)”

The geometrical significance of n and a is shown in Appendix E.

The corona wire will be ignored for the determination of the fluid
velocity field. This is justifiable for two reasons: (1) the neces-
sarily small diameter of the corona wire, (2) the high electric fields
in the immediate vicinity of the wire dominates the movement of the
ions in that region.

The diameter of the corona wire in most experiments ranges from
.0015" to .0OL",




Flow Around a Circwular Cylinder

The motion around a long circular cylinder immersed in a fluid
stream is interesting for the variety of changes which occur with an
increase in the Reynolds number. At a low Reynolds number the effects
of viscosity are sensible at large distances from the cylinder, in
particular the fluid at the back is retarded. At higher Reynolds num-
bers two symmetrical standing vortices are formed at the back. With
increasing Reynolds numbers these vortices stretch farther and farther
downstream from the cylinder. Eventually the standing vortices are
drawn out to a considerable length, become distorted, and break down.
Then develops the characteristic state of flow in which vortices are
shed alternately and at regular intervals from the sides of the cylinder,
with vortex trails behind: this type ot flow persists over a large
range of Reynolds numbers. The asymmetrical arrangement of the vortices
alters the pressure distribution around the cylinder. The eddying
motion has a definite frequency for each Reynolds mmber. Downstream
the vortices assume what appears to be a regular pattern. The vortices
arrange themselves in a double row, in which each vortex is opposite
the mid-point of the interval between two vortices in the opposite row.
In suitable circumstances the trail of vortices persists for a consider-
able distance downstream. The vortices actually do not arrange them-
selves exactly on two parallel rows with a definite spacing ratio. For
theoretical purposes the system was considered by Von Karman to be com-
posed of isolated vortices on two parallel rows. At higher Reynolds
nmbers the vortices diffuse so rapidly after their formation that it
is no longer possible to speak of the formation of a double row. At
the back of the cylinder, however, vortices continue to be shed with
regularity until approximately Reynolds number = 1.3 x 105. From
Reynolds number = 1.3 x 105 to 3.5 x 10° there is loss of the dominpant
periodicity (regularity) and there is a wide spectrum of frequencies to
contend with. Above 3.5 x 10° recovery of the pronounced periodicity
occurs. The range of Reynolds number 1.3 x 105 to 3.5 x 10° is called
the "Critical" and "Post-Critical" regime. Above 3.5 x 10° the regime
is termed "Transcritical.”" The classical description of the critical
Reynolds number is (roughly): "At suberitical Reynolds numbers the
separation is laminar, and occurs early, on the front of the cylinder.
With increasing Reynolds number, transition to turbulence in the bound-
ary layer moves ahead of the laminar separation point, the now turbulent
boundary layer can withstand a greater pressure rise, and separation
moves to the rear of the cylinder." Roshko postulates a new classifica-
tion: "at subcritical Reynolds numbers the separation is laminar, in
the supercritical range there 1s a laminar separation bubble followed
by turbulent separation, and in the transcritical range the separation
is purely turbulent. (References 4, 6, 10, 12)

It is well known that there acts on the cylinder an oscillatory
1ift force of the same order of magnitude of the mean drag and an oscil-
latory drag force superposed on the mean value. The oscillatory forces
possess the same frequency as the shedding vortices (approximately).
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Practically all the unsteady measuremants in the broad subcritical range
exhibit more or less raniomly modulated signals at the Strouhal frequency
whether they represent local values (e.g. local pressures on the cylinder)
or integrated values (e.g. forces on short sections of the cylinder.)
Figure 2 shows the results of experinents determining the root mean
square oscillatory lift coefficient as a function of the Reynolds number.
(References 4, 5, 10).

In the cases of the motion of water and air the Reynolds numbers are
very large because of the very low viscosities of these fluids. It is
reasonable to expect good agreement between experiment and a theory in
which the influence of viscosity is neglected, i.e. with potential flow
th2ory. The pressure distribution according to inviscid flow theory
aroud a circular cylinder differs considerably from experiment depending
on whether the Reynolds number lies in the range of subcritical or super-
critical -- better agreement in the supercritical range. Experimental
and c.lculated values show a measure of agreement on the front side, but
at the rear of the cylinder the differences between experimen{' and theory
are very large, and explain the large drag force experienced by a circular
cylinder, The inviscid flow theory predicts zero drag. Although, gener-
ally speaking, the theory of inviscid fluids does not give good results
for drag celculations, the 1ift can be calculated from it successfully.
(Reference 13).

It can be shown that if irrotational flow exists within some portion
of fluid, then the circulation (x), which is the line integral of the
velocity vector taken around a closed curve within a fluid region, about
any closed curve is zero and remains zero; and the permanence of irrota-
tional flow is established. In the first instance, flow is irrotational.
Due to the lack of slip &t the boundaries, rotation starts here. Heat
is imparted to a fluid from a body in the flow in exactly the same manner
that vortices diffuse into the fluid. For very slow motion, i.e. low
Reynolds numbers, heat flows out in all directions from the boundary,
making the flow rotational. For high Reynolds numbers, the only fluid
heated wonld be in the narrow layer of fluid surrounding the body and in
the wake. Similarly, rotational flow is confined to the narrow layer
adjacent to the boundary and to the wake., Therefore, the flow can be
analyzed by considering the generation of unsteady vorticity in the prox-
imity of the cylinder and the resulting feedback on the velocity and
pressure fields near the cylinder. (References 10, 15).

Consider a cylinder shedding a Von Karman-like vortex trail (Figure
3). There is a time dependent amount of vorticity contained within the
Curve C since vorticity in the wake is passing through the curve and the
rate of generation of vorticity is also a function of time. For sub-
critical and "transcritical' flow the vortex generation is accurately
periodic. Consequently the amount of vorticity (¢) enclosed in the curve
can be represented mathematically by

£ = g sin wt
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Figure 3 - Cylinder Shedding Vortices

where ¢, is the maximum vorticity of a single vortex and w is the shed-
ding frequency. The amount of circulation along the curve is propor-
tional .to the amount of vorticity, hence the circulation (k) is

K = kKo 8in ut

If we require the circulation about the curve to be zero, we must
add -x to x. This may be done by adding an isolated vortex at the
center of the cylinder with a vorticity opposite to the vorticity gener-
ated at the cylinder wall. Superposing this isolated vortex to poten-
tial flow around the cylinder enables us to determine the feedback effect
of the unsteady vorticity generated on the flow upstream of the cylinder.

Fluid Velocity Analysis

The complex potential Wp = -Uz is for uniform flow with velocity U
in the positive x-direction. The complex potential Wp = -UrZ?/(z-zo) is
for a doublet at point zo with axis in the x-direction. The superposi-
tion of the uniform flow upon the doublet yields steady flow around a
circular cylinder. The complex potential Wy = -(ix/2m)en(z-zo) is for
circulation k about the point zo in the negative (clockwise direction).
It can be shown that superposing this potential on the two previous
potentials still represents flow around a circular cylinder. The total
complex potential is then (Reference 15)

el Uk
Wp = Uz = ~—— 2nfm(z z0)

To correspord with the notation used in deriving the electric field
strength components, we will call the radius of the cylinder (r,) and
the center (zo = dy). Therefore




Wp = -lj[z + -!-ﬁ-]- 1k I (2=-dp)

z-dp ] 21
8o
r” ik
W =-U[x+1 &——]-—bn x=dp+1y)
F Y T-dseiiy P (x=dp+1y

Separating both sides of the equation into real and imaginary parts
gives

op = U [x . X ..L"dLJ... £ tan-!

(x-dp)2y" )" 2m x-d

The velocity components are computed by taking minus the gradient of the
potential and are

Vo, _ _ doF _ 2 ¥2-(x-85)7 s [__L_]
= [1 T [(x'de)2+y2]2] " 2n | (xede FPoy?

Voo = - X oyp 2 L(’E:‘aL]-L &_]
A ? L(x-ap)%y2 ] 2n | (x-dg)%y?

It will be found useful to have the velocity at the cylinder sur-
face for later calculations of the 1lift force on the cylinder. Expres-
sing z in polar coordinates, the complex potential is (for cyliunder at

origin)

2
Wy = -U<re10 + E-.Le"19> = 2K g (reif)
r 2n
which may be separated to yield
= Ur+r22 CoB 0 + =~ 0
D= r + 2n

In polar coordinates the velocity components are Vyp and Vg.
Obviously Vy = O at the cylinder. The total velocity consists of Vge

. _lF _ _ %\«

=
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At the cylinder r = r>,. Hence,

K
VFO):[':r2 = =2U sing - oIrs
-) K
| V¥ | rar, = 20 sino ¥ F

Ion Trajectory Analysis

The ions resulting from the high fields of the coroma wire are
transported from the wire by intera.ctlg)n with the neutral molecules of
the fluid which flows with a velocity Vp(x,y,t). Uncharged molecules

-
or ions with zero mobility will flow at a velocity of Vp. The ions of
one sign coming from the wire have associated with them a space charge
field with an electric charge density pe(y,x) which modifies the elec-
tric field as:

Q1VE (x,¥) = pe(X5¥)/e

Away from the wire we can assume (because of the extremely low
charge density) that the space charge density is negligible and

-
divE (x,y) = O

The coupling between the fluid and the charges under the influence

of the field gives rise to a drift velocity VD(x,y) of the charges "
relative to the fluid.

VD(X,Y) = KE)(":Y)

where K is the mobility of the ions. This expression (which is essen-
tially the definition of mobility) comes from experimental results which
have shown that the velocity of ions and electrons (in a dense gas) is
proportional to the applied electric field. This is true as long as the
energy gained by the ion is of the order of the thermal energy of gas.

The resulting transport velocity of the ions ‘_I’I(x,y,t) is as follows

- - -
Vi(xsy,t) = Velx,y,t) + Vp(x,y)
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or
- - =
Vi(x,¥,t) = Vp(x,y,t) + KE(x,¥)

For increased pressure of the gas, the ion mobility decreases
(over a large range of pressure) for constant temperature approximately
as

)
O
K-ty

where the subscript (o) denotes the mobility and pressure at "original
conditions.”" Therefore

- - Po o
VI(x’y,t) = VF(x,y)t) + ? KOE(X)Y)

Separating the velocity equation into the components in the x and
y directions gives

P

O

Vmx = Vrx + 3 Kofx
PO

Yoy = Viy ¢ 7 Koly

The trajectories for the ion motion can be calculated from the
differential equation that results from taking the ratio of the velocity

components.
dy P

0
o e .Y
—dx i Po

The solution of this trajectory equation for steady and unsteady
flow, constant and variable mobility, and for a wide range of the system
parameters (as will be determined from the dimensionless-sizing of the
differential equation) constitutes the remainder of this thesis.

Let

x' = — y' = l’ B' =--s-, a' = i’ etc.

T2 T> ] ¥

Then the fluid velocity and electric field components are written
2 - (x'- 1\ 2 K y'
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y'(x'-dg') | _ x[ x'-dp" ]

\ = =2U
FY {(x'-de')""' + yl?." 2]1!'2 (x'_d2|)2 + y|2

B o=—te 2 { Xy et x'-a'
(M2-1)r2 (x'%y'?-a'2)" + (22'y")%  (x'-a')® + y'2

Fy _ ' . ) x'%+yt°%401° ) 1
(Np=1, )15 | (x124y12-a12)" 4+ (2aty’)2  (x'-a')2 4 y'2

The above equations may be writtien

Vg = U« £(x',5',d") + £ o g (x',y',d,")

T2
K
Vpy = U-h(x',y',do') + E'J (x',y',ds")
\'i
Ey = = .K{x',y',a’'
\'

-y e)
(n2-1, x>

In general the pole a is

a = ?—J'q- [S“ -287(n "+ 1p%) + (r2% - 1'12)2] 2

For r, <.~ r,, this pole becomes

a= 2—';- [Sa-rzz]

Also, in general, the distance from the origin to the center
of the cylinder is
dy = S-4 = S-(a+x, %)%

So, since a is of the order of V:

1
de = S-a=5-2¢ (8% - rp%)

which becomes
L [g2, p.2
d> = Py [S + T ]
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In the primed coordinates the expressions for the pole a' end
Q' are

1 o
! o c— $e -
a = (s 1)

&' = Eﬁ?T [S'7+1)

Therefore a' and dpo' are functions solely of the rutio of center
distance to cylinder radius. Therefore the fluid velocities (that are
a function of the space coordimates and dp'), and the electric field
strength (which is a function of the space coordinates and a') are all
functions only of (besides U, V, r,, K, (1,-n2) the space coordinates
and the ratio of the center distance to the cylinder radius (S').

So

Vpx = U« £'(x',y',8") + ri-s'(x',y',s')
2

K
Vpy = U-h'(x',y7,8") 4 27 3 (x',y",8")

\

N - K'(x',y',8")

Ex

\i

Y e Vgt e'(x',y',8")

To fully w.derstand the effects of the nonsteady circulation and
variable mobility on the ion trajectory, three separate cases will be
studied: (1) zero circulation, constant mobility; (2) unsteady circula-
tion, constant mobility; and (3) zero circulation, variable mobility.
Three separate cases lead to different but similar trajectory differen-
tial equations.

For case (1) the trajectory equation becomes

L)Y

(712 =T ) T2
KOV

(2=m )Tz

dy dy' U-h'+

dx dx' U-.f'+

K'
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) Dividing the numerstor and denominator by the free stream velocity
(U) gives .

V
dy' h' + Ko — g :s
= (n2=n, )raU
dx* f! KoV « K

+ | e ————
(na-n, )TaU

Therefore trajectories for this case are controlled by the two

parameters
oV
s*, _h';_
(n2=m )roU

Henceforth the second of these parameters will be designated (M)

\";
Me — oV
(n2=m )raU

For case (2) the equation becomes

Q' h'+—2 sint-JteMe g
raU

—— o e

Ko
[ 1y — e ! « X!
dx f +r2U sinuwt-g'+M-K

Since the time appears in the trajectory equation case (2) becomes the
problem of solving simultanecous differential... equations, the trajec-
tory equation being one and either

K \'4
gﬁnU-f’-&—oSin(ﬂt-g'+._K_9_—.K'
dt Tn (no-m )T2

or

K \'4
g= U-h'+ == sin mt-J'+-—&—— A
dt T2 (no-n, )x2

being the other equation. Let

proo U _
2rs D
13




This leads to
1 dx' Ko wD
= B T — o) . g . K
7 &t +rzusin( t) g'+ MK
and
1 dy’* Ko uD
— _._.hl e 1 _tl . L} g | ]
5 At +r?Usn(U ) JV+M -2

As stated previously w is the shedding frequency.
Theiefore

wD

= . 27118

U T
vhere ST is the Strouhal number. So

1ax _ g, Ko gin (omsptt) + M. K!
2 dt U

and
K
L8 ey -2 gin (2msgtt) -3t + Mo
2 at! roU
Consequently case (2) has four paramcters

K
S'9 M’ ;%’ S'I'

Finally case (3) has the equation

PO
E h'+‘P‘M'I,'

dX' f1+£P°_M,Kl

We must now determine the pressure ratio. For an incompressible, steady

flow, the Bernoulli equation is (reference 15)

1
20Vg2+ P = ZpUP4 By

Therefore

-

P
—=1-= £ (U2-vg?
P Po( )

3 = B=




2 P 1o
— = 1-= .= U2(1-f'"-n"?
P 2 P, ( )

Hence, the trajectory equation becomes

h' s M '
ay' _ 1-%&%—(14 2.p 2)
dx' ' M A
100" 2 12
1-5 55 (1-02ne)

And the variable mobility case is controlled by the three parameters

pU?

S5'y M,
PO

VR L o

Case (1) and (3) are ready for solution now, but case (2) requires a
determination of the proper amount of circulation for which to solve the
equations. As stated previously inviscid flow theory has been rclatively
successful at calculating the lift on bodies immersed in a viscous fluid
stream. For steady circulation, the 1ift force is directly proportional
to the amount of circulation (Streeter). Morkovin, Gerrard and Fung all
summarize their own and other experiments which determined the 1ift co-
efficient (oscillating) on a circular cylinder. It thus seems reason-
able to attempt to find the proper amount of circulation from an inte-
gration of the pressure about the cylinder and the relation of this
value to the experimentally determined lift coefficients. For nonsteady,
incompressible flow, Bernoulli's equation is (Reference 15)

VF2-M+2=F(1:)
ot P

where F(t) is an arbitrary function of time. We desire to find the lift
force by integrating at the cylinder, therefore

Vp = 2Usino + ’_K
clirs

and

= =2 Ur,co8sn+ io
qud 2 q P

Pp = =2Ur, cos 0 + E% Ko sin ut

15




Hence,
M =-Q-Ko w co8 wt
dt 2n

Therefore,

=p [F(t) + »l(cos wt)o - = (2U sin 0 2K°

T sin wt) 2]

The force in the y direction is

o Zo
- ” s

21
Fy =[ Pr> dn sing
)

Substituting the pressure (P) into the integral gives

bei B

| Fy = pUkg sin wt + prowko cos wt

which can be written

| s

| Fy = pko- U2+ (rgw)z [sin (wt+7)]

- =ais US ‘ :
v = tan T L 1
Agam’ { i
U | |
w=2WSTB=HSTr—- b
]
1 So -
i
2 TiSpU -
lel—pK »/U +Tp (1‘2 ) L
| '
' and _
'Fyl = oy UL+ (mSp)? U3
| §
1R
Which is interesting because of the dependence of the oxcillating 1ift !9

force on the Strouhal number. However k, is an unknown quantity and no
conclusions can be made regarding the variation of the 1lift force with

the Strouhal number.

-y

[

The 1lift coefficient is defined by

F
Cp = T=i— '
‘L 7 LpoU¥D
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Substituting, '
pKoUV 1+ ("ST)2 /j

L~ ;.l;pU"’Er?

Hence
Ko CL

r>U —\l+ Z"ST,

Lo

where (.f?.)is exactly the dimensionless parameter found for case (2)! | 8
rzU 4
Since Cp, and Sy are known for a wide range of Reynolds numbers,
the equivalent amount of circulation required can be calculated.

TR Ve

A calculation of the drag force for the assumed oscillating circu-
lation showed this force to again be zero.

RS

The corona wire was neglected in the fluid velocity analysis
because of the small diameter and high electric field associated with
the corona effect. It is now possible to determine approximately what
radius wire is required for this assumption to be valid.

From potential theory, the maximum fluid velocity about any circu-
lar cylinder occurs at the "shoulder" and is twice the free stream veloc-

ity.

If we require that this maximum fluid velocity is less than one 3
percent of the drift velocity caused by the action of the electric field '
on the ion, we have a means of calculating r,.

s W - K|E
v;{m=2u, Vp -=K|E|

Therefore
‘Vi-"" oy
— max - = < 0.01
l Vp K|E]
- anV
F - =———— (coshn = coseB)
a(n>=y )
and

n = sz'mh'l(%)ﬂzﬂ[2 (%z - 1)-/,]

r




ilence for y, small, i.e. r, v< a. a

m:en(r—l-) ﬂ

and
Coshny, = 1 (enl + e"nl) = & i
’ rl A
So we can neglect the cos 6 term in the field strength equation. i 1
Therefore j
12 - o i
- (n2=m )y LI
So 4
; {4
IVF| _ 2U 2Urs (n2-ny ) (1‘1 )
= 3 = = b
lVDI K Vv KV b 2
(N2=m )1y
1 Or
Sc.o0—8 . oo5M
ra 2rs(n2=-n, )U

It was determined that a suitable minimum (for a typical experiment)
for M is 1/8. Therefore

r' = % s 6.25 (104)

In Dr. Velkoff's experimert, the diameter of the corona wire was
.0015", the diameter of the cylinder was 6". This yields an r; "' of
2.5(10-*) which satisfies the criteria.
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TV.

DISCUSSION OF RESULTS

For case (1), zero circulation and constant mobility, it was
decided to consider three values of S' (1.5, 2, 3), (Dr. Velkoff's
experiment used 1.5), and three values of M (2, 0.5, 0.125), (Dr.
Velkoff's experiment M was approximately 0.7). The ion trajectories
(streamlines) for this case are represented in Figures 4 through 12.
The most striking feature of these curves is the fact that although the
trajectories of the ions are greatly altered by variation in the peara-
eter M, the point at which the trajectories intersect the large cylin-
der is not changed very much. This indicates that for a fixed S'
(Corona wire spacing), the average current reaching the large cylinder
does not vary significantly with M. Since the variation in M could
represent a 16-fold increase in the free stream velocity this is a
significant fact. The current distribution along the cylinder was
calculated by assuming that the current density around the corona
wire was uniform. Therefore the current density at the cylinder would
be proportioned to the ratio of the angle at which the ion leaves the
corona wire to the angle at which the ion "collides" with the cylinder.
So

an+l -an

‘T[7n*‘»(7 -7)]=
nii n 71'“1 _7n

Where n denotes the trajectory number, J is a dimensionless number pro-
portioal to the current density, « is the angle at which the ions depart
the corona wire, and y is the angle at which the ions intersect the
cylinder. Figure 13 through 16 are the results of this calculation and
show clearly the small effect the variation in M has on the average
currents and the relatively large effect the variation in the parameter
S' has on the average current. Indeed, there is only a 14 percent
change in the maximum current (at the stagnation point) for the 1600
percent change in M. Of course, the corona phenomenon must be considered.
Since M is directly proportional to the applied voltage, an M variation
due to voltage variation would undoubtedly produce a different number of
ions at the corona wire and a subsequent change in the absolute velue of
the currents at the cylinder. Hence the shape of the current of Figure
13 through 16 are their only distinguishing geature for voltage varia-
tions. These curves indicate the currents at the front of the cylinder
would decrease with a rising free stream velocity. This contradicts

the experimentul evidence from Dr. Velkoff's work. The data from his
experiment showed an increase in the stagnation point current for an
increase in free stream velocity. Dr. Velkoff's experiment included
"field shaping" electrodes at ground potential in the vicinity of the
corona wire which may account for the difference. Possibly the higher
drag »n the corona wire cuaused a deflection toward the cylinder which
increased the current. A rough calculation showed a deflection of
0.125 inch would be required to account for the rise in current measured.
This amount of deflection is unlikely. Another possible cause of the

19
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"error" is the boundary layer about the cylinder. As can be seen from
Figures 6 and 12, the trnjectories in the vicinity of the stagnation
point are "turning up" abruptly near the cylinder. If the ions were
"trapped" in the boundary layer prior to the time they "turned up", the
low velocities in the boundary lsyer would again allow the electric field
to dominate the ion motion and a smaller (y) would be obtained.

For case (2), unsteady circulation and constant mobility, it was
decided to consider one value of S' (2), three values of M (2, 0.5,
0.125), the maximum value of the oscillating 1ift coefficiemt (Cp), and
a Strouhal number of 0.21 (which is the Strouhal number in Dr. Velkoff's
work.) The maximum 1lift coefficient was measured by Gerrard and is
about 1.5 at a Reynolds number of 105. This Reynolds number corresponds
to the experiment. With a Strouhal of 0.21, the maximum "time" required
for an ion to reach the cylinder is approximately %; of a cycle of the
oscillating circulation. This time is so short that the circulation is
virtually constant during the whole trajectory. Figures 17, 18, 19 show
the trajectories for constant positive and constant negative circulation.
At a fixed elapsed time the extreme values of the ion's angle with
respect to the cylinder is shown by points A (positive circulation) and
A' (negative circulation on Figure 17. The short time required for the
ion to reach the cylinder makes the ion currents semsitive to the
unsteady flow. Consequently it would be expected that the currents
would be oscillating at the Strouhal frequency and that these currents
should be measurable. This fact was amply demonstrated in the oscillo-
scope photographs of Dr. Velkoff's experiment. For purely theoretical
reasons, it was decided to plot the ion trajectories for the case when
it requires oae cycle ... of the oscillating circulation for the ion to
traverse the gap and the case where it takes "many" cycles for a traverse.
This was done by increasing the Strouhal number to unheard of dimensions.
These trajectories are shown in Figures 20 and 21. An interesting result
was obtained when an attempt to find the time dependent current at the
stagnation point was made. The idea was to "send" a large number of
ions off the corona wire at fixed time intervals which were much larger
than the ion traverse time and to count the number of ions which reached
an "electrode" at the cylinder in each interval. For this calculation,
S' was 2, M was 0.5, Cp, was 1.5, and St was 0.21. The cycle was broken
into twelve intervals and twenty-six "stations" taken around the corona
wire to an angle () of 30°. This maximum angle was selected by consider-
ing the minimum intersection angle (y) which was produced by the ion
trajectory for the appropriate negative circulation. (y) gave the size
of the electrode (which was approximately O.4 inches for a 6 inch diame-
ter cylinder). Ions leaving at an angle greater than 30° could not
intersect with this "electrode." The result of this calculation was

—

Time Interval 1

2 3 4 5 6 7T 8 9 10 1 12
Ion Count 1 11 8 7 8 1 16 20 23 24 23 20
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However, the above count includes only those ions reaching the
electrode from one side of the corona wire. Since the electrode chosen
was symmetrical with regard to the axis, the ions leaving the 'bottom"
of the corona wire are 180 degrees out of phase with the "top." Con-
sequently, to arrive at the total amount of ions reaching the electrode
in each interval we must add the totals of time interval (n) with time
interval (n+6) (which are 180° out of phase). If this is done all the
time intervals have 31 ions each! Therefore, a constant current would
be measured at the stagmation point even though the ion trajectories
are time varying. Dr. Velkoff's data shows that although there is some
variation in the stagnation point current, it is definitely not varying
at the Strouhal frequency (as so many currents measured elsewhere are).
An attempt to calculate the ion current at an angle (y) of 54° proved
inconclusive. The "sample" was decrcased by one-half because of com-
puter time limitations. Consequently the total amount of ions reaching
the "electrode" was not sufficient. However the trend toward a time-
varying current was seen (as the experimental date shows).

For case (3), zero circulation and variable mobility, S' was again

2
chosen as (0.5, 0.125) and —é%ua- took on two values (0.09, 0.33). The

value of 0.09 was chosen because it represents the maximum for air for
incompressible flow around a cylinder. The larger value (0.33) was
chosen because it is a mathematical maximum (approximately). If

2
a} % is larger than 1/3, nga.tive absolute pressures would be obtain-

able from Bernoulli's equation. The results are plotted in Figures 22,
23, and 2k. There is little difference between Figure 22 and ingu.re 12,

of which the only difference is the variable mobility with g% = 0.09.
Figures 23‘2 and 24 are interesting but are probably purely speculative,

since 32 = 0.33 would lead to compressible flow for air (and probably
2 po Somprens o e

many other fluids). From Figure 23 and 24 it would seem probable that
the problem of ion trajectories in compressible flow would be interesting.

0f all the dimensionless parameters found in the trajectory analysis,
KV
(n2=ny )T2U
be seen from a comparison of Figures 4 through 12, the larger values of
M are characterized by trajectories which are strongly influencea by the
electric field. The lower values of M have trajectories which more
nearly simulate the fluid streamlines. M can be thought of as being the

Vv
ratio of —Ko—— to U. Therefore, qualitatively, M is the approximate

(no=ny )12
ratio of the ion velocity due to the electric field to the ion velocity
due to the fluld velocity field.

probably the most far reaching one is the number M= . As can
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V. CONCLUSIONS

Qualitatively at least, this analysis verifies the dependence of
the ion currents measured at the cylinder on the vortex shedding fre-
quency (or Strouhal number) characteristic of flow about a circular
cylinder. The feature of the ion trajectories that makes this so is
the short time required for an ion to traverse the corona wire - cylinder
gap relative to the period of the vortex shedding. If the period of
the vortex shedding was small with respect to the ion traverse time, the
trajectories would vary little and consequently the ion currents would
not be varying sufficiently to be measurable. Figure 21 shows this
clearly; especially the longest trajectories. Fortunately Figure 21 is
hypothetical.

Probably the most interesting result of this work was the "ion-
count" calculation at the stagnation point. If anything, it shows pos-
sible trouble in analyzing the ion currents obtained in experiments.
This calculation shows the definite periodicity of the ions reaching
the stagnation point electrode and also the fact that the sum effect of
the ions is non-periodic. Dr. Velkoff's experiment shows the stagnation
point current to Ee randomly varying (and at times constant). It would
be a false assumption to assume the currents measured at the stagnation
point are characteristic of st tion points. There should have been
a similar periodic behavior R%z_?ﬁgm on point as there was at
different locations in the fromt and rear of the cylinder. The periodic
current would have been manifest at the stagnation point if the corona
wire was rotated to some angle with respect to the wire - cylinder axis.

The effect of the variation in ion mobility for incompressible flow
seems negligible. However, Figures 23 and 24 indicate that ion trajec-
tories for cgressible flow, i.e. larger pressure variations, would be
very interesting.

For a given geometry and potential difference the free stream
velocity has little effect on the average currents at the cylinder.
This would indicate that oscillations of the free stream velocity would
not be as measurable as the vortex shedding induced oscillations. This
situation, i.e. ion currents measuring one oscillation and ignoring
another oscillation of the flow in the same fluid stream, may be
beneficial or harmful (it could lead to misinterpretation of the current
measurements) .

The average ion currents are a relatively sensitive function of the
spacing of the corona wire relative to the cylinder.

These currents are even more sensitive than Figure 16 indicates
since the absolute value of the electric field (and consequent ioniza-
tion of the fluid) would decrease as the spacing is increased.
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APPENDIX A

FIELD THEORY, POISSON'S AND LAPLACE'S EQUATIONS,

COMPLEX POTENTIALS AND METRIC COEFFICIENTS
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Consider a region of space 1, each point of which is ascociated one
or more numbers representing a physical quantity. The mumbers may speci-
fy temperature, pressure, velocity, electric field strength, etc, These
values, for one kind of physical quantity, constitute a physical field.
Therefore, we may speak of a thermal field, a gravitational field, an
electric field, The mathematical theory of the subject is called field
theory. (pp. 64-70, Reference 9)

-3
A point P in euclidean 3-spuce is designated by three numbers, which
may be written (X;,X2,Xs). Suppose there is associated a scalar point

function with each point in an arbitrary region 5. This function may
also be varying with time (t).

¢ = @(xl )XZQXS)t) (1)
The field is then said to be a scalar fleld. An example is the

temperature distribution on a body.

Or suppose there is associated a vector point function with each
point (and time) in the region 1.

u—y

-
F= F(xl ’x2’x3’t) (2)
The field is then sald to be a vector field., An example is the
electric field strength in an electric field.
The scalar field ossociated with a point is specified by one rnumber,
A vector fleld assoclated with some point is designated by three numbers,
Fy,F2,F3.
-3
F = (F,F2,Fs)
.._’
where F,F>, and F; are magnitudes of the components of F., Or unit
vectors may be employed.
= - - -
F=aF + asFo + agFq

For any orthogonal coordinate system, the magnitude of the vector

is
I71- [(|)° + ()2 + (ra)2]"
Consider any vector fie1d F (Figure 25). P is enclosed in a small
Preceding page blank 49




volume An and the total flnx of F through the surface of this volume
(at a fixed time) is

ﬂ;lcosadA=fF—‘)-d7\

-
where dA is a vector whose magnitude equals the area dA and whose direc-
tion is that of the outward-drawn normal to the surface dA. The angle
 is between F and dA.,

A quantity called the divergence of F—‘)is defined by the equation,

§¥.da

(3)

div F- 1lim X
Ays0 2

This 18 a general definition of the divergence which is applicable
to any coordinate system,

Equation (3) is another way of writing the Gauss' theorem.

[dideT,:ngA (4)
l

when S is the surface that encloses 1,
Divergence is a measure of the strength of the source at l—”.

Another quantity called the curl of F can be defined by the equa-
tion (again for a fixed time)
-
f F.dS
curl F - & 1im &

AA—O AR

(5)

where the plane of C (Figure 26) is so oriented that a maximum value is
obtained for the integral, and where a is a unit vector perpendicular
to this plane, Equation (5) is relatpd to Stokes' theorem which, asso-
ciates the surface integral of curl F and the line integral of F:

—
[omp-ai:éﬁ’-aE (6)
[v)
Fields may be classified in terms of the divergence and curl, If
—
divF =0
50
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of all points in a region, the field is said to be solenoidal in that
region, This means there are no sources or sinks in that region--every
line of flux that enters the region also leaves the region,
If, at every point in the region,
-
curl F - O

the field is said to be irrotational in that region,

Consider two fixed points A and B in a vector field, Figure 27.
The line integral from A to B, along a path 1:

- -
{;B)LF " e

may be called the potential ¢p at B with respect to A. Take another

paih 2:
- -
F « dS
(AB)2

which may equally well be said to define the potential o@p. Generally,
the two integrals are not equal, so that @p will not be a scalar point
function but will depend also on the path. If the line integral depends
on the path--no scalar potential exists,

Figure 27
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For the case that

/ P& .5
g (AB), (AB)>

f P.a-[ PoZ-o
(AB)y (Ar)>

but

,'h
J
v "jl
&t
i
?
i "xj!’
:

Therefore

il
7]
"
o

f F.d§+f
(AB), (BA)2

or the line integral about a closed path through A and B is

ff‘"ciE‘::O

And it this is true for any path in the field
—)
curl F = O

at every point. Under these circumstances, a scalar potential ¢ is
uniquely defined at any point B in the field. Therefore, the necessary
and sufficient condition for the existence of a scalar potential ¢ is
that

-._)
curl F = O

Therefore, for irrotational field at a fixed time, define

-
B -9a- - §F. 5

B B,
Pp - PA - dp = - F ¢ d8
A A

o ol o
ox, dx,; * Fg dxa + ‘ég dxa

But

degp

23




D s

Therefore

d 9 0¢ 4. - [
&‘21- dx, + % dx,, + 3% dx = -{Fpdx; + Fadxa + Fadxs
And, since dx; , dx>, and dx; are independent of each other,
Fi='-Eng, 1-1,2, 3
or
-
F=- grad ¢
For a solenoidal field
divF=0

Therefore,

>
div F = div(-grad ¢)

H

- div grad @
-divgrad = -V =0
For the special case of Cartesian coordinates

. _ Yo, o
V=t Rt a?

For a fluid, the flux of mass at a point (per cross-sectional area
is given by pVp where p is the density and Vp is the velocity at some
point, For no sources or sinks the divergence of this quantity 1s zero.

—)
div pVF =0
For an incompressible fluid
-
pdiv Vg = O
or .
div Vp = 0

This may be written in Cartesian coordinates as

U, oV, W _
&+5§+$-0

where U, V, W are the velocity components in the x, y, and z directions,
respectively, This is the contimuity equation for incompressible fluids,

5k
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For irrotational fluids the velocity can be expressed as the nega-
tive of the gradient of & potential

=),

Vy - - grad PF

A
U- -3
o
.. e
Ay

The irrotational fluid criteria is satisfied for inviscid fluids.
Therefore, the velocity field of an inviscid fluid can be determined
from solutions of

Ve = 0

(which is called Laplace's equation) for the desired boundary conditions,

Gauss' law for electric fields is (Reference 17)

fo-a
De. dA = Q
S

which asserts that the integral of the normal component of the electric
flux density over any closed surface S is equal to the total electric
charge enclosed by S,

By Gauss' theorem

- > -
Q= InpedqgfnodA: div D dy

80

or the divergence of D at any point P’ is equal to the charge desnity at
that point, For free space

Pe = 0
and therefore
-)
divDdD =0

For an isotropic and homogeneous medium
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—
E =

nloyg

where E is the electric field strength and ¢ is the capacitivity (or
permittivity).

Faraday's law for electromagnetic fields is (Reference 17)

- - R) -
]c Ee+dS = - St j B+« dA
which asserts that the integral of the tangential component of the
electric field strength vector around any clozed curve C is equal but
opposite in sign to the rate of cha.ng’e of the magnetic flux passing

through any surface spanning C. If B (magnetic flux density) is zero

= ->
JE-ds=0
C

and -
curl E=0

and the electric field is irrotational and £ can be expressed as the
gradient of some potential function Pg
div D - dive B = Pe

. P
div L = — = div(-grad o)

Vop = - =

Pe
€
This equation is known as Poisson's equation and for p, = O

Vg = O
which again is Laplace's equatiou.,

Laplace's equation can be solved in a number of ways, i.e,, mathe-
matical, graphical, and experimental. The mathematical techniques are
(1) separation of variables, (2) function: of a complex variable, (3)
Laplace transform, and (4) numerical approxiuation ("relaxation” method).
For this thesis complex variable technique is the predominant way in
which this equation is solved,

An infinite mumber of solutions to the two-dimensional Laplace
equation are easily obtainable from functions of a complex variable,
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| | Due to the application of complex variable theory, the study of inviscid
fluid flow has been greatly expanded.

prowry '\-Lh..g)__ o

| When x and y in the complex number z = x + iy (z hes been redefined)
are considered variables, then z is said to be a complex variable, De-

fining W as another complex variable such that (W has also been redefined) 3

(pp. T4-77, Reference 15). :

W= f(z) = f(x + 1y)

:! W may be separated into its real part and its imaginary part, called ¢
and V¥, respectively

W= o(x,y) + 1¥(x,y)
where ¢ and ¥ are both real functions of x,y.

' The function £(z) is said t5 be a function of a complex variable if
' ! (1) within some region there is one and only value of f(z) for each value
s of z and that value is finite and (2) the function has a one-valued de-
rivative at each point within the region. Within this region the func-
tion is said to be holomorphic, regular, and analytic.

Further consideration of (2) yields relationships that must be ful-
filled by a function if it is analytic. A complex derivative

g = 1lim f(z + 52) = f(Z)

5z -0 BE

may approach its limit in an infinite number of ways. The different
paths by which the limit may be approached are considered, For the first
path, 5z is allowed to zpproach zero in the x-direction; i.e., let

8y = O first, then take the limit as 5x approaches zero, This gives

vy zrdz) -fz) . fz+sx) - £(z) of
83— 0 BX $X— O 5% ox

5x—- 0

where the last term comes from the second term which is the definition
of a partial derivative, For the second path, 5z is allowed to approach
zero in the y-direction by letting 5x = O first; thus

f(z + 5z) - £f(z) 1 f(z + y) - £(z) _19f
5x + 1 By ‘15;?0 by 13y

1lim
5x-0
by—-0




Since the derivative rust be the same in either case if f(z) is a
function of a complex variahle

of

of _
3y

ox

[l Lo

However,
f(z):w-_-Qv'f' iy
and therefore,

of Ly, 4 O of . &, 4 Q¥

14

x oax oax 3y dy Oy

Substitution ylelds

Equating the real parts and imaginary parts in each side of the equation
ylelds

e - U "N ] 1)
dx dy dy ox
These relations are called the Cauchy-Riemann equations., They are not

only necessary but sufficient conditions for the function W(z) to be
called analytic,

Differentiating the first of Equations (7) with respect to x and
the second with respect to y and adding give

@i-{—&:o
x? oy

vwhich is the Laplace equation in two-dimensional cartesian coordinates.
Therefore, by considering ¢ to be a velocity potential or an electric
potential, the real part of any function of a complex variable is a pos-
sible flow field or electric field.

Similarly, differentiating the first of Equations (7) with respect
to y and the second with respect to x and subtracting one from the other

%y . Dy
i
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showing that the pure imaginary part of any function of a complex varia-
ble may also be the velocity or electric potential for & field. Usually
@ is considered the potential function, the ¥ is called the stream func-

tion.

The functions ¢, ¥ are called conjugate functions; i.e., the real
part of an analytic function is said to be the conjugate of the imagin-
ary part. The curves obtained by

®(x,y) = constant
V(x,y) = constant

form an orthogonal system in the xy-plane,

In the solution of Laplace's equation by separation of variables,
the first step is to transform from Cartesian coordinates to a coordinate
system that fits the boundary conditions. The work is expedited by hav-
ing a general method that allows transformations to any coordinate system.
Such a method is based on metric coefficients (Reference 9).

A differential length is expressed in geneiral orthogonal coordinates
(X1 ,X2,%3) as

(dS)* = g1(dx)® + go2(dx2)? + gaa(dxs)?

where the metric coefficients are

< (3xY (22 4+ (22)
i <3x1) (axi) (3X1
where x, y, and z are Cartesian coordinates,

The expressions in orthogonal coordinates for the gradient, diverg-
ence and Laplaces’' equation are

B39, % 3¢, 8 _J¢

grad @ = (811.)'/a axy * (822)'/' Oxa (833)-'; bxa

div F = g 9o [_E:/: Fl.] + O [.53 Fo| + o[.& Fa]
o | & Mz | 822 oxs | @33

where g = g,1822833
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APPENDIX B

ELECTRIC FIELD ANALYSIS FOR TWO PARALLEL CYLINDERS

OF DIFFERENT RADII

Preceding page blank




e E= EE

) Su—

—

-

d

r

The electrical field around a line charge with a linear charge
density q is found by means of Gauss' law for electric fields (Gauss'
electric flux theorem), the surface of integration being that of a
circular cylinder of radius r and unit length coaxial with the line
charge., If the charge is located at the origin of coordinates in the
xy-plane, this field is given by (Reference 14)

g-4
€

"ol

The corresponding potential may be secured by substituting this field
into

E’:-gradcp

and integrating, grad ¢ in polar coordinates with ¢ a function of r only
is

e
grad ¢ = o] r—2

dr r
Therefore
= -
qQr _ _dor
€ r° dr r
and q
¢=-2(nr -tnry) (8)

The complex potential function corresponding to a line charge
located at an arbitrary point Zo may be derived by means of the Cauchy-
Riemann equations, but it is easily written merely by inspection of
Equation ?8). In polar coordinates

2 = re19
And
nZ =tny + 106

Clearly from Equation (8), ¢ is the real part of - q/e & 2, so

W=q+iv=-3m2
€

is the desired complex function for a line charge at the origin. It
follows that a line charge at Zo has the complex potential. (Ref, 11).

W= - glm (2-Zo)

Preceding page blank =




The function for n line charzes situated at 2,, Zz, ¢+, Z, is therefore

n
w:-%%;qS%(Z-ZS) (9)

Let us superimpose the fields due to charges +¢ at x = a and -¢ at
X = -8,

This choice of the charge q simplifies the coefficients. From
Equation (9) the expression for the complex potential becomes

= - 0n(Z-a) + 07 (Zta)

So (Z+a)
Y= z-a)

Therefore

w:%(uLix)
x - a+ iy

The denominator of the natural logarithm's argument may be cleared of
the complex number by multiplying the numerator and denominator by the
conjugate of the denominatcr, hence

W=@r§x+a+1¥! Sx-a-ivl

‘(x-a+1y) " (x - a - iy)
Multiplying,

s h[xz -a2 + Y2 + 1(-23,1)]
) (x-a)% + y*

It can be shown that

tr{u + 1v) = tAu® + v3?) + 1 te.n":’—l

Therefore
o 2
W= %J(X"’ + y2 — 8'2) + (2a.y)2 + 1 tan-l ‘252
(x-8)% + ¥? x2 - a2 + y?
Now, since

-




=1 Em =

\/? + ¥ - a2) + (2ay)° .
(x-e!»)2 + ¥

<
1]

taﬂ4'1r——-1r-—-
7

So i
tan ¥ - - —:———J[—-——-
X7 - 82 + y2

Multiplying both sides of the equation by the denominator of the right
side gives

(x> + y2 - a°)tan Vv - -2ay

Dividing both sides of the equation by tan V¥ and adding the negative of
the right side to both sides yields

& 2
+ + -a“ =0
ey tan W

2 _2ay _
+ +
x y2 tan ¥

Completing the square and adding to both sides

2 2
y+ {2 = a2 + [ 2 )
tan W (tan W) (tan v

X° + yF +

Therefore

2 4 + a )Ez 2 1
vt gmy) - e <l+ta.n\¥2>

But 1
cot ¥ =
tan ¥

1+ cot'¥ = csc®y

So
X’ + (y + a cot V) = aF csc? ¥
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This equation is a family of circles all passing through the points
(a,0) and (-a,0) with radii of

a
sin V¥

rw—

and with centers at
Y= -acoty

Therefore the lines of constant V (electrical streamlines or lines of
force) are nonconcentric circles passing through what are called the
poles at x = F a, y = 0,

It also can be shown that the lines of constant ¢ are also non-
concentric circles. The radii of the equipotential circles are given

by

a8
r -
® Isinh ml

The centers are at

X = a coth ¢

The 1lines of constant ¥ and constant ¢ form an orthogonal net, Hence,
a transformation which would Ye useful for solving milti-cylinder prob-
lems would be one based on the transformation,

wepmlzta)

(z - a)

If we substitute a coordinate (called n) for ¢ and another coordinate
(called 93) for Vv, we will have a transformation which will produce a
solution to Laplace's equation so that the potentisal ¢ is only a function
of 1. To demonstrate this (using metric coefficients) it is first
necessary to find x and y as functions of n and 6g.

So 1let
¢ 10n - m izt 8)
1B T e e
Luckily,
o 2B o cannt u
l-u
Therefore,




| S|  (a—

J

r

a
—

== [ J ==

1 ) [ J

Solving for 2z,

+ 1
coh(ﬂ_@)

o ()

z: x t iy - a coth (~'Li;1—(m) =8

But

cosh(u + iv) = cosh u cos v+ i sinh u sin v
sinh(u + iv) = sinh u cos v+ 1 coshu sin v

Hence, substituting

D

B

0B
J =2
cosh o cos + i sinh Q sin -
%p
2

2

oB
i | AL, |
sinh cos i cosh sin

x + iy =

The denominator can tre cleared of the complex mumber as before,

J| 0B 1 OB 1 OB _ 6B
cosh 5 cos 5 + i sinh 5 sin — . sinh 5 cos — i cosh a sin

A n 6B n 1. OB I 0B i 2;
sinh 3 cos ?+ i cosh > sin > sinh = cos 5 - i cosh 5 sin —= 5
Multiplying,
e
cosh [ sinh J cos® PB + cosh J sinh J sin2 OB
x+ iy - 2‘ g 2 a Q En N,
-~ 0
sinh? 1] cos® =B + cosh? J sin? :]

Cal 2 2

i(sinh:' ,3 sin ZE cos gg - cosh g sin 213. ZE)

. 6 e
sinh® -3 cos? 2—B + cosh® -2 8in® 2B

Substituting the relationships
cos”u + sin®u =1

cosh™u - sinh™u = 1

cosh -2 sinh '3 - 1 sin 92§ cos gg-

2N _ ..e2 9B
cosh 5 08 >

67

i A o O

W oo




Substituting ‘he relationships

cosh u sinh u

It

! sinh 2u

+

cosh®u = } (1 + cosh 2u)

cos u 8in u = sin 2a

No—

cos®u = % (1 + cos 2u)

4 sinh q - 1 3 sin 6p
a
1(1 + cosh 1) - (1 + cos 6B)

x + iy

which factors to

sinh 5 - 1 sin 6p
cosh n - cos 6p

X + iy:a

Equating real and imaginary parts on both sides of the equation gives

X sinh 1
cosh 7n - cos 6p
and
sin op
y = -a

cosh n - cos O

The minus sign can be dropped since sin(-u) = -sin(u) and cos(-u) =
cos(u) and we can let 6y = -6p and then redefine 9p. Therefore

o = sin g
cosh n - cos 6p
and
sin o
Yy=a B

cosh n - cosgp

are the desired transformation functions, This transformation is called
the bicylindrical transformation. The name implies the use of this
transformation for solving two-cylinder problems, The inverse trans-
formation functions are

) &T\I(x2 + y° - %)% + (2ay)2
! (x-8) + ¥
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For bicylindrical coordinates, it is convenient to let n range fram
-o to +«, which can be done by assigning positive values of n to
cylinders for which x is positive, and negative values of cylinders for
which x is negative, The paramcter Op represents the :ugle between
lines drawn from the poles to a given point, Evidently 65 =x repre-
sents a line along the x axis between x = -a and x = a; while 6 = 0
represents the remainder of the x axis, The portions of the cylinders
(93 = constant) above the x axis are designated by positive values of
6, while those below the x axis are designated by negative values of 6g.
Tge metric coefficients for bicylindrical coordinates are obtained from
(Appendix A)

2 2
gii = _a_x + (a_x
Ox4 oxy

=% , 6= Xa

) - (8 + 8)

Let

and
2 2
SRS
98 \ %3 g
Differentiating,
X, (cosh n - cos @g)cosh 1 - sinh 7 sinh 7
O (cosh 1 - cos 68)°
i inh
Ey’ - -a sin gp 8 n
an (cosh 1 - cos 6g)?
3 sinh 7 sin gp
—_—= =g
9B (cosh n - cos 6p)°

. (cosh 1 - cos gp)cos 6, - sin 65 sin og

SF

(cosh 7, - cos 6g)°
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Simplifying,

x 1 - cos gg cosh 7

- a
an (cosh 1 - cos gp)°

cosh y cos 6p - 1 ox
% ok
B (cosh g - cos 6p) o

Therefore
Oy VP - (XY
g (571
Also
_gx:= _9ox
n g
So
2 o 2
() - (%)
Hence
g, = &p
Substituting

o [a(l - cos 0p cosh q)]z . [ a sin 6p sinh 7 ]2
"=

(cosh n - cos 6g)® (cosh n - cos 65)°
Factoring and simplifying

» 1 - 2cos 6 cosh n + cos®0p cosh n + sin®0p sinh® g

&, = &
M (cosh y - cos 6p)*
Substituting
cos®sp = 1 - sin“y
sinh®y = cosh®n - 1
glves
g - a2 cos” 6p - 2cos g cosh 7 + cosh® 7
o (cosh 1 - cos OB)4
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Therefore

g = & (cosh 1 - cos 6p)% _ a2
n (cosh 1 - cos gg)* (cosh n - cos 9B)2
So
2
= _ a
%8 (cosh 5 - cos 6p)?
Also
4
8
g = & =
gQB T (cosh 7 - cos 6p)*
And
8" = (g8 )%= g, = s

(cosh n - cos 0p)®

Generally, the Laplacian is written (as in Appendix A but for two
dimension)

o gr 27 20, 2 1e u]}
. axl[gn ax]_] ax2[822 axz

Substituting

But
/2 l
g" =g, = &p
Hence 3% 32
e ) ()
v(.q') = g-h +
dF  p°
For our problem
Vo =0

Therefore, dividing by g”, we are back to Laplace's equation (but
in the coordinates 1, 6g)

1




But we picked n and 6p to force the potential to be a function of n only.

So
g .o

n

is the appropriate differential equation, the solution of which is trivial

@:A"'Bf]

Consider two long parallel metal cylinders with radii ry and r> and
potentials V, and V>, respectively. They cylinders are on the opposite
sides of the y-axis. Designate the two cylinders by m and ne. Then the
boundary conditions are

n=m , =2V
n=", 9=V
Substitution of the boundary conditions leads to
Q= L {(Vam-vme) + (Vx'Vz)fl}
Mm = N2

The electric field strength is

S __-an _do
ks (gn)* dq
where
’ gﬂ. (VL = Vz)
dn m-
and
(gn)% = &
en) cosh n - cos O
So

B - ah -Q’*-'—va)(cosh n-cos 0p)

a(m-n2)

It will be found useful to have the x and y components of the field
strength as well
b- - 2

T dx
and
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From calculus

and
Liﬂ.‘) ﬁ) N ?@)‘
qy a'lg ayx Bna}'
But 5
%ﬂl:o
B
Hence
St
) 4 n ox
and .
5 Ny
Again,

g Vo) s )
(x-a)” + ¥

After simplifications,

Y [(x-a)” + ¥ J(x ty"-a%)2x - [(x*y"-a2)"+ (2ay)7¢ \x-a)

x [(x"+y-a”)" + (2ay)*][(x-2)® + ¥*]

[(x-a)” + y](Cryra”) - [(xP4y°-07)" + (2a9)7]
[(x*+y*-a2)" + (2ay)7] [(x-2)® + ¥*]

The derivatives simplify further to

9y
= 2y
W

o 2t oo (x-a)

i Ay + (o) [(x-2)7 + ¥*]
73
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x° + y + a° 1

R AcCa |
dy [(xP+y?-a")" + (2ay)?]  [(x-a)2 + ¥]

1 So, substituting, and letting V=V, - V>

v .2{ x(x"ﬂr"-g.‘") - (x-a) }
(o) [(x+y"-a") + (2ay)?]  [(x-a)2 + ¥*]

Xty 4o 1

| v
1 = Al O I Qy: [(x*+y2-a)” + (2ay)3] [(x-8)? + ¥

vhere
0 = sinh“i%; 1= 1,2

It is now necessary to determine the pole (a) as a function of the
radii (ry,r2) and the distance between the centers of the cylinders (S).
Call the distance from the origin to the cylinder centers 4, and ds.
Hence (Reference 9)

d, - a cothnp , d> = a coth no

In general
- _ ., cosh n_ _ (sinh®y+ 1)%
d = a coth 1 asinhq a sinh 7
But.
sinh 1 = a/r
Therefore

A= & [(a/r)” + 1]" = (aZ+r2)%
a/r

So the sparing S between axes of cylinders is

S=4, -4 = (8.2"'1';:)% + (a2+rf)"'

Solving this equation for a gives

a= élg [S4 - 282(rf +r5) + (rg-rf)z]"‘

T4




Knowing that
sinirlu = & [u + (u3+1)*]
The values for n, 7o can be computed

m:tﬂn[:—l-b(%z-l- l)’/’] H 1= 1,2

The sign is determined by the side (positive or negative) of the y axis
the cylinder is located, This is an arbitrary choice, Choose cylinder
No. 1 to be on the negative side and cylinder No. 2 to be on the posi-
tive, Then

5 = o,[ﬁ +(:i+1)f] (14)
1
4 B @"[i +(:—1-+ 1)"‘] (15)

Hence, given any two cylinders with radii (r, r>) and center-center
distance (S), the electric field components may be computed for any
position. (References 1, 9, 11, 14),
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l NUMERICAL SOLUTION EQUATIONS AND COMPUTER PROGRAM
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All the streamline differential equations (with or without the
simltaneous velocity equations) were solved using the Runge-Kutta
third order approximation. (Reference 17).

In general, the simultaneous equations,
dx
Yo txy,t) 5 T = alxy,t)

at intervals Ax - h, can be solved using

ky = £(X0,¥0,to)h

£, - g(xo0s¥0,to)h '
k> = £(xo + 1/3h,y0 + 1/3Ky,to + 1/3f1 )n

£~ = g(xo + 1/30,y0 + 1/3k;,t0 + 1/3h)n

ka = £(xo + 2/3h,y0 + 2/3k>,t0 + 2/3[2)h

Ly - g(xo + 2/3h,y0 + 2/3k>,t0 + 2/34:)h

and then using the formulas
1
oy =g (ky + 3ka)

at = flo; ([1 + 3£3)

to solve for the new point.

For the steady state cases (1) and (3), only the Ay equation is
necessary for solution. If the various increments are computed in the
indicated order, each involves only quantities which have been previously
calculated.

The error for each calculation is of the order of (Ax)*.

Considering the longest path an ion would be expected to take and
allowing the maximum error for this path to be approximately .002, the
interval for which the equations were solved (Ax or Ay) was .08.

The program was written so that if the value of the derivative was

less ihan one, the interval was taken in the x-direction, and if the
derivative was greater than one, the interval was taken in the y-directiom.

Preceding page blank

i

79

S 7 TR e



This wes done to minimize the total error. Also, if the velocity was
in the positive x or y-direction the interval was positive and if the
velocity was in the negative directions the interval was negative.

List of Program Symbols:

A=rs
B=d>
C=a
DN = Ko
V=YV
U=1"

JJ = ion count

o
=
i
x

ADYDX =

VIX

[}

<3
 ®
>

DELX

g 2%
&%

DELY =
DD

Yo=y0

X0 = %o

|




R =k

Rs = ko

Ra = ka

Sy = 1,

S2 = 1z

S3 = 13
RAD = distance from cylinder center to ion

ANG = ¥

The program included is for case (2), unsteady circulation, con-
stant mobility.




—~ S$EXECUTE PUFFT . S
SPUFFT 99
"7 T DIMEMNSION JJl18)
0O 888 N=1»s1°%
TTe8s  JJutNy=u T
DN=1031
Ve2ue®(10e%3,)
| A=6,6656
B=7,22
C=2.78
T T TEl=-6.01
€2=.,4V6
U=1780,
_ _IFtUI16usl5vrlbL L
; 16U DM=V2DN/({E2-E]1)*U*A)
WRITE(692)DM
2 FORMAT{20XsF 1o, 4)
15U DO lve J=1926
T T T D0 30u M=1946
Pz(,U794/64) *FLOAT(M-1)
T AEL6666%3,1416413,1416/1501*FLOATIJ-1)T
Y=o 1#SIN(w)

. ———— — e emam e ——— e e e —————

ST T TXES (L I¥COS AT T o
6 ADYDX=ABSIVIYIXsYsUsP)/VIX(XsYsUsP))
T T T AFIADYDX~14120,520530 S

20 ITFAVIXIXsYsUsP)y)409b40985C
TT 40  DELX=-,UR T
GO TO 113¢C
50 DECX=108
13V DD=VIY(XsYsUsP)/VIXIXsYsLsP)
= = T EYDIY ' 3 ) e -
X0=X
T T T PO=P
R1=DELX*DD
ST=AUS(DECK/VIXTX3YsU»P )Y
X=XO+DELX/3,
TTTTTTTTT OY=Y0+R1/73.
' P=P0+51/13,
ST DD VIV IXa Y s U Py VI XX Y s UNP) T
R2=DELX%DD
SZ=ABS(DECK/VIX{XsY TP )Y
A=X0+46665%DEL X
T T Y=Y0+,6666%R2 - T T T T
P=PO+.6666%52
T OD=VIYIXeY s LRy /VIXTAsYsUsP)
R3=DELX%DD
TS3AUSIOFLAZVIXTX s Y s UTPY Y
X=X0tDELX
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| ¥RYQ+e254%(R1+3,#R3)
L i PupP0+¢25#(5143,#53)
T 7 60 TO 8u
3V IF(VIVIXeYsUsP))60+60, 70
| U TBELY=-.u8
GO TO 140
"~ 70 DELY=.l8
| 14V oolVlY(x,Y.U!P)/VlX(x,YOU’p)
B M ; RE Ul
XGaX
e S = e
8 R1=DELY/DD
ST T S1=ABS(DELY/VIYIXsYeUsPy )y T
Y=YO+DELY/3
ST T UX=XO04R1/3e 0 T T Tt
PzP0+51/3,

. — e —————— ——

l DD=VIY(XsYoUsP)/VIXIXsYsUsP)
. R2=DELY/DD

:
d I . " S2=ABS(DELY/VIY(XsYsUsP))
Y=YO+46666*DELY
[ |7~ "TXEX0+.8666%R2
' PeP0+.6666%52
T T DOV Y (X YSUSP ) ZVIXEX S YGUSP) T T T
R3=DELY/DD
! T TS 3EARSTDELY/VIYCRVYSUP Y T T T T
Y=YO+OELY
: . X=X0+.25%(R1+3,¥R3)~
: P=PO+4,25%#(51+43,%53)
"7 T80 RADESCRT((X-B)#(X-B)4y#y) ~ " -~~~ -=—
- | IF{X=644)77793uU0»300
777 IF(RAD-A)6667666v6 "
. . 666 ANG=ATANIY/(B=X})
[ TFTANG= 3733505553555
555 1F(AMNG=4996)4449444930V
[ B&LT JJ (M) =JJiMy+r T T T
3uo CONTINUE
100" CONTINYE =~ = """ e e
WRITE(6477) (JJIKJ) 9KIE1y15)
=17 FORMAT(I0X»151&T—
7 STOP .
=" END T T T =
FUNCTION VIX{XyYsUsP) ;
T A=6.6666 Bttt !

l 8=7.22 !
T C=20TE

‘ E1=-4,0]

’ - E2=,4V6 ST T
ONz1.31

C o V22U #(10,%#%#3,) ST T e T T
E=X#X4YuY=C#C '
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ST T FE®E44 RCHCHYHY : -
Ge(X-C)®(X-C)+y*Y
{ ~  DEDX=2.%((X¥E/F)=((X=C)/G))
| EX=V*DEDX/(E2-E1)
= TP=79.1%P .
VFX= U’(1“+(A’A)*(Y'Y-(X B)*(X'B))/(((X B)*(X‘B)+Y*Y)
TTTTTT T IMUX-8)1%(X-Bl+YRY) )T T T
1*1.5*U*A*Y*bIN(TP)/(6 2832'((X‘3)*(X'8)+Y*Y))
Tmahdes " D=DN Temm o SO0 g 9eee -
VIX=VFX+D*EX
T ° 7 RETURN S e
END
TTETTTUTFUNCTION VIYIXsYsUsP) ~ 700
A=6,6666
—-——_—--—827 22 - —— - - — -—— e e - — =+ . .
| C=2.78
El==-4,01 R i
l EZ‘.‘*U()
[__—--“DNﬂIOBI R T : -

V*ZUo"(IO.**B.)
E=X#X+YRY-CHC
FEERE+4  #CHCRYRY
O=(X=-C)¥(X=-C)+YynY
{ HeX#X4Y®RY+C*C

{ DEDY=2, % Y¥((H/FY=TI.7GT)
g EY=V*DEDY/ (E2-E1)
l

TP=79.1%p -
\ VFY="2.‘A* '\"U*((Y*(X 3”/((()( Bi*(x- Bl+Y’Y)"HX"B)
) l’(X-BHY'Y)))
| 1-145%U*A%SINITP) ¥ (X=B)/(642832% ({X~BI*(X-B)+Y*Y))
| ——-——"D=DMN
1 ! VIY=VFY+DXEY
| T RETURN

e &




APPENDIX D

ANALYSIS OF ION TRAJECTORIES FOR

TWO SIMPLE POTENTIAL FLOW CASES




-

The general method develcved in the body of this work may be used
for any corona wire geometry or flow case (the fluid flow may be viscous
or inviscid). To demonstrate the nature of the technique two simple
cases will be studied.

The first case has an infinite jow of corona wires opposite to an
infinite conducting plate. The fluid flow is directed perpendicular to
the plate.

( - & —/_/;-X

-——-—Lf———w--

Figure 28. Infinite Row of Coruvma Wires
Opposite Infinite Plate

The electric field is taken to be constan’ between the wires and
the plate.

sy...:';,z,(:o

The complex potential for this flow is (Reference 15)

Wp=q7F+ivF=A22

Substituting Z = x + iy and separating the equation into real and imagi-
nary parts gives

Pp = A(x®-y%), vp = 20y
The fluild velocities are then

VFX=-%§=-2AX
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Vw=-¥=w

The ion transport velocity components are
Vix = VFx + K Ex
VIy = va + K Ey

and the streamline differential equation is

& _ VeyrKE

dax VFX + K Ex
Hence, substituting,
KV
g AN
dx =2Ax
Let y' = %, x' - %, therefore

KV
Q' _ AW -F

dx 2Ahx'
Dividing the numerator and denominator by 2Ah' gives
KV
AN
Rearranging,
- dx'
KV T x!
Y " oan®

Integration yields
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One dimensionless parameter controls this case.

KV
2AnZ

Note that A is negative for the flow being studied. If Iﬂgl is
negligible compared to unity (the maximm value of y' is unity), the tra-

Jectory equation yields a family of hyperbolas. If I-—;l is much greater

than unity, the equaiiun gives x' equal to a constant (the ions are
travelling perpendicular in straight lines to the plate).

The second case has two concentric conducting cylinders enclosing
a potential vortex.

S I/OI’%CX

Figure 29. Two Cylinders Enclosing Vortex

Tﬁ; electric field for this case is radial and is given by (Refer-
ence 1

bt d

—)
E=Er--ar@-"15%,E9=0
a

The complex vortex potential is (Reference 15) i

= iurn (2 - Zo)
Zo = 0, hence
Wp = 1ufn(2) = iutn(relf)
So ’
op + lgp = iuen(r) - ue
Therefore

&
e O T
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The fluid velocity components in polar coordinates are

Veo < < © 307 VFr = " 3r
’ Hence,
VFo = %“’ VFr = 0
Consequently
V10 "%“’FG '%“
and

N -
a
K1
| it b
ar & _“a’ kv
0 d8 u by
at 12 a
Let r' = %, @ is already dimensionless
( 8o
]
6 &n; u
and
]
& . I.(: de
/n=u
8
Integrating,
] tnrt = 8+ c'
fm = u
vhich may be written
A3
b

.

= T e

ey <

—————

¥ -

"
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which is obviously a spiral. This case also has one dimensionless
parameter

3

n—u

plo

Substituting initial conditions of r' = % and 6 = O gives

as the trajectory equation.
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BICYLINDRICAL COORDINATES
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Figure 30. Picylindrical Coordinates. The lines n = constant are
circles with axes on the x-axis. The lines = constant
are portions of circles with axes on the y axis.
(Reference 9).
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APPENDIX F

A FLUID-ELECTRICAL STREAM FUNCTION
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All the trajectory analyses undertaken in this work have been
primarily the solution of the diffexential equation

&  VEy taRy
dx Vpx + KEx

Another method of determining the ion trajectories for steady flw
vhich will lead to closed solutions is simply adding the stream function
of the fluid flow (vp) to the product of the mobility times the stream

function of the electricnl field (*E) . This sum yilelds a combined

fluid-electrical stream function (*FE) vhich may then be solved for the
trajectories.

vFE = WF + KVE

In general, I would state that this method is valid for steady
state, constant mobility ion flow problems.




APPENDIX G
| ]
ABSTRACT OF EXPERIMENTAL TESTS OF FLUID FLOW DIAGNOSTICS

USING ELECTROSTATIC CHARGES
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Studies were initiated into the possible use of charged particles
in a gas stream as a means of studying the nature of gas flow, Two
basic approaches were followed., In one case, ions were generated elec-
trostatically by means of a corona discharge from a suitable point or
line source, In the second case, the charges were obtained either from
the natural dust or water particles in the air, or dust particles were
deliberately added to the air stream. The charges were collected at
selected positionc downstream on the particular aerodynamic shape being
studied,

Experimental Study With Ions

Three configurations have been studied, They include a six-inch-
diameter cylinder mounted transverse to the air stream, a three-foot-
long sharp-edged flat plate, and an NACA 0012 airfoil of 0.216 m chord
length, all of which were mounted in the U, S. Army AMRDL 7 x 10 tunnel
at Ames Research Center and tested at various tunnel speeds. Most of
the runs were made using a 0,0038 cm diameter corona wire placed a few
centimeters upstream of the surface, Electric field shaping electrodes
adjacent to the wire were grounded. Strips of alumimum 1,25 cm wide,
foil spaced at 0.32 cm were mounted on each surface, An end view of
one configuration is shown in Figure 31, The filter is used to elimi-
nate background 60 Hz noise,

Fielqcshn

L[
\ c

%

\

\

o
_ \\q ¢

+
Corona ' -
i wire l
- Bcope
High
voltage

Figure 31, Ion-Flow Measurement Scheme
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The corona currents ranged from 2 pyA to 30 pA and the applied
potential used to get the corona ranged from 6 to 16 kV which depended
mainly on the configuration of the electrodes. Essentially the same
results were -achieved regardless of the currents used.

Figure 32 shows a typical oscilloscope trace using the cylinder
at a tunnel q of one., The upper traces are taken from the resistor
connected to the most forward position on the cylinder and the lower
grace is from the most aft position. The regularity of the upper traces
indicates that the ion currents tend to tollow the basic oscillating
flow about a cylinder in cross flow. Such flow oscillations are the
result of the periodic shedding of vortices from a cylinder, At the
rear of the cylinder the flow has largely separated and close to the
cylinder is essentially a "dead-water" region. Examination of the lower
trace reveals that the current oscillation is reduced greatly or elimi-
nated. The frequency of the oscillation is 16 Hz which is of the correct
order for the Strouhal frequency for this cylinder., Thus, the ion tech-
nique in this case seems to respond properly to the characteristics of
the flow field.

Figure 32, Circular Cylinder Trace
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Next, a flat plate was placed directly aft of the cylincer at the
centerline and extended O.46 m rearward. Such surfaces act to eliminate .
or reduce the periodic shedding. Figure 33 shows the results using the
ion technique. The upper trace is from the front of the cylinder and it
can be seen that the ion technique indeed does show greatly reduced
oscillation. i

Figure 33. Circular Cylinder With Aft Plate

The three-foot-long sharp-edged flat plate was mounted in the
tunnel parallel to the windstream, The electrodes were located on
the upper surface. The top trace of Figure 34 illustrates an oscilla-
tion in flow 0,10 m aft of the leading edge. These oscillations may
indicate the presence of a separation bubble near the leading edge.
The next trace from a position 3.8 cm aft of the first trace, although
it shows excursions, does not show oscillations. The lowest trace
further back on the plate shows a relatively smooth appearance. The
ion technique seems to give a proper indication of the flow for this
case,




iy

e

Figure 34, Sharp-Edged Flat Plate

Tests ne:xt were run on the airfoil using the corona wire and field-
shaping electrodes. Current collecting strips were located over the
entire airfoil., At a tunnel q of one (8.2 m/sec) and an angle of attack
of 0°, all the traces from positions around the airfoil were smooth and
regular except at one location. The upper trace of Figure 35 is 10.8 cm
from the nose of the airfoil. The next two traces are 1.6 cm and 3.2 cm
further back on the 0.216 m chord airfoil. It can readily be seen that
a significant oscillation exists within a limited region on the airfoil,
indicating the presence of a separation zone., Thus, the ion technique
appears to be able to discriminate local phenomenon. All the foregoing
ion-flow tests were taken with a filter setting which filtered out fre-
quencies about 30 Hz, This is the reason why no high frequency oscilla-
tions appear in the data, ’

Another test using the airfoil set at an angle of attack of 17° and
a tunnel q of 10 (V = 26 m/sec) was . 'n with the filter set to pass fre-

quencies in the 150-2000 Hz range. %igure 36 illustrates violent oscilla-

tions of the ion currents at two pos: tions near the midchord region of
the upper surface. This action is expected since the airfoil is in full
stall. The lower surface traces show relatively random behavior with
peak amplitudes of approximately 1-5% of the upper surface trace ampli-
tudes.
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Figure 35.

Figure 36.

Airfoil at 0° Angle

Airfoil at 17° Angle
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Charged Particles Tests

The next phase consisted of using the charged particles carried in
the wind tunnel stream as the source of charge. The configuration used
was the cylinder with the rear splitter plate. The electrode at the rear
edge of the plate was monitored. Large oscillations can be noted from
the trace in Figure 37. The flow in this region contains large scale
turbulence and such large scale oscillations are expected. If corona
currents are used with this test configuration, similar oscillations are
seen but their magnitude is several times greater.

= & =3

Figure 37. Charged Particle Traces ’




