FOURIER-MOTZKIN ELIMINATION AND ITS DUAL

George B. Dantzig
Stanford University

Prepared for:

Office of Naval Research
National Science Foundation
Atomic Energy Commission

September 1972

DISTRIBUTED BY:

NTIS
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151
FOURIER-MOTZKIN ELIMINATION AND ITS DUAL

BY

GEORGE B. DANTZIG

TECHNICAL REPORT NO. 72-18
SEPTEMBER 1972

OPERATIONS RESEARCH HOUSE

DISTRIBUTION STATEMENT A
Approved for public release:
Distribution Unlimited

Stanford University
CALIFORNIA
Research on linear inequalities systems prior to 1947 consisted of isolated efforts by a few investigators. A case in point is the elimination technique for reducing the number of variables in the system. A description of the method can be found in Motzkin's 1936 Ph.D. thesis. It differs from its analog for systems of equations in that (unfortunately) each step in the elimination can greatly increase the number of inequalities in the remaining variables. For years the method was referred to as the Motzkin Elimination Method. However, because of the odd grave-digging custom of looking for artifacts in long forgotten papers, it is now known as the Fourier-Motzkin Elimination Method. In this paper we review the elimination scheme and show that a dual form of the method is a technique for reducing the number of equations in a system of equations in non-negative variables. Some comments regarding its applicability to integer programs also made.
LINEAR INEQUALITY SYSTEMS
ELIMINATION OF VARIABLES
ELIMINATION OF EQUATIONS
INTEGER PROGRAMS

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year or month, day, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedure, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If applicable, enter the applicable number of the contract or grant under which the report was written.

8b. & 8c. PROJECT NUMBER: Enter the appropriate military department classification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (other than the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

1. "Qualified requesters may obtain copies of this report from DDC."

2. "Foreign announcement and dissemination of this report by DDC is not authorized."

3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...

4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through...

5. "All distribution of this report is controlled. Qualified DDC users shall request through...

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (U), (C), or (M). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as Index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of lines, rules, and weights is optional.

Security Classification

Unclassified
FOURIER-MOTZKIN ELIMINATION AND ITS DUAL

by

George B. Dantzig

TECHNICAL REPORT 72-18

September 1972

DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California

Research and reproduction of this report was partially supported by the Office of Naval Research under contract N-00014-67-A-0112-0011; U.S. Atomic Energy Commission Contract AT(04-3)-326 PA #18; and National Science Foundation, Grant GP 31393.

Reproduction in whole or in part is permitted for any purposes of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.
Research on linear inequalities systems prior to 1947 consisted of isolated efforts by a few investigators. A case in point is the elimination technique for reducing the number of variables in the system. A description of the method can be found in Motzkin's 1936 Ph.D. thesis. It differs from its analog for systems of equations in that (unfortunately) each step in the elimination can greatly increase the number of inequalities in the remaining variables. For years the method was referred to as the Motzkin Elimination Method. However, because of the odd grave-digging custom of looking for artifacts in long forgotten papers, it is now known as the Fourier-Motzkin Elimination Method.

Given a system of linear inequalities: Find \(x = (x_1, \ldots, x_n) \) such that

\[
\sum_{j=1}^{n} a_{ij} x_j \geq b_i, \quad i = (1, \ldots, m).
\]

One may partition it into three sets of inequalities according to whether the coefficients of \(x_1 \) are positive, negative or zero. This permits rewriting (1) in the form:

\[
\begin{align*}
\begin{cases}
 x_1 &\geq D_1(\vec{x}) \\
 \vdots &\vdots \\
 x_1 &\geq D_p(\vec{x})
\end{cases}
\quad
\begin{cases}
 x_1 &\leq E_1(\vec{x}) \\
 \vdots &\vdots \\
 x_1 &\leq E_q(\vec{x})
\end{cases}
\quad
\begin{cases}
 0 &\leq F_1(\vec{x}) \\
 \vdots &\vdots \\
 0 &\leq F_r(\vec{x})
\end{cases}
\end{align*}
\]

where \(D_i(\vec{x}), E_j(\vec{x}), F_k(\vec{x}) \) are linear functions of \(\vec{x} = (x_2, \ldots, x_n) \).

It may be solved by first solving the reduced system: Find \(\vec{x} \) satisfying

\[
D_i(\vec{x}) \leq E_j(\vec{x}) \quad i = (1, \ldots, p); \quad j = (1, \ldots, q), \quad k = (1, \ldots, r)
\]

(3) \[
0 \leq F_k(\vec{x})
\]

and then finding an \(x_1 \), satisfying

\[
\max_{i} D_i(\vec{x}) \leq x_1 \leq \min_{j} E_j(\vec{x})
\]

(4) \[
\]

where \(x_1 \) always exists providing there exists an \(\vec{x} \) satisfying (3).

Proof: Given any \((x_1, \vec{x}) \) satisfying (2), it is clear that (3) and (4) must hold. Conversely, given any \(\vec{x} \) satisfying (3), then \(\max_{i} D_i(\vec{x}) \leq \min_{j} E_j(\vec{x}) \) and we can always find an \(x_1 \) satisfying (4); hence \((x_1, \vec{x}) \) satisfies (1).

System (3) is said to be the result of "eliminating" \(x_1 \) from system (2). If \(p+q \leq 4 \), the reduced system contains one less variable and no more inequalities. If \(p > 2, q > 2, r > 0 \), however, the process of elimination will greatly increase the number of inequalities. This is the chief reason given why it is not used as a practical solution.
method. It is worth noting, however, that (3) has special structure and that this might be used to advantage to develop it into a practical computational procedure.

Since (3) is a linear inequality system also, one could next proceed to eliminate x_2 etc. until one has eliminated all but a single variable, say x_n. The original system is solvable if and only if the final system $x_n < a_i, x_n \geq \beta_j, 0 \leq \gamma_k$ for $i = 1, \ldots, p'$, $j = 1, \ldots, q', k = 1, \ldots, r'$ is consistent, i.e., iff $a_i - \beta_j > 0$ and $\gamma_k > 0$ for all i, j, k. Another way to state this is

Feasibility Theorem: A necessary and sufficient condition that system (1) is solvable, is there exist no set of weights $(y_1 \geq 0, y_2 \geq 0, \ldots, y_m \geq 0)$ such that

\[(5) \quad \sum_{i=1}^{m} y_i b_i > 0 \quad \text{and} \quad \sum_{i=1}^{m} y_i a_{ij} = 0 \quad \text{for} \quad j = (1, \ldots, n).\]

Proof (Abadie): Assume a solution x to (1) exists and there exists weights $y_i \geq 0$ satisfying (5), then (1) implies

\[(6) \quad \sum_{j=1}^{n} \left(\sum_{i=1}^{m} y_i a_{ij} \right) x_j > \sum_{i=1}^{m} y_i b_i , \quad y_i > 0 ,\]

or $Ox > \sum y_i b_i > 0$, a contradiction. Thus the condition is necessary.

Assume no solution x to (1) exists, then note each system generated by the elimination process, for example (3) from (2), is formed
by non-negative linear combinations of the inequalities of the previous system which in turn were formed by non-negative linear combinations of the system one before that, etc., back to the original system (1). Thus the condition for non-solvability, \(a_i - \beta_j < 0 \) or \(\gamma_k < 0 \) for some \(i, j \) or \(k \) (referred to earlier) could be derived directly by some non-negative linear combination of the inequalities of the original system.

This remarkably simple proof of the feasibility theorem based on Fourier-Motzkin elimination is due to Jean Abadie. From it one can derive easily (by trivial algebraic manipulations) the fundamental Duality Theorem of linear programming, Farkas Lemma, the various theorems of the alternatives, and the well known

Motzkin Transposition Theorem: Given the dual homogeneous linear program in partitioned form

\[
A_I x_I + A_{II} x_{II} = 0, \quad (x_I, x_{II}) \geq 0
\]

\[
\text{Dual:} \quad yA_I < 0, \quad yA_{II} < 0,
\]

then either there exists a solution to the dual such that \(yA_I < 0 \) (i.e., holds strictly in all components) or there exists a solution to the primal such that \(x_I \neq 0 \).
Proof: A solution to the dual such that \(y_A^I < 0 \) implies there exists a \(y \) such that

\[
yA^I_1 \leq -e, \quad e = (1, 1, \ldots, 1)
\]

\[
yA^I_II < 0
\]

If no such \(y \) exists satisfying (8), then by the feasibility theorem, there exists weights \(x^I > 0, x^II > 0 \) such that \(A^I x^I + A^II x^II = 0 \) and \(-e x^I < 0 \), i.e., \(x^I \neq 0 \).

The Dual of Fourier-Motzkin Elimination. Suppose we are given the homogeneous linear program

\[
\begin{align*}
x_i - D_i \bar{x} &\geq 0 & i = (1, \ldots, p) \\
-x_i + E_j \bar{x} &\geq 0 & j = (1, \ldots, q) \\
F_k \bar{x} &\geq 0 & k = (1, \ldots, r)
\end{align*}
\]

(9)

where \(\bar{x} = (x_2, \ldots, x_n) \) and \(D_i, E_j, F_k \) are \(1 \times n \). The elimination of \(x_1 \) from (9) yields

\[
(E_j - D_i) \bar{x} \geq 0 \quad \text{for all } i,j
\]

\[
F_k \bar{x} \geq 0 \quad \text{for all } k.
\]

On the other hand the homogeneous dual of (9) is: To find \(u^I_1 > 0, v_j > 0, w_k > 0 \) such that
(a) \[\sum_{i=1}^{p} u_i - \sum_{j=1}^{q} v_j = 0 \]

(11)

(b) \[- \sum_{i=1}^{p} u_i D_i + \sum_{j=1}^{q} v_j E_j + \sum_{k=1}^{r} w_k F_k = 0 \]

and the homogeneous dual of (10) is: To find \(\lambda_{ij} \geq 0, \ w_k \geq 0 \) such that:

(12) \[\sum_{i=1}^{p} \sum_{j=1}^{q} \lambda_{ij} (E_j - D_i) + \sum_{k=1}^{r} w_k F_k = 0 \]

Since (9) and its eliminated form (10) are in a sense equivalent systems, it seems natural to expect that their duals (11) and (12), are also equivalent in the same sense; i.e., from any solution to (11) we can derive a solution to (12) and conversely. Note that (11) has \(n \) equations corresponding to the \(n \) components of \(x \), whereas (12) has \(n-1 \) equations but would have (in general) far more variables. This suggests we have at hand a technique for reducing the number of equations in a linear program. Let us give a direct proof of this for the non-homogeneous system:

Find \(u_i \geq 0, v_j \geq 0, w_k \geq 0 \) satisfying:

(a) \[\sum_{i=1}^{p} u_i - \sum_{j=1}^{q} v_j = 0 \]

(13)

(b) \[- \sum_{i=1}^{p} u_i D_i + \sum_{j=1}^{q} v_j E_j + \sum_{k=1}^{r} w_k F_k = g \]

- 6 -
Let us introduce pq new variables $\lambda_{ij} \geq 0$ by setting

$$u_i = \sum_{j=1}^{q} \lambda_{ij}, \quad i = (1, \ldots, p)$$

(14)

$$v_j = \sum_{i=1}^{p} \lambda_{ij}, \quad j = (1, \ldots, q)$$

Note that if u_i and v_j satisfy (13)(a), it is always easy to find $u_{ij} \geq 0$ satisfying (14). Even if $u_i > 0$ and $v_j > 0$ are constrained to be integers, it is easy to find integer $\lambda_{ij} > 0$ satisfying (14).

Substituting (14) into (13) we note that (13)(a) is automatically satisfied and we obtain the reduced system:

Find $\lambda_{ij} > 0, w_k > 0$ such that

(15)

$$\sum_{i=1}^{p} \sum_{j=1}^{q} \lambda_{ij} (E_j - D_i) + \sum_{k=1}^{r} w_k F_k = g .$$

Conversely note that if we have a solution to (15), we can by regrouping the terms and substituting u_i and v_j for the resulting expression λ_{ij}, obtain a solution to (13). The solution will be in integers if λ_{ij} is integral.

To apply the technique to a system of equations in non-negative variables, it is necessary to have one equation with a zero constant term to play the role of (13)(a) or to create an equation with a zero constant term by replacing one of the equations by some appropriate linear combination of the equations of the system. This will yield an equation of the form
and we could obtain a system of form (13) by a change of units. This may conveniently be done by replacing (14) by

\[
\begin{align*}
\alpha_i u_i &= \sum_{j=1}^{q} \lambda_{ij} \ , \\
\beta_j v_j &= \sum_{i=1}^{p} \lambda_{ij}
\end{align*}
\]

where \(\alpha_i > 0, \beta_j > 0, \lambda_{ij} \geq 0, u_i \geq 0, v_j \geq 0 \).

Application of the Dual of the Motzkin Elimination to Integer Programs

As long as \(\alpha_i = 1, \beta_j = 1 \) for all \(i,j \) we have, as pointed out earlier, a reduced system of equations (16) in integer variables if \(u_i \) and \(v_j \) are integers. In general, however, for the case where \(\alpha_i > 0 \) and \(\beta_j > 0 \) are integers different from unity, we have to resort to more complicated substitutions. This will be illustrated below for a simple example. Suppose we have

\[
(u_1 + 2u_2) - (v_1 + v_2 + v_3) = 0
\]

Let us rewrite this

\[
(u_1 + u_2 + u_3) - (v_1 + v_2 + v_3) = 0
\]
where \(u_2 = u_3 \) and set as above

\[
u_1 = \sum_{j=1}^{3} \lambda_{ij}, \quad j = (1, 2, 3)\]

(20)

\[
v_j = \sum_{i=1}^{r} \lambda_{ij}, \quad i = (1, 2, 3)\]

The resulting integer reduced system is in \(\lambda_{ij} \geq 0 \) (as before) except we have the additional condition \(u_2 = u_3 \) which in terms of \(\lambda_{ij} \) becomes

\[
(\lambda_{21} + \lambda_{22} + \lambda_{23}) - (\lambda_{31} + \lambda_{32} + \lambda_{33}) = 0
\]

(21)

But (21) is in exactly the form we need for the integer reduction. We accordingly can introduce additional integer variables \(\mu_{ij} \geq 0 \), where

\[
\lambda_{21} = \sum_{j=1}^{3} \mu_{ij}, \quad i = 1, 2, 3
\]

(22)

\[
\lambda_{3j} = \sum_{i=1}^{3} \mu_{ij}, \quad j = 1, 2, 3
\]

Back substituting into (20), we have the desired integer substitution in terms of 12 auxiliary variables.
\[u_1 = \sum_{j=1}^{3} \lambda_{1j}, \quad u_2 = \sum_{i=1}^{3} \sum_{j=1}^{3} \mu_{ij} \]

\[v_1 = \lambda_{11} + \sum_{j=1}^{3} u_{1j} + \sum_{i=1}^{3} \mu_{i1} \]

(23)

\[v_2 = \lambda_{12} + \sum_{j=1}^{3} u_{2j} + \sum_{i=1}^{3} \mu_{i2} \]

\[v_3 = \lambda_{13} + \sum_{j=1}^{3} u_{3j} + \sum_{i=1}^{3} \mu_{i3} \]

By setting \[\mu_{12} + \mu_{21} = \bar{\mu}_{12}, \quad \mu_{13} + \mu_{31} = \bar{\mu}_{13}, \quad \mu_{23} + \mu_{32} = \bar{\mu}_{23} \] we could simplify the above substitution to one involving nine non-negative integer variables \(\lambda_{1i}, \mu_{ii}, \bar{\mu}_{ij} \) where \(i, j = 1, 2, 3 \) and \(i \neq j \).

The problem in general of finding substitutions to replace (17) so as to reduce a linear system in non-negative integer variables to fewer equations is under study and will be the subject of a subsequent paper.