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SIGNAL~TO-NOISE RATIOS REQUIRED FOR SHORT-TERM
NARROWBAND DETECTION OF GAUSSIAN PROCESSES

INTRCDUCTION

Rules of thumb are available for approximating the required signal-to-noise
ratio (SNR) for broadband and narrowband energy detection of signals in noise
(see reference 1). However, they are generally applicable or appropriate only
when certain requirements (long observation (averaging) time, for example) are
satisfied, Attempts to apply these rules outside their often ill-defined ranges of
applicability can result in very misleading conclusions about system perform-
ance and capability, This is particularly true for high-resolution, narrowband
detection systems where the analysis bandwidth is so small that practical
observation times lead to only a few effectively independent samples of the
processes under investigation; this is called short-term detection here.

e e AL S

The rules of thumb may be inapplicable because they are often based on a
deflection criterion of system performance, such as the square of the difference
of the mean outputs, with and without signal, divided by some variance of the
system output, Since these rules use only first and second moments of the sys-
tem output decision variable, they are incomplete statistical descriptors.
Furthermore, the two lowest moments are often employed in a Gaussian approxi-
mation in order to estimate probabilities of detection and false alarms, This
approach can lead to an obvious contradiction, such as stating that no value of

SNR, no matter how large, will yield very high detection probabilities for a
limited observation time, *

The best way to avoid such situations, and the approach this report dis- :
cusses, is to evaluate the exact probability distribution of the decision variable !
without making 2 Gaussian assumption — a method that i8 particularly relevant

in short-term detection where only a few independent samples of the system
output are available.

*See, for example, reference 1, equations (37) through (40), where deflection
criteria P; and P, can notexceed TWg, and, in fact, the required So/Ny— =
as Pj, Py — TWg.
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PROBLEM DEFINITION

The detector of interest here is depicted in figure 1, The input x(t) is
composed of stationary, zero-mean, Gaussian signal s(t) and noise n(t), or
noise n(t) alome. It is 2ssumed that the narrowband filter (NBF) is centered
on the signal and has the same bandwidth, B Hz, as the signal spectrum, (The
effects of over-resolution and under-resolution, and of mismatched center fre-
quencies, are discussed in reference 1.) The input noise is assumed to be
fairly flat over a frequency interval wider than B Hz, The sampler takes a
sample of the squared-envelope (SE)SZ(t) approximately every B-1 sec, *
accumulating these SE samples for an observation interval of T sec. The
threshold, A, with which z is compared, is fixed, (The effects of using a
tracking threshold based on a few noise-alone frequency bins are discussed in
reference 1 and thoroughly investigated in reference 2,)

SQUARE-LAW ENVELOPE DETECTOR

Figure 1, Narrowband Detector

If, after an observationinterval of T sec, random variable (RV) z exceeds
A when a signal is absent, a false alarm occurs, It should be noted that this
false alarm definition applies to just one NBF, not to a bank of NBFs. Also, a
false alarm can occur only once every T sec, not every B-1lgec, If A is ex-
ceeded with a signal present, a detection occurs, The problem, then, is to
calculate the false alarm and detection probabilities of the detector in figure 1
as a fuuction of the input SNR.

*This is a reasonable rule for analysis filters with fairly rectangular pass-
band characteristica, but samples should be taken more often for filters with
rounded characteristics, In the latter case, however, the SE samples are
statistically dependent, (Appendix A provides a method for dealing with this

dependency. )
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PROBLEM SOLUTION
The process y(t) a* the NBF output has power o2, where

2 N, noise-alone input to NBF
g

=

. 1)
S + N, signal-plus-noise input to NBF

That is, N is the noise power at the NBF output, and 8 (if present) is the sig-

nal power at the NBF output. These are the powers in the B Hz bandwidth and
are not spectral levels in a 1-Hz band.

It will be assumed that the samples every B'1 sec at the NBF (or detec-
tor) output are statistically independent. This is a fair approximation* if B ;
is interpreted as the effective bandwidth of the signal process and the NBF; i

that is,
o]
(o]

B= ~ ’ (2) *
2 !
df Gy (f)
[0

e R o TR

2

where Gy(f) is the NBF output power density spectrum. The number of inde-
pendent SE samples in observation interval T sec is, then, BT + 1 and will
be denoted by M., (The equivalent number of independent SE samples in inter-
val T for statistically dependent SE samples is considered in Appendix A.)

The generic problem, therefore, ig that of calculating the cumulative dis-
tribution of the RV z,

M 2
z= Y W, ®)
k=1

*See footnote on p. 2.
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where wj are statistically independent samples of the envelope of a narrow-

band Gaussian process. Random variable z is a multiple of a chi-square

variate with 2M degrees of freedom. The probability density function of envelope
W (reference 3, equations (3.7-5) and (3, 7-10)) is given by

Wk le{
P(wyg) = ——— exp |- » W >0 “4)
02 20

Therefore the probability density function of z (reference 4, equations (2. 1),
(2.3), and (2. 13)) is

1 z z (5)
p(z) = exp |- ,2>0
M-1)! 202 \202 202

The probability that RV z exceeds A is

o

Prob(z > A) =f dz p(z)
A

le—L , m
m! 2 '
2¢ m=0 20

the last step via repeated integration by parts.

(6)

dt tM—le—t = ex|
M-1)1

A
242

The probability of false alarm, PF’ and the probability of detection, PD’
are obtained by using (1) in (6): ‘

M-1
Pp = exp(-A) Z —m—'Am ’ , M)
m=0
- m
1 [_A
PD:e"p( T78/N N) Z= m(us?N) ‘ ®)
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where we have defined normalized threshold, A, as

- A
A= 3N @

Again, S/N is the ratio of signal power tc noise power at the NBF output in
figure 1 in the B Hz bandwidth; it is not the spectral level in a 1-Hz band.

Equation (7) can be solved for normalized threshold A for a specified P
and number of independent SE samples M. (A table for M = 1(1)10, 16, 32,
and 64, and PR =10"1, n=1(1)8, is presented in Appendix B.) Then, for a
specified P, (8) can be solved for the required values of S/N.

RESULTS

Curves of required S/N in decibels are presented in figures 2 through 5
for Pp=.5 .7, .9, and,99, respectively. Values of Py equal to 1070,
n=1(1)8, are considered for a range of M from 1 to 100. (Since the curves
were evaluated only at the integer points, straight-line interpolation was used
for ease of reading.) M is to be interpreted as BT + 1 in figure 1 and is the
equivalent number of independent SE samples in observation time T,

It will be observed from figures 2 through 5 that the required S/N increases
rapidly as M decreases. In fact, the required value of S/N for M=1 is
given by

-1,M=1) (10

this result follows from (7) and (8). Thus for values of PD near unity, a very
large value of S/N is required for M =1,

On the other hand, the curves are fairly siinilar for large M, there being,
for example, 1.9 dB more SNR required (at M = 100, Pg = 10"3) for PD =,9
than for Pp =.5,

The difference between the curves decreases as Ppy is increased in
figures 2 through 5, Puart of this difference is the result of the change of the
o~rdinate acale in each figure, but part of it i8 a real effect, For example, the
difference between the curves at M = 100, Pp =.518 2,1 dB, whereas the dif-
ference between the curves at M = 100, Py = .99 i8 1,4 dB. The corresponding
differences at M =1 are 3.25 and 3. 0 dB, respectively.
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It is anticipated that for large M the RV z in (3) could be approximated -
by a Gaussian RV. This is investigated in Appendix C, where the approximate
8/N required for large M ie given by (C-8) as

¢~ (P, -1 (p.)
8/N m— 2 r, (1)
m- ¢_1 (PD)

where «b"l( ) is the inverse &( ) function (see (C-~5)). Equation (11) is ex-
pected to be a good approximation only for M >> 1, and only for P,, signifi-
cantly less than &(vM), a point that is discussed further in Ap, x C,

A special case of (11) is provided by PD =,5 (see (C-10)). Converted to
decibels, (11) becomes

10 log (8/N) ~ 10 log (=471 (Pg)) - 5 log M; Py =.5 (12)

which has the familiar 5 ilog M (X5 log (BT)) decay associated with energy .
detection for large M, Equation (12) is plotted in figure 6 as dashed lines for

Pp = 1071, 102, 104, and 10-8, and the exact results are plotied as solid

lines, The values of the additive constant in (12) are given in table 1 (see table .
26. 6 of reference 5).

Table 1. Additive Constant in (12)

g‘ Pp 10 log (-1 (PL))
1073 1.08
10-2 3.67
5 10-3 4.90
104 5.70
10-5 8,30
10-6 6.77
10~7 7.16
10-8 7.49 | .
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Figure 6 shows that the exact results approach the Gaussian approximation
asymptotically as M increases. However, even at M = 100, the Gaussian
approximation is cptimistic by 0,78 dB for Py = 10-8, 0, 53 dB for Pp= 1074,
and by onjy 0,19 dB for Py = 10~1,

For smaller M, such as M = 10, the Gaussian results are optimistic by
0.63, 1,07, 1,63, and 2,30 dB at Py = 10~1, 10-2, 104, and 10~8, respec-
tively, but for M =1, they are optimistic by 2. 58, 3, 85, 6,20, and 6. 59 dB,
respectively. Thus the Gaussian approximation, and (12) in particular, should
not be used unless M 1is very large compared with unity.

For other values of Py, (11) can be converted into decibels and compared
with the exact results. A sample calculation for Pp=0.9, P, =10"6, and

M = 10 reveals that the exact S/N required is 8, 29 dB, whereas the approxi- ‘

mation (11) indicates 5. 06 dB; thus the Gaussian approximation is optimistic by
1.23 dB in this case. It is worth noting, however, that this error is less than
the corresponding error of 2,00 dB when Pj, = 0,5, Pp = 1076, and M = 10,

It is also worth noting that when Pp =0.9, Pp=10-6, and M =100, the
exact S/N is -1, 12 dB, whereas the approximation (11) indicates -1. 60 dB;
thediscrepancy here is only 0.48 dB, which is again less than the 0. 67 dB error
for PD =0, 5.

Generally, for Pp # 0.5, the approximation (11)does not plot as a straight
line as in figure 6. Rather, the plot of (11) curves up sharply as M decreases
and, in fact, goes to = at M =[$"1(Pp)]2. Thus approximation (11) can
overestimate the required S/N for small enough M and Pp > 0.5, Also, as
M increases from small values, (11) crosses the exact /N curve and reaches
a maximum undershoot before again approaching the exact S/N curve for
large M. The net effect is that (11) is not a good approximation to use unless
both M >>1 and M >> [¢~1(Pp))2.

If the signal were not a Gaussian process, but a sine wave, we could use the
results of reference 6 (equations (B-21) through (B~25) and (C~13)) by identifying

2
dp
——=M S/N . (13)
2

12
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’ Equation (13) can be solved for S/N in terms of dp. (Figuree 2 through i4
in reference 6 provide the desired values of dy.) We have plotted as X8 in
figure 6 the required S/N, in decibels, for the sine-wave process for Pp=
102 and 108, Little difference is evident between the S/N required for a
Gaussian signal process and that required for a sine-wave-signal process, ex-
cept for very small values of M, The sine~wave-signal process requires a
slightly lower value of S/N than does the Gaussian signal process — this
conclusion {8 drawn oaly for the Pp=0.5 case considered here,

CONCLUSIONS AND RECOMMENDATICNS

Rules of thumb for determining required SNR, such as those developed from
a2 Gaussian approximation, are grossly optimistic predictions when the number
of SE samples, M(=BT + 1), is small, Because errors of many decibels can
occur for M of the order of unity, the results shown in figures 2 through 5
should be preferred for performance predictions in narrowband energy detec~
tion, However, these results should atill be considered as optimistic because,
in practice, unavoidable center frequency and bandwidth mismatches of the
analysis filter with respect to the signal spectrum occur and require larger
values of SNR than are indicated in this report. (Bandwidth mismatch is con- ]
sidered quantitatively in reference 1.) ‘

!
¢
§
%
i

The false-alarm and detection probabilities themselves, not deflection
criteria, are used as performance measures here. Also, no assumptions about
the absolute or relativesizes of analysis bandwidth B and observation time T
are required; only their product is important. The major approximation has
been the replacement of BT by an effective number of independent SE samples,
M-1. This approximation is difficult to be precise about, without an exact
analysis as conducted in reference 7, (Detalls of the exact analysis for con-
tinuous detection are extremely tedious, as Appendix B in reference 7 attosts.)
It appears that the next order of business should be an exact analysis of the
sampled system in figure 1 using the methods in references 8 and 9,

The results in this report are actually exact for a rectangular NBF, if BT
is an integer; then, M is precisely BT + 1, This follows because every SE
sample €2(t,) in figure 1 is statistically independent in the case of a rectangu-~
lar NBF, and there are T/B~1 + 1 samples in T (see Appendix A).

13/14
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Appendix A
EQUIVALENT NUMBER OF INDEPENDENT SQUARED-ENVELOPE SAMPLES

The problem here is tofind an equivalent number of independent, squared-
envelope (SE) samples for the detector in figure 1 when the NBF and sampling
increment are arbitrary and the SE samples are statistically dependent. With
this information, the results of thie report can be extended approximately to
other aignal spectra, filters, and sampling plans,

The observation interval available to the sampler in figure 1is (0,T),
during which time an arbitrary number, N, of equi-spaced S8E samples are
taken, The time between SE samples is then At = T/(N-1). A related prob-
lem that we will address is: What value of At should be chosen to make the
best use of the available data?

The sum of N (dependent) SE samples in ﬁgure 1 is proportional to
kT
u=-—- ‘Z £2 kat) = 5= 2N Z (FTT) . (A-1)

Using the probability density function for the envelope given in (4), we see that
the mean of RV u is

E{u} = -E{ez(t)l-c . (A-2)

Now

2 2
=y 0+y. 0 . (4-3)

where y.(t) and yg(t) are the in-phase and quadrature components of the NBF
output y(t) (see reference 7, Appendix A). If, and oaly if, the spectrum G (f)
of Gaussian process y(t) is symmetric about its center frequency f then

Ye(t) and yg(t) are independent Gaussian processes, each with correlation

function

Rg(r) = f df cos(2rfr) Gg(f), Ro(0) =02 , (A-4)

15
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of 0, f<-f,

Go (D

Then each SE sample is the sum of two independent sainples.

The variance of u follows as

N
1 (ki\ .2 / kT
varfup=§ T e I

Now let us consider a new RV v formed as the sum of M statistically
independent SE samples:

y X,
Ve oM kgl L/ (A=T)

RV v is a multiple of a chi-square variate with 2M degrees of freedom; it is
also a scaled versionof (3). We wish toapproximate the statistics of the general
RV u by those of RV v. In particular, we will set the means and variances of
u and v equal, Using (4) and (A-4), we find

E{v}=¢2,

2
var{v} = 'ila' ot = '1%1' R (0) . (A~8)

The means of u and v are already equal and the variances can be made equal
if we choose M in (A-7) (by equating (A-6) and (A-8)) according to

1
M= (A-~9)
N g2 (kT )
1 }: (1 - Jﬂ) 0 \N-1
N <IN N ni(o)

Equation (A-9) provides a definition of the equivalent number of independent SE
samples in RV u. (S8ince the right-hand side of (A-9) {8 not necessarily an

16
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integer, M could be chosen as the closest integer; then the variances of u
and v would be approximately equal, ) In the special case when 4t is chosen
such that the samples of £2(t) in (A-1) are all uncorrelated, then R, (kAt) = 0
for k#0, and M= N,

Two special cases of (A-9) are worth noting. The first is that in the limit
of continuous processing, N—«=, and (A-9) approaches

1
Mc & 2 . (A"IO)
1 Ro (Tx)
f dx (1~ |x|) —5—
-1 R_(0)

The second is that if observation time T is large compered with the effective
correlation time of R (r), then (A-10) becomes,

2 2
1 [ f dt Gom] [ dy Gym]
M, = > = T =T — = BT, (A-11)
R, (TX) df 62 (6 df G2(f)
dx ——5—— o0 ° (0 y
2 o0 Ro (0)

where we have used (A-4), (A-5), and (2), and where B is the effective (or
statistical) bandwidth of the positive-frequency component of the NBF in figure 1.

Returning to the general result for the equivalent number of independent
SE samples, (A-9), we note from figures 2 through 5 that M is desired to be
as large as possible. Therefore, we investigate the behavior of M in (A-9)
as a function of N, and select that value of N corresponding to a maximum
of M; the best N will not be infinite (see reference 10).

We must investigate (A-9) through particular examples, The first example
is a rectangular spectrum for the NBF cutput y(t):

17
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1
-  |f+f. 1< =B
» 11X 3
Gy(f)= 2B 2 ,

0, otherwise

2
T ltlegB
Go(f) = ’ (A-12)
0, otherwise

2 sin(»Br)
*Br

Substitution of (A-12) in (A-9) yields

Ry(r) =0 =02 sinc (Br)

M= N w = . (A-13)
1 T
N 2 ( "N sinc? (——N_ 1)

k=-N

Thequantity M is a functiononly of the BT product and the particular value of N
selected and is plotted versus N for several BT products in figure A~1, It will
be observed that M increases nearly linearly with N until M saturates at approx-
imately the value BT +1 when N =BT +1, The corresponding At is T(N-1) =
1/B; that is, the SE samples are uncorrelated* Ro(kAt) = 0 for k # 0) when
taken at thebandwidth rate of the NBF. (Although M can be made slightly larger
than BT +1 by choosing N onelarger than BT +1, i.e., At < 1/B, the gain is
negligible, ) Thus for the rectangular spectrum, we have At=1/B, M = BT +1,

The second example i8 a Gaussian spectrum,

VZ'o?
B

Go(f) = exp(-2xf2/B%) |

(A-14)
Ry(r) = o2 exp (- %Bz 12) .
The plot of M versus N is given in figure A-2, As in the case of a rectangu-
lar spectrum, M saturates at approximately the value BT + 1 when N equais
BT +1, and At =1/B is again the recommended sampling interval., However,

the SE samples are no longer statistically independent; instead, adjacent SE
samples have a correlation coefficient* of exp(-w) = 0.043.

*The correlation coefficient of £2(t) is Rcz, (r)/Rz 0).

18
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Figure A-1. Equivalent Number of Independent Squared-Envelope
Samples for Rectangular Spectrum
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Figure A-2, Equivalent Number of Independent Squared-Envelope
Samples for Gaussian Spectrum
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The third example is a Cauchy spectrum,
B
G (D) =202 ——e
° @rh? + B2
(A-15)

Ry(r) = o2 exp(-B|r]) .

The plot of M versus N is given in figure A-3, Although M again saturates
for large N approximately at the value BT + 1, the value of N required ie
larger than BT + 1. In fact, a value of N approximately equal to 2BT is re-
quired to realize the saturation value of M. In this case, the sampling increment
At equals 1/2B) and the SE samples are highly correlated, the correlation
cocfficient of adjacent SE samples being 1/e = 0, 37,

Thus, for three widely different spectra, the equivalent number of inde-
pendent SE sampies is given approximately by BT + 1, where B is the
effective bandwidth of the NBF output spectrum. The sampling increment
should be approximately 1/B for fairly-rectangular passband characteristics,
but must be smaller than this amount for rounded filter characteristics.
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Appendix B
THRESHOLD VALUES

The false alarm probability is given in (7). Values of tho normalized thresh-
cid A = A /2N)required to realize specified values of P are given in table B-1,

Table B-1., Normalized Threshold Values A

M °F
1001 | 102 | 1073 | 107% | 105 | 1078 1077 | 1078
1| 2.303| 4.605| 6.908| 9,210| 11.512| 13,816 | 16.118 | 18.421
2| 3.800| 6.638 | 9.233| 11.756 | 14.237| 16.688 | 19.120 | 21.536
3| 5.322| 8,406 |11.220| 13,928 16.55¢| 19.120 | 21.669 | 24.181
4| 6.881|10.045 {13,062 15.914 | 18.666| 21.350 | 23.986 | 26.585
51 7.904 |11.605 |14.794 | 17.782 | 20.648| 23.431 | 26.1556 | 28.832
6| 9.275 | 13.108 | 16.455 | 19,567 | 22.538 | 25.413 | 28.217 | 30.967
7 | 10,532 | 14.571 | 18.062 | 21.290 | 24.358 | 27.318 | 30.198 | 33.016
8 [ 11.771 | 16,000 | 19.626 | 22.962 | 26.122| 29,162 | s2.114 | 34.997
9 | 12.995 | 17.403 | 21.156 | 24.595 | 27.841| 30.957 | 33.977 | 36.922
10 | 14.206 | 18,783 |22.657 | 26.193 | 20.522 | 32.710 | 35.795 | 38.799
16 | 21,292 | 26,743 |31.244 | 35.286 | 30,047 | 42.616 | 46.042 | 49.359
32 | 39.430 | 46.608 |52.358 | 57.417 | 62.052| e6.384 | 70.510 | 74.477
64 |74.443 | 84.067 |91.563 | 98,106 | 103. 995 | 109,453 |114.592 | 119,482

If the mean value of decision variable z in figure 1 is subtracted before
threshold comparison, the number of standard deviations that the new thresh-
old must be set at is given (for signal absent) by

A- E{z} A-M2N _ A ap

St. Dev. {z} vM2N UM )

The results in table B-1 may be substituted in equation (B~1) to find the new
thresholds. For example, M =64, Py = 10-3 requires a threshold set at
3. 449 standard deviations.

B-1)
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Appendix C
GAUSSIAN APPROXIMATION

For large M, RV z in (3) tends towerd a Gausaian RV. I follows from (5)
that

| - .. E{zk}= W (2.13)k . (C-1)

In particular,

E{z} = M 23,

2 (C-2)
Var {z} = M@2¢2)
Then,
2
1 - 2
P(t) & —————>emp | - (& - M2c) (C-3)
V2¥M 20 zM(z.,z)
and
Prob(z > A) s & (VM - A) C~4
& - ’
rob(z > A) v ;‘2‘ N (C-4)
\\
where
x , 1
o) = f dt 2v)"Y/2 exp(-t2/2) . (C-5)

An immediate problem of the Gauseian approximstion is indicated by (C-4):
as 02 — =, the right-hand side of (C-4) tends to ¢(+/M), which is less than 1,
Thus arbitrarily high detection pvobabilities can never be realized by the
Gaussian approximation unless M >> 1. This is not true of the exact distribu-
tionof z for any M, as (6) shows that the Prob(z > A) ~1 as 02w,

The approximations to P, and Pp, are obtained by using (1) and (9) in
(C-4):
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Ppmé (\/ﬁ --ﬁ A) . (C-6)

1 A
oo (VIE- T Tra7R) (©-n
Equations (C-6) and (C-7) may be solved for 8/N (by eliminating A) to obtain

e ley- ¢y

-1 ’ (C-8)
viE-¢ " Pp)

8S/N s

where @~1( ) is the inverse &( ) function. (The impossibility of requiring
Pp > ¢(+/M) is now made obvious by the denominator of (C-8).)

For large M, (C-8) decays as M1/ 2, regardless of the choice of Pp
and Py, However, the point at which this behavior deveiops depends upon how

large Pp is.
A special case of (C-8) is provided by P, =.5; then rl(pD) =0 and

- r F)

S/NN-—m.—; Py=.5 . (C-9)

Converted to decibels,(C-9) is

10 log (8/N) = 10 log (— et (PF)) -5 log M‘; Pp=.5 . (C-10)
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