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INTRODUCTION

Dezision makers frequently choose between courses
of action whose probable consequences are characterized
by multiple value attributes. For example, corporate
strategles might be evaluated in terms of their impli-
cations for long run profits, short run profits, and
market share; automoblles 1n terms of thelr safety and
performance characteristics, cost, comfort, and luxury
options; and prospective graduate students in terms of
thei; test scores, recommendations, and undergraduate
academic records. Optimal decision makinz in such con-
texts requires that decision makers trade off one value
relevant factor against another ii: determining the overall
worth of each possible alternative. Economic theorists
(Edgeworth, 1881) have long assumed that people can sub-
jectively make such trade-offs, but until vury recently
thlis assumption remalned untested. Durlng the past decade,
however, psychologists have devoted a substantlal effort
tc the study of the wholistic multi-attribute evaluatlon
process. (Throughout this paper an evaluation will be sald
to be wholistic if 1t is generated by a subjectlve process

without resort to formal analytical procedures.) These
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studies, reviewed by Slovic and Lichtenstein (1971), have
generally indlcated that people can make such trade-offs
in a systematic and meaningful fashion. Nevertheless,

this research has also revealed important shortcomings of
whollistic evaluation. First, whollstic evaluations tend
to be hased on but a limited number of value attributes,
frequently ignoring potentlally significant value relevant
considerations (Shepard, 1964; Slovic and Lichtenstein,
1971). This shortcoming seems to arise from a more general
limitation of human information processing--namely, that
peopie can deal with only five to ten "chunks" of conceptual
information at any given time (Miller, 1956). 1In addition,
whollstlic evaluations are characterlized by a substantial
degree of random error, and the amount of error tends to
increase as the declsion maker attempts to consider an
increasing number of value attributes (Slovic and
Lichtenstein, 1971). Error of this type has been shown to
be an lmportast source of suboptimality 1n real world

decislon making (Bowman, 1963).

As the shortcomings of wholistic evaluation have
vecome increasingly apparent, decomposed evaluation pro-
cedures have been proposed as means for improving upon
the intuitive decision making process. Decomposition

methods attempt to achieve greater optimality by dividing
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the overall evaluation task into a set of simpler sub-
tasks, each of which 1is well within the Jjudgmental
capaclities of the declision maker. These procedures
typically involve the following major steps: a) list
the set of alternatives to be evaluated; b) specify the
set of attributes with respect to which each alternative
is to be evaluated; c¢) numerically assess the value of
each alternative with respect to each attribute; and

d) specify an arithmetlc evaluation rule for determining
the 9verall value of each alternative. The final task,
specification of an evaluation rule, is generally accom-

plished in one of two ways. When magnitude estimation

procedures; dare used, each attribute 1s assigned a
quantitative lmportance factor. The overall value of each
alternative 1s then computed, usually usling a welghted

sum or product. When indifference judgment procedures are

used, the decision maker must flrst select an important

and contlnuous base attribute against which all other
attributes can be traded off. Then trade-offs are asgsessed
between the base attribute and each of the other attributes,
Under the assumption that value combines additively across
dimensions, the overall value of each alternatlve can then

be expressed 1n terms of units of the base attribute.




Proponents of the decomposition approach clalm the

followlng major advantages. First, by reducing the
information burden placed upon the decision maker, decom-
position procedures should substantially reduce the amount
of random error in the evaluatlion process. Second,
decomposition permits decision makers to consider a much
larger number of attributes in choosing between alternatives.
These are probably the two most important advantages of
decomposlition over wholistic Jjudgment. Others have been
cited) however, Ralffa (1969) has argued that it can

assist decision malkers 1n the logical structuring of their
problems, and Edwards (1971) has dlscussed a case study

in which the explicitness of the procedures facllitated

both the communication and resolutlon of conflicts between
declsion makers representing divergent interests. Edwards
also argaed that decomposition 1s especlally suited to
application 1n organizatlonal environments, with speclalists
making Judgments 1in their own areas of expertise and decision
makers wlth overall responsibility specifying and welght-
ing the criteria. Finally, Yntema and Torgerson (1961)

have argued that decomposition should be particularly use-
ful 1in decislon making contexts requiring a large number

of routine value Judgments. For, once developed, a quanti-
tative evaluation function can be incorporated in a computer
algorithm, thus freeing the decision maker for intellectually

more challenging tasks.

P
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DECOMPOSED EVALUATION: THEORY, SENSITIVITY,
METHOD, AND VALIDATION

As outlined above, decomposition procedures are
rather ad hoc in nature. Critics might argue that the
welghted sum formulation ignores configural interactions
between attributes, interactions which decision makers
themselves claim to take into consideration. This objec~
tion is greatly weakened, however, by the large body of
experimental literature which shows that wholistic Judg-
ments can be very well approximated by simple additive
models, and that configural considerations account for
but a very small proportion of variance in this evaluative
process (Slovic and Lichtenstein, 1971). Nevertheless,

a stronge. normative justification of decomposition

procedure 1s required.

The Theoretical Basls for Multi-Attribute Evaluatlon

Riskless Decision Making. A decision 1s said to be
riskless when the decision haker is able to specify with
certainty the consequences assoclated with each course of
action. Thus, riskless declsions require that the declsion
maker select one from a set of outcomes. When the riskless

cholce assumption 1s appropriate, the theory of conjoint
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measurement (Krantz, Luce, Suppes, and Tversky, 1971)

provides a formal axiomatic basis for additive decomposed

evaluation. Notationally, let (xli’ x21,...,xni) be the
vector of attributes describing outcome Xi, with xJi
denoting the j-th attribute of outcome ”L. Further, let
szxs dencte the relationship "outcome Xr is not preferred
to outcome X/ ", and let XP~XS denote "the decision maker

is indifferent between outcomes Xr and Xs."

The first two assumptions of the conjoint measurement
formulation are fundamental to all theorles of rational

choice (Arrow, 1952). These are:

1) Connectedness: For any two outcomes Xi and XJ’
either X, < Xys Xy < X; or X,~X,.

2) Transitivity: For any three outcomes, Xi, XJ’
X, 1F Xy < X, and X, < X, then X, < X, -

When both of these assumptlions are satisfiled, preferences

are sald to be weakly ordered.

Next we consider the two independence assumpticns
which are at the heart of the conjolnt measurement form of
additivity. When outcomes are characterized by only two

attributes, the following independence assumption 1is

required.
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each of which 1is sufficiently important to influence the

% -
; 3a) Cancellation. Let STORSTE and X1x be any
: :ij three states of the first attribute X1 and
{
¥
‘ let x X and x be any three states
% ! 21> 72§° 2k
E - of the second attribute Xy Ifr (xlj’x21)
j N < (xgpoXpy) and (xy4,%55) < (x34,%5, ),
t ? .
% | then (xli,x21) < (xlk’x2k)‘
T
: When outcomes are characterlzed by three or more attributes,
L
i
{

decision maker's preferences, then the cancellation axiom

RS,

‘ is replaced by the following independence assumption.
i

PR
-

3b) Monotonicity. Let (xl,xz,...,xn) be the attri-

bute vector describing the generic outcome

X. Let Y be any subset of these attributes and

let Z be the vector of remaining attributes, so

that X = (¥,2). Let Y, and YJ be any two states

of the Y attributes, and let Z1 and ZJ be any

two states of the Z attributes. Then

(¥y524) < (Y,,24) 1f and only 1f (¥y,24) < (¥,,24).

Intultively, preferences for states of the Y attributes

are not influenced by the state in which the Z attributes
are held fixed.
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Although the tlieory of conjolint measurement involves
other technical assumptions, for practical purposes
satisfactlion of weak ordering and cancellation in the two
attribute case and of weak ordering and monotonicity in
the case of three or more attribute.. 1s necessary and
sufficient to guarantee the exlstence of an additive
evaluation function for riskless choice (Krantz, Luce,
Suppes, and Tversky, 1971). That is, there will exist an

additive value functlion V comprised of constituent functions

Vl,'Vz, oeuy Vn such that, for any two outcomes Xi and XJ,
Xi 2€XJ if and only if V(Xi) < V(XJ), where

V(X)) = vl(xl) + V2(x2) + ...+ vn(xn).

Further, because riskless cholce requires only that the
decision maker rank order outcomes in terms of their
desirability, 1f V is a value function, then any monotone

transformation of V 1s also a value function.

Edwards (1971) has argued that it 1is difficult to
1 magine circumstances under which the assumptions required
ffor additivity are not satisfled. Those famillar with the
cconomlic concepts of complementary and competing goods
mXght obJect. For example, the attribute "number of

ri ght shoes"™ and the attribute "number of left
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shoes" clearly do not combine additivély in deter-

mining the overall value of a comumodity bundle of

clothing. From a practical standpoint, however, this
example need not lead to the rejection of additive
evaluation rules; for the attribute "number of pairs of
shoes" may well contribute additively to the oversll value
of the commodity bundle. Rather, this examble 1llustrates
that satisfaction of additivity depends upon an appropriate
definition of attributes. In general , Edwards' assertion
seems sound. Additive evaluationn medels should be appro-

priate for most riskless decisions,

Risky Decision Making. Whenn decilsion making involves

uncertainty, on the other hand, the assumption required to
guarantee the exlstence of an additive evaluation function
i1s strong and intuitively unappea ling. Thus, risky
decision making may frequently reqQuire non-additive evalua-
tion procedures. Formally, a dec1slon is said to be

risky when, for each possible course of a'ci:ion, the
decision maker is able to specify 4 probability distribu-
tion over the possible consequences of that action. Let
(Al’Az""’Am) be the set of possible actions and let
(xl,xz,...,xn) be the set of posslble consequences of those

actions. Then for each act Ai there 1 s an assoclated
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probability distribution of outcomes (pli,x

X2; a

ee} pni’xn)’ That is, given that act Ai is selected,

13Poy>

A
outcome X1 will occur with probabliliity P43 outcome X2 &
with probability Poys and so on. Thus, in risky decision

making *the decision maker chooses not between outcomes,

but rather between probability distributions of outcomes.

A number of strategles for making such declsions

have been proposed, but the expected utility principle has -

generally come to dominate normative discussions of risky
choice (Luce and Raiffa, 1957). According to this principle

there exists a utility func%ion U deflned on outcomes

such that:

a) For any two outcomes X, and XJ, Xi < XJ if and
only 1f U(X;) g U(X,).
b) For any two actions A, and AJ, Ay <A, if

and only if EU(Ai) < EU(AJ).

Here U(Xi) deontes the utility of outcome X, and EU(Ai)

denotes the expected utllity assoclated with action Ai

where
EU(Ai) = p11U(x1) + inU(Xz) + ...+ pniU(xn)'

Finally, the utllity function U 1s defined on an interval
scale; that is, 1f U is a proper utility function, then any

positive linear transformation of U 1s also a proper utility

function.
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The expected utility principle is not new; Bernoullil
(1738) discussed 1t over 200 years ago. Its status as
a normative principle was not firmly established, however,
until von Neumann and Morgenstern (1944) demonstrated
that it could be derived from a set of basic axioms of
rational choice. Since that time a number of other
axiomitizations of the expected utility principle have
appeared (Herstein and Milnor, 1953; Savage, 1954; Luce

and Raiffa, 1957; Krantz, Luce, Suppes, and Tversky, 1971).

As stated above, the expected utility principle 1is
neutral with respect to the description of outcomes; they
may be elther single- or multi-attributed. And when out-
comes are multl-attributed, the theory is neutral with
regard to the composition rule relating each attribute of
an outcome to the overall utility of the outcome. Flshburn
(1965), however, has specified a single additional assump-
tion which, when combined with the expected utilit;
principle, guarante:s that ghis functior will be additive.
Central to Fishburn's proof 1s a relationship between finite
gambles (or discrete probability distributions over finite

sets of outcomes) which we will term marginal equivalence.

Two gambles are sald to be marginally equivalent 1f they
give rise to 1dentical marginal probability distributions

over the possible states of each outcome attribute. This
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concept 1s most easily 1llustrated for the case of binary
attributes. Consider outcomes of the form (xl,xz,x3)

where the first attribute may assume either of the states

i i iag Euiay

xl' or xl"; the second attribute either of the states

x2' or xz"; and the third attribute either of the states

x3' or x3". Next, consider the gambles G1 and 62 where

" AT 3

| with probability 1/3 receive outcome (xl",xz',x3')

G, = { with probability 1/3 receive outcome (xl',xz",x3')

with probabllity 1/3 recelve outcome (xl',xz',xB")

RTINS WA PRI

with probability 2/3 receive outcome (xl',xz',xs')

with probability 1/3 recelve outcome (xl",xz",x3")

For both gambles the probablilities of recelving attribute
states xl', x2', and x3' are 2/3 and the probabilities of
receiving attribute states xl", x2", and x3“ are 1/3.

Thus, G1 and 62 are marginally equivalenf. For though the
Joint probability distributlons over outcome attributes
differ for the two gambles, the marginal distributlons are
the same. Flshburn has shown that a multi-attribute utllity
function U defined on a finite set of outcomes can be

additive 1f and only 1f the followlng assumption 1s satisfled.
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4) Marginality: Let G1 and 62 be any two

finite gambles defined on the outcome set.
If G1 and G2 are marginally equivalent,

then G, ~ G,.

1 2

That 1s, glven that the expected utility principle 1is
satisfied, an additive utility function U exlists if and
only 1f the decislon maker's preferences satis’ly the
marginality principle. And, as the following example
illustratfs, the marginality assumption is very strong, and
may in many cases fall to be satisfied. Consider the

following two gambles.

with probablity 1/2 receive $5000 and a 1973 Volvo

with probability 1/2 receive $10 and a rusty hubcap

with probability 1/2 receive $5000 and a rusty hubcap

with probability 1/2 receive $10 and a 1973 Volvo

Sirice Ga and Gb are marginally equivalent, a utility func-
tion defined on dollars and automoblle components can be
additive if and only if the decision maker is indifferent
between Ga and Gb. A casual survey indicates that most
people are not; they prefer Gb which provides a sure pros-

pect of attaining a highly valiued outcome. More generally,

~ o - T = e f—-n'wr"‘""“"‘!"“’_!‘
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1t would appear that the marginality assumption wlll be
violated in a wide variety of contexts and that, con-
sequently, non-additive evaluation functions will be

required for many risky decision making contexts.

Fortunately, a simple formulation of non-additive
utility assessment follows qulte naturally from the formal
definitions of value and utility. Recall that V 1s said
to be a value functlon if, for any two outcomes Xi and
Xgs Xy < X, 1f and only 1f V(X;) g V(X;). Recall also
that‘U is said to be a utility function whenever the
following two conditions are satisfied: a) for any two
outcomes X1 and XJ’ xi < XJ if and only if U(Xi) < U(XJ);
and b) for any two actions Ak and Al, Ak < Al if and only
ir EU(Ak) < EU(Al). From these deffnitions it 1is clear
that U and V, 1f they exist, must be monotonlcally related.
That is, if there exist bonafide utility and value func-
tions U and V, respectively, then there will exist a

monotonic transform R such that U(X1)= R(V(Xi)). Thus,

given that an appropriate value function V has been assessed,

determinatlion of U requires only that R be specified. This
formuiation applies whether or not U is additive. Note
that V may be additive while U is not. For example, let

(x,5,X,,...5X_) be the vector of attributes characterizing
1372 n
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the generic outcome X, and let V(X) = ZVj(x ). Further,
let U(X) = log, V(X). Then, U(X) = log, (ZVj(xJ)),
which is not additive in the xJ. This case of additive
value but non-additive utlility willl arise whenever the
weak ordering, monotoniclity, and expected utility assump-
tlons are satisfied, but the marginality assumption is
not. Throughout this paper the approach discussed here

[}

will be termed the R(V) method of multi-attribute utility

assessment.

A Sensitivity Analysis

The arguments of the previous sectlon suggest that
while additive evaluation rules will probably be appro-
priate for most riskless decicion making contexts, non-
additive rules may be required for many risky contexts.
Y¥ntema and Torgerson (1961) have argued, however, that
whenever the monotonicity assumption 1s satisfied, additive
main effects models will provide an excellent approximation
to overall value, regardless of how highly interactive the
true data generator. This hypothesis implies that the
distinction vetween additive and non-additive evaluation
rules 1is trivizl from a practical standpoint. It has also
been argued that additive evaluation models are very robust

with respect to both the assessment of the functioas
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relating each attribute to overall value (Edwards, 1971)
and to the specification of welghting factors for the
attributes (0'Connor, 1972; Fischer and Peterson, 1972).
In this section numerical examples are constructed to

test each of these hypotheses.

Additive Approximatlons to Non-Additive Composition

Rules. The theory of conjoint measurement assures that
whenever the weak ordering and monotoniclty assumptions
are satlisfied, there exists an additlve evaluation rule
which will preserve the ordinal properties of the declsilon
maker's preferences. For risky decision making, however,
an evaluation function must also reflect the interval
scale properties of the decision maker's preferences, and
satisfaction of monotonicity 1s not sufficient to assure
that an additlve function can pres.rve these properties.
Yntema and Torgerson (1961) argued, however, that if
monotoniclty 1s satisfled, then an additive apnroximation
will do an excellent Job of preserving tﬁese interval scale
properties. They supported this argument with a simple
numerical example iIn which an additive approximation to a
data generator consisting only of two way multiplicative
interaction terms accounted for 94% of the variance. The

present analysis tested the ¥ntema and Torgerson hypothesis
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in the presence of higher order interactions as well.
The conclusions dirawn are relevant only to decision
making contexts in which an interval scale measure of

value or utility is required.

This analysis considered only two classes of functions
satisfying the monotonicity condition, and is, therefore,
i1lustrative rather than exhaustive. Functions of the
first class consisted of additive and two-way cross product

terms.

Fo(X,,X,5...5,X.) = EIx, + LIx,X
1*712722 *“n n 1 13 173
1¥)
These functions closely resemble those studied by ¥ntema
and Torgerson (1961), which included only the two-way

cross product terms. Functlions in the second class con-

sisted of additive and n-way cross product terms.

Fz(xl,xz,...,xn) = ixi + Ixi

To assess the ability of additive models to approxi-
mate Fl and Fa, 1000 vectors of attribute values were
generated for alternatives described by three, six, and
nine attributes. To avoid discontinuities assoclated with

multiplying by zero, values with respect to each attribute




were constrained to be greater than or equal to one.

Actual attribute values were randomly generated from a
uniform distribution over the range 1 to 100. This data
generating process was such that attributes were not

correlated with one another.

Using this data set, additive main effects approxi-
mations were correlated with F1 and F2 for the three, six,
and nine attribute alternative sets (see Table 1). 1In
general, the additive approximations to the F1 models are
excellent, and their quality improves as the number of
attributes increases from three to nine. Additive main
effects models do not, however, provide good approximations
to the F2 models, and the quality of these approximations

declines sharply as the number of attributes 1increases.

These results clearly reveal that the Yntema and
Torgerson example has been overinterpreted. Additive models
do not provide good approximations to highly interactive
data generators satisfying @he monotonicity condition.

From the standpoint of applied decision theory, this
demonstrates that when the marginality assumption is
seriously violated, additive evaluation functions will not

be acceptable for risky decislon making.
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TABLE 1

PRODUCT MOMENT CORRELATIONS FOR ADDITIVE
APPROXIMAIONS TO NON-ADDITIVE COMPOSITION RULES

r Na Composition Rule
ZXi + 22X1XJ in + nxi
3 .964 .R58
6 .985 .678
s 9 -990 .480

& Number of attributes
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Linear Additive Approximations to Non-Linear Additive

Models. The last analysis demonstrated that evaluation
models are considerably more sensitive to the proper
specification of a composition rule than has generally
been realized. This analysis tested the sensitivity of
multi-attribute evaluation rules to the specification of
functions relating each attribute to overall worth.
Throughout this analysis, additive composition rules were

assumed to be appropriate.

Given the unlimited number of functlons which might

| R

concelvably arise, an exhaustive analysls was agaln unfeasible.

Instead, only four monotone functions were conslidered. The

first two of these were members of a family of exponential

functions frequently dlscussed in the utility theory

literature:

£, (x) a (1 - e'X/SO)

(1 - .e-X/].O).

fz(x) a,
Here ay and a, are scaling constants such that fi(O) =0

and r1(100) = 100. Figure 1 displays plots of these two

functions.
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Figure 1. Plots of the functions fl and fz.
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The third and fourth functions studied were members

of a family of power functions of a type frequently

encountered in studies of psychophysical judgment:

£3(x) = %u-7mV3+%

£y(x) = aylx - 2003 + b,

Graphs of these two functlons are displayed in Figure 2.

Again, a3, b3, 8l and bh are scaling constants such that
ri(o) = 0 and fi(loo) = 100.

Using these functlons, four classes of multi-attribute

evaluation models were constiucted:

Fl(xl,xz,...,xn) fl(xl) + fl(xz) + ... 0+ fl(xn)

Fz(xl,xz,...,xn) = fz(xl) + r2(x2) + ...+ fz(xn)
F3(x1,x2,...,xn) = f3(x1) + f3(x2) oo f3(xn)
Fu(xl,xa,...,xn) = fu(xl) + fl'(xz) + ... ¢ fu(xn).

Actual numerical examples were constructed for n =1, 3, 6,

and 9. Yor the single attribute case, values were computed

for all integer values of % between 0 and 100. For the

nsslll
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Figure 2. Plots of the functions f3 and fﬂ‘




multi-attribute cases, 500 three, six, and nine attribute
vectors were randomly generated. States of each attri-
bute were randomly selected from a uniform distribution
over the range 0 to 100. Again, thls data generator was

such that attributes were uncorrelated. Overall values

were computed for each of these alternative vectors using o

Fl’ F2’ and F.

In order to assess the sensitivity of these multi-
attribute evaluatlion rules to the proper specification of
component functions, three types of approximations were
considered. For the "straight line" approximations, value
was assumed to increase linearly with x; in particular, it
was assumed that f({x) = x. For the "one-step" approxima-
tions, the true value for x = 50 was plotted. Straight line
segments were then used to connect this point, (50, £(50)),
with the two end points of the scale, (0,0) and (100,100).
For the "three-step" approximatlions, true values were
plotted for x = 25, 50, and 75. Straightlline segments
were then used to connect these points, (25, £(25)),

(50, £(50)), and (75, £(75)), with the end points of the
scale. Separat. approximations were developed for each

of the four functions studied. Additive models based on
these approximations were then used to compute overall values

for each of the randomly generated alternatives. These
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approximated values were then correlated with the true

values generated by Fl, F2’ F3, and Fh’ The results of
this analysis are presented in Table 2.

The first important result of this analysis 1is that
the quality of the approximations does not vary with the
number of attributes describing an alternative. Overall
correlations with the multi-attribute alternatives are not
substantially better than the correlations of the approxi-
mations to the individual component functions. Thus,
straight line approximations provide a good fit only when
the component functions are highly linear (1.5., in the
cases of F, and F3). In all cases, however, the three-
step approximations are excellent. And, except 1n the

case of F2, the one-step approximations are also very good.

These results suggest that while straight line approxi-
mations will not always be acceptable, it is not necessary
to precisely assess the value of every state of a glven
attribute. Even in the case of continuous attributes, it
should seldom be necessary to assess the value of more than
three to five intermediately valued states. Interpolation
between these polnts shoulc provide an excellent approxi-

mation to the value of other states of the attribute.
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TABLE 2

PRODUCT MOMENT CORRELATIONS FOR LINEAR ADDITIVE

| SRS S

oy

C

APPROXIMATIONS TO NON-LINEAR ADDITIVE FUNCTIONS
b a b
: Function N n Approximation
;] Linear 1-Step 3-Step
: ) 1 101 .968 .997 1.000
% 3 500 .972 .997 .999
2 6 500 .971 .997 .999
é 9 500  .970 .996 .999
1
‘ f,. 1 101 .691 .851 971
- 3 500 727 .863 .974
| 6 500 .710 . 859 .973
i 9 500 .705 .851 .969
| £ 1 101 .925 .981 .981
L |
3 3 500 .924 .981 .980
| 6 500 .928 .981 .980
9 500 927 .981 .980
fu 1 101 . 825 .936 .968
{ 3 500 .835 .935 971
6 500 .833 .934 .971
9 500 .834 .936 .966
a Number of attributes.
b

Number of observatlions upon which correlation 1s based.
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Sensitivity to Welghting Parameters. This section

considers the sensitivity of evaluation rules to inaccurate
assessment of weighting parameters. Throughout it will be
assumed that an additive composition rule is appropriate
and that the component functlons have been accurately

assessed.

FPor three, five, and nine attribute outcomes, three
different additive evaluation models were constructed.
These models differed only in the relative weilght which
thgy.assigned to each attribute. In each case, the first
of these three rules discriminated very highly between
the atiributes, assigning 81 “imes as much weight to the
most important attribute as to the least important attri-
bute. The second rule utilized the same rank ordering
of attribute 1mportance, but afforded much less discrimina-
tion. Here the ratlo of the weights assigned to the most
and least important attributes, respectively, was only nine
to one. The third rule did not discriminate at all between
attributes; each received equal welght. Specifically, for
the three attribute aiternatives the "high", "low", and "no"

discrimination models were:

H3(x1,x2,x3) = 81xl + 25x2 + Xq
L3(xl,x2,x3) = 9x; + 5x2 + X3
N3(x1,x2,x3) = x, + x, + X3
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For the five attribute outcomes the three evaluation rules

: were:

n

H5(x1,x2,...)

81x1 + 49x2 + 25x3 + 9xlI + Xg
LS(xl’x2"") = 9xl + 7x2 + 5x3 + 3x) + Xg

NS(xl’XZ"") =Xy +x,+ X3 +oxy + X
And for the nine attribute outcomes the rules were:

“Hg(xl,xz,...) = 81xl + 6lsx2 + ll9x3 + 36xu + 25x5

+ 16x6 + 917 + Uxa + x9
1 L9(x1,x2,...) = 9x, + 8x2 + 7x3 + 6xu + Sx5

+ Hx6 + 3x7 + 2x8 + x9

N9(x1,x2,...) = X3+ x, 4 X3 +oxy 4+ Xg + x¢
+ + + .
x7 Xg x9
Each of these nine evaluation rules was then used to
compute the value of 1000 randomly gzenerated attribute
vectors. Agaln, the attributes were uncorrelated and values
within each attribute were generated by a uniform distri-

bution over the range of 0 to 100. Finally, for three,
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five, and nine attributes, the high, low, and no discrimina-

tion models were correlated with one another. These
correlations, displayed in Table 3, indicate that additive
models are quite robust aga‘'nst improper specification of
welghting parameters. The low discrimination models
afford excellent prediction of the high discrimination
models. In addition, the no discrimination models provide
a good approximation to the low discrimination models.
These results suggest that additive evaluation rules are
relatively insensitive to errors in the assessment of
importance weights. The low correlation between the high
discrimination and no discrimination models demonstrates,
however, that insensitivity 1s a relative matter and that
gross errors in the assessment of weights will lead to

seriously biased overall value assessments.

Methods for Assessing Decomposed Evaluation Functions

In the previous sections we have considered the
theoretical basils for multi-attribute evaluation and the
sensitivity of multi-attribute evaluation rules to
various types of assessment errors. This section discusses

four procedures for assessing a decomposed evaluation

function. Throughout thils dlscusslon 1t 1is assumed, first,
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TABLE 3

PRODUCT MOMENT CORRELATIONS BETWEEN ADDITIVE
MODELS WITH DIFFERENT WEIGHTING FACTORS

N2 Models®
High-Low High-No Low-No
3 977 756 855
"5 .967 .736 . 865
9 .968 .768 .888

a Number of attributes.

b The High, Low, and No discrimination models

assigned relative weights of 81:1, 9:1, and
1:1 to the most and least important

attributes, respectively.
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that the set of alternatives to be evaluated has been
listed, and second, that the attributes with respect
to which these alternatives are to be evaluated have been

specified.

The first of the four procedures, the additive rating

scale method, has been adapted from Edwards (1971),
Pishburn (1965), and Hoepfl and Huber (1970). It is
designed for riskless evaluation and involves four major
steps. First, for each attribute, Xy the decision maker
specifies the most and least desirable states, denoted by
xi* and Xi%s respectively. Arbitrarlily, these states may
be assigned values of 100 and 0, respectively.

Next, within each attribute, the decision maker assigns
numerical values to all intermediately valued states. For
example, consider the i-th attribute and let xiJ be any
state of this attribute such that x,;, < Xy 3 < xi*. For
each such state the declsion maker assesses a value
Vi(xij) which reflects the value of Xy g relative to x,,
and xi*. If the attribute is continuous, interpolation

between a few well chosen points will be required.

Third, weighting or scaling factors are assessed

which reflect the relative importance of each attribute.
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The relative welght assigned to a given attribute should
be proportional to the change in overall value produced
by moving that attribute from its least to most valued
state, all other things being equal (Fishburn, 1965).

For convenience, these weights may be normalized to sum to

one.

Finally, overall values may be assigned to each

alternative by the additive evaluation rule

where LA is the normalized welghting factor for the i~th
attribute.

The second decomposlition procedure, the additive

trade~off method, 1s also designed for riskless declslon

making. Essential to thils procedure is the existence of
an important continuous base attribute againéf which all
other attributes may be traded off; for example, lives
saved or equlvalent dollar value. Let Xy denote this
attribute. Next, for each attribute, a standard state,
xio, must be specified. Then, difrerences in value between
states of the other attributes can be traded off into units
of the base attribute Xy For example, let x1J be any
state of the 1-th attribute. The decision maker 1is asked
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to specify a state of the first attribute, Xk such that

o Oy . o )
,--o,xn ) (xlk,X2 ,-.-,x o)o

o o o
(xl s Xp seeesXy g XgqsXyyy n

Intuitively, X3k should be such that the differe..ce in
value between x1° and x1J is equal to that between x1°
and X1k One such Judgment 1s required for each state of
the attributes Xos x3, cevs Xgo When attributes are con-
tinuous, interpolation will be necessary. In this way
deviations from the standard state of each attribute may

be expressed in terms of units of the base attribute.

| When overall value is assumed to be linear in the
units of the base attribute, each attribute may be assigned
an overall value by summing over attributes the base
attribute equivalent value of the deviatlion of each attri-
bute from its standard state. For example, if the base
attribute 1s measured in dollar units, then within each orl
the other attributes deviations from the standard state of
the attribute wlll be asslgned dollar equivalent values.
If the state of an attributg is preferred to 1ts standard
state, then this dollar value will be positive. If the
state of an attribute 1s less desirable than its standard
state, then this dollar value will be negative. Thus,
assuming that value is linear with dollars, an overall

value can be assigned to an alternative by summing over

G g 2l 2 e

gy
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attributes the dollar equivalent value of the deviation

of each attrlibute from its standard state.

When riskless value 1is not linear in units of the
base dimenslon, 1t 1is necessary to assess a riskless value
function V over thls base attribute. This function may
be assessed using the direct estimation procedure described
for obtaining functions over attributes in the rating scale
procedure. In this way, value differences within each of
the other attributes may be expressed in terms of unilts of
the value function V. These units may then be summed
across attributes to assign overall values to multi-

attribute alternatives.

The next two decompositioﬁ procedures to be discussed
are designed for risky decision making. Because both

procedures rely upon the indifference probablility method

(Luce and Raiffa, 1957; Raiffa, 1968) for assessing risky
utilities, this method 1s considered first. It can, in
principle, be applied to elther single- or multi-attribute
outcomes. It will later be argued, however, that the
method is best suilted for single-attribute assessment and
that decomposition procedures should be used for multi-

attribute utlility assessment, particularly when the number

of attributes 1s large.

-
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Let (xl,xz,...,xm) be the set of outcomes to which
utilities are to be assigned. In applying the indifference
probabllity procedure the decislion maker must first specify
the most and least desirable outcomes in thils set; let
X* and X, denote these outcomes, respectively. The
declslion maker assigns utilities to all other outcomes in
the outcome set by comparing them with X* and X,. These
comparisons take the form of hypothetical lotteries or
gambles. Conslder any intermediately valued outcome Xi.
The decision maker assligns a utility to this outcome by
specifying a probability Py such that he 1s indifferent
between recelving the outcome X1 with certainty c¢r accept-
ing the gamble (p,,X*; (1-py),X¢). One such indifference
probabllity must be assessed for each outcome in the set.
These indifference probabllities themselves nrovide an
appropriate utility measure, provided that the decision
maker has assessed them in an expected utility maximizing
fashion. To show that thls 1s the case, note that utili-
ties are deflned only on an interval scale. Thus the
extreme outcomes X* and X, may be arbitrarily assigned
utilities of 1.0 and 0.0, respectively. Then, assuming
that the indifference probabilitlies were assessed in an
expected utility maximizing fashion, the relation
X, - (pi,x*; (1-p1),X*) implies that U(Xi) = piU(X*)

+ (l—pi)U(X*), or U(Xi) = Py

- s -
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The vallidity of the indifference probability assess-
ment technlque rests on the assumptlon that the decision
maker acts as an expected utility maximizer in evaluating
simple gambles. Although this 1is surely an 1dealilzation,
studies of human gambling behavior indicate that expected
utility models provide a fairly close approximation to
this behavior, provided that the gambles involved are of
the very simple type used in the indifference probability
assessment method (Davidson, Suppes, and Siegel, 1957;
Coombs, Bezembinder, and Goode, 1967; Tversky, 1967).
Application of the indifference probability assessment
technique to complex multi-attribute alternatives, however,
seems very q.estionable because of the heavy information
load placed upon the decision maker. To reduce this infor-
mation overload problem, utility decomposition procedures
have been developed. As 1in the case of riskless evaluation,
these procedures reduce the complexity of the judgments

required of the decilsion maker.

The first of the two ufility decomposition procedures
which we will discuss was developed by Raiffa (1969) and

will be termed the additive utility procedure. In imple-

menting thls method the decision maker begins by specifying
the most and least preferred states of each attribute.

These states are arbiltrarlily assigned within attribute
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utilities of 1.0 and 0.0, respectively. That is, for

%y _ -
each attribute, Ui(xi ) = 1.0 and U, (x;,) = C. Next,
utilities must be assigned to intermedlalely valued states

of each attribute. For example, let x,, denote the j-th

i
state of the i-~-th attribute. To assign a utllity to state
x1J the declslion maker assesses a probabllity p1J such

that he 1s indifferent between obtalning state x,., with

ij
certainty or accepting the gamble (piJ,xi'; (l'pij)’xil)’
assuming all other attributes are held constant. One such
Judgment must be elicited for each state of each attribute.
Note  that in making these assessments, the declsion maker
needs only to consider the relative utility of different
states of a single attribute. Again, i1f attributes are

continuous, interpolation will be required.

Next, the declision maker must assign importance
factors to each attribute. This 1s accomplished by having
the declslon maker assess the utllity range assoclated with
each attribute. Notationally, let X¥ = (xl*,x *,...,xn*)
and Xy = (Xy4,X5%5.+.5% 4) denote the most and least
desirable multi-attribute outcomes, respectively. And let
(xk*,xi,) denote the outcome which is characterized by the
most deslrable state of attribute k and the least desirable
state of all other attrlibutes. There will be n such out-

comes. In order to assess the utllity range assoclated with

ol Kiphess




the k-th attribute, the decision maker specifies a pro-

bability, Wy such that he is indifferent between accepting i+
the outcome (xk*,xﬁ,) with certainty or accepting the
gamble (wk,x*; (l-wk),X,). Arbitrarily letting U(X*) = 1.0
and U(X,) = 0.0, 1t can easily be shown that w, is a
measure of the utility range of the k~th attribute, and
thus, that the W) may be used as welghting factors in an
additive utility function. This method of assigning
welghts 1s the most undesirable feature of the additive
utility decomposition, for it relies upon wholistic utility
asse;sments of n multi-attribute outcomes. When the number
of attributes 1s large, these assessments may be subject

to a substantlal degree of error.

Finally, overall utilities may be assigned to each

multl-attribute outcome according to the additive rule
U(xl,xz,...xn) = wlUl(xl) + w202(x2) + ...+ wnUn(xn).

These utlilitles can be used in the computation of the

expected utility assoclated with each course of action.

Despite the apparent similarities between this pro-
cedure and the riskless rating method, Raiffa (1969) has
shown that the two will not necessarily coincide. They

should be monotonlcally related, so that both may be used
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for riskless decisions. But they need not be linearly
related, and only the additive utility method 1s formally
appropriate for risky decision making.

The second utility decomposition, the R(V) method,

exploits the monotone relationshlp between riskless value
and risky utility. Recall that 1f V is an appropriate
measure of riskless value, then there exlsts some monotone
transform R such that U(X) = R(V(X)). So, given a decom-~
posed value functlion V, U can be specified simply by
determining R. Thils may be accomplished in elther of two
ways, depending upon the manner in which the riskless

value functlion has been assessed.

When trade-off procedures have been used to construct
the value function V, assessment of R will be particularly
easy. Suppose, for example, that all outcdmes have been
traded off into a continuous base dimension, such as
equlvalent dollar value or number of lives saved per year.
Then R can be directly obtalned simply by assessing a
utility function over the continuous base attribute. 1In
contrast to the additive utility decomposition, this vari-
ant of the R(V) method requires no wholistic multi-attri-
bute utllity assessments. Rather, the decision maker needs
only to assign single attribute wholistic utilities to

three to flve states of the base attribute.
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When the riskless value function has been constructed
using rating scale procedures, assessment of R 1s some-
what more difficult. Raiffa (1969) has suggested that the
decision maker directly assess the utllitles of a few
well chosen multi-attribute outcomes. The values of these
outcomes (as indicated by the rating scale decomposition)
can then be plotted on one axis, and the wholistic utili-
ties assigned to these outcomes on the other. Utilitiles

for outcomes having other values can then be obtained by

interpolating a curve through the polnts for which utilities

have-been assessed. Like the additive utility decomposition,

this variant of tke R(V) method requires wholistic multi-
attribute utility assessments. In many cases 1t will
require fewer, however, For while thils variant of the
R(V) method will require three tu five such judgments, the
additive utility method requires as many such Judgments as

there are attributes.

Validation of Decomposed Evaluation Functions

The decomposition procedures Just described are not

difficult to implement. Nevertheless, 1t remains to be

shown that the judgments required can be made in a systematic

and meaningful fashion. Broadly speaking, experimenters
have adopted two general approaches to this problem of

validating decomposed value measures,

-
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The first approach, external validation, requires that

it be possible to specify an objective {externally defined)
criterion against which to validate the value measure.

This strategy 1s most 1ikely to be useful when value
attributes are essentlially predictors of the decislon
maker's overall objective. For example, price to earnings
ratios, corporate earnings growth trends, and dividend
yilelds are often used as measures of the value of an issue
on the stock exchange. These attributes are of value,
however, only in so far as they are predictors of the
investor's true goal, expected monetary return. Thus,
investment declsions generated by a decomposed evaluation
model could be validated against subsequent monetary return.
In principle, external validation should be applicable to

a wide variety of real world decision making contexts. 1In
practice, however, it has been employed only in two experi-
mental studies (Yntema and Torgerson, 1962; Lathrop and
Peters, 1969), both of which found decomposed evaluation to
be slightly, but not dramatically, superior to wholistic

Judgment.

The second approach to validation was proposed by Miller,
Kaplan, and Edwards (1967, 1969) and rests on the principle

of convergent or construct valldity.
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The basic idea of construct validity is that a
test should make sense and the data obtained by
means of 1t should make sensc. One form of
making sense 1s that different procedures pur-
porting to measure the same abstract quantity
should covary (Miller, Kaplan, and Edwards,
1967, p. 367).

In the context of decomposed evaluation, logically equiva-
lent evaluation procedures should assign similar values

to alternatives.

Most applications of this strategy have examined the
degree of within subject convergence btetween wholistic
and decomposed Judgments. When alternatives are charac-
terized by a small number of attrihutes, inf'ormation over-
load should not be a serious problem, so 1t 1is reascnable
to expect a high degree of consistency between the two
types of Judgments. Mean within subject correlations
between wholistlic and decomposed Jjudgments have typlcally
ranged from the low .80s to high .90s (Pollack, 1964;
Hoepfl and Huber, 1970; Pal, Gustafson, and Kiner, 1971;
von Wiaterfeldt, 1971), though in one case (Huber,
Daneshgar, and Ford, 1971) ;orrelations in the low .60s
were obtalned. The poor convergence in this latter case,
however, may well have been due to noise in the wholistic
responses rather than to any weakness of the decomposition

approach (see Fischer, 1972).

SOIPYICEIIN ATV
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In each of the above convergent validation studies,
decomposed models were validated against wholistic rank-
ings or ratings. They may also be validated against real
or hypothetical cholces. Two studles have adopted this
strategy (Yntema and Klem, 1965; Huber, Daneshgar, and
Ford, 1971), and both obtained a high degree of within

subject convergence.

A third variant of the within subject convergent
validation strategy has also been considered. To the
extent that they are valid indicators of a decision maker's
preferences, two or more different decomposition models
ovght to assign the same values to alternatives. This
approach 1s particularly attractive because it can be used
in real world decislion making contexts in the absence of
a known criterion and without relying upon difficult
wholistic judgments. Eckenrode (1965) obtained a high
degree of within subJect convergence across six different
procedures for assessing imgortance welghts. Von Winterfeldt
(1971), cn the other hand, obtalned low convergence between
welghting procedures but high convergence between addictive
models based upon these welghts. This latter result
reflects the robustness of additive models against minor

errors in welghts.
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Finally, in some instances, between subject conver-
gence may provide an appropriate validating device. This
strategy is primarily applicable to matters of expert
Judgment rather than personal taste. Kennedy (1971)
asked professional bankers and accountants to assign
weights to attributes of loan appllicatlions, and obtained
a high degree of convergence between the average welghts
assessed by these two groups of subjects. Eckenrode (1965)
and O'Connor (1972), on the other hand, obtailned only
moderate correlations between weilghting factors assessed
by different expert judges. In additlon, however, O'Connor
found that overall indices based upon these divergent
welghts assigned very similar overall values to alternatives,
anotiner instance of the robustness of additive models

agalnst variations in weights.

In summary, a number of different approaches to the
validatlon issue have been consldered, and in all cases
the experimental results have supported the decomposition
approach. Nevertheless, this valldation iiterature has
two major shortcomings. First, only one study (von
Winterfeldt, 1971) has dealt with risky utility assessment,
Second, trade-off procedures, which may well prove the
most useful tool or real world decision making, have yet

to be experimertally validated.

vamparn
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EXPERIMENT 1

Tne goal of this experiment was to fill two gaps 1in
the validation literature by experimentally validating
the additive trade-off and additive utility decompositions.
Additive rating scale methods were also studied so that
the degree of convergence between the three approaches
could be assessed and so that the comparative advantages

and disadvantages of the three methods could be determined.

Method

Design. Subjects evaluated hypothetical compact
cars described by elther three or nine attributes. Each
subject utilized six different response modes, three of
which required wrolilstic judgments and three decomposed
Judgments. In the first wholistic response mode, sub-
Jeczs evaluated each car on a 0 to 100 rating scale. 1In
the second, they compared each car with a "standard car"
which was approximately average in all respects, indicated
which they preferred, and assigned a dollar value to the
difference in worth between the two cars. In the third,
subjects assigned utllitles to cars utiliizing the indif-

ference probablillty assessment procedure. After all
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wholistic judgments had been made, subjccts constructed
decomposition models using the additlive rating scale,

dollar trade-off, and risky utility methcds.

In analyzing the data, two versions of the within

subJect convergent validation strategy were considered.

First, each of the three types of decomposition models :
was used to predict each of the three types of wholistic :
Judgments. Second, the degree of convergence between the

three decomposition models was assessed and contrasted

with that between the three types of wholistic judgments.

Subjects. Six male University of Michigan students
served as subjects., They were screenzd for prior mathe-
matical exposure to lnsure that the; would feel comfortable
with the task. One of the six failled to complete one
portion of the experiment and was dropped from all data

analyses.

Alternatives. Subjects evaluated hypothetical compact

cars described by either the first three or all nine of
the attributes listed in Table 4, Several of these
attributes, such ac fuel economy, were in principle con-
tinuous. Others, such as type of transmission, were

categorical. In elther case, at least three and at most

five different states of each attribute were used to
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TABLE 4

LIST OF ATTRIBUTES USED TO DESCRIBE
ALTERNATIVES IN EXPERIMENT 1

Name of Attribute Units States
1 2 3 Ul 5

1) Quality of snxx | VG G A® p vp
Steering and
Handling?

2) Fuel Miles| 22 2} 26° 28 30

per

Economy Gal.

3) Comfort: Rear - A P vpP
Seata

4) Acceleration Secs. 12 14 16 18 20
(0 to 60 mph)

5) Radlo cxex | AM/FM AM  None®
Equipment

6) Cost of Upkeep | **** | Iow  A® High

7) Comfort: Front | yeyx | VG G A® P vp
Seat®

8) Stopping Feet | 125 135 145% 155 165
Distance
(from 60 mph)

9) Transmissionb wnex [ 4_gC 3-S  Auto

a VG, G, A, P, and VP represent ratings of Very Good, Good,

b

Average, Poor, and Very Poor, respectively.

4-S, 3-S5, and Auto represent four speed stick shift,

three speed stick shift, and automatic transmisslon, respectively.

¢ wStandard state" for the attribute.
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construct alternatives. Table 4 1lists the states

considered for each of the nine attributes.

For the three attribute alternatives, a set of 12
hypothetical cars was constructed. States of the three
attributes were randomly determined subject to the
following constraints. For the filve state attributes, each
state was selected at least two times and at most three;
for the three state attributes, each was chosen four times.
A similar procedure was used to construct a set of 18 cars
described by nine attributes. For five state attributes,
each state was chosen at least three times and at most

four; for the three state attributes, each was chosen six

times.

Procedure. Subjects were first familiarlzed with the
nine attributes. They were instructed to regard performance
and quality indicators as rellable measures collected by
an independent automotlve testing service. To provide a
frame of reference for the quantitative ﬁeasures of accelera-
tion, fuel economy, and braking, subjects were provided with
actual test data for the 1971 model Volkswagen "Super
Beetle," Plymouth Satellite, and Ford Boss 351 Mustang.
Next, subjects specified the most and least desirable con-
binations of attribute states for both the three and nine
attribute alternatives. These were used as a frame of

reference throughout the experiment.

PN ROy
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Subjects next made six sets of wholistic Judgments.
For each of the three wholistic response modes, subjects
evaluated two sets of stimuli; one 1n which cars were
described by three attributes and one in which they were \
described by nine. The same two sets of stimull were \
evaluated in each of the three wholistic response modes.
Subjects were randomly assigned to each of the six possible
orders of the three response modes. But within a given
response mode, the three attribute alternatives were always
presented first. This within response mode presentation
order was adopted to facilitate task learning on the part

of the subjects.

Elicitation of the wholistic judgments proceeded as
follows. Subjects were handed a booklet of either 12 or 18
pages for the three and nine attribute alternative sets,
respectively. Each page of a booklet listed the attributes
describing a particular alternative. On the bottom of each

page was the response device.

For the ratling scale Jjudgments, subjects indicated
thelr response by making a slash through a 100 millimeter
iine which was divided into 10 equal segments, and labeled
at 10 unit intervals from 0 to 100. Subjects were
instructed that the previously specified most and least

desirable cars could be arbltrarily assigned values of 100
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and 0 on this scale, and asked to evaluate other cars

relative to these two extremes.

In the wholistic dollar trade-off response mode,
subjects were first shown the list of attributes charac-

terizing the "standard car" for both three and nine

attributes (see Table U4). These cars were selected so as

to be approximately average in all respects. At the
bottom of each page was the question Y"Preferred to standard
car?", to which the subject responded "yes" if he pre-
ferred the car described on the page to the standard car,
and "no" if he preferred the standard car. Below this the

subject indicated the dollar difference in value between

the two cars.

Before assessing risky utilities, subjects were intro-
duced to the indiff2rence probabllity assessment procedure.
Subjects first assigned utilities to simple gambles
involving only monetary outcomes. They did not actually
play these gambles. After they were famlliar with the
procedure, subjJects used it.to assign wholistic utilitiles
to the hypothetical vars. Throughout, subjects had at their
disposal a table for converting from probabllities to odds

levels, but always gave thelr responses in probability form.
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Subjects were not introduced to the idea of decom-
position until after all wholistic judgments had been
made. Decomposed models were constructed in the order in
which subjects had made the corresponding whollistic

Judgments.

In constructing rating scale models, subjects first
assigned values to the various states of each attribute.
Using a 100 millimeter scale, they located the most and
least desirable states of the attribute in question at the
0 and 100 points of the scale, respectively. They then
indicated the relative values of other states of the attri-
bute by maklng slashes through the scale. Importance
welghts were ellcited in a simllar fashlon. First subjects
ranked attributes 1n order of their importance. They next
arbltrarily assigned an importance of 100 to the most
important attribute. Then, again using a 100 millimeter
scale, they assigned relative importance weights to each of
the other attributes. Subjects were told to view these
importance assessments as percentages. For example, a
rating of 50 would indicate that an attribute was 50% as
important as the most important attribute. Finally, these

importance welghts were normalized to sum to one.

Additive trade-off decomposition models were constructed
using a slightly modified version of the procedure described

earlier. Within each attribute, subJects assigned dollar
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equivalent values to deviations from the standard state

of each attribute. For example, let xio be the standard
state of the i-th attribute, and let x1J be any other

state of that attribute. Subjects were first asked to
indicate which of these two states they preferred. They
were then asked to assign a dollar value to the difference
in worth betwee:: these two states. These dollar differences

were then assumed to combine additively across attributes.

In constructing additive utility models, subjects used
the indifference probability assessment procedure to assign
within attribute utilities to the states of each attribute.
In making these judgments, they compared lntermediately
valued states of each attribute with the most and least
valued states of that attribute, assuming all other attri-
butes to be held constant. Next, subjJects assessed
whollstic utilities from which importance weights were
derived. For both three and nine attributes, subjects
assessed multi-attribute ut;lities for all alternatives for
which one attribute was 1n its most valued state and all
other attributes in thelr least valued states. As noted
earlier, such assessments provide a measure of ’he utility
range assoclated with each attribute and thus provide an

appropriate measure of importance. In principle, these

Poman
H
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importance assessments should hiave summed to one. In
practice, however, they typically did not, and so were

normalized to sum to one.

During all stages of the above procedure, subjects

were run individually and under close supervision.

Results

Convergence between Wholistic and Decomposed Responses.

As noted earller, the formal definitions of value and
utility require that any two such measures be monotonically
related. So 1f subJects were completely consistent in
making all of thelr wholistic and decomposed assessments,
and if thelr wholistic assessments satisfied the mono-
tonicity condition, then each of the three decomposition
models should perfectly predict the rank ordering of
alternatives generated by each of the three wholilstic
response modes. To test this proposition, rank order
correlations were computed {see Table 5).. For the three
attribute alternatives the obtained correlations were in
general very high. Similar results were obtalned for the
nine attribute alternatives, though these correlations were
generally somewhat lower. Here, however, the risky utllity
decomposition conslistently provided poorer predictions of
the rank orders generated by all three wholistic response

modes.
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The utility theory axioms also require that any two

L=

|
'l interval scale measures of value or utility be linearly
P
related. Thus, assuming risky utilities to be additive,
5 Lj each of the three decompositions should be equally pre-

dictive of the interval scale properties of each of the
three types of wholistic responses. To test this hypo-

thesis, product moment correlations between wholistic and

e

decomposed judgments were computed (see Table 6). Data for
the three attribute alternativces generally supported this
hypothesis, though there was some indication that the risky
utility decomposition afforded poorer prediction of the
riskless wholistlc assessments than did the riskless
decomposition models. Similar results were obtained for
the nine attribute alternatives, though here it was more
evident that the risky utility decomposition afforded

poorer prediction of the riskless wholistic assessments.

To provide a more sensitive measure of interval scale
convergence, mean absolute deviations (MABS) between
wholistic and decomposed aséessments were also computed.
Because the varlous sets of responses were measured on
different scales, these differences could rot be directly
computed. To make all sets of responses comparable, each
subject's data was transformed as follows. Within each

response mode and stimulus set all judgments were linearly
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transformed to range between 0 and 100. Such transfor-
mations were appropriate because the value and utility
functions in question were deflined only on an interval
scale. Using this transformed data set, within subject
MABS scores were computed (see Table 7). This analysis
revealed a clear departure from the utility theory assump-
tion that preference is risk variant. For both three and
nine attributes, the utility decomposition afforded better
prediction of the risky wholistlc assessments and the
riskless decompositions afforded better predictions of the
riskless wholistic assessments. This result 1s reminiscent
of Tversky's (1967) finding that an interval scale measure
of subjective worth varies depending upon whether or not 1t

is based upon risky or riskless judgments. In addition,

however, the MABS analysis of the nine attribute alternatives

generated results which seem to conflict with those of the
previously discussed rank order correlation analysis. For,
using Spearman's rho as 2 measure of convergence, the
additive utility decomposition models provided the poorest
predictions of all three sets of nine attribute wholistile
Judgments, including those wholistic judgments which were
assessed using the indifference probabllity utility assess-
ment procedurce. Yet using MABS as a measure of convergence,

the addltive utility decomposition models provided the best
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predictions of the nine attribute wholistic utility
assessments. Apparently the additive utility decomposition
procedure ¥as subject to a considerable degrez of random
error which caused it to fail to correctly order alter-
natives which were falrly similar in overall utility. 1In
§dd1tion, however, the additive utility decomposition
procedure did capture some of the subjects' attitude toward
risk and was thus better able to predict the interval

scale properties of the wholistic utility assessments.

Convergence between Decomposition Models. To the

extent that they are valid, two or more decomposed
evaluation models should produce the same rank ordering
over a given set of alternatives. Rank order correlations
were computed to test this proposition (see Table 8). 1In
general, the three decompositions did produce similar rank
orderings. The degree of ourdinal convergence between the
decomposition methods was not, however, greater than that
between the various sets of wholistic responses (see Table
9). 1In fact, convergence between the additive utility
decomposition and the other twou decompositlons was poorer
than that between th: wholistic utllity assessments and
the other two types o wholistlic assessments. Thils result
further supports the earlier conclusion that the additive
utiiity decomposition procedurc is subject to a considerable

degree of errcor.
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TABLE 8

CONVERGENCE BETWEEN DECOMPOSED EVALUATION
ODELS: EXPERIMENT 1

Measure? Nb Models® Subject
1 2 3 4 5 _ Medlan Li
Rho 3 RS-TO .98 .93 1.00 .97 .97 .97
RS-UF 84 .77 .95 .89 .97 .89
TO-UF -85 ~90 095 092 099 -92
RhO 9 RS"‘TO 095 095 . 95 . 96 .911 . 95
RS"UF -77 079 -99 597 qu 091'
TO-UF .85 .88 .94 .92 .93 .92
RS-UF .82 079 099 091‘ -99 -9“
TO-UF .85 .88 .99 .94 .97 .94
PM 9 RS~TO .98 .99 .97 .95 .97 <97
RS~UF .84 .88 .99 .97 .97 .97
TO-UF .85 .92 .97 .91 .97 .92
MABS 3 RS~TO 4 6 0 6 4
RS-UF 18 17 3 b 3
TO-UF 17 13 3 10 6 10
MABS 9 RS-TO 4 4 6 8 6 6
RS-UF 15 11 2 6 5 6
TO-UF 15 9 6 11 8 9

aMABS, PM, and Rho refer to mean absolute deviations, product
moment correlation, and Spearman's Rho rank order correlation.

bNumbe

r of attributes.

cRS, TO, and UF denote the additive rating scale, additive
trade-off, and additive utility decompositions, respectively.
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TABLE 9

CONVERGENCE BETWEEN WHOLISTIC RESPONSE

MODES: EXPERIMENT 1

Measure? N Models® Subject
1 2 3 y 5 Median
Rho 3 RS-TO .98 .81 .96 .81 .92 .92
RS-UF .96 .96 1.00 .87 .95 .96
T0-UF .97 .8 .95 .96 .84 .95
Rho 9 RS-TO .92 .87 .85 .95 .91 .91
RS-UF .91 .8 .97 .93 .96 .93
TO~UF .90 .83 .83 .93 .88 .88
PM 3 RS-TO .98 .87 .96 .89 .92 .92
RS-UF .79 .91 1.00 .89 .94 .91
TO-UF .84 .80 .96 .86 .82 .84
PM 9 RS-TO .96 .90 .96 .95 .87 .95
RS-UF .79 .87 .98 .81 .95 .87
TO-UF .78 .80 .95 .84 .84 .84
MABS 3 RS-TO 6 14 6 10 14 10
RS-UF 29 16 3 16 9 16
TO-UF 25 22 7 22 18 22
MABS 9 RS-TO 6 11 8 9 12 ¢
RS-UF 32 15 6 19 7 15
TO-UF 33 15 7 19 15 15

aMABS, PM, and Rho refer to mean absolute deviations, product

moment correlaticn, and Spearman's Rho rank order correlation.

bNumber of attributes.

cRS, TO, and UF denote the whollstic rating scale, trade-off,

and utility response modes, respectively.
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Consideracion of the interval scale properties of the
three decompositions also revealed a high degree of con-
vergence. Both product moment correlation and MARS
analyses indicated that the degree of interval scale con-
vergence between the three decompositions was consistently
and substantlally greater than that between the corresponding

wholistic response modes (see Tables 8 and 9).

Discussion

The generally high degree of convergence between not
only the decomposed models themselves, but also between the
wholistic and decomposed Judgments strongly suggests that
all three decomposition procedures can provide a meaningful
measure of the decislion maker's preferences. The relatively
low rank order correlations between the additive utility
decomposition and the other nine attribute wholistic and
éecomposed Judgments suggests, however, that the additive
utility decomposition 1s less reliable than the other two

decomposition methods.

Experiment 1 also produced two other notcoworthy results.
First, the degree of interval scale convergence between
the three decomposition procedures was consistently greater
than that between the corresponding sets of wholistic
Judgments. This finding supports the contention that

decomposition can improve upon wholistic evaluation by
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reducing the amount of random error in the evaluation

process.

The final noteworthy result was that the degree of
convergence betweer. the decomposition models and the risky
wholistlc assessments was less than that between the
deccmposition models and the riskless wholistic assessments.
Although a number of explanations of this finding are
posslble, two seem most sallent. First, the risky whollstic
assessments may simply be subject to more random error,
and thus, are inherently less predictable than the riskless
whollstlc assessments. The difficulty of the Judgments
required in the risky wholistic response mode makes this
explanation quite plausible. A second possible explanation
is that the wholistic preferences for risky alternatives
were systematically non-additive, and thus, that additive
decomposition models provided an imperfect approximation
to the subjects' true preferences. Confirmation of this
hypotheslis would suggest that non-additive decompcsition
procedures are required for risky declision making. For
there are certainly no compelling normative grounds for
additive evaluation under risk. The marginality assumption
which 1s required for additivity seems very questionable

from a normative standpoint, and it 1s easy to construct
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instances in which this assumption is and clearly should be

violated. Thus, if wholistic preferences under risk exhibit

L.

evidence of substantial non-additivity, it seems reasonable

to conclude that the decision maker's preferences really

are non-additive, and that any decomposition procedure
devised to assist him In making decisions should be capable
of reflecting this non-additivity.




EXPERIMENT 2

The primary objectives of Experiment 2 were to
determire first, whether wholistic risky utility assess-
ments are substantially non-additive, and second, whether
the R(V) utility decomposition provides a better measure
of risky utlility than does the additive utility decompo-
sition studlied in Experiment 1. These two objectives =zre
closely related. For, 1f whollstic preferences are
systematicaily non-additive under risk, then a non-additive
utility decomposition procedure, like the R(V) method,
seems called for. But even 1f whollstic preferences under
risk are additive, the R(V) method might prove superior to
the additive utility decomposition. Experiment 1 suggested
that the additive utllity decomposition might be subject
to a substantial degree of error. The R(V) method con-
siderably simplifies the evaluation process by permitting
the decision maker to separate the consiceration of value
trade-offs between attributes from consiaeration of his
attitude toward risk. Because of 1ts relatively greater
simplicity, the R(V) method might provide a less error
prone measure of risky preference than the additive utllity

decomposition.
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Method

Design. Because whollistic utility assessments were

to be used to evaluate the relative desirability of addi-

tive and non-additive utility assessment procedures, a

large amount of random error in these whollstic utility
Judgments would have posed a serious problem. To avoid
this possibility, only three attribute alternatives were

consldered.

In the first stage of Experiment 2 subjects wholis-
ticaily evaluated hypothetical job offers using both the

riskless rating scale and risky utility response modes.

Because the analysis of variance was to be used to provide

a formal test of the additivity assumption, subjects
evaluated all posslible comblnations of attribute states.
Half of the subjects assessed the riskless ratings first,
and half the risky utilities first. After all wholistic
Judgments had been made, subjects constrqcted additive
rating scale, additive utility, and R(V) utility

decomposition models.

Subjects. Ten male students from the University of

Michigan Schools of Engineering and Business Administration

served as subjects. All were elther seniors or graduate

students and had, as a consequence, glven serious

| GO Do et
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consideration to the problem of obfaining a Job followlng

thelr graduation.

Alternatives. The alternatives to be evaluated were

- hypothetical job offers described by three attributes:
annual salary, city of employment, and type of work. Each
of these attributes assumed three states, ylelding 27

L possible job offers.

Particulnr states of the three attributes were specified

L4

as follows. The experimenter arbitrarlly established three
salary levels -- $14000, $11000, and $9000 -~ and three
cities -~ Boston, Cleveland, and Tulsa. But given the
rather divergent backgrounds and interests of the subjJects,
it was not posslible to arbitrarily specify three types of
work which would be applicable to all subjects. Instead,
the experimenter asked each subject to describe three types
of work, the first of which he would view as "very good"
given his 1nterests and goals, the second of which was less
desirable than the first, but nonetheless "good", and the

third of which was barely acceptable or "fair".

As in Experiment 1, alternatives for the wholistic

Judgments were presented in booklet form. Each page of a

booklet listed the three attributes describing a particular
Job offer. Subjects evaluated each of tie 27 possible job
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descriptions once in each response mode. In addition, to

provide a measure of whollstic reliability, subjects

re-evaluated five of the alternatlves for a second time.

For each wholistic response mode, two booklets of wholistiec

alternatives were constructed., Each booklet contained

16 job descriptions. Five of these were reliability items

which occurred in both booklets. The remaining 22 alter-
natives were randomly divided between the two booklets.

The order of booklet presentation was randomized across

subJects.

Procedure. After becoming familiar with the nature
of their evaluation task, subjects created the descrip-
tions of the "fair", "good", and "very good" types of
work. Next they specified the most and least desirable
of the 27 possible Job offers. Then wholistic assess-~
ments were elicited. As in Experiment 1, subjects indi-
cated thelr riskless ratings by making a slash through a
100 millimeter scale which was divided into ten equal

intervals and numbered from 0 to 100.

Elicitation of the risky wholistic Judgments differed

from Experiment 1, however, in that a plausible scenario
could be constructed. The instructions given to subjects

can be paraphrased as follows.
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Sed

Suppose that the two jobs which you previously :
stated were the most (J*) and least (Jx) attrac- i
tive of the possible job offers are two of ?
only three Job offers which you have, and

suppose that the intermediately valued offer

(J') described on the page of the booklet before

you 1s the third. You have been told that Js

is yours for the asking, and you may wait several

months if you wish before giving your decision.

The J' offer, on the other hand, requires an

immediate response. You can have it now if you

wish but if you wait the offer will no longer be

avallable. Unfortunately, while you have some

chance of receiving the J¥* offer, you will not

know for certain until several weeks from now,

and you cannot walt that long before stating

whether you will accept or reject J'.

This leaves you with only two alternative courses
of action. First, you can accept J', thus for-
feiting any chance to J* but assuring that you
willl not have to accept Jg. Or second, you can

1 reject J'. In thils case, if you are fortunate,
you will receive the offer J¥, but 1f not, you
will have to accept Jx. Clearly, your decision
in this matter will depend upon how likely you are
to receive the J¥ offer. Your task in this por-
tion of the experiment 1s to specify, for each
offer J', a procbability p' of receiving the J*
offer such that you would be 1ndifferent between
accepting and rejecting J'.

4 The actual instructions were stated less formally, and

subjects found this scenarib quite plausible. Some had,
in fact, experienced such a situation. This plausibility
further strengthened the case for using these whollstic
utility assessments as a criterion for validatlng the

decomposed utility models.
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After completing the wholistic phase of the experi-
ment, subJectis constructed decomposed evaluation models.
For the rating scale and additive utlility decompositions
they followed the procedures utilized in Experiment 1. To
obtaln welghting factors for the additive utility decom-
position, subjJects reassessed the required wholistic
multi-attribute utilities. Thus, the additive utility
decompositions were independent of the set of wholistic

utility Judgments which they were used to predict.

Construction of the R(V) utility decompositions
required no additional Judgments. The rating scale models
provided a measure of riskless value. To determine the
transform R, the experimenter utilized the three wholistic
multi-attribute utlility assessments from which the
welghting factors of the additive utility decompositions
had been determined. These three utilitlies were plotted
on one axis, and the corresponding values assigned by the
rating scale decompositions on ihc other, Between these
three points and the two exfreme outcomes, J* and J,, the
transform R was approximated by straight line segments
Joining adjacent pol::ts for which utilities had been
assessed. For one subject (#5) the three wholistic utility
assessments were not monotonically related to the values
assigned by the rating scale decomposition. In thils case,
the transform R was based on the two utility assessments

which were nearest to the 0 and 100 points of the utility

scale,
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As 1n Experiment 1, subjects performed all tasks

individually and under close supervision.

Results

Riskless Ratings. The present design permitted a

direct test of the generally accepted assumption that
wholistic riskless preferences are additive. The analysis
of variance summarized in Table 10 revealed that despite

a significant (p < .01) City by Salary interaction, addi-
tive main effects accounted for 99.2% of the fixed effects
sums of squares. So, for practical purposes, the wholistic

ratings were essentlally additive.

The next four analyses to be discussed were all
designed to assess the degree of convergence between
wholistic and decomposed riskless judgments. Because the
rating scale decomposition was to be used és the basis for
the R(V) decomposition, i1t was especially important that
the rating scale models provide an accurate measure of

riskless preference.

The first two measures of convergence, the rank order
and product moment correlation coefficlents both indi-
cated a very high degree of convergence between the

whollstic and decomposed ratings (see Table 11). The

e iacsasialil




ANALYSIS OF VARIANCE FOR WHOLISTIC
RATINGS: EXPERIMENT 2

12

TABLE 10

 wnnM Y wettl BN OO

{ e

% of Total Fixed Effeccts .

Factor ar F-ratlo Sums of Squares KJ

City (C) 2,18 15.12%¢ 19.6 i

Salary (S) 2,18 351.80%#% 13.1 =

Type of 2,18 45, 4ore 66.5

Work (W) -
CXsS h,36 L, 6B .3
CXW 4,36 2.07 .3
SXW 4,36 1.20 .1
CXSXW 8,72 1.50 .1
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third measure, the mean within subjcet absolute deviation
(MABS) of wholistic from decomposed ratings, also
indicated a high degree of convergence (see Table 11).
The medlan MABS across subjects was caly 7 (on a scale of
100), a very respectable result in view of the fact that
the mean MABS between wholistic reliability items was 6.

In the final and most sensitive test of convergence,
the cumulative frequency distribution of the absolute
deviations of wholistic from decomposed judgments was
plotted and cowvared with the cumulative frequency distri-
bution of deviations between reliability items. The two
distributions, plotted in Figure 3, were very simiiar.
Only for errors of one unit or less was the wholistic
rellability substantiully greater than the degree of con-
vergence beiween wholistic and decomposed ratings. This
result suggests that the decomposition models accounted
for viriuaily all systematic varlance in the wholistic
ratings, and thus, thar the additive rat;ng scale models

provid=d an accurate neasure of riskless preference.

Risky Utilities. The hypothesis that wholistic

utility assessments are additive was tested by analysis
of varianc2 [(see Table 12). This analysis indicated that,

despite a significant (p ¢ .05) City by Type of Work

-
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Figure 3. Cumulative distributions of absolute

deviations from wholistic ratings.
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TABLE 12

ANALYSIS OF VARIANCE FOR WHOLISTIC RISKY
UTILITY ASSESSMENTS: EXPERIMENT 2

% of Total Fixed Effects

Factor ar F-ratio Sums of Squares
city (C) 2,18 23.95%% 23.7
Salary (S) 2,18  1492.00%* 17.5
T&ggkofw) 2,18 4o.10%* 57.6

CXS 4,36 2.22 A
CXWw 5,36 3.10% .9
SXW 4,36 .78 .2
CXSXW 8,72 .32 A

&% p < .01

HA

.05




fadignch L o

S

£

L.

77

interaction, these wholistic utility assessments were
also essentially additive. Here additive maln effects

accounted for 98.8% of the fixed effects sums of squares.

As 1n the case of the riskless ratings, four measures
of convergence between wholistic and decomposed judgments
were obtained. In each of these aralyses all three decom-
position models were used to predict the wholistic utility
assessments. Table 13 summarizes the rank order corre-
lations, product moment correlations, and MABS scores.

For all measures all three decomposition models ylelded
excellent predictions ©of the wholistic utility assessments.
The median MABS scores for the rating scale, additive
utility, and R(V) utility decompositions were 11, 9, and

9, respectively, all excellent in view of the fact that

a mean MABS of 9 was obtained for the wholistic reliability

Judgments.

The cumulative frequency distributions of absolute
deviations did, however, discrimlnate to some degree between
the three decomposition models (see Figure U4). Examina-
tion of these distributions reveals that the R(V) and
additive utility decompositions consistently dominated the
rating scale models. The differences involved, however,

were very small. These distributions also reveal that the
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degree of prediction afforded by the decomposition models
was about as nigh as possible given the degree of

rellability inherent in the wholistic utility judgments.

Convergence between Decomposition Models. As the

results presented above suggest, convergence between the
three decomposition procedures was excellent. This con-
clusion was supvorted both by rank order and product

moment correlations and by a MABS analysis (see Table 14).

Discussion and Concluslons

Experiment 2 provided further support for the con-
tention that additive decomposition procedures provide an
appropriate measure of riskless value. As in Experiment
1, convergence between whollstic and decomposed riskless

ratings was very high.

The second major result of Experiment 2 was somewhat
unexpected. Decause the marginality assumption, which
is required for additivity under risk, ié intuitively
unappealing, the experimenter had expected that subjects
would show substantial departures from additivity under

risk. The outcomes evaluated, if taken seriously, seem

to be of sufficlient importance to produce violations of the

marginality assumption. Nevertheless, Interaction effects
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sty

accounted for but a very small proportion of the variance

Ao

of the wholistlc utllity assessments. Thus, Experiment

2 does not support the contention that risky utility

- G

assessment requires non-additive decomposition procedures.

vy,

This result should not beutoo strongly interpreted,
however. For the outcomes evaluated were hypothetical, i
and consideration of the same alternatives when real jJobs o
were at stake might have produced a dilfferent result. 1In .
addition, the possiblility exists that while the job

selection context does not produce non-additivity, other

multi-attribute evaluation contexts will.

The third major finding of Experiment 2 was that all
three decomposition procedures produced excellent, and
essentially equei, prediction of the whollstic risky
utility assessments. In contrast to Experiment 1, there
was no evidence that the additive utility decomposition
procedure was subjJect to a larger amount of error than the
other assessment procedures. Uncritical acceptance of
these results of Experiment 2 would suggest that the three
decomposition methods provide equally Yalid measures of
risky utility, and that cholce between the three might be
based upon simple practical considerations such as ease of
assessment. That 1s, given the extremely high degree of

convergence be .ween all utility assessments, whether




wholistic or decomposed, 1t seems unfruitful to attempt
to determine which response mode is "best". Since they
all assign essentially the same utility to a gilven

alternative, it makes 1ittle difference which response

mode 1s adopted.

The experimenter is inclined to adopt a more cautious
approach, however. For the numerical results presented
earlier indicated that interval scale utility measures are
qulite sensitive to specification of a composition rule.
When that rule should be substantially non-additive, use
of an additive rule will seriously misrepresent the decision
maker's preferences. And despite the additivity of risky
preferences in the present experimen., there may well be
real world settings where a non-additive evaluation rule
is necessary. So in applying multi-attribute utility
theory to real world problems, it would still be advisable
to employ additive assessment techniques only after having
ascertained that the decislion maker's prgferences are
additive. This can be accohplished by determining whether
or not the decision maker is indlfferent between marginally
equivalent gambles. If he 1s not, then the R(V) technique
should be used. When no direct test of the additivity
assumption is feasible, the R(V) procedure should again be
used. For it is formally appropriate whether or not

preferences are additive under risk.
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Finally, a brief discussion of previously unméntioned

limitations of thls research is in order. First, a total :‘ i

| el

i

of only fifteen subjects participated in the two experi-

B

ments. Since failrly substantial individual differences

vere apparent in the data, this 1s a serious limitation.

i
Given the small samples used in these studles, 1t was ;jj
impossible to explore the possibility that different ;é é j
assessment procedures may be required for different E ]
decision makers, »sg

In addition, 1t should be noted that this research ; :
compietely ignored the problem of defining the 1list of ‘
value attributes relevant to a given decision. These were
simply given to subjects as part of thelr tasks. Yet in
actual practice thls may well be one of the most difficult
aspects of an evaluation problem. It should also be noted
that the practice of giving subjects a list of attributes

to work with enhances the degree of convergence between

whollstlc and decomposed assessments. For it assures that
both are based on the same information. In the real

world, on the other hand, wholistic and decomposed assess-
ments might conflict simply because the decision maker's
wholistic assessments took into account considerations which

he had not thought to incorporate in his decomposition model.

L3
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This criticism applies nnt only to the present research,
but also to virtually all psychological studies of

preferences for multi-attribute alternatives.
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