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ABSTRACT: The problem of optimally processing multiple sensor data to determine the
set of time delays generated by the propagation across an array of the wave fronts
from a distant wide-band Gaussian noise source is investigated. It is assumed that
the amplitude gradient across the array of the noise field is negligible, that the
array outputs are corrupted by additive wide-band Gaussian independent sensor noises,
and that the observation time is long. The Fisher Information Matrix is determined,
and tien used to show that the maximum likelihood estimate is zsymptotically efficient
(as theory dictates it should be). It is also shown that filtered correlat.. systems
can provide asymptotically efficient estimates. Finally, the effects of suboptimal
filtering of the inputs to a correlator system are investigated for the case when the
signal and additive noise spectra are all band limited and have constant slopes of .
0, -3, or -6 dB/octave. .
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OPTIMUM ESTIMATION OF A DELAY VECTOR CAUSED BY A RANDOM FIELD PROPAGATING ACROSS
AN ARRAY OF NOISY SENSORS

This report is concerned with the theoretical bounds on the accuracy of estimation
of the set of time delays caused by the propagation across a noisy array of the
signal wave fronts from a distant random noise source. The Fisher Information
Matrix is determined and used as a bench mark relative to which the efficacies of
the maximum likelihood processor and a multiple multiplier correlator system are
compared. The report will be of interest to those concerned with passive sonar
detection and localization or the corresponding problem in seismology.
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CHAPTER ~
INTRODUCTION
in many physical problems of interes?, with sonar, radar,
and ~eismology as examples, the time records of the outputs
of an array ~f sensors are observed over some time interval
ot used t€n estimate the position of a distant rninise source.

“ypically, tie outputs (i.e., time records) of the sensors

consist of amplifude scaled and delayed replicas of the
waveform from the distant source, corrupted by additive
noises, usually local in origin. When the amplitude gradient
cf the noise from the distant source is negligible over the
array, essentlally all of the geometric information, e.g.,
range and bearing, is encoded in the set of time delays
asscciated with the propagation across the array of the signal

wavefronts from the distant source, This thesis trests the

topics of “"Stering and signal processing <o optimize the
estimation of the time dslays.
The distant noise source and the additive corrupting

sensor noises are all asgumed to be independent stationary

Gaussian random processes. The time resords to be pro-

£

cessed are long compared tp“éhe;ségnal and noise correlaticn %g

' :jéima§'gnéfﬁlso”t0'tﬁégti@é—aéedeéﬁfpr a sigrhal wavefront : 1;
;@or?59§ag5§é #ErOSS ﬁhe';nféy.‘wfheée ;;ééépt;énﬁﬂmake gh "?~
iaﬁagygié,béséd on é‘?ouriet~?épresentation of thg;tiﬁé*A ~_' ) At‘*%g
{rggérds particuiariy convenisnt. ) 4 , gﬁ
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The Cramér.-Rao matrix bound (CRMB) for the vector delay

estimate 1s developed in Chapter II, and it is used as a

benchmark, relative to which the efficacies of two estimation

schemes are measured. These schemes are the maximum likeli- :
hood preceszor tn Chapter III, and a possibly suboptimal

multiple correlatcr processor in Chapter IV. Theory dictates

that the maxlimum likelihood processor should achieve the

matrix bound, and this is shown. If the number of sensors is

two (2) or three (3), then it is shown that the multiple

correlator processor with optimally filtered inputs alsc

achieves the matrix bound. The optimal filters are discussed
in Chapter IV, Numerical results showing the effects of
suboptimal filtering are presented in Chapter V for the
specific case where the signal and nuise spectra are band-
limited with spectral slopes of 0, -3, or -6 dB/octave.
Although there have been many applications of the
Cramér-Ran estimation theory to communication theory, they
have generally been to problems of the known signal in
Gaussian noise type. Among the investigators who have applied
the {ramér-Rao estimation theory to problems in which the .
sigrials and noises all are random are Levin [1], Harger [2],
and MacDonald and Schultheiss {3]., Levin investigated random .

process power spectrum parameter estimation, Harger treated

:‘-‘i'-ék{‘.’.‘b WA LI S, ‘.."""-. ".‘ 'u;?
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the problem of optimally processing da~x of unknown focus
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in electro~-optical systems., MacDunald and Schulthelss
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considered thé problem of optimally estimating the bearing
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fr. m a sonar array to a distant noise source. In [3] the
authors assume that the signal wavefronts at the array are
planar, and the problem is essentially that of estimating
a scalar. This thesis generalizes the problem treated by
MacDonald and Schmlthelss to the extent that the signal
wavefronts across the array are assumed to have a curvature,
and it is desired to determine this curvature, and hence
the rest of the geometry, by measuring the vector of time
delays asscciated with the propagation of the curved wave-
fronts across the array of sensors. This passive multi-
dimensional localization problem appears not yet to have
been treated 1In the iiterature.

The following nothtion is used 1in this thesis. If A
is a matrix, then A“l is its inverse, A¥* is its complex
conjugate, AT is its transpose, tr Ais its trace, and det A
is its determinant. If matrices A and B are positive
definite, then A > B(A > B) denotes that the difference A-B
is positive definite (nonnegative definite). A square matrix
whose elements off the maln diagonal are all zero may be
written as diag(al, By e an), where a; 1s the i-th
diagunal element. Vectors are column vectors unless other-
wise specified. 1 denotes a vector with every element a
one (1). 0 is a matrix of zeros, and I is the identity
matrix, < * > denotea the expectation operator, and-grad f
is the gradient of the scalar f. The gradient of a vector
is the matrix in which the i-th row is the gradient of the
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i-th component of the vector. The Kronecker delta is denoted i

by "_l;n:‘ “hy
A

AhiR

iIn the usual fashlon as 613. If z is a complex number 1its

real and imaginary parts are denoted by Re z and Im z,
respectively.

The following conventions regarding integration limits
are ovbserved in this thesls. Integrals of the form

J_> £ ax are written as [f dx. Integrals of the form

ITCf £ dt are written as [y £ dt. The quantity wy is defined

-T/2 w

in Chapter II. Integrals of the form [ N f dw are written
- w

as [p f du. N

The symbols MLE, FIM, CRMB, and HOT are abbreviations for
Maximum Likelihood Estimate, Fisher Information Matrix,

Cramér-Rao Matrix Bound, and Higer Order Terms (as in series

expansions), respectively. Appendix A is a brief introduction

to the significance of the FIM and the CRMB,

Appendix B is an introduction to complex Gaussi~n

B it

random vectors, in the particular sense of Goodmann [4].

These complex Gausslian random vectors are pertinent to

TR AT AL A
ke

the study of the properties of real stationary Gaussian

vector processes with long observation times.
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CHAPTER II
THE LIKELIHOOD FUNCTION AND YEE
FISHER INFORMATION MATRIX
A. BASIC ASSUMPTICNS

In this chapter the likelihood function, I.(D), and the
Fisher Information Matrix (FIM) are derived. The vector
argument, D, of the likeiihood function is the vector of
delays to be measured. The following Assumptions are made:

1. The randoim signal and each of tne additive sensor
noises are all stationary zero-mean Gaussian random processes.

2. The stationary zero-mean Gaussian random processes
of Assumpiion 1 are all independent.

3. The observation interval, T, is large compared
to the correlation times of all the staticnary zero-mean
Gaussian random processes. It 1s also large compared to
the tlme needed for the signal wavefronts to transverse

the array.
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B. THE LIKELIHOOD FUNCTION, L(D)
Each of the M sensors of the M-element array is observed
for a duration of T seconds over the time interval
T

-x<t <+ % . The output of the i-th sensor is x,(t).

The i-th time-record is represented by Fourier coefficients,

? X (0 ) = ]T xy () exp{-Jjkw t}at, (2.1)

where Wy = 2n/T, and W = kwo. If only frequencies up to
Nwo are to be processed, the set of M time records can be
represented by MN complex Fourier coefficiencs. These MN

coefficients can be treated as a single entity by defining

a data vector X:
T
X = (Xl(ml),x2(wl),...,XM(wl),Xl(mz),...,XM(wN)) (2.2)

x By Assumptlon 1, each of the components of the data vector
is a zero-mean complex Gaussian random variable. Let the

covariance matrix, R, be defined by

T

Rz<XX > (2.3)

The elements of R are given by

X;(wm)xq(wn) = IT dt IT du exp{J(w t-w u)} < xp(t)xq(u),>.

(2.4)
It 1s assumed that the time record of the output cf

the p~th sensor is

xp(t) = s(t-Dp) + np(t), (2.5)

e A e e

gy e Tk el
s Ty
e ¢ e A iy s

S Egvay e Lt
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where s(t) is the randomm signal waveforn, Dp is the =ignal
delay at the p-th sensor relatvive to the delay at an arbi-
trary reference point, and np(t) is the independent
additive sensor ncise. Let R (t) and Rp(r) denote the
signal ar4 noise auto correlation functions, respectively.

By Assumption 2 the expectation on the right side of

Eguation 2.4 is

v > = __.’. - "' - 3 .
< xp(t)xq(a) Rs(t u Dq Dp) quﬂp(t uj, (2.6)

The autocorrelations are related to the spectral density

functions S{w) and Np(w) by

RS(T) = %? | s(w) exp{jwtldw (2.7)
and
Ry (1) = = N, (w) exp{jutidw . (2.8)

Inserting Equations 2.6, 2.7, and 2.8 into Equation 2.4

and integrating with respect to t and u,

2
< X)X () > = 5= [ de (S(w)N,(w)) expldu(D-D,))

plom’tgr
.[sin(w+2nm/T)T/2 sin(w+2mn/T)T/2-
“Totamm/T)T/2  ° (wt2an/T T/ -°

(2.9)
By assumption 3, the signal and noise correlation times
as well as Dq-Dp are all small compared to T. The sinc

functions [5] in Equation 2.9 are orthogonal, and since all

the functions of w inside the integral in Equation 2.9

vary slowly compared to the sinc functions, for practical

nurposes
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*
<Xp(mm)XqG%:) > = GmnT(S(wn)+6qup(mn)) exp{an(Dq~Dp)J.

{2,10)
The real and imaginary parts of X, say XRE and XIM’

respectively, are each zero-mean Gaussian random vectors.

T _ T T - T
If < XREXRE > = < XIMXIM > and if <« XREXIM > % - < XIMXRE >,

then X is a complex Gaussian random vector, in the sense of

Appendix B. This is true ( asymptotically in T). Consider

< Re Xp(mm) Re Xq(wn) > -~ < Im Xp(mm) Im Xq(mn) >

fo at [p du < xp(t)xq(u) > cos(u t+w t)

1
5= [ du (s(w)+Np(w)qu) exp{Jw(Dp-Dq)}

[p at [q du exp{ju(t=u)} cos(u t+u u)

1
5= [ dw (S(w) +Np(w)6pq) exp{Jw(Dp-Dq)}

. TZ [sin(w+wm)T/2 sin(w-wn)T/Z

2 [ lwte 3172 (W= JT72
sin(w-w_)T/2 sin(wtw_)T/2
+ L I ! (2.11)
(- )T/2 (wte )72 | ° .

Again the sinc functions on the right side of the last
part of Equation 2.11 are orthogonal. Since the integers m
and n are positive only, the right side of Equation 2.1l
is essentialily zero. Thus the real and imaginary parts of
the data vector X have the same covariance matrix. 4lmost
identical arguments show that < XIngE > = - < XREXEM > .

It follows that the vector X 1is a complex Gaqssian random

vector (see Appendix B) and the density function for the

vector 1s
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p(X) = (" get )L expl R XY . (2.12)

0l
(]

7
(et

Through the remainder of this thesis the asymptotic

7

.. , /
N N I
vm_h% O

nature of the results derived, particularly Equation 2.12,

will be assumed, and only occasionally emphasized when it

ENRD
MBI

seems appropriate. Equations such as 2.12 will appear

without apclogy. jgﬁ
Equation 2.10 shows that the Fourier coefficients %%

for gifferent frequencies are unccorrelated. It is there- ii
fore convenient to define the following vectors and matrices: é&
T E

X(k) = (xl(wk)’ xz(mk)’ ey XM(wk)) (2.13) ;:

V(k) = (eIURPL, GJUKP2, L, eJukPMyT (2.14) e

&

N(k) = diag(Ny(wy ), Ny(w ), ooy Nylw,)) (2.15) g

R(k) = N(k) + S(u,) V*(k) V' (k) (2.16) £

Using Equations 2.13 through 2.16 the density function =

can be written as

N *
p(X) = I (7 det R(k))™T expl-XT (K)R™I()X (k)}
k=1
(2.17) <
my N -1 Y1 =
[m7 I det R(k)] ™ exp{~ § X (k)R (k)X*(k)}.
k=1 k=1
An application of the "matrix inversion lemma" [6, p. 13]

e T
ﬁﬂg??#ﬂa.
:

S

o

shows that
i R k) = 81 k) - N LTaov*a)vE Nl (k),  (2.18)

",;},::Em%'-

where G(k) is defined by

M
Gk) =. ‘71 +kz~13(wk)ugl(mk)1“1 :

e W15 D o
b w3 Ay
by Iy

(2.19)

SN AR °,
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The vector V(k) is conventionally called the steering

! vector,
In the remainder of the text it will be convenlent

S to use the following simplified notation: The function G(k)

W

N
Mok

may be written as G(k), cu G(kwo), or G(wk), or G(uw) if

R T 8
S

w = kmo is understood, or simply as G with the argument

T
el
e

suppressed 1f the argument is known. This notation wilil

TR
G vt

be used for all of the frequency deperdent scalars, vectors,

and matrices. In addition the set

B; = (1]1 an integer, 1 < 1 < N)
is defined in order hat summations over tiic range of the
Fourier frequencies, ZN , c¢an be simply written as

i=1
ZB+’ whether the frequency arguments are or are not sup-

;j;,
ES
’;5\:
58
322
E
=9
8
i
=0
-
e
Zoi
~i7d
£
i
=
E
=
B =
<
5

%

pressed. This allows summations of the form Z?ﬂ, to

IR e

be written as 21 and always understood to ve an array

sum.

g Ly b
49 B bk
§ q‘ﬂ]";}“r{ﬂ luliis

The signal delay vector D is defined by
D= (D., D D)t (2.20)
l’ 2) s o0y M . . s

The vector D is the vector argument of the likelimood

function, L(D). From Equation 2.1l7,

L(D) = ("™ 1 det RI™L expi- § XRIxX} (2.21)
Bt

B+
It is convenient at this point to examine det R(k), and,
in particular, to show that it is not a function of D.

Let u = exp{ka}. Then
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[~ ]
S + N, su(D2-D1) .. su(Pu-Py)
Su(D1"D2) S + N, cee Su(DM-DQ)

R(k) = (2.22)
sulP1-DM) gy (D2-Dm) cee B H N,

From Equation 2.22, every element of the i-th column of

D
R(k) has the factor u 1, and every element of the i-th

-D
row has the factor u . Thus if R(k|1) 1is the R(k) matrix

with Di set to zero,
det R(k) = (uwPHMP1Y! det RGKI1).  (2.23)
In view of Equation 2.23 and the definition of R(k|1),

det R{k) is not a function of Dy. Further,

det R(k) = det(N(k) + S(k)117 ). (2.24)
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C. THE FISHER INFORMATION MATRIX

AR AR

The CRMB for unblased estimators of the vector

argument Y is the inverse of the FIM, denoted by (FIM), %

where ) %

4

(FIM) = - < grad(grad 1n L(Y))T > . (2.25) :

In Equation 2.25 L(Y) is the likelihood function for Y, %

and the gradients are taken with respect to the components ?

of Y. The matrix zrad(grad 1n L(Y))T is a matrix of ]

second partial derivatives. From Equations 2.18, 2.19, g,

2.21, and 2,23, %

5

T _ To= T %

grad(grad L(Y))" = - ] grad(grad X' 1x* ) &

B+ &

To=-1. % T -l *.T e

=) G grad(grad X'N_ "V V'N"°X )", =

B+ {;

(2.26) 9

Let a and b denote arbitrary elements of V. g

The corresponding element of the FIM 1s determin=d by %

' 5 3 _ -13 D gﬁ
H - < 3= ==1n L(Y) > = -g; G < XN ( V vOn-1x* > . E
B | . (2.27) £
g The k, m-th element of the matrix V v is exp{juw(D _-D,)}. %

i1

Let

S P L)

het

! v'yT = (exp{Ju(D,=D,)}), (2.28)
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L5

e furiman

Ran o

g0 that

o

2 (EV'VT) = Lo (D, ~D,) exp{ju(d ~D,)}1),

— "
R D et T T
JitA H

= (J0)2(p(D D, )& (DD, ) expliu(D-Dy) ) Fi
+ (Jw)(gg g%(Dm-Dk) exp{ju(D,-D, ) })

= (Jw)2 A + (Ju)B , (2.29)

where the matrix A contains all and only those terms which
involve differentliating the exponential twice.
Define A and 5 by

A= N1yt (2.30)
and
B = NipN1 (2.31)

#* *
In view of the matrix identity X°QX = tr X X1Q, the

expectation in Equation 2.27 1is
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T.,-1 9,9
< XN aa(abVV)N

< tr X XT((Jw)2 A + (juw)B) >

tr{RIGw) & + (Jw)B)I} (2.32)

Er{ (N+SV VD) ((Ju)2 A + (Ju)B)},

The matrices A and B have only zeros for main
diagonal elements. Thus 1; and l; have only zeros for
main diagonal elements, since N1 o1s diagonal. Again,
the main diagonal elements of NK and Ng are all 2Zeros.
Thus tr(Nz) = tr(Iﬁé) = 0, and

T -1 8,90 4T\ =1,%
< X'N ﬁ(ﬁvvm X >

e toesVVI((Jw)2 A + (Ju)B)},  (2.33)

The k-th main diagonal element of the matrix B

v'vTE = vy [(ai(ab(Dk‘Dm)))ﬁ; exp{Ju(D,~D)}  (2.34)

is B

(V“VTIQB')kk =Y exp{ Ju(Dy - k)}taa ab(D Dm))] exp{Jw(Dk-q.n)}
m
=1 NkN [aa(ab(Dk =D 1 . (2.35)
m

It follows that
tr(V'VTB) = zz e Nm (D, ~D )]

L 'Y}‘;.;q?ﬁ”"i
Y

S\

=0, (2.36)

S

. 2J!
Y

Ampew,
’ ":’m
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sinece %»
3.8 = ____3_ ..a.. - Y ) 2:%“‘
4
Thus the only part of the expectation in the right side of §§
Equation £.27 that is not zero is the term invole¢ing %
2 {"
tr VMV, B
*®_T~ =
The i~th main diagonal term of the matrix V VOA is =
3(D,~D_) 3(D,~D_) explju(d~D)}
® Ts - et 0 im i—n?
(Vvvia), =1} exp{Ju(D -Dy) =7 55 WoH
m m
3a 9p NiN : *
m m

Using Equations 2.33, 2.36, and 2.38 in Equation 2.27,
the typical element of the FIM becomes

a(Dk-Dm) B(Dk-Dm)
sa 3b .

(2.39)

< S8 =Y w2g ¥} =
< 3g{zp 1n L(Y)) > = Y w6 )} W0

B+ km n

Since T is large and the spectra do not vary appreciably

over interwvals of width Wy s Equation 2.39 can be written as

2
3,9 T 2 S
-< =(= 1n L(Y)) > = [ dw »° ——F——
da ' 3b 5 5 1+ 3 ﬁs_,_)
1M
.5y oA 3(D-D ) 3(Dy-D ) (2.40)
LL NN 9a b .
km mn
15
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For the likelihoocd function L(Y), the elements of the
FIM as developed in Equétion 2.39 and 2.40 do not depend
on regarding a and bt as elements of the delay vector
D. The Equations 2.39 and 2.40 are coérect 80 long as
a and b are parameters, for example, range or bearing,
which affect the likelihood function only in that a and b
are arguments of the delays.

Specializing to the case where the gradient is taken
with respect to the components of D, the MxM matrix of

second partial derivatives is

- < grad(grad 1n L(D))T > =

2
2 _ 8 1 -1
20 =2 [( ) )N - N
I 20 S Zﬂi

B+ 1+2N1 1
i

This is not the FIM, for it does not have rank M.
This is due to the fact that the delays appear in the
expression for L(D) only in difference pairs. One of

the delays Di is arbitrary. Arbltrarily set D, = 0,

1
Redefine D by

D = (D2, D3, 1o ey DM) . (23'!'2)

The FIM pertinent to the estimation of the M-1 vector D
defined in Equation 2.42 is obtained from Equation 2.41:
(FIM) =-< grad(grad 1n L(D))T >




P,
£
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- - ~1
In Equation 2.43 NPl = diag (Nzl, cees NM') and 1 *

now an M-l vector. Or equivalently, the ¥IM is the M-]
by M-l lower vight partition of the matrix on the right

e e

side of Equation 2.40,

An unbiased estimate Y of the vector Y 1is efficient

if the covariance matrix c¢f Y-Y 1s the CRMB- A necessary
and sufficient condition for the existence of an efficient

estimate is that
grad 1In L(Y) = M(Y)(Y-Y), (2.4lL)

where M(Y) is a matrix which depends only on Y and not
on the oobservations. (See Appendix A.) For the problem

treated in this paper

grad 1n (L(D) = J grad 1n X'R1x". (2.45)

B+

Every term on the right side of Equaticn 2.45 nas the

observations, that is, the Fourier coefficients, as factors.

Thus in general, efficlent estimates do not exist.
However, it i1s shown in the next two chapters that under

certain conditions correlators and other square-iaw

processing schemes are asymptotically errici=nt, in the

limit of large T.

32
=
=
e
=2
-
P
=
=
=
P
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D. THE M=2 AND M=3 CA3ES

If the number of sensors is M = 2, the matrix bound
reduces to a scalar bound. The scalar delay to be
estimated is D, the delay from the first to the second

senscr. The variance of any unbiased estimate, D,

of D satisfiles

2,
A S/NN -.l"'l
var(D) > 2r {f do ° 5 1 25 . (2.46)
* B 1+ vt T
1 2

If the number of sensors is M = 3, and the vector to

be estimated is defined as Y* = (¥.,¥.3T = (D.,D.-D.)T
< 1272/ 22Y37Y27

.
K. + K X
(FIN) = 5= 12x 13 < 13 e e 2
13 23 ¥ %13
where
S/N
Kyy = [ 0 -——f;454l- (2.48)
Bo1+ ] =
K=l M

It is shown in Cnapter IV that for M= 3 a

processing scheme using three properly filtered correlators

achieves the matrix bound.

18
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CHAPTER III
THE MAXIMUM LIKELIHOOD ESTIMATE
A. THE ASYMPTOTIC NATURE OF THE MLE

When the MLE is based on a large number of indepgndent
samples it 1s ccnsistent, asymptotically normal, and
asmptotically efficient [7]. 8ince this thesis treats the
case 1n which the observation time T is large and the
correlation times are small, there should be, in some sense,
a large number of independent samples, It should, therefore,
be possible to examine the errors in the MLE and show that
the covariance matrix of the errors is in fact the CRMB.

In this chapter this 1s demonstrated. Since the results
developed in this chapter are ;pdependent of the true
delays, the true delays are assumed to be all equal to zeré.
Without loss of generality, the signal delay at the first
sensor is taken to be zero, and the delay set to be
measured is the set of signal delays from the first to the
remaining M-l sensors.

The MLE for the delay vector, D, satisfies .
grad 1n L(D) = 0, where the gradient 1s taken with respect
to the M-1 unknown delays. The vector D so determined is
the vector of measurement errors. The vector of delay

measurement errors is

DT

= (Dpy D35 +evs D) (3.1)

]

R T A

S

s

R

o

T A R e S T P T R R R
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and the error in the steering vector is

VT o= (1, exp{juD,y}, ..., exp{JuDyl}), (3.2)

The error vectors D and V satisfy

TS il

0 = grad 1n L(D)

= grad § xRy &
- E
&
= grad § XN~ vrvIy-ix* é
B+ :
X, X%
= grad } G }} ﬁlﬁg exp{Jw(D -D,)} (3.3)
B+ in P
Xy X5 1, \2 2
= grad } @ J} gy -(1+Je(D =D, )+5(Jw)“ (D ~D, ) “+HOT)
B+ in ~ 1
= grad(A + BD + % D'CD + HOT).
T, 1T

In Equation 3.3, A + B'D + 5 DCL + HOT is the series

expansion, in terms of the wvector D, for

Iall (Xx¢/N,N Jexp{ju(D,~D,)}.
B+ 1in

Since the error vector, D, is assumed to be small, Equation
3.3 leads to 0 = B + CD + HCT, or to first order,
D= -C“IB. The remainder of this chapter Jjustifies the

following (asymptotic) Equations:

%mmmm i

I S N Por s e et
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B'I‘

>=p_

BTB* > = (FIM)

= <

D>

ppt

c

> =o(FIM)

= (CRMB)

21

(3.4)
(3.5)
(3.6)
(3.7)
(3.8)
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B. THE VECTOR B
From Equation 3.3,

*
XX

BD = 1 6 1 gy (du) (D -Dy)
B+ 1in n

X X* X#* X
3 so0 [ 72100 -0 0001 ]
B+ 1 n " n i

To=lryy®T _ ¥y Tyl
= [ ] Juwel'NT[XXp" - X XpINg~ D,
B+

where XP i1s the X vector with the first component

partitioned away. Thus

- * 4 -
B =] Joad N rxxpT - X xLINGt |
B+

Since, at each frequency,

R < X*XT >

N+s1dt

%
=<XXT>,

it follows that < B > = 0,

T

In examining the terms of < B B* > 1let

#*
(5 ok
N Ng© Ny

Then R

> e o T gy "%, e W AN TAL TR ST Y, St s N R P et 5y R e R o 0 ANE O e (P i ™y j Bl
R R R NP AR TR et SRaRENSR Gy - S RGP R

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

PR - SRR

T e e < g — b T et
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SRR
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It wp and wq are distinct frequencies,

< (u(wp)-ug (@) (u (wp)-u(w )* >

< (e lu)-up(w)) > < (u (o )-u) (w)* >

= 0 s (3-1"‘)

since “he Fourier coefficients at different frequencies are

independent. The element in the (p-1)~-th row and

(g-1)-th column of < BTB* > is, from BEquations 3.9, 3.12,
and 3.14,
T % 2.2 * LR
<B'B" > . . =7 w6 <(u-uf)(u-u) >
p-1,9-1 2 P P qq (3.15)
2 2 £ % * %
= < + - - .
g+m G upU e U U~ U >
Pavsy
<uu® s = z < ::iﬁki:l:q >
Pa
1k i"k'pq
- 77 TkiRpgtFpifig 6)
M) N , (3.1
1k 1"k'pq
ince < X,X_ > = < XX 0
since 1%q k¥p > =0,
Since R= N + 8 ;L_:;T is symmetric,
<ufu > = < e .
uply UgUg (3.17)
Further e
N ) _ < Xixkxpxq 5
Uplq > N.N NN
Pa ik 1K'pq
N.N.N N
ik 1"k"'pq
= < u;u; > . (3018)
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Combining the last four Equations, if follows that

R L N I e A f et ug i & Ty VLB St o oL Ty

R,, R R ,R
T * - 2,2 ik pq ~ “pi‘gk
<BB >,1,9-1° I 2% I} SR - (3.19)
B+ ik

1"k'pq

The double sum in Equation 3.19 is easily evaluated since
R., R R R
1k - 1 ik
DR el AR o
ik pa Kk

i"k'pq
R
pa 1 N

"
R 1 S

=ﬂﬂn(zﬁ-)(1+2ﬁ—) s (3.20)
pa 41 k

and

R_,R R R
P R I
ik 1k 1 1 g

Nqu Nk
1 S
= 1+] 7
Nqu s N1 (3.21)

Thus Equation 3.19 becomes

1 S
() 7)-(1+ )
< BTp* > 322232%‘1 ENi :%NI . S
-1,q- +§5)
p-1,q-1 N N (1 ).ﬂ"
B+ Pq 1 i
2 § N -1
2 S
=12 5. CNF_ ) . (3.22)
B+ (1+] 5 pa
1 i
24
T s A I {
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*
Examining the elements of < BTB > as gilven by

*
Equation 3.22 shows that < BLB' > is the M-1 by M-1

lower right partition of the matrix

F=J 24 ( § Lt 31 N1
(1 + 2 N =
B+ PR

i

o (3.23)

But this lower right partition of F is the FIM for this
problem, as was shown in Chapter II.

This completes the proof of Equations 3.4 and 3.5.




T = iyt T BT o s T s s S AP M 2 P R AT T RTs AL it i, AT T AT B e ET- TN 2T
S R T e R e SR o e M) R S W e ke B e A SR R RS

SINLAT IR

. . ‘b o o ety i ¥ " g )
it ER i Dl AR A AT D ST R R
-,.‘ﬁw WYETY i, A EAR A AL i W 5

fi

5
=4
=N
B
At

— - L i o — b plrataty et =

NOLTR 72-120

C. THE C MATRIX
From Equation 3.3

X, x"
op = § 1(3w)% II (o, - D)7 . (3.24)
B+ 1x LK

T

gt

The terms Xix; are the elements of the éample
covariance matrix based on T seconds of data. These
sample covariance elements do not converge, even if T
is arbitrarily long [8]. However, if the spectra being
estimated are sufficiently smooth, the sample covariances
can be averaged with samples from nearby frequencies
to provide statistical convergence. By hypothesis, the
spectra in the problem being treated are sufficiently

smooth. The summation, } , provides a smoothing over

adjacent frequencies of gge weighted spectral convariance
estimates. Thus it is assumed that C = < C >, and any
statistical variations in CD are of second order relative
to the variations in B. From Equation 3.3,

*

X, X
1o%ep = § 2(j0)%e §I ﬁ%ﬁﬁ(Di +0f - 2D,D).  (3.25)

B+ ik
The range of the indices i1 and k in the summations is

from 1 to M, D1 = 0, Using the argument preceding

Equation 3.25,

%DTCD - %DT <C>D
(3.26)
R
=1 (e I g2 - 0,0 .
B+ ik 1k
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But
R p° R
1k 2 _ ¢ 24 1k
1 ww0i LR
4Ny 1 K
1k 1 K
De
i s
IR frig
1 K
=[1+):NJDN1D, (3.27)
K
1 -1

where N; is the N~ matrix with the first row and column

partitioned away.- In similar manner

Ty~1 l
):): = D"Np“RpNp D , (3.28)
1k i k
where RP is the appropriately partitioned R matrix. Thus
LT c¢c>p =] (Judei + ] —-)D = 1D-D"N; 'R N5 1D}
5 “RpN;

B+ i

pT{ ¥ (Jw)2al( ¥ ---)NP tosnzt 11785 3.

Bt 1 (3.29)
It follows that
2 S R -
<> 20w’ —— [(2 ) NPl"NPl}._TNle :
B+ 1+) T i (3.30)
i i
In fact,
T #

(FIM) , (3.31)

- € C>=< BB »>»=

which demonstrates Equation 3.6.
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D. THE D VECTOR

Since the measurement errors are small, the D vector

is essentially determined by 0 = BT + CTD. Since

A T e e Tt et

C = < C > with negligible error, and since < C > is

.
il

symmetric, it follows that, asymptotically,

L

D=-<C >, (3.32)

T

Lepl>=0, (3.33)

< D>z «<(C>

and the covariance matrix for D is

<D > =< >t < BTB. >* < c >~
=< ¢ >t (FIM) <c>7?
= (FIM)~L
= (CRMB) . (3.34)

Thus the MLE for the delay vector is efficient.

It is also unbiased. This demonstrates Equations 3.7

and 3.8.
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CHAPTER IV
CORRELATOR DELAY MEASUREMENT SYSTEMS

In this chapter a delay measurement system using
correlator techniques is studied. The covarlance matrix
for the delay e~’ ates 1s derived. The use of filters
to optimize the system is studied. For the M = 2 and
M = 3 cases, the correlator based mcasurement system with
certain filters 1s shown to achleve the CRMB. A conjecture

is made regarding the optimum filters when M > 3.
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A. CORRELATOR MEASUREMENT COVARIANCES
Tre output of an ideal correlator with T seconds
of integration, and with the i-th and j-th sensors for
inputs, is

(T, = % foi(t)xJ(t - T,) dt . (4.1)

244

By the assumptions in Chapter II, the additlive sensor noises

are independent. !t follows then, that

< ZiJ(Tj) > = RS(Di - DJ - Tj) , (4.2)

and that the peak of the function ziJ(TJ) determines an
unbiased estimate for Di - DJ‘

o xi(t), xJ(t) and xk(t), ;En(t) be two pairs of
sensor outputs. These pairs are correlated to determine zy JCPJ)
and zkégg. The time records xi(t) and xj(t) are assumed to
be the outputs from two distinct sensors, The same applies
to xk(t) and xn(t). However, it 1s not assumed that all
four inputs are distinet. With the integers i, J, k¥, and n
fixed, it is convenient, for this section, to relabel
xi(t) as xl(t), xj(t) as xz(t), xk(t) as x3(t), and xn(t)

as xu(t). Thus, the xl(t) of this section may or may not

be the xl(t) of Chapter II. And the x;(t) of this section

may be, in fact, the same as x3(t) or xu(t).
The correlators have as outputs 212(T2) and 234(TH)'
Define y12(T2) and y3u(Tu) by:
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759
= g
4

:

»

gy
= [

sy
”ﬂ,.r‘:‘, g

(T

Y12(Tp) = 295(Ty) = < 29,(T,) >

N '& "
A

}%M g

[N

s

y3u(T”) = Z3u(Tq) - < Z3I4(Tl{) > (4.3)

Let T2 and 'I‘u be those values of T2 and Tu, respectively,

at which the correlogram peaks are located. Let €5 and ey

be defined by: =

Tt
B =
; °gY
.
*i'
i
Esi
33
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€ 2 1

i nhing's

(4.4)

AT e s

eu'*'Tu"'

1
o
w
t
=)
=

and let €5 and ey be, respectively, the values of €, and ey

A e A
b I R

when T, =T, and T, = T,. Then e. and e, are the
2 y h 2 y

2

measurement errors. The correlator outputs are with i
‘
probability 1 everywhere differentiable functions of T2 R

and Tu. T2 and Tu are determined by:

_—__d = =A
T, 2,,(T,) =0 at T, = T,
4 y = = i
] 3Ty 29y(Ty) = 0 at T, =T, (4
?f Letting the derivatives be denoted by primes, and using

the definitions, Equations (4.5) become:

o
i

Rgley) + y{,(Ty)

0 = R(ey) + yhy(Ty) (4.6)
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The errors are assumed small. Assuming that Rs(e)

is differentiable at e = 0, it was the series expansion

1 on 2 | Am
Rs(e) = RS(O) t 35 RS(O)e + HOT . (4.7)

Using Equation 4.7 and neglecting the HOT, Equations 4.6

yileld:
ey = = (RO y (T
ey = - (RLONTY yau(Ty) (4.8)
whence
< eyey > = (RL(01)72 < y3,(Ty)yg,(Ty) > (4.9)

Next, the expectation on the right side of Equation 4.9
is evaluated. The evaluation is accomplished by using
Fourier coefficients and Fourier series. The ccefficlents
are as defined and used in Chapter II, and the summations
that follow are understood to range over the (positive and

negative) integers.

x (8) = & § X, (k) exp{gko b} . (4.10)
k

(¢t - T.) = % ) X;(k) exp{-jku  (t-T)} . (4.11)

k

) 2

32
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[ x (B)x,(6-T,) @b = < x3 (£)x,(-T,) >

g i
ARG kS

Zz (§§ ert exp{ju t(1-K) )X, (1)X3(k) explikyTy)

< xl(t)xe(t-Tz) >

1 #
o2 I X ()X, (k) exp{iku T,}

< xl(t)xz(t-TZ) >, (b.12)

[ at exp{Jmot(i-k)} =T 84y (4.13)
iy
*
o2 ? kaoxl(k)x2(k) exp{kaoTz}
X
- '&%‘ < x ()%, (6-T,) > . (4.14)
; >

From Equation 4.14, < yiz(Tg) > = 0, since both terms on

the right side of Equation 4.14 are, after the expectation

!
is taken, equal to % Rs(D1 - D, - T2).

An expression for yéu(Tu) can be written by replacing

and 2 where they occur in Equation U.1l4 by 3 and U,

Thus

respectively.
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< yy,(Ty3y(Ty) > =
137 [(Ju k)(Jon) < X (K)Xa(k)Xa(n)Xs(n) >
ufn o o 2 3 y

+ exp{juw (KT, + nTu)}]
- R'(D ~D -T2)R'(D 37Dy=Ty)-

%u Il Qok)(Jun)l < X3 (K)X3(n) > < X (k)xu(n) >
kn

+ < X (0% (n) > < X (mXy(k) > 7.

(4.15)

The last part of Equation 4.15 follows from the argument
made immediately after Equation 4.14.
Tﬁe Fourier coefficients at positive and negative

frequencies are related in such a way that
*
< Xl(k)x3(n) > =< Xj(k)x3("n) >
*

0 if n # -k. (4,16)

Thus,

* *
= %ﬂ ) (nwo)z[ < X1X3 > < XXy > exp{Jnmo(TZ—Tu)}
n

- < XXy > < XXy > exp{inu (T,+1,}] (4.17)

i
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Now replace 1, 2, 3, and 4 everywhere in Equation 4.17

by h, i, k, and 1, respectivelv. Note that

#*
< XX, >

n¥1 T(N,$

pg ¥ S exp{Jw(Di-Dh)})

(S + Nhshi) exp{Jw(Di-Dh)} . (4.18)

Hence Equation 4.17 becomes

T T T R B e T vk A e v by e e n L T
mM%mmmﬂmﬁ%&@@%ﬁ&%@m&mmﬁmﬁﬂmu“‘*%&&ﬁﬁﬁﬁi

yi

' ' 1 2
< Ypa Ty (1)) > = = ] (nw)
n

L |

‘[(S + xnshk)(s + N1511) exp{anoA}

-(s + Nhahl)(s + Nisik) exp{anoB}],

(4.19)

where
A= Ti - Tl - Dh + Dk + D1 - D1 s (4.20)
and
B=Ty +1 =D +Dy =D +D, . (4,21)
Next let Ti = 61 and Tl = @1 . Then A and B become
A = ei - el (1‘.22)
- and
bl B=ey +e , (4.23)
A respectively. Neglecting the HOT in the errors, Equation
i} 4.9 can be written as
o A -
< eje;>=(RL(0) P ate [ dw w? (4.24)

B
Y o ( -
{(s + Nhahk)\s + Niail) (s + Nh5h9(3+”1%k»'
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The elements of the' covarliance matrix of the corre.iator

Ao

delay estimates are determined by Equation 4.24.
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B. FILTERS FOR CORRELATOR SYSTEMS (M=2 AND 3)

In this section the use of filters to optimize the
corelator delay measurements is studied. For the M = 2
and M = 3 cases the optimal filters are displayed. For
M > 3, the optimal filters are conjectured.

Consider first the M = 2 case,. Thefe is only one
- D

delay to measure. Let it be D =D 1 The estimate

2
for D is denoted D. From Equation 4.24 and 2.46,

on Ja WPIN;N, + S(N, + N,)7 du

var(D) = T
( f %S dw)?
> 21 / w2 S/N12 do| ™t
27 S S . (4.25)
B l+f\f_—+ﬁ—
1 2

If filters Fl(m) and Fz(w) are to be used on the outputs
of the sensors 1 and 2, respectively, the filters must
have identical phase responses, If they do not, then the
filtered signals will have different delays at different
frequencles, and this could bias the delay estimate.
Since the phase responses are ldentical, the filters may be
F, =TF, .
The filtered signal spectrum is S(w)lF(w)lg. Similarly,

assumed to be identical filters. Let F =

the filtered noise spectra are Nl(w)lF(w)l2 and Nz(w)|F(w)|2.

Thus Equation 4.25 is readily modified to account for the
filtering. Equation 4.25 becomes

37
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fg WPIFIINGN, + SN + )T dw

- 2m
var(D) = &~
T ( [ w?|F|%s dw )?
B
2
T, |
=1 B 1+ﬁ-s—+ﬁ‘-s- (4.26) i
1 N ‘

If the filter |F|2 is defined by

e S e i b
AU E R s

ey

3 S/N.N
2 172

e 1+ 35 + >

I\I:L N2 2
g Equation U426 becomes an equality. The measurement %
’ variance is now the Cramér-Rao bound. Thus, although %
i efficient estimates were shown in Chapter II not to exist %
z for this case, none the less, a correlator system with v
filters determined by Equation 4.27 provides an asymptotically

3 efficient delay estimate.

For the M > 2 case, there are M(M-1)/2 sensor pairs

to be correlated. Let e be the error in the delay

1J

estimate based on the ceorrelation,

_ 1 F F
234(Ty) = & fT Xy (£)xy7 (£=Ty) at , (4.28)

where xiF(’c) and xJF(t) are the filtered xi(t) and xJ(t)

A R g S T e U o

T

processes, respectively. From Equation 4.24

1

2 2 2 .
<e, e .>=2" [g "IFy41°1F,176(135K1) du
iJ kl T IB wz‘FijIQS dw IB mglelI2S dw
(4.29)
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where

G(ij;k1) = [(S+N151k)(S+N353'1) - (S+N,§ )(S+NJGJk)]

i"11
(4.30)
In Equation U4.29, IFiJ(m)I is the filter used on the x;
and x'j waveforms, which are the inputs tp the correlator
that computes ziJ(TJ)'
Let the M(M-1)/2 errors be displayed as a column

vector e, and let Pe be the covariance matrix for the errors:

P, =< cel > . (4.31)

The main diagonal terms of Pe are the individual
variances of the M(M-1)/2 delay measurements from the
M(M-1)/2 correlators. From the discussion pertaining to
Equation 4.26, the filters

N St 5 (4.32)
1 1+ 3+ o ’
100

will minimize the main diagonal terms of Pe. It is
tempting to conclude that these filters will then be

the optimal filters. But this is not true in view of what
follows.

For the problem being considered, a vector (of delays)
is to be optimally estimated. The observations (from the
correlators) are a linear combination of the delays
to be estimated, corrupted by additive zero mean noise.
Therefore, the vector to be estimated, D, is linearly

related to the observations, T, by
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T =AD + 2 . (4.33)

The covariance matrix for e, P is given in Equation 4.31.

e’
It 1s known that the optimal linear estimate for the vector

D is the Gauss-Markov estimate [9],

D = [aTp a3 taTe ] e | (4.34)
The Gauss-Markov- estimate is the minimum variance

linear unbiased estimate for estimating a vector, given

linear observations corrupted by additive zero-mean noise.

The covariance matrix for the Gauss-Markov estimate is

< (0-D)(>-D)T> = [aTPta77t . (4.35)

Without loss of generality, it is convenient to fix
the order of the elements, TiJ’ of T by «:fining

T

T° = (Typs Tygs +oes Ty qyy) - (4.36)

In addition define the following scalars, vectors, and

matrices:
e’ = (eg55 €135 ++s (1) (4.37)
P o= atag ([F,l2, [F 512 ey (g y® (39)
X = [ w’SF dw
B
= dlag (Kpps Kygs ooes Ky qy) (4.39)
¢ = [G(13;k1)] . (4.40)
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The matrix G has for its elements the terms G(ij;kl),

positioned according to the scheme determined by

the order of the subscripts in Equation 4.36. Then from
Equations 4.29, 4.31, and 4.35 through 4.40,
- P=2T gl [ w2 FoF aw)kL (4.41)
b e T B
; and
- 5.03(B-p)T >=1 . _ T
= < (D-D)(D-D)" > = 5= A Tk [ w’FGF dw) TKA . (4.42)
Consider the M = 3 case. The matrix G is
N1N2 + S(N1+N2) SNl -SN2
= +
G SNl N1N3 S(N 3) SN3
-SN, SN NN+ SOLFi) |
(4.43)
Let the filters be specified by
IF |2 ) S/NiN
ij s (4.u4)
Y
Ny
k=1
Then
2
S 1
FGF = diag( > )
143 N§' NlN? NN ’\12N3
k K
P s3/n.N 1 -1 1
B | _ l 2 3
3. s -l l "l
3 i (1 + z “")
3 . Ny 1 -1 1 . (4.45)
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5
=
=
e
5
3
=3
{ .
5
B
£ .
=

Since
1 a4 1 1] [1 -1 1]
o -1 1 -1 =
‘: Y (uol'6)
1 -1 1 1
1
= | define wr = (1 -1 1), so that
e | _em
S P = K~ [K + bww ]K R (4.47)
- e T
; where
3
S /N N,N
= B (1 + 2
'%, By the matrix inverse lemma [7]
T
-1 T WW
P~ = == [K = 5¥=——7—— 1] (4.49)
e 2 % + wTKw
= E'IL %[dK - WWT] IS (“-50)
with
d=¢+ wke . (451)
It is now necessary to specify the vector D and the
matrix A. Let D be defined as
- - [ 34
D = (D,, D, D,) (4.52)
so that

(4.53)
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Then
< (0-DXD-D)T 5% = 2T ta
aK, ,-1 1 -1
_p o :
= o= A 1 aK, 5-1 1 A
-1 1 dK,y3-1]
AR, ,+K; 3) Az
R
2nd . -
dK, 5 d(X, o 53 (g 5y

For the specific choice of filters,

2
S2/H,N
Ky = J 0P —2d qw . (4.55)
B 1+2N—
. e

The FIM matrix for M = 3 with the same choice of
delay vecSor to be estimated was given in Equations 2.47
and 2.48. Those Equations are the same as Equations 4.54
and 4.55. That is, the Gauss-Markov estimate obtained
from the three correlator processing scheme, with the

inputs to the correlators filtered according to

Equation 4,44, achieves the CRMB.

Thus, for M = 2 and M = 3, the correlator processing

scheme can provide the best pessible estimate, if the

I proper filters are used.
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,f It is conjectured that the optimun filters to use P

¥

with the correlator delay measurement scheme are defined :a
i K=

for all M by i

|7y 1% = —21 (4.56)

o
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CHAPTER V
SUBOPTIMAL FILTERING
In the preceding chapters optimum filtering schemes
for correlator delay measurement systems were discussed.
An interesting question 1s how sensltive are the measure-

ment errors to changes in the fillter design from the opti-

mum., These design changes may be deliberate or inadvertant.

An instance cf the former 1s when the prior knowledge of
the signal spectrum is limited. In such a case the
desligner may choose to design for an assumed worst case.
Or perhaps he may choose to simply whiten the input noise
Or perhaps the correlator system is also to be used for
detection. The designer 1iay choose to use the Eckart
filters, since they are the optimal filters for correlator
detectors [10].

In this chapter, the degradation in the correlator
estimator performance is studied for M = 2. It is assumed
that both nolses have the same spectrum. The signal and
noise spectra, S(w) and N(w), respectively, are both taken
to be bandlimited with constant slopes of 0, -3, or -6 '
dB/octave.

2A (m/wl)-a sy l<w/w 21+W

S(w) = 9
lo , elsewhere, (5.1)

|
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3 2B (w/wl)"b s l2uw/w <1+W

4 % N(w) =
‘€§ ; 0 , elsewhere . (5.2)
g% i In Equations 5.1 and 5.2 S(w) and N(w) are the one
;; sided spectra. W 1s a bandwidth variable. For W= 1, 3,
,g 7, and 15, the bandwidths of the spectra are 1, 2, 3, and
?i i octaves, respectively. The spectrum slope is determined
é ; by a and b, each of which will be equal to 0, 1, or 2.
ff‘ E The suboptimal filters will be defined by:
k|
(1) |Fyn]? = 1 (5.3)
b NF ’
g 2 | 3/n2
2
3 (3) |Fyg!® = 1/N (5.5)
A 2
5 2 _ .8
() |Fon|? = SO (5.6)
4 oPT S
2 1+ 2=
E: N
.
- ft FECK is the Eckart filter. FWH is the filter that whitens

the input noise. FOPT is the optimal filter for delay
estimation. Notice that for large SNRs (Signal to Noise
Ratios) the optimal filter essentially whitens the noilse.
(The system performance is unaffacted by filter gain con- .
stants.) For small SNRs the optimal filter is essentially
an Eckert filter.

In what follows the system dependence on the input

) i— SNR is studied by plotting curves for five SNRs determined

i by

I
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£
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e
e
7
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& =2*,k=0,1,2 3,4 (5.7)

T ordinates of the curves will be the measurement stand-
ard deviations for the optimally filtered case, or the
d2gradation in 4B when suboptimul filters are used. The
variable W is used for ths abscissa.

Whelchel [11] used the spectra of (5.1) and (5.2) in
an analysis of the effects of suboptimal filtering on
correlator performance. Whelehel was primarily interested
in signal detection, and used the output SNR of the correlastor
as a measure of detection capability. The study of sub-
optimally filltered correlator estimators in this chapter
in part parallels Whelchel's study of suboptimally filtered
=4 correlator detectors.
2 2 2

Denote th= measurement variances by DNF’ DECK’ DWH’

2 - - @ ,
and DOPT’ to correspond to the fillters FNF’ FECK’ Fune and

Fopp-

Let d = 2 - b. When the spsctra of (5.1 and (5.2)

by
iy

di ¥

»
i

are used with the filters defined by (5.3), (5.4), (5.5),

and (5.6), and the estimaticn variance is calculated using

LY

ki

{4,2€), the result in all cases ex-ept one depends on d,

A

and not specifically on a and b. Only when the filters

X

e T X0
1L
)RR

&
bl
TN

FWH are used does the corresponuing varviance depend

\- 4

.

)

A
o TR
=

o

specifically on both a and b.

Graphs showing how the standard deviation of the

PO R A

optimally filtered deliay estimate depends on the parameters
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1
oy

rat
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k and W are glven 1in Figures 1, 2, and 3 for d = 0, 1, and

f? 2, respectively. The curves are normalized by the factor ) ',%
';é /(wi T), so that /(wi 7). Dypp(W) 1s dimensionless. If jg
Ei for example, wy and T are crosen so that.&wi T = 103sec"l, ;:%
i@ then the abscissas of these three figures read directly in Eéf
4?% milliseconds. For d = 0 and d = 1 D pn(W) can be made égé
;;{ arbitrarily small by letting W be sufficiently large. This %:g
f;é is not true for d = 2. The curves of Figure 1 also apply ;E;
‘%é to Dyn and Dpog» Since for d = 0, S/N is simply a constant, if
j?s They also apply to DNF when thes nolse and signal spectra ?é

are both flat (a = b = C). H

i The asymptotic nature of the curves for small values

of W may not truly represent the behavlor of the system

ey
el R

measurement error. This is because the derivation leading

e w S e U 1 e v A oy
S AR S

3

3; to (4.25) assumes a sufficiently large time-bandwidth =

gs product t¢ yleld measurements with amall errors. ?g

ii:i Figures 4 through 7 show the processor performance g:
%%. in 4B, relative to the optimal) when suboptimum filters §%

;?%. DWH and DECK are usad. In these curves Coth the optimum é%
%j%; and the suboptimum systems are presumed t¢ proc¢ess the same ;%
;ig band of frequencies, dstermined by the argument W, For é;

%i example, in Figure 4 the system degradation 1s given by é%
°: dB loss = 10 log,, (DgaK (W)"DSPT('“"))’ {5.8) :%E

;§§ for d = a - b = 1. As indicated by Figures 5 and 6, for the ég
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agsumed spectra, the Eckart filtered system sustalns }i%
a processing loss relative to the optimum of at mosi about :;%
0.5 dB. The processing loss decreases as the input SNR ,5%
decreases, as expected. Eé
Figures 8 and 9 depict the system pe?formance if only ?ég
fla¢ band-pass filters, Fy,, avre used. For these figures ;5%
d=2,witha=2and b =0 in Figure 8, and a = 3 and ’ig
b =1 in Figure 9. In these figures the cystem degradation ‘%;
is measured relative to the infinite bandwidth (W = =) ’fi
optimally filterad system. Thus the k-

dB loss = 10 log,, (D“F(W)/DOPT(w)) R (5.9)

in Figures 8 and §. Note thatv PFigure 8 also gives the dB
loss of DgH(W} relative to DSPT(w) for d = 2, This is

because b = 0 in PFigure 8, and the noise is flat. In both

figures the processing loss at first decreases to a minimum, ié

and then as too much high frequency noise 1s prccessed the
variance then increases. Since tne signal spectrum is fall-
ing off at 6 dB/octave faster than the noise spectrum, the
processor will behave ever more poorly as the processor

bandwidth is made larger and larger. It 1s interesting

that & W of 3 or 4 corresponding to about a two octave

processing band ylelds a loss of only 3 or 4 dB. ,%
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AFPENDIX A
THE CRAMER-RAO MATRIX BOUND

The Cramér-Rac matrix bound (CRMB) is the generaliza-
tion to the vector estimation case of the scalar Cromér-Rao

bound. The CRMB .ts useful for the same reason that the

scalar bound is useful--it 1s a bound for all estimators, P

ot i,

T

and can be calculated from a knowledge of only the

A

probability density function without specifyinyg an

mLARs

estimator. It is easily derived, as follows: : e
If u, v, and w are vectors, and H is a matrix, and §f

B

if only v and w are random, consider the quadratic form %‘
0 < u¥ (v-Huw) {v-Hw)Tu g;

=3

= uT (v +Hww  He-2Rwv! Ju. (A.1) =

Assume < wwl >~% exists, and let

H=< vl > < wwb >'% (A.2)

Take the expectation of both sides of (A.l) and use (A.2).

The result is the quadratic form

0 < ut ( < vl > - < vul < wwt >7T < Wyt >)u.

(A.3) .
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(A.3) shows that the matrix in the quadratic form
of (A.3) is nonnegative definite, since u is an arbitrary

vector, Thus

< vl > > < vl > <wit S <l > (A.4)

If £ is a scalar function of the vector y, let the

gradient of f with respect to y be written as a row vector

_(3C_  af af |
grad £ = ( y: 3y, vevs 35) (A.5)

If g is a column vector, let grad g be that matrix

in which the i-th row is the gradient (with respect to y)

of the i-th component of g.

-grad gi]

grad g = .

.grad g | . (A.6)

Consider a nourandom vector estimacion problem. The
parameter vector to be estimated, y, and the vector of
observations, x, are the arguments of the probability
density function p(x|y). Let §(= §(x)) be an estimate for
y hased on the observation vector x. With the gradients

taken with respect to the components of y,

‘ﬁ % i
on
:

R A A

s,
%
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]

grad < § > = grad [ y p(x|y) dx

{ ¥ grad p(x|y) dx

| y(graa in p(x|y) pix|y) dx

<y grad 1n p(x|y) >, (A.T)

Also,

<y grad 1n p(x|y) > = [ y grad p(x|y) dx

y grad [ p(x]y) dx

=0 . (4.8)

-

From (A.7) and (A.8),

—
fo ]
\O
~

grad < § > = < (y-y) grad 1n pixly) >

If the estimate y has the bias b, that is, <y > =y + b,
then
grad <y > =1 + grad b . (A.10)

~

In (A.4) let v = (y-y) and Wi = grad 1n p(x|y). Then

< va > =1+ grad b, in view of (4.10), and (A.4) becomes

< (§-y)(§-y)f > > (L + grad b)
I'4 ‘,T - "‘1
. < (grad in p{x|y)y (grad zn p(x|y)) >

+ (I + grad L (A.11)
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This 1s known as the Cramér-Rao Matrix Bound (CRMB).

The matrix

{(FIM) = < (grad 1ln p(xly))T(grad 1n p(xly)) >
(A.12)

is called the Fisher Information Matrix (FIM).

A relevant question is whether it is possi "= to
achieve eyuality in (A.11). This is possible only if
there is equallty in (A.1), which occurs only if v = Hw.,
Note that H as defined in (A.2) is not random, that is, it
is not a matrix function of the data. H is at most a
matrix function of y. Assume H™® exists. Then equality in

(A.11) is possible if and only if
grad 1n p(x|y) = H1(y) (y(x)-y) . (A.12)

That is, grad ln p(xly) can be factored into a matrix
product, where H'l(y) is a matrix that does not depend on
the data.

The development abcve 13 patternea after Balakrishnan
[121.

An alternate form of the FIM 1s often more convenieut
to use than the right side of (A.13). It is derived as

follows:
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(A.14)

-

; f pxly) ax

TR
reird

grad [ p(x|y) dx = [ grad pix|y) ax

RERNGR

SR

= [ {grad In p(x|y)) p(x|y) dx

AR

=0 . (A.15)

)

grad [ (grad 1n p(x|y))T p(x|y) dx

J grad[(grad 1n p(x]y))T p(x]y)] dax

= [ [grad(grad 1n p(x|y))¥] pix|y) ax
/

(grad 1n p(x|y))T(grad in p(x|y)) p(x|y) dx

RN I i dn S AT PR S

1]
e

. (A,16)

That grad p(x|y) = (grad 1n p(x|y)) p(xly) was used in

| (A.16). From the last equality in {A.16) it follows that

»

(FId) = -f {grad(grad 1n p(xly))T] p(x|y) ax

- < grad(grad 1n p(x[y))T >, (A.17)

SERRINE A T A A TR

which is the dlternate form of the FIM.
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APPENDIX B
COMPLEX GAUSSIAN RANDOM VARIABLES

Let x and y be real Gausslan random n-vectors, with

means X and y, respectively. The joint probability density

function for x und y is

E T
5 = (o)~ I -1/2 1 -1|x-%
: p(x,y) (2m1)"" (det P) exp { - y y P Y-y },
(B.1)
where
P =< [x-iJ [X-QJT > = Xxx X"y : (B.2)

Let tne complex random vector z = x + jy, where the
real and imaginary parts are distridbuted according to (B.1l).
Under certain practical and important conditions the joint

density function can be written as a function of the compliex

random vector z, rather than as a function of both x and y.

This is desirable in that expectations of functions of z,

and also investigations of the properties of tha likelihood

function, become much more tractable.

It 1s convenient to state certain matrix results.
Consider matrices of the form R-=[X -3] and C = V + JW,
where V and W are real square n x n matrices. Then the

following statements are true:
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1. Matrices of the form R and C are isomorphic under matrix
addition and matrix multipllcation.

*
2. R is symmetriz <> C is Hermitian (C = CT )

&V = VT oand W o= ~Wl.
1.4 JjB exists e R = g -ﬁ exists.

- - *
4. R is orthogonal (R® = R™Y) «> C 1s unitary (C°1 = C'T)

3. C

5. R is symmetric positive definite <& C is Hermitian

positive definite.

6. If V=7Vv" and W = -WT, if x and y are n vectors, and if

Zz = X + Jy, then

" y5) U "iﬂ BJ = nlos” (B.3)
and
)=l
(xF y7) [; -Q} [;} = zT¢™15", (B.4)

7. IV =V' and W = W', then

det R = (det C)° . (B.5)

Statements 1 through 6 are easy t» verify. Only

statement 7 requires some justification. In Mathews and

Walker [13, p. 1551 it is shown that a ccmpliex matrix C.
can be diagonalized by a unitary matrix T if and only if

- *
C and 0¥ Ty Ty

s ¥
commute (C “C = CC

*
then C and C T obviously commute. Let T be the unitary

. If C is Hermitian (C = C

transformation that dlagonallzes the RHermitiun matrix C.

Then T"1C7 = D, where D is a djagonal matrix. Since det T =

65

o s T R S T s n AT Sttt IS

i
1
Em

s L
T SRR A L



TR T o e b TN NPTty ¥ e ﬁ'?”“:;%“"ﬂ%éi

NOLTR 72-120

(det T'l)-l, det C = det D. Let T, C, and D be the matrices
isomorphic to T, C, and D, respectively. Then D = (T)'ICT,
so that det D = det C. But C = R, and D = [ D 0:], so that

0D k-
det D = (det D)°. Thus det R = (det C)2, Y

SRR s e e

L]

D

Gt DA
M Bl

Thus, 1 z = x + Jy, where x and y are Gaussian n-

|4
vectors distributed by (B.1l), and if E:

e _ 1|V =W
2 P=3 [w y] ; (B.5)

where V = yT and W = -WT, then using (B.4) and (B.5) the

e

densicy function (B.1l) can be written as

p(z) = 10 (det €)™Y expl-(z-5)T'c™Y (2-2)}  (*.6)

where C=V + jW and Z = X + jy. The complex vector

argument of (B.6) is called a complex Gaussian random

vector.

éi Complex Gausslan random vectors and their properties
3 have been extensively studied by Goodman [4]. In [4]
Gocdman develops, among cther things, results pertaining

to characteristic functions, maximum likelihood estimation

of C, end distribution functions for the maximum likelihood

8
&

estimates.

Whether or not the complex random variables are
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distributed by (B.6), the relation
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< zlzzz3zu > = < le2 > < Z3Z'-I > + <zlz3 > < ZZZU >
+ < zlzll > < 2223 >
-2<zy > <z, >< 23 > < 2y > (B.T)

holds if the real and imaginary parts of the complex

random variables in (B.7) are Gaussian random variables.
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