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SIGNAL-TO-NOISE RATIOS REQUIRED FOR SHORT-TERM
NARROWBAND DETECTION OF GAUSSIAN PROCESSES

INTRODUCTION

Rules of thumb are available for approximating the required signal-to-noise
ratio (SNR) for broadband and narrowband energy detection of signals in noise
(see reference 1). However, they are generally applicable or appropriate only
when certain requirements (long observation (averaging) time, for example) are
satisfied. Attempts to apply these rules outside their often ill-defined ranges of
applicability can result in very misleading conclusions about system perform-
ance and capability. This is particularly true for high-resolution, narrowband
detection systems where the analysis bandwidth is so small that practical
observation times lead to only a few effectively independent samples of the
processes under investigation; this is called short-term detection here.

The rules of thumb may be inapplicable because they are often based on a
deflection criterion of system performance, such as the square of the difference
of the mean outputs, with and without signal, divided by some variance of the
system output. Since these rules use only first and second moments of the sys-
tem output decision variable, they are incomplete statistical descriptors.
Furthermore, the two lowest moments are often employed in a Gaussian approxi-
mation in order to estimate probabilities of detection and false alarms, This
approach can lead to an obvious contradiction, such as stating that no value of
SNR, no matter how large, will yield very high detection probabilities for a
limited observation time. *

The best way to avoid such situations, and the approach this report dis-
cusses, is to evaluate the exact probability distribution of the decision variable
without making a Gaussian assumption- a method that is particularly relevant
in short-term detection where only a few independent samples of the system
output are available.

*See, for example, reference 1, equations (37) through (40), where deflection

criteria P1 and P2 can not exceed TWs, and, in fact, the required So/No-0

as P1 , P 2 - TWs.

f 4
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PROBLEM DEFINITION

The detector of interest here is depicted in figure 1. The input x(t) is W

composed of stationary, zero-mean, Gaussian signal s(t) and noise n(t), or
noise n(t) alone. It is easumed that the narrowband filter (NBF) is centered
on the signal and has the same bandwidth, B Hz, as the signal spectrum. (The
effects of over-resolution and under-resolution, and of mismatched center fre-
quencies, are discussed in reference 1.) The input noise is assumed to be
fairly flat over a frequency interval wider than B Hz. The sampler takes a
sample of the squared-envelope (SE) 22 (t) approximately every B- 1 sec,*
accumulating these SE samples for an observation interval of T sec. The
threshold, A, with which z is compared, is fixed. (The effects of using a
tracking threshold based on a few noise-alone frequency bins are discussed in
reference 1 and thoroughly investigated in reference 2.)

XW NARROWBAND O~t SAMPER

FILTENAROANRER LOW-AS AND THRESHOLD
FILTER SQUARER FILTER SUMMER COMPARISON
( H F (B-1 sec, T sec)

SQUARE-LAW ENVELOPE DETECTOR

Figure 1. Narrowband Detector

If, after an observation interval of T sec, random variable (RV) z exceeds

A when a signal is absent, a false alarm occurs. It should be noted that this
false alarm definition applies to just one NBF, not to a bank of NBFs. Also, a

false alarm can occur only once every T sec, not every B- 1 sec. If A is ex-

ceeded with a signal present, a detection occurs. The problem, then, is to
calculate the false alarm and detection probabilities of the detector in figure 1
as a function of the input SNR.

*This is a reaEonable rule for analysis filters with fairly rectangular pass-

band characteristics, but samples should be taken more often for filters with
rounded characteristics. In the latter case, however, the SE samples are
statistically dependent. (Appendix A provides a method for dealing with this

dependency.)

2
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PROBLEM SOLUTION

The process y(t) a' the NBF output has power a 2 , where

2= I N, noise-alone input to NBF '(= (1)

S + N, signal-plus-noise input to NBF

That is, N is the noise power at the NBF output, and S (if present) is the sig-

nal power at the NBF output. These are the powers in the B Hz bandwidth and
are not spectral levels in a 1-Hz band.

It will be assumed that the samples every B-1 see at the NBF (or detec-
tor) output are statistically independent. This is a fair approximation* if B
is interpreted as the effective bandwidth of the signal process and the NBF;
that is,

S(22

fdf G(f)

where Gy(f) is the NBF output power density spectrum. The number of inde-
pendent SE samples In observation interval T sec is, then, BT + 1 and will
be denoted by M. (The equivalent number of independent SE samples in inter-
val T for statistically dependent SE samples is considered In Appendix A. )

The generic problem, therefore, is that of calculating the cumulative dis-
tribution of the RV z, M 2

Wkl

*See footnote on p. 2.

wd

pendnt E saple Inobsevaton nteral se isthe, B + 1andwil

Z (3)
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where wk are statistically independent samples of the envelope of a narrow-
band Gaussian process. Random variable z is a multiple of a chi-square
variate with 2M degrees of freedom. The probability density function of envelope
wk (reference 3, equations (3. 7-5) and (3. 7-10)) is given by

wk wk
P(Wk - e I wk>0 . (4)

Therefore the probability density function of z (reference 4, equations (2. 1),
(2.3), and (2.13)) is

M-1
p(z) 1zexp ,z>0 . (5)

(M-I)! 2o 2

The probability that RV z exceeds A is

Prob(z > A) dz p(z)
(6)

S M-1 e-t A M 1 1 A \mdt exp A A

JA (M - ! 2a) m=0

the last step via repeated integration by parts.

The probability of false alarm, PF' and the probability of detection, PD'
are obtained by using (1) in (6):

M-1 I AM
PF = exp(-A) E A (7)

m=0

M-1 1 m
= exp ( N 1, (8)

M=O

4
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where we have defined normalized threshold, A, as

A A
2N A (9)

Again, S/N is the ratio of signal power to noise power at the NBF output in
figure 1 in the B Hz bandwidth; it is not the spectral level in a 1-Hz band.

Equation (7) can be solved for normalized threshold A for a specified P
and number of independent SE samples M. (A table for M = 1(1)10, 16, 31,
and 64, and = 1 0 n, n = 1(1)8, is presented in Appendix B.) Then, for a
specified PD' (8) can be solved for the required values of S/N.

RESULTS

Curves of required S/N in decibels are presented in figures 2 through 5
for PD = .5, .7, . 9, and. 99, respectively. Values of PF equal to 10 -n,
n= 1(1)8, are considered for a range of M from 1 to 100. (Since the curves
were evaluated only at the integer points, straight-line interpolation was used
for ease of reading.) M is to be interpreted as BT + 1 in figure 1 and is the
equivalent number of independent SE samples in observation time T.

It will be observed from figures 2 through 5 that the required S/N increases
rapidly as M decreases. In fact, the required value of S/N for M = 1 is

given by

S-N = 1, (M = 1); (10)
JnPD

this result follows from (7) and (8). Thus for values of PD near unity, a very

large value of S/N is required for M = 1.

On the other hand, the curves are fairly simnilar for large M, there being,

for example, 1. 9 dB more SNR required (at M = 100, PF = 10-3) for P 9D =.9
than for PD = • 6

The difference between the curves decreases as PD is increased in
figures 2 through 5. Part of this difference is the result of the change of the
ordinate scale in each figure, but part of it is a real effect. For example, the
difference between the curves at M = 100, PD = . 5 is 2. 1 dB, whereas the dif-
ference between the curves at M = 100, PD = . 99 is 1.4 dB. The corresponding
differences at M = 1 are 3. 25 and 3. 0 dB, respectively.

5
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It Is anticipated that for large M the RV z in (3) could be approximated
by a Gaussian RV. This is investigated in Appendix C, where the approximate
S/N required for large M is given by (C-8) as

S( (11)lPF

where 4-1( ) is the inverse *( ) function (see (C-5)). Equation (11) is ex-
pected to be a good approxmation only for M >> 1, and only for Pn signifi-
cantly less than t(%/Mf), a point that is discussed further in Appenz x C.

A special case of (11) is provided by PD = .5 (see (C-10)). Converted to
decibels, (11) becomes

10 log (S/N) s 10 log (- @1(pF)) - 5 log M; PD ="5 (12)

which has the familiar 5 log M (25 log (BT)) decay associated with energy
detection for large M. Equation (12) Is plotted in figure 6 as dashed lines for
pF = 10-1, 10-2, 10"4, and 10-8, and the exact results are plotted as solid
lines. The values of the additive constant in (12) are given in table 1 (see table
26.6 of reference 5).

Table 1. Additive Constant in (12)

SPF'" 10 log (-W-1 (PF))

10"1 1.08

10-2 3.67

S10-3 4.90

10-4 85.70

S10-5 6.30

10-6 6.77

10"7 7.16

10-8 7.49

10
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Figure 6 shows that the exact results approach the Gaussian approximation
asymptotically as M Increases. However, even at M - 100, the Gaussian
approximation is optimistic by 0.78 dB for PF = 10-8, 0. 53 dB for PF = 10-4,
and by onjy 0.19 dB for PF = 10-1"

For smaller M, such as M = 10, the Gaussian results are optimistic by
0. 63, 1. 07, 1. 63, and 2. 30 dB at PF = 10- 1, 10"2, 10"4, and 10-8, respec-
tively, but for M = 1, they are optimistic by 2.58, 3. 85, 5. 20, and 6. 59 dB,
respectively. Thus the Gaussian approximation, and (12) in particular, should
not be used unless M is very large compared with unity.

For other values of PD, (11) can be converted into decibels and compared
with the exact results. A sample calculation for PD = 0.9, PF = 10-6, and
M = 10 reveals that the exact S/N required is 6.29 dB, whereas the approxi-
mation (11) indicates 5.06 dB; thus the Gaussian approximation is optimistic by
1. 23 dB in this case. It is worth noting, however, that this error is less than
the corresponding error of 2.00 dB when PD = 0. 5, PF = 10-6t and M = 10.
It is also worth noting that when PD = 0- 9, PF = 10-6, and M = 100, the
exact S/N is -1. 12 dB, whereas the approximation (11) indicates -1. 60 dB;
the discrepancy here is only 0.48 dB, which is again less than the 0.67 dB error
for PD = 0. 5.I Generally, for P]D ý 0. 5, the approximation (11) does not plot as a straight
line as in figure 6. Rather, the plot of (11) curves up sharply as M decreases
and, in fact, goes to - at M = (p-I(PD)) 2 . Thus approximation (11) can
overestimate the required S/N for small enough M and PD > 0. 5. Also, asI M increases from small values, (11) crosses the exact S/N curve and reaches
a maximum undershoot before again approaching the exact S/N curve for
large M. The net effect is that (11) Is not a good approximation to use unless
both M>> I and M >> (PD)J

If the signal were not a Gaussian process, but a sine wave, we could use the
results of reference 6 (equations (B-21) through (B-25) and (C-13)) by identifying

d2
dT
-=M S/N (13)
2

12
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Equation (13) can be solved for S/N in terms of dr. (Figures 2 through 14
in reference 6 provide the desired values of dT. ) We have plotted as X a in
figure 6 the required S/N, in decibels, for the sine-wave process for PF =
10-2 and 10-8. Little difference is evident between the S/N required for a
Gaussian signal process and that required for a sine-wave-signal process, ex-
cept for very small values of M. The sine-wave-signal process requires a
slightly lower value of S/N than does the Gaussian signal process - this
conclusion is drawn only for the PD = 0.5 case considered here.

CONCLUSIONS AND RECOMMENDATIONS

Rules of thumb for determining required SNKl, such as those developed from
a Gaussian approximation, are grossly optimistic predictions when the number
of SE samples, M(=BT + 1), is small. Because errors of many decibels can
occur for M of the order of unity, the results shown in figures 2 through 5
should be preferred for performance predictions in narrowband energy detec-
tion. However, these results should still be considered as optimistic because,
in practice, unavoidable center frequency and bandwidth mismatches of the
analysis filter with respect to the signal spectrum occur and require larger
values of SNR than are indicated in this report. (Bandwidth mismatch is con-l i sidered quantitatively in reference 1. )

The false-alarm and detection probabilities themselves, not deflection
criteria, are used as performance measures here. Also, no assumptions about
the absolute or relative sizes of analysis bandwidth B and observation time T
are required; only their product is important. The major approximation has
been the replacement of BT by an effective number of independent SE samples,
M-1. This approximation is difficult to be precise about, without an exact
analysis as conducted in reference 7. (Details of the exact analysis for con-
tinuous detection are extremely tedious, as Appendix B in reference 7 attosts.)
It appears that the next order of business should be an exact analysis of the
sampled system in figure 1 using the methods in references 8 and 9.

The results in this report are actually exact for a rectangular NBF, if BT
is an integer; then, M is precisely BT + 1. This follows because every SE
sample E (tk) in figure I is statistically independent in the case of a rectangu-
lar NBF, and there are T/B- 1 + 1 samples in T (see Appendix A).

13/14
REVERSE BLANK
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Appendix A

EQUIVALENT NUMBER OF INDEPENDENT SQUARED-ENVELOPE SAMPLES

The problem here is to find an equivalent number of independent, squared-
envelope (SE) samples for the detector in figure 1 when the NBF and sampling
increment are arbitrary and the SE samples are statistically dependent. With
this information, the results of this report can be extended approximately to
other signal spectra, filters, and sampling plans.

The observation interval available to the sampler in ftwmre 1 is (0, T),
during which time an arbitrary number, N, of equi-spaced SE samples are
taken. The time between SE samples is then At = T/(N- 1). A related prob-
lem that we will address is: What value of At should be chosen to make the
best use of the available data?

The sum of N (dependent) SE samples in figure 1 is proportional to

1 N-1 Ni(kt) _1kT NA
U. -1- ~~~~ 9' U'-0- (A-i)

"k=0 k=0

Using the probability density function for the envelope given in. (4), we see that
the mean of R V u is

Elul ~ EfE2(t)l =.,F2 (A-2)

Now

2 (t)=y (t)+Ys(t) , (A-3)

where yc(t) and ys(t) are the in-phase and quadrature components of the NBF
output y(t) (see reference 7, Appendix A). If, and only if, the spectrum Gy(f)
of Gaussian process y(t) is symmetric about its center frequency fo' then

yc(t) and ys(t) are independent Gaussian processes, each with correlation
function

Ro(T) = df cos(2rf) Go(f), Ro(0) =v2, (A-)

15
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where

O 2 Gy (f+ fo), f> 4f .
0, f < 4A-

Then each SE sample is the sum of two independent samples.

The variance of u follows as

N IkI 2 /kT A-6)Varlut F I" k . - o

Now let us consider a new RV v formed as the sum of M statistically
independent SE samples:

V= wk. (A-7)
k=1

RV v is a multiple of a chi-square variate with 2M degrees of freedom; it is
also a scaled version of (3). We wish to approximate the statistics of the general
RV u by those of RV v. In particular, we will set the means and variances of
u and v equal. Using (4) and (A-4), we find

E Iv I = 0

varIv} = 1 4 - R 2 (0) o (A-8)
M Mo0

The means of u and v are already equal and the variances can be made equal
if we choose M in (A-7) (by equating (A-6) and (A-8)) according to

1
M 2 =NkT (A-9)

k=-N R (0)

Equation (A-9) provides a definition of the equivalent number of independent SE
samples in RV u. (Since the right-hand side of (A-9) is not necessarily an

16
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integer, M could be chosen as the closest integer; then the variances of u
and v would be approximately equal.) In the special case when At is chosen
such that the samples of E2(t) in (A-i) are all uncorrelated, then Ro (kLA) - 0
for kýO, and M=N.

Two special cases of (A-9) are worth noting. The first is that in the limit
of continuous processing, N - -, and (A-9) approaches

1
Mc 2 (A-10)

fdx(1 -Ix) (Tx)
-1 R (0)

0

The second is that if observation time T is large compared with the effective
correlation time of Ro(r), then (A-10) becomes,

2 2

M .... ,=T =T ,, =BT, (A-il)f R(Tx) f Gdf G(f) d Gy(f)f

dx R0 0o

-
o(0)

0

where we have used (A-4), (A-5), and (2), and where B is the effective (or
statistical) bandwidth of the positive-frequency component of the NBF in figure 1.

Returning to the general result for the equivalent number of independent
SE samples, (A-9), we note from figures 2 through 5 that M is desired to be
as large as possible. Therefore, we investigate the behavior of M in (A-9)
as a function of N, and select that value of N corresponding to a maximum
of M; the best N will not be infinite (see reference 10).

We must investigate (A-9) through particular examples. The first example
Sis a rectangular spectrum for the NBF output y(t):

17
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SIf +ol < ±B!

t 12B 2

f)-2 Iflf 0< -B
Go(f) ='(-S

0, otherwise

If< I~B)

0,otherwise (-2

Row) = C2 sin(rBr)t 2 sinc (B2)

. sB r

Substitution of (A-12) in (A-9) yields

1
M= N . (A-13)

~- (iJisnc2 kBtN k N-1)

The quantity M is a function only of the BT product and the particular value of N
selected and is plotted versus N for several BT products in figure A-i. It will
be observed that M increases nearly linearly with N until M saturates at approx-
imately the value BT + I when N = BT + 1. The corresponding At is T(N- 1) =
1/B; that is, the SE samples are uncorrelated* (Ro(kAt) = 0 for k ý 0) when

takenat the bandwidth rate of the NBF. (Although M can be made slightly larger
than BT + I by choosing N one larger than BT + 1, i.e., At < I/B, the gain is
negligible. ) Thus for the rectangular spectrum, we have At = 1/B, M = BT + 1.

The second example is a Gaussian spectrum,

GO(]. B exp(.2 rf2/B2G°(f) =

(A-14)

R(r) =a2 exp f- B2
7
2 )2

The plot of M versus N is given in figure A-2. As in the case of a rectangu-
lar spectrum, M saturates at approximately the value BT + 1 when N equals
BT + 1, and At = 1/B is again the recommended sampling interval. However,
the SE samples are no longer statistically independent; instead, adjacent SE
samples have a correlation coefficient* of exp(-r) = 0. 043.

*The correlation coefficient of (/2(t) is R2o ()/R2 (0).0 0
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The third example is a Cauchy spectrum,

B
f= 2v2 (2rf)2 + B2

(A-15)
Ro(r) =w2exp(-B~ r)

The plot of M versus N is given in figure A-3. Although M again saturates
for large N approximately at the value BT + 1, the value of N required it
larger than BT + 1. In fact, a value of N approximately equal to 2BT is re-
quired to realize the saturation value of M. In this case, the sampling increment
At equals 1/AB) and the SE samples are highly correlated, the correlation
coofficient of adjacent SE samples being 1/e = 0. 37.

Thus, for three widely different spectra, the equivalent number of inde-
pendent SE samples is given approximately by BT + 1, where B is the
effective bandwidth of the NBF output spectrum. The sampling increment
should be approximately 1/B for fairly-rectangular passband characteristics,
but must be smaller than this amount for rounded filter characteristics.

2
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Appendix B

THRESHOLD VALUES

The false alarm probability is given in (7). Values of the normalized thresh-
old A = A/6O required to realize specified values of P are given in table B-i.

Table B-i. Normalized Threshold Values A

PF

M 10-1 10-2 10-3 10-4 10-5 106 10-7 1-

1 2.303 4. 605 6.908 9. 210 11.513 13. 816 16. 118 18. 421

2 3. 890 6.638 9. 233 11. 756 14. 237 16. 688 19. 120 21. 536

3 5. 322 8.406 11. 229 13. 928 16. 554 19. 129 21. 669 24. 181

4 6. 681 10. 045 13. 062 15. 914 18. 666 21. 350 23.986 26. 585

5 7. 994 11. 605 14. 794 17. 782 20. 648 23.431 26. 155 28.832

6 9.275 13. 108 16.455 19. 567 22. 538 25.413 28.217 30. 967

7 10. 532 14. 571 18. 062 21. 290 24.358 27. 318 30. 198 33.016

8 11.771 16.000 19.626 22.962 26.122 29.162 32.114 34.997

9 12.995 17.403 21. 156 24. 595 27. 841 30. 957 33. 977 36. 922

10 14. 206 18. 783 22. 657 26. 193 29. 522 32. 710 35. 795 38.799

16 21.292 26.743 31.244 35.286 30. 047 42.616 46.042 49.359

32 39. 430 46. 608 52. 358 57.417 62. 052 66. 394 70. 519 74.477

64 74.443 84.067 91. 593 98. 106 103.995 109.453 114.592 119.482

If the mean value of decision variable z in figure 1 is subtracted before
threshold comparison, the number of standard deviations that the new thresh-
old must be set at is given (for signal absent) by

A-Ejz} A-M2N A A
St. Dev. I z 2N /M

The results in table B-I may be substituted in equation (B-1) to find the newthresholds. For example, M =64, PF 10-3 requires a threshold set at

3.449 standard deviations.
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Appendix C

GAUIAN APPROXMATION

For large M, RV z In (3) tends toward a GamL=n RV. A follows from (5)
that

E lzktI. (M - 1+k) 1 (2,2)k* (C-1)
(M - 1)1

in pvtlouiar,

VMzi-(222 (C-2)

Them,

NO ___W_2__ r (z -M(C3

AN 'ML 2M(2 w J

and
Pob>AS1 4 /i1 A

Probz > A) • •T-), (C-4)

where

X
*(x) W dt (2r) exp(-t 2 /2) (C-5)

An immediate problem of the Gaussian approximation is indicated by (C-4):
as 62_..., the right-hand side of (C-4) tends to *(v/J), which is less than 1.

Thus arbitrarily high detection pvobabilities can never be realized by the
* Gaussian approximation unless M >> 1. Thuv is not true of the exact distribu-

tion of z for any M, as (6) shows that the Prob(z > A) -- 1 as .

The approximations to P and P are obtained by using (1) and (9) in
(C-4):

25



TH 4417

P F--t,(-/M- - A) ,(C-6)

/ 1 A

PD'( ' No/N (C-7)

Equations (C-6) and (C-7) may be solved for S/N (by eliminating A) to obtain

•-1 (D- -1 (F

S/N f , (C-8)

- tPD)

where *- ) is the inverse *( ) function. (The impossibility of requiring
% > i(n/M) Is now made obvious by the denominator of (C-8).)

For large M, (C-8) decays as M-1/2, regardless of the choice of PD
-and PF However, the point at which this behavior develops depends upon how

large PD is-

A special case of (C-8) is provided by PD =5; then 4 1 (PD) = 0 and

_-0 (PF)
s/N m _ .• ; o = "5  . (C-9)

Converted to decibels,(C-9) is

10 log (S/N)•10 log (--1 (pF)) -5 log M; PD =' 5 . (C-10)
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