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< T‘l:is;"mport is the result of an investigation of the possibilities of pre-
dicting the exhaust emissions from varicus types of prime-movers and small heat
ing plant furnaces. The prime’movers investigated include apark ignition en~
gines, compression ignition engines, and gas turbines.

Based on a survey of currently available literature and data, it was de-
termined that carbon monoxide and oxides of nitrogen correlate reasonably well
with basic engine variables for spark ignition and compression ignition engines
Hydrocarbon emissions in these engines do not correlate well, even though some
consistent effects of variables were found for spark ignition engines.. Smoke
emissions  from compression ignition engines did not correlate with engine varia
bies. “Recent correlations of varicus smoke measuring devices are presented .~
Gas turbine emission correlation attempts were unsucsessful due, to.some extent

to lack-of meaningful data to accompany emissions data.

*»Correlation relating emissions of sulfur dioxide and total oxides of ni-
trogen for small heating plant furnaces with the gross heat input for oil-,
coal-, and gas-fired units were established. In addition, equations used to
calculate theoretical carbon dioxide emissions for gaseous, liquid, and solid
fuels are presented.~ Attempts to correlate sulfur trioxide, hydrocarbons, par-
ticulates,—-and -carbori monoxide emissions with process variables were unsuccess-

ful. SEmission factors for these pollutants are presented, T—— ..
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FOREWORD

The investigation presented in this report was supported by the Electro-
mechanical Systems Laborstory, U.S. Army Construction Enginearing Reaearch
Laboratory (CERL), Champeign, Illinois. The work was carried out at the Depart-
ment of Mechanical and Industrial Engineering, University of Illinois, Urbana.
Mr. R. G, Donaghy was Chief of the Electromechanical Systems Laboratory, and
Colonel E. S. Townsley was Director of CERL during tke cotrse of this study.
This investigation was funded under Contract No.: DACA 23-70-C-0080, project

21 02020 08-7035 P2270.4-251 S11-205 07670101, “Engineering Criteria for

Design and Construction Technical Support." '
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PREDICTION OF EXHAUST EMISSIONS FROM PRIME MOVERS AND
SMALL HEATING PLANT FURNACES

PART I: INTRODUCTION

Background

Due to increased concern on the part of the general public as to the

quality of the environment, new air quality standards are being enacted.
; To meet these standards with existing and future installations and equip-

ment, it is necessary to know the nature and quantity of emissions from

various prime movers and small heating plant furnaces which are a part

nof these installations and equipment. The National Air Quality

Standards were established in .pril 1971, They can be located in

the Federal Register, Vol. 36, iio. 84 of 30 April 1971,

Ay
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¥

4

seatvkoe R

In the past tew years, @ substantial amount of information has been
generated and pubiisaed concerning the nature and quantity of emissions
from prime movers anc small heating plant furnaces. This informationm,
Lowever, has not been crllected and investigated as to the possibility
of ics use to make genr«. ...zed prediction of the emissions from these vari-
ous devices. This report will be used by designers as general background
material in preparing criteria and preliminarv desigms.

Purpose and Scope

] The purpose of this study was to develop a model to predict the con-
stituents of exhaust gases from diesel and gas engines, gas turbines, and
small~¥o-medium size heating plant furnaces under various load conditions
and using various fuels. A survey of currently available emission data
f?om various sources was undertaken and the results correlated where pos-
s;bl? to develop a series of models for specific pollutants. Pollutants
examined in the modeling studies were oxides of nitrogen, hydrocarbons,
carbon monoxide, carbon dioxide, sulfur dioxide, and particulates. The
models presented reflect (1) equipment design; (2) equipment operating
procedures; and (3) the age and condition of the equipment, The results
sutputted from this model will be input to other models which will ac-

tually predict the ambient pollution levels created by each of these
items of equipment.
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PART II: SPARK IGNITION ENGINES

Carbon Monoxide Emissions

Cn a mass basis, carbon monoxide (CO) is the largest portiocn of total
emissions from spark ignition engines. This is especially true for typical
constant speed variable load operation in which engines run under conditionms
which produce large amounts of CO. As illustrated in Fig. 1, CO emissions are
essentially determined by the fuel-air mixture of the engine. The curves

in this- figure were obtained from the spark ignition engine emissions
references given in Bibliography. If the mixture contains more fuel than

the stoichiometric amount, CO emissions will be significant, while, if the
mixture contains less than the chemically correct amount of fuel, the CO
emissions will be low and generally insignificant.

For fuel rich .combustion, the carbon monoxide emissions can be well
determined from the overall engine fuel-air ratio. This can be expressed
in terms of the equivalence ratio ¢

FAlactull
@ - had [qu 201]
FATltoi chiometric

| tual = fuel-air ratio on which the engine is oper-
pete ating--1b/1b»
Al = chemically correct or stoichiometric fuel-
stoichiomstric . s

air ratio--1b/1b
For fuel rich combustion, ¢ is greater than one and the percent CO can be cal-
culated for the chemical reacticn of an arbitrary fuel, CAHB, and air, as
given in Eq. 2.2, .

CHy + air +qCO, + rCO + sH O + tH, + u, [Eq. 2.2]

Balancing the chemical equation for various equivalence ratios leads to the
following expressions for the coefficients of the products in Eq. 2.2.

o= - (BHA) (-3 (0. 2.3
-3 (3322)6-3)
o= (BE22) (1 - §) [Eq. 2.6]
w=3 (a4 3) [Ee. 2.7]
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K = ratio of CO to H in preducts = t/r
Typical values of K run between 1.8 and 2.5 (Ref. 10).

The percent of CO in the exhaust of a spark ignition engine can then
be determined by the following relations.

. r
On a dry basis, percent CO = TEREEE {Eq. 2.8]

* . y r
On a wet basis, percent €0 = EEEEEEEE {Eq. 2.9]

Figure 2 shows a series of predicted curves of CO, CO,, and H,emis-
sions from a spark ignition engine as a function of equivalence ratios
for a typical fuel, C.H,» and varying ratios of CO to H,.

It should be re-emphasized that the above relations are only valid
for the case in which the fuel air equivalence ratio is greater than one.
As mentioned previously, for lean mixtures, the CO emissions are less than
one percent and are insignificant compared to emissions from rich mixtures.

Oxides of Nitrogen Emissions

As was the case with carbon monoxide, the emissions of oxide of ni-
trogen (NO, ) are strongly dependent on the overall fuel-air ratio supplied.
1n addition, NO, emissions are also dependent on peak cycle temperatures
which, in turn, are functions of the intake manifold pressure, spark tim-
ing, and compression ratio. Typical spark ignition engines operate with
a compression ratio of 7:1 to 9:1 and the data in the literature indicated
that, although there is an effect of compression ratio, within this range
of compression ratios, the effect is not appreciable (Ref. 11). The effect
of compression ratio was consequently negleated in the correlation of NOx
data.

There is a substantial amount of data in the literature concerning
NO, emissions, usupally accompanied by rather complete engine data. Fig-
ure 3 shows data’'from a typical source. These data show the combined ef-
fects of air-fuel ratio, spark timing, and intake manifold pressure on
NO, emissions (Ref. 16). From similar plots from other references, it
was found that curves of NO, emissions as a function of air-fuel ratio
are very similar in shape to the normal distribution or Gaussian curve.
The NO, emissions were then fit to a Gaussian-type curve in which the pa-
rameters were found tv be functions of the engine variables of intake mani-
¢ fold pressure and spark timing. The Gaussian curve has the general form:

- - 2
£(x) = A e /2 (x=e)/B] [Eq. 2.10]
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The parameter A is equal to the maximum value of £(x), B is related to
the half-width of the curve, and C is the value of x at which the maximum
value of f(x) occurs. The equation for NO, concentration as a function of
engine variables then has the form

: =No |3 Y el [Eq. 2.11]
- xlmx e 2 B 4. <
5 where
%i NO; = NO& concentration~-parts per million on a dry volume basis
Be No_| = maximum NO concentration
o x 'max x
é; AF = engine operating air fuel ratio--1b/1b
- A |m = air fuel ratio at which the maximum NO_ concentration oc-
:g x curs--1b/1b
f? The parameter B was determined from the available data and was found to
B be esseatially indzpendent of the engine operating conditions. The best fit
i to the experimental data, as determined by visual interpretation, was fourd
3% -
S ith a value of B = 2.0.
7 The maximum value of NO, was found to be an approximately linear function
2 of spark timing and fuel-air ratio. Figures 4 and 5 show experimental data curves
- of maximum nitric oxide concentration as a function of intake manifold prassure
2 and spark timing. The equation obtained is
bes
273 - .
;’ No_| . = -1215 + 102.31(p, . ) + 73.04 (spark) LEq. 2.12]
5? where

Piae ° intake manifold pressure--inches mercury absolute

spark = spark timing--degrees before top dead center

A similar procedure was followed for the air-fuel ratio at which the
maximum concentration of NO, occurred. These results are shown in Figs., 6 and
7. The equation obtained is

AF| = 12.98 + 0.0814(p, ) + 0.0245 (spark) (Eq. 2.13]

nounced as in the case of NO&]_‘,. Some of this may be due to variation in
air-fuel ratios between different references. It was observed, however, that,
for a consistent set of data from one reference, the air fuel ratio of maximum
NO concentration did vary with spark timing and intake manifold pressure.
Consequently, it is believed that these effects are realistic.

A The model for NO,  emissions then gives NO_  emissions on a dry volume basis
= as a function of air-iuel ratlo. intake manifold pressure, and spark timing.
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The effects of spark timing and intake pressure on AF| ,, were not as pro-
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To summarize, the Nq‘ model consis®s of the following equations,

1 AF - Alenx : ]
NO = [NO, In“] exp V- 5 [Eq. 2.11]

2
Nox Imsx

]

Figures 8, 9, and 10 show typical results from the model for different values
of air-fuel ratio, intake manifold pressure, and spark timing.

-1215 + lO2.3l(p““) + 73.04 (g;erk) {Eq. 2.12]

n

12,98 + 0.0Slu(p““) + 0.0245 (spark) [Eq. 2.13]

Hydrocarbon Emissions

The most important variable affecting hydrocarbon emissions from spark
ignition engines is the air-fuel ratio. Figure 11 shows typical hydrocar-
bon levels for a variety of engines and operating conditions. The curves
in this figure were obtained from the spark ignition engine references given
in Bibliography. Figure 11 shows the wide ariety of hvdrocarbon production
response which can be obtained simply by changing engine geometry and operat-
ing conditions. The hydrocarbon concentrations are given in parts per million
carbon as measured with a flame ionization detector. These concentrations can

be converted to parts per million n-hexane by dividing by a factor of 6. Con- £
centrations measured with non-dispersive infra-red analyzers were converted to 1%
equivalent measurements from a flame ionization detector by multiplying by an 2
average correction factor. By nature of its operation, the non-dispersive k-

infra-red analyzer has zoout one-half the response of a flame ionization de-
tector (Ref. 11).

S

In addition to air-fuel ratio, sparck timing, compression ratio, and
engine speed were all found to have an effect on hydrocarhons. Consequently,
attempts were made to correct emissions to a common condition of MBT (maxi-
mun brake torque spark timing), 8:1 compression ratio, and 1000 rpm. This
was done by assuming that the effects of the variables are linear and deter-
mining average correction factors (Refs. 13,17,18). These were found to be:

Compression ratio (CR)

BHC _ o0 ppne
AR - 300 *&R (Eq. 2.14]

Engine speed (N) -

auc _ _ ppme
- = -0.65 Tom (Eq. 2.15]

Spark timing (Spk)

AHC  _ ppme

ASpk - +20 deg [Eq. 2.16]
where

ppric = hydrocarbon concerntration in parts per million carbon on a

dry volume basis
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and

Spk = degrees of spark advance from MBT timing

St wvvwi.]ﬂ ’Eﬁjﬂw; .

It should be pointed out that the above effects will vary from engine to
engine and are most likely interrelated. The results, though approximate,
do give an indication of magnitude of the effects of the above variables.

Figure 12 shows the results of these corrections for conditions in
which MBT Yiming was known. As can be readily seen, the correlation is
nut very good; at a typical value of air-fuel ratio, the lowest obscrved
value is about one-third of the highest value shown. This lack of corvre-
lation is not surprising when one loocks at the formation mechanism for ex-
haust hydrocarbons. The generally accepted mechanism by which hydrocarbons .
appear in exhaust gases of gpark ignition engines is that of wall quench-
ing (Ref. 12). The cold walls of the combustion chamber extinguish the
flame and some of the hydrocarbons left when quenching occurs are then ex-
hausted with the rest of the combustion gases. Thus, the formation is sen-
sitive to the physical design of the combustion chamber as has besn veri-
fied in the literature (Refs, 13,14,15). A much more sophistiicated model,
therefore, is required in order to do a more accurate job of predicting
exhaust hydrocarbons. Such a model is not currently available.

Oxides of Sulfur

As indicated in Reference 7, the emission of sulfur oxides can be cal-
culated from the amount of sulfur in the fuel. A method for calculating
these emissions is cutlined in -Part V of this report. Emissions of sulfur
from spark ignition engines, compression ignition engines, and gas turbines
is not important because of the low levels of sulfur in fuels for these
engines (Ref. 7). Typical values are 0.04 percent for spark-ignition en-
gines (Ref. 10), 0.37 percent for diesel engines (Ref, 7), and 0.4 percent
for turbines (Ref. 10).
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PART II1I: COMPRESSION IGNITION ENGINES

&

$rS

Correlation of Performance with Fuel-Air Ratio

3

RNETE TR O

In a compression ignition (CI) engine, the speed and load are controlled
by varying the rate of fuel flow to the engine at an essentially fixed air

. flow rate. Therefore, the fuel-air ratiot is a direct measure of the output
of a (CI) engine. This is borne out by Fig. 13 which shows a plot of indi-
cated mean effective pressure (IMEP) vs. fuel-air ratio for various four-

i stroke engine types. Included are data for precombustion chamber engines
and direct injection engines, both turbocharged and normaliy aspirated, run-
ning cver a wide range of speeds (Refs. 6,10,19). The data for the turbo-
charged engines may be corrected to an intake manifold pressure of 29.92
inches of mercury absolute. Figure 14 shows the ratio of IMEP at 29,92
inches of mercury to IMEP at turbocharged conditions as a function of the
ratio of inlet manifold pressure to 29.92 inches of mercury for various
#yel-air ratios. The rvesulting correlation is given below.

.\74
-
%
E:
4
2
7
X
&
,}:"‘ 4

~0,7 ;
IMEPC PTC 0. 747 )
= [Eq. 3.1] £
THEF, ~ \29.92 2
where é
=
IMEP, = indjcated mean effective pressure in psi corrected to %@
an intake pressure of 29.92 inches of mercury absolute %
IMEPTc = indicated mean effective pressure at turbocharged conditions-- ]

psi :

intake manifold pressure at turbocharged conditions--inches
of mercurv absolute

4

Ppe

The final correlaticn obtained is that of IMEP correcied to un intake pressure
of 29.92 inches of mercury absolute as a function of fuel-air ratio, The re-
sults obtained for a variety of engine types and speeds is shown in Fig. 15.
The curve shown in Fig. 1% is a least squares polynomial which was fit to the
data and i{s given below:

FA = 2,41 X 107> 4 1.65 X 10"‘(1uzpc) + 1,25 x 207 (1iER,)’  [Eq. 3.2]
. vwhere

FA = fuel-air ratio--lb fuel/ldb air

tFor the four-stroke engine, the overall fuel-air ratio is the pertinent varia-
ble while, in the case of the two-stroke engine, the variable of interest is
the trapped fuel-air ratio.
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The equation is given with corrected indicated mean effective pressure
as the independent variable. This makes it possible to determine the fuel-
air ratio necessary to operate an engine at a given load (IMEP). The
corresponding fuel-air ratio can then be correlated with certain emissions
from a compression ignition engine.

The indicated mean effective pressure for an engine may be determined
from the engine speed, displacement, and horsepower in the following manner:

St SN ot e

IMEP = BMEP + FMEP--psi [Eq. 3.3] .

BMEP = brake mean effective pressure--psi

FMEP = friction mean effective pressure--psi

Brake mean effective pressure cun be calculated using the following relation

puEp = BHEX gazsﬁooo)(a) --psi {Eq. 3.4]

BHP

brake horsepower

D engine displacement--inches3

engine speed--rpm

N

a 2 for a four-stroke engine

1 for a two-stroke engine

i3

a

The friction mean effectiv2 pressure of an engine is usually not known.
However, a correlation of FMEP with engine parameters has been obtained by
Taylor and Taylor (Ref. 1) and may be used to estimate FMEP for a given en-
gine. This correlation is given below:

FMEP = FMEP|° + x(p, - p, ) + y(IMEP - 120) [Eq. 3.5]

RMEP|, = 8 + 0.967(S, /100) + 0.00607(S, /100)* [Eq. 3.6]

Sp = %H-piston gspeed--ft/min [Eq. 3.7]
-s [B® NS
X =1- 6.7 10 for a U-stroke (Eq. 3.8] .

LD, :\/T‘ engine

p = 0.0 for a 2-stroke engine .

 ————— L ————
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y = 0.012 + 1.6 X 10'5(sp) [Eq. 3.10]
p = exhaust pressure--psia

p = intake pressure~--psia

S = piston speed--ft/min

S = stroke-~inches

N = engine speed--rpm

o
#

bore--inches
L = valve lift-~-inches

intake valve diameter--inches

(=)
]

T = intake temperature--°R

Values of x for a typical four-stroke engine range from 0.8 at low speeds to
0.2 at high speeds.

Carbon Monoxide Emissions

Fuel-air ratio was found to be the engine variatle which had the largest
effect on carbon monoxide emission levels., While it is recognized that cther
engine variables may have an effect on carbon monoxide emissions, the data
available in the literature at the present time are not sufficient to corre-
late these effects. Consequently, carbon monoxide emissicns have been corre-
lated solely as a function of fuel-air ratio.

Figure 16 shows typical carbon monoxide emissions as a function of engine
fuel-air ratio for a variecty of commercial engines. The data in this figure
vwere vbtained from the compression ignition engine references given in Bibli-
ography. It can be seen that precombustion chamber engines run with lower levels
of carbon monoxide than direct injection enginec at high fuel-air ratics (high
loads), while the reverse is true at low fuel-air ratios. For the purposes of
correlating carbon monoxzide emissions as a function of fuel-~air ratio, least
squares polynomials were fit to average carbon monoxide vs. fuel-air ratio curves
for both direct injection engines and precombustion chamber engines. The re-
sults obtained are given in Eqs. 3.1l and 3,12 below and are shown graphically
in Fig. 17.

_ For direct injection engines:
CO = 1415.0 -~ 0.7352 x lOs(PA) + 0,2054 x 106(FA)2
+ 0.3550 x 10°(FA)® (Eq. %.11]
For precombustion chamber engines:

CO = 1345.0 -~ 0,1969 X 106(PA) + 0.3313 x lO’(FA)2

- 0.1167 x 10%(FA)® [(Eq. 3.12]
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= , &
CO = parts per million carbon monoxide on a dry volume basis ;
i FA = fuel-air ratio--1b/lb -
EE As discussed previously, the fuel-air ratio for a CI engine correlates §
i well with indicated mean effective pressure. Thus, the carbon monoxide emis- Z
3 sions can bu correlated directly with engine output. This correlation is ) .E
y given by the following relations: . -8

: IMEP, = IMEP(p A /29.92) "% (Eq. 3.13] K
3 at 3;:
l For the direct injection engines: : "«g
E: ~5
3 0O = 1251.7 - 15.711(IMER,) + 0.0104(IMER,)" -
- 2.568 x 107 (IMER)®+ 2,275 x 107" (1MER,)" [Eq. 3.14] T

s A v
PR

For precombustion chamber engines:

R

CO = 3099 - 31.85(IMER,) - 0.9251(THER,)’ i%

+ 1544 x 107 (IMER)® [Eq. 3.15] &
5 %8
2 i
3 where %
co = parts per million carbon monoxide on a dry volume basis 31
g' IMEPc = corrected engine indicated mean effective pressure--psi ’
1 IMEP = actual engine indicated mean effective pressure--psi %
;, Pipt ° intake manifold pressure--inches mercury absolute ”%
E 5'3
e These equations are presented graphicaily in Figs. 18 and i9, which show :§
2 exhaust concentrations of carbon monoxide as a function of actual indicated k]
mean effective pressure for various intake manifold pressures, l‘%

3 Oxides of Nitrogen Emissions g
3 As is the case with carbon monoxide emissions, the most important variable 5
iR affecting the level of oxides of nitrogen (NO,) emissions is the fuel-air ratio. %15
-4 Figures 20 and 21 show emissions of oxides of nitrogen from precombustion chamber R

and direct injection engines as a function of fuel-air ratio. The data in this i
figure were obtained from the compression ignition engine references given in i

Bibliography. It can be seen that NO, emissions fall into two distinct ranges, E:
with the precombustion chamber engines having inherently lower NO_ emissions « i §
throughout the range of fuel-ratios. Precombustion chamber engines are TOH
-3 especially superior in the range of high fuel~air ratios; i.e., high loads. ffé
‘ The available data on two-stroke diesel engines indicate that NO_ emissions g
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throughout the range of fuel-ratios. Precombustion chamber engines are espe-
cially superior in the range of high fuel-air ratios; i.e., high loads. The

available data on two-stroke diesel engines indicate that NO, emissions fall

within the range shown in Figs. 20 and 21 when the trapped fuel-air ratio is

usad.

Other engine variables have an effect on NO, emissions from CI engines.
For example, Fig. 22 shows the effect of changing ignition timing in a particu-

MR SR Sl

iy

lar precombustion chamber and a particular direct ignition engine (Ref. 20), 2
It can be seen that the direct injection engine is much more sensitive to tim- %
ing than the prechamber engine. While it is recognized that injection timing éé
may have an appreciable effect on NO, emissions, very few of the data on NQ, é%
emissions are accompanied by timing data and, so, a meaningful correlation of %
the effect of injection timing is not possible at the present time, g
%

Engine speed is another variable which may have an effect on NO, emissions.
The data in the literature, however, appear contradictory on this point, with
some engines showing an appreciable effect while others show a negligible ef-
fect. This is probably due to differences in the individual injection systems
and combustion chamber designs. Again, because of lack of adequate data, a
meaningful correlation of the effect of speed on NO_ emissions is not possible,
Consequently, the same procedure was used for correlating NO, emissions as was
used for the carbon monoxide emissions. The data in Figs. 20 and 21 include
a wide range of engine variables and, in spite of this variation of conditions,
fall into a fairly well-defined band. These data then indicate the levels of
NO& emissions expected in a normally operated engine.

For direct injection engines,

NO_ = 23.40 + 1.488 x 10% (FA) + 1.319 x 10° (FA)?

- 1.490 x 10° (FA)® [Eq. 3.16]

For precombustion chamber engines,

NO = -6.566 + 2.530 x 10%(FA) - 2.51 x 10t (Fa)?

- 5,01 x 10%(FA)® [Eq. 3.17]

. NO

FA

parts per million NOx on a dry volume basis

fuel-air ratio--1b/lb

-
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As discussed previously, the fuel-air ratio correlates well with indicated mean
effective pressure. Thus, the NO, emissions can also be correlated directly

;; with engine output, as given by the following relations:
u IMEP, = IMEP(p, ,/29.92) " '%7 [Eq. 3.13]
i? For direct injection engines,
53
NO_ = 61.56 + 5.066(IMEP,) - 0.01529(IMEP,)’
+ 1.A6 x 107 (IMER,) - 7.35% x 107° (1mER )" [Eq. 3.18]

o~
2
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For prervmbustion chember e~gines,
NO_ = 72,50 + 1.2614(IMEF,) + 1.080(IMEP,)"

- 6,617 x 107*(nER, ) [Eq. 3.19]

NO, = parts per million NO‘ on a dry volume basis

IMEP,

IMEP

corrected engine indicated mean effective pressure--pei

actual engine indicated mean effective pressure

L )

Py nt intake manifold pressure~--inches of mercury absolute
These results are shown in Figs. 24 and 25 for various intake manifold pres-
sures,

Since the rancentration of NO, tends to increase with the power output
of a CI engine, it is also expected that the total emission rate of pollutants
is related to the power output of an engine. This is borme out by the data in
Fig. 26 which show the emission rate of NO, (calculated as NO,) in pounds per
hour plotted as a function of engine braks horsepower for various precombustion
chamber and direct injection engines from 10 to 3,000 horsepower. The line
drawn through the data corresponds to the condition in which the mass emission
rate of NO_ is a linear function of brake horsepower. Although individual en-
gines may vary scmewhat from direct proportionality, overall the trend is quite
close to being linear. Thus, Fig. 26 provides a rapid estimate of the rate of
NOx emissicns, strictly from the load requirements of an engine,

Hydrocarbon Emissions

Attempts at correlation of hydrocarbon emissions for CI engines were not
successful. Fydrocarbons are among the most difficult of CI eungine emis-
sions to measure and scme of the difficulty in correlations may be duve to large
errors in experimental measurements. The hydrocarbons formed in a CI engine
are dus to incomplete mixing and combustion and are, therefore, dependent on
individual combustion chamber and injector design and engine condition. Also
adding to the difficulties is the problem encountered with other emissions from
CI engines, that of lack of complete engine data with which to attempt a cor-
relation. In most cases in the literatuve, little more than fuel-air vatio
is ava.lable for correlation purposes.

Figure 27 shows hydrocarbon emissions from many CI engines as a function
of fuel-air ratio. A wide range of emissions levels was observed as well as
different qualitative behavior. Some engines showed hydrocarbon emissions de-
creasing with indveasing fuel-air ratio, while others showed increased hydro- N
carbon emissions with increasing fuel-air ratio. Intermediate behavior was
also observed in which hydrocarbons showed varying trends with fuel-air ratios
~p essentially no effect. Similar inconsistent behavior was observed in the

oM e Koyt e T e e e By
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few instances where effects of other variables such as spark timing and engine
speed were studied.

In an effort to obtain some meaningful summary of the hydrocarbon emis-
sion data, a plot of frequency of observed hydrocarbon emission as a function
of emission level was made for the available data. The results shown in
Fig, 28 indicate that the majority of the observed hydrocarbon emissions data
points fall in the range of 0 to 300 parts per million carbon. (Using the
measure cormon in automobile emissions, this is equivalent to the range of
¢ to 50 parts per million equivalent hexane.)} Although this type of corre-
lation is far from precise, it does give an indication of the levels of hydro-
carbon emissions expected in engine operation.

Smoke

A survey of the literature ccacerning smoke emissions from compression
ignition engines showed that an attempt to correlate smoke with engine parame-
ters would be ill~advised. Smoke is very dependent on nozzie ani combustion
chamber design which immediately presents severe limitations to correlation
attenpts. Fuel variables are also very important in determining smoke levels.
These variables include basic fuel composition and volatility along with the
nature and amount of fuel additives. A further difficulty is correlation of
smokemeter readings. After much study, there is still some disagreement as
to the relation between the readings obtained from the various techniques of

measuring smoke.

Since the correlation of smoke with engine parameters does not appear
feasible, the approach taken was that of obtaining approximate correclation be-
tween the various types of smokemeters. The reason for “his approach is to
be able to make reasonable corrections of various reported smoke values or ex-
perimental measurements to some common standard., These types of meters are
listed below, with exemples of each.

Light Extinction
Bartridge
Puklic Health
CRC

Spot Filter
Bosch
Bachrach

Visual Rating
Ringlemann

Moving Strip Filter
Von Brand

Figures 29 through 3% shew ccrrelations that have been reported recently
in the literature concerning the various smokemeters. In the cases where more
than one correlation is presented, it is not possible, based on current knowl-
edge, to determine which, if any, of the correlations is correct. Consequently,
an average value for the correlation should probably be used.
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PART IV: GAS TURBINE EMISSIONS . )

]

Emissions data from gas turbines have been in very short suppiy. Only {
recently has a substantial amount of data become avallable. In czder to ob- {
tain the largest possible amount of data, the results in this section iaclude
data from turbojet aircraft engines. The omissions dsata from thece engines
are similar to those from conventional gas turbines, This is to be expected ¢
since the combustion process is basically the seme in both types of power ‘.
plants. Gas turbine emission data usually are accompanied by little more than !
overall fuel~-air ratio, if that. Consequently, it is essentially the only
operating variable with which one can hope to correlate emicsion data. In
gas turbines the burner operates at richer fuel-air mixtures than the overall
fuel-air ratio and the combustion gases in the burnex are then diluted with
. air to control turbine inlet temperature. The fuel-alr ratio in the burnez,
therefore, would be expected to be meve significant than the overall fuel-air
ratio in determining emissioens characteristics. Other variables of interest
would be the burner temperatuves and residence times. Such data, unfortunately,
are rarely available, and correlation attempts are restricted to overall fuel-
air ratio,
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The results of some attempts at correlation with overall fuel-air ratio
are given in Figs. 36, 36, and 37. The data in these figures were obtained
fiom the gas turbine emission references in Bibliography. These figures show
emissions index (EI) as a function of overall fuel air equivalence ratio for
carbea monoxide, oxides of nitrogen, and hydrocarbons. The emissions index
gives emissions data in terms of pounds of pollutant per 1000 pounds of fuel
. consumed, It can be calculated by the following relations:

R e SRR b s S e e, s

p& 1 1 ppm
EI = Y| TR + 1 T [Eq. 4.1]
. JL .
where .
!& = moleculayr weiph’.t of species of interest
M = molecular weight of exhaust zas

» s,

a2}
>
it

fuel-air ratio--1b/1b

ppm = concentration of spaciec of interest in parts per million .
by voluie

As ‘'would be expected from the previcus discussion, there is no diecernible
correlation between emissions and overall Ffuel-air vatio, Siuce the emissions
do not correlate well wfth the only available variable, fuel-air ratio, the same
procedure was uged as in the case of ccmpression 1gn1t101 engine hydrocarben er's-
sions. Figure 38 shews a plot of frequency of ohserved emission indices for tur-
bine iype engines, It can be seen that a typical gas turbine would emit between
0 ard 10 pounds of CO0; 0 and 3 pounou of no 3 and 0 2nd 1 pound ¢f hydrocarbons
per 109 pounds »f fuel consrmed,
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PART V: SMALL HEATING PLANT FURNACES

The analysis of potential air pollution problems involving small- to medium~
sized heating plants has been handicapped by the lack of consistent and accu-
rate icfcrmaticn on the composition of the exhaust gases being emitted under
the specific operating conditions. The overall objective of Part V is to ex-
amine the feasibility of developing models for predicting the constituents of
exhaust gases from small- to medium-sized heating plant furnaces under various
load conditions and using various fuels. The pollutants to be examined are
oxides of nitrogen, total hydrocarbons, carbon monoxide, carbon dioxide, sul-
fur Jdioxide, sulfur trioxide, and particulates. )

The classification as to the size of heating plants varies, depending on
fuel. TFor combustion sources using coal, the brezkdown for various units is
as follows (Ref. 22): Units having energy inputs greater than 10® Btu per hour

of 207 to 10® Btu per hour are classified as industrial; units having less than
107 Btu per haw input are classified as domestic-commercial installations.
Combustion sources, which include power plant installations, are units which
have heating units delivering over 1,000 Hp, whereas small sources, which in-
clude both industrial and commercial-domestic sources, have heating units de-
livering less tham 1,000 Hp. In order to standardize the classification as

to the size of a heating plant, the Hp rating for oil units will be converted
te a Btu/hr rating. The basis for converting from Hp to Btu per hour for oil-
fired units in this section assumes an average heating value of 18,300 Btu per
pound of oil and the equivalence 1,000 Hp = 2,500 pounds of oil per hour (Ref,
23). This equivalence assumes a 7% percent energy conversion efficiency. From
this, it is seen that, for oil, an energy input greater than 4.6 X 10° Btu per
hour is considered a large source, whereas univs with less than this are con-
sidered swall; i.e., iadustrial or commercial-domestic. For the report that
follows, all installations having an encrgy input below 107 Btu/hr will be as-
sumed to be either industrial or commerciai-domestic.

Tor commercial~domestic installations, the most commonly used fuels are
oil and gas, whereas, for sm2ll industrial boiiers, coal is also ased. In that
oil and gas are the most often used fuels in the heating plante of interest
in the present study, a description of these fuels is appropriate. In particu-
lar, fuel cil classifications warrant furcher attention., The classification
of fuel oils used in small installations ie kerosene, diesel fuel, and grades
one through six oils, The most common 0il Fuel use pattern is grade 2 in do-
mestic units, gvade 4 in units up to 10° BEtu per hour, grades 4 through 6 in
units up to 10" Btu per hour, and grade 6 for residual oils in units above 10
Btu per hour. Xerosene and diesel oil are used in units smaller than 10° Btu
per hour (Ref, 22).

It sheuld be recognized at the outset that the data exhibit a great varia-
bility due to furnace types, furnace cenditions, fuels, and unreliable measur-
ing techniques. A certain caution must, therefore, be exercised in using any
of the eyuqtions to predict the behavior of any particular source. The calcu-
lated value represents only some average condition. Variabilities exceeding
100 percent can be expected for some operating conditionms.
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Particulates

The emission profile of a given coal-burning furmace is reluted to many
factors (Ref. 22): gas velocity, particle size, particle density, fuel burning
vate, combustion efficiency, fuel gas temperature, furnace sonfiguration, coal
composition and size; and the initial state of the raw cval. The effect of
ti;a above variables on the particulate emission rate is shown in the table be-
io4s

Variable Increasing Mass Particulate Ratet
Gas velccity I :
Particle size D
Particle density )

Coal ash I
Coal size D
Coal fired in suspension I
Céal burning rate I

B Coal heat value D
. Combustion efficiency D
4 P ‘

;2 Boiler efficiency D
4

The variables which are considered to be most important in relation to
particulate emss:.ons from coal-fired furnaces include (Ref, ‘2)

5
5.

o

SRR

(1) the amount of ssh in the coal,
(2) +the heat content or heating value of the coal,
(3) the method of burning the coal, and

(4) the rate at which the coal is burmed,

/‘v .

The primary variable for correlating stark emissions to fuel composition is .
the heat content of the fuel.
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Figure 39 presents a nomograph which accounts for these variables in pre- .
dicting the average particulate emissions to be expected from utility- and
industrial-sized boilers without control equipment. Because the use of coal
in commercial~-domestic size installations is in a rapid state of deciine, emissions
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4"I" denotes increass; "D" denotes decrease,
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on these installations are not discussed. The preferred fuels for commercial-
type domestic boilers are gas and oil.

Smoke from oil-burning units is the result of an inefficiently operated
furnace. Incomplete atomization caused by improper fuel temperature, dirty,
worn, or damaged burner tips, or improper fuel or steam pressure may cause the
furnace to smoke., Other factors affecting emission rates include improper fuel-
to-air ratio, poor mixing of the air and oil mixture, low furnace temperatures,
and insufficient time for the fuel to burn completely in the combustion cham-
ber., Because of the multi-variahle nature of the system under consideration
and the limited amount of data available. an analytical predictor equation for
smoke emissions from oil-fired units was not attempted. Rather, a frequency
distribution of particulates from oil-fired small sources is given in Fig. 40.
As can e seen from the figure, the particulate emissions for small sources
vary £+ .0 to 10 pounds of particulates per 1,000 pounds of oil fired, with
79 percent of the emissions lying between 1 and % pounds per 1,000 of oil fired.
The most probable emission rates fell between 1 and 2 pounds of particulates
per pound of oil fired with 42 percent of the values reported being in this
range. The effect of pertinent variables on particulate emission rates from
oil-fired burneers is shown below.

Variable InJreasing Mass Particulate Ratet

evcent load
Fuel temperature
‘Fuel pressure

Excess air

Percent CO2 in stack

Dirt in firebox

Flue gas recirculation
Flame temperature
Stack temperature
Pecccnt sulfur in oil

Percent ash in oil

The emission rates of particulrtes from gas-fired installations are negligible.

$"I" denotes increase; "D" denotes decrease; '--" denotes no change.
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Carbon Dioxide

.

It is frequently necessary to calculate the theoretical air requirements
for burning 2 fuel and the products of combustion associated with the process.
The equations that are given below are particularly useful for calculating the
expected CO, emissions for gas, liquid, and solid fuels under ideal conditions
(stoichiometric conditions). Standaxd conditions for these calculations are
60°F and 29.92 inches mercury for the temperature and pressure, respectively.

The air required for perfect combustion of one cubic foot of any gaseous
fuel is (Ref. 24). In generating Eq. (5.1), it has been assumed that air is
composed of 0.232 1bs of oxygen per pound of air.

cu ft air _
oo £t Fuor = (B CH, x 0.0956) + (% CH x 0.1675)

+ (% csHe x 0.239) + (% C4H10 x 0,311)

+ (% H, x 0.0239) + (% CO x 0.023%)
- (% 0, x 0.0478) [Eq. 5.1]

where all the percentages are by percents by volume from the volumetric analy-
sis of the fuel to be burned. It should be nocted that the gas and air volumes
in the above equation must be measured at the same temper:ture and pressure.
If corrections are to be made, the following equations are useful,

T°°F + 450

Volume at T, = volume at T, X TIF T 0 [Eq. 5.2]
P psi + 14.7

Volume at P, = volume at P, X [Eq. 5.3]

1 P, psi+ 14.7
For liquid and solid fuels, the theoretical air/fuel ratio is (Ref. 2u4)

33-f¥ﬁ§§£-= (% Cx 1.514) + (3 H x 4.54) + (3 S X 0.568)

- (% 0 x 0.568) [Eq. 5.4]
where all the percentages are percents by weight from the ultimate analysis
of the fuel to be burned. Note that the cubic foot of air in the above equa-
tion is measured at 60°F and 24.92 inches of mercury.

To predict the theoretical quantity of CO, in the products of combustion,
the following equations are used. For gaseous fuels, one uses (Ref, 24)

1b CO2

S Fr Faer - (% €0 X 0.001165) + (% CH, X 0.001165)

+ (% C2H6 X 0.00230) + (% CSHB X 0.00349)

+ (% C4H1° X 0,.G0465) + (% CG, x 0.001164) [Eq. 5.5]
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All percentages in the above equation are percents by volume of the constitu-
ents in the volumetric analysis of the fuel. For liquid and solid fuels, the
following equation is used (Ref. 24).

1b CO
— = . 5.6
T Fael (% Cx 0.0367) + (% co, x 0.01) [Eq ]

All percentages in the above equation are percents by weight of the constitu~
. ents in the ultimate analysis of the fuel.

If the percent C includes the unavailable carbon already in the form of
. CO2 , the last term is omitted.

The predictor equations for CO, based on mass in this section give the
upper limit of emissions to be expected from gaseous, liquid, and solid fuels.

¥

-

2

5. Carbon Monoxide Emissions

o

£ The normal range, i.e., the most probable range, of emissions of carbon
i monoxide from small oil-fired boilers is between 0 and 1 pound carbon monoxide
. per 1,000 pounds of oil (Ref. 23). Emission factors for coal-fired installa-
e tions include 0.02 pound per million Btu for power plants, 0.1 pound per mil-
23 lion Btu for industrial stokers, and 2 pounds per million Btu for domestic units
= (Ref. 21). Very little reliable data are available in the literature concern-
5 ing carbon monoxide emissions.

i

N Sulfur Oxides

The amount of sulfur emitted as sulfur dioxide may be inferred from a ma-
terial balance. The sulfur content in coal ranges from 1 percent to greater
than 10 percent by weight. During the combustion of coal, sulfur dioxide, sul-
fur trioxide, and some fly ash-sulfur oxide complexes are formed. In addition,
for very inefficient combustion, hydrogen sulfide may also be evolved. A ma-
terial balance on a coal system reveals that, on the average, 2 percent of the
sulfur goes into the slag or residue and 1 to 2 percent goes into SOs (Ref.
22). In the event that no appreciable H,S is formed, 95 percent of the sulfur
in the coal is emitted to the atmosphere as SO (Ref. 22). Based on this in-
formation, the emission rates of SO2 from coal-fired furnaces can be calculated
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i 17500 15 FaeT - 0-95(0.02 x % 8) x 10 (Eq ]
i

jic where the percent sulfur is by weight.

;( The oil used in oil-fired units contains complex organic forms of sulfur
) which vary in amount between 0 and 5 percent by weight (Ref, 23). During com-
4 bustion, sulfur in the oil is oxidized to SO, , SOy, and sulfate radicals. A
material balance on the emissions from oil-fired furnaces reveals that, on the
average, 98 percent of the sulfur is emitted as SO, 1 percent as SOg, and 1
percent complexed with the fly ash (Ref, 23). Based on this, the emission rates
of SO2 from oil-fired furnaces can be calculated by
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1,000 =T ° 0.98(0.02 x % S) x 10

where the percent sulfur is by weight. The range of SO; values reported in
the litsrature is shown in Fig. 4l1.. The emission rates of 80, from gas-fired

ingtallations are negligible.

[Eq' 5 08]

The emission rates of sulfur to trioxide to the atmcsphere are not a direct
function of the percent sulfur in coal or oil as in the case for S0;. The de-
gree of. scatter can be seen in Fig., 42. The significance of SOy formation lies
in the fact that, when the stack gases are cooled below the dew point, much
of the SO combines with water vapor to either deposit on some surface as H, SO,
¢r produce a visible plume. The effect of flame temperature on SO emissions
is shown in Fig. #3. Other factors which have effects on 50, emissions from

o0il-fired units are given below.

Increasing Operating Variables

Percent load
Fuel temperature
Fuel pressure
Excess air
Percent CO in stack
Dirt in firebox
Flue gas recirculation -
Flame temperature I
Stack temperature I
Percent sulfur in oil I
Percent ash in oil D
The most likely occurrence of H,S is expected to be found in hand-fired

(coal) stoves. The average value reported for hand-fired units is 0.4 percent
¢f sulfur in the coal (Ref. 26).

Oxides of Nitrogen

Oxides of nitrogen are produced when fossil fuel combustion takes place
using air as an oxidant. At adiabatic flame temperatures, the combination of

+"I" denotes increase; "D" denotes decrease; "--" denotes no change.
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atmospheric oxygen and nitrogen results in tlhe formation of nitric oxide, NO.
As shown in Fig. u4, NO formation for methane-air combustion at atmospheric
pressures is favored at only high temperature. NO, however, remains a "pseudo-
stable" species even at low temperatures because of kinetic limitations of its
rate of decomposition. The relationship between equilibrium NQ, concentrations
and the corresponding adiabatic fiame temperatures is shown in Fig. 44, For
methane, it should be noted that the maximum equilibrium concertration of NQO
occurs vhen the air/fuel ratio is approximately 1.15. In contrast, the maxi-
mum flame temperature is reached at conditions below the stoichiometric ratio.
The equilibrium amounts of NO and NO, as a function of temperature are shown

in Fig. 45. For most stationary combustion processes, the residence time availa-
ble is too short for the oxidation of nitric oxide to nitrogen dioxide, the
thermodynamically favored species at lower temperatures. Thus, although NO
emissions are usually expressed as "equivalent NO&," the combustion gases are
predominantly in the form of NO.
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Based on experimental evidence, another source of nitrogen for oxide for-
mation is the organically bound nitrogen in the fuel. Nitrogen-containing fuels,
such as coal or fuel oil, can produce NO;, NO, and, possibly, N3 , depending
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e on the reducing nature of the flame. The role of fuel nitrogen appears to vary 2
{E from being dominant at low temperatuvres and being negligible at high tempera- 52

-
iy

tures; i.e., near equilibrium conditions.

Based on the above, it is clear that factors affecting NO, emissions from
fossil fuel combustion processes are more complex *han the understanding of
the nitrogen-oxygen fixation process as a functicn of chemical thermodynamic
and kinetic considerations. Further, it is known that chemically bound nitro-
gen in the fuel, either coal or oil, is oxidized more readily to NO, than highly
stable molecular carbon is oxidized to CO; or CO and, consequently, the organ-
ically bound nitrogen plays a role in NO, formation. In general, the major
factors influencing NO, emissions from combustion sources, in addition to the
flame temperature, include

T UL E e Ll I3 ot R

o

(1) excess air,

e 2l

(2) heat release and mixing,

¢3',“: 5

(3) mass transport and mixing, and

" Lt

I

(4) fuel type and composition.

1

By

The reduction of the excess air reduces the NO, emissions, whereas high
heat release rates lead to increased NO, emissions. The dependency of NO emis-
sions on excess air is shown in Fig. #6. The reason for the increased NO, emis-

in,,

i

sions with high heat release rates lies in the extreme sensitivity of NO, for- %
mation equilibrium and kinetics to peak temperatures. The distribution of fuel e
and air in the combustion chamber can also materially affect NO; emissions. . %g
Practices which include internal recirculation or back-mixing of combustion E
gases dilute the primary flame zone, thus reducing its temperature and the NO, s
formation rates. The fuel type affects NO, formation through two mechanisms:

the theoretically attainable flame temperatures and the rate of radiative heat
transfer. The "rule of thumb" for ranking NO,-forming tendencies of fuel for
small to intermediate boilers is coal, oil, and gas in descending order. With
regard to fuel composition, the role of chemically bourd nitrogen in NOy for-
mation is definitely established. The extent of the contribution of nitrogen

T i
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in the fuel to the total. NO, emissions varies with the temperature level of
the combustion process from being ail important at low temperatures to being
negligible near equilibrium,

The comparison of emissions for coal, oil, and gas, or equivalent basis,
is given for commercial-domestic, industry, and utilities in Table 1,

TABLE 1 "
COMPARISON OF COAL, OIL, AND GAS e
ON EQUIVALENT BTU BASIS (REF. 29)

Average NO, Emissions in Boilers :
Fuel and Power Plants (1b NO,/10° Btu) J

Household and Electric Power
Commercial. Industry Generation

~
1. ’(‘itgﬁgls‘t"ajcu ey (30 11 205 373
] ¢ i)

2, Fuel 0il L
(149,966 Btu/gal) (30) 80-480 480 693 | %

' 3

3., Coal -4
(11,867 Btu/1b) (30) 337 842 842 : %

“
Ll i g

Because NO, emissions depend in great measure on such variables as instal-
lation size, type of barrier, cooling surface area, firing rate, and the air/
fuel ratio, the determination of accurate predictor equations is very difficult.
The degree of difficulty can better be appreciated by examining the following
quotation taken from Report No. 3 of the Joint Los Angeles County Report (Ref.
28):

"In the determination of an NO, emission factor for power plants,
some 130 tests including 554 individual samples were considered.
The Department of Water and Power of the City of Los Angeles has been
making an extensive study of the effect of operating variables on
NO, emissions. These studies have included a testing program in which
two to three tests per week were performed for z period greater than
a year, .

The rates of emission of NO; from units as complex as these,
with the possibility of a number of constantly fluctuating operating
variables, may be assumed to be constantly fluctuating alsc., In these .
circumstances, the rate of emission of NO, at any given instant in
any plant may be different from the rate of emission at the next in-
stant. Experience gained during the carrying out of the project has
shown these assumptions to be true. A striking example of this varia-
bility is the fact that samples taken as nearly at the same time as
possible from two probes in as close proximity to each other as possible
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show two different values for NQ, concentrations. It was found that
actual rates of NQ, emission from sister units may be different for
operating conditions which are the same for each unit within the limits
of ability to determine. This phenomenon has been verified repeat-
edly.

b J.wtg/\\v,‘ »

tor, calculations must be based on averages of many data taken from
many different conditions. As pointed out in the discussion of as-
phalt paving plants, the use of such a factor to determine the rate
. of NO, emission from a single unit at any given time may produce data
which are far from reliable for the conditions existing at that time.

Thus, it may be seen that in the development of an emission fac- g

During the carrying out of the test program on power plant boilers,
a number of phenomena were brought to light. Instead of clarifying
the situation, many of these cbservations served merely to point up
the ccmplexity of the problems. It should be borme in mind that the
examples and curves shown are in each case for some particular unit
and should not be construed to be correction factors for measured
emission rates from any other unit. The degree and direction of the
effect of operating variables upon NO, production must be determined
individually for each particular unit to be considered."
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What can be attempted in light of the above, with a limited degree of suc-
cess, is the generation of equations which represent average or typical emis-
sions from various installations. Figure 47 gives the NO, emissions from gas-
3 fired refinery furnaces. It is expected that these emissions are indicative
of most gas-fired process heaters. The average emissions can be estimated us-
ing the following equation,

Ao £ Kl T

it

LOG(NO:) = 1,14 LOG(HI) - 8.1 (Eq. 5.9]

where LOG(NO,) is the common logarithm of the emission rate, in 1b/hr, and LOG(HI)
is the common logarithm of the firing rate in Btu/hr. Fiewre 48 depicts a com-
posite relationship for coal, oil, and gas, giving NO, er .ions versus the

gross heat input. An equation relating the average emiss: n rates, in 1lb/hr,

for coal, o0il, and gas to the gross heating input is given below.

LOG(NO_) = LOG(HI) - 6.85 : [Eq. 5.10]

where LOG(NO,) is the common logarithm of the emission rate, in 1b/hr, and LOG(HI)
is the common logarithm of the gross heating input in Btu/hr.

Teble 2 gives common emission factors for nitrogen oxides emissions from
household-commercial, industry, and utilities using coal, oil, and gas as fuels.

Hydrocarbons

The polynuclear hydrocarbons emissions obtained from coal-burning units
vary wicdely, depending on the quality of combustion achieved. Emissions from
oil~-burning sources were generally much lower than from coal-burning sources
of equivalent size. Gas-burrning emission rates were the lowest in hydrocarbons
of all fuel sources. Hydrocarbon emissions from gas-burning units are assumed
to be negligible.
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TABLE 2
EMISSION FACTORS FOR NITROGEN OXIDES (REF. 27)

Source Average Emission Factor
Coal
Household and Commercial 8 1b/ton of coal burned
Industry 20 1b/ton of coal burmed
Utility 20 1b/ton of coal burmed
Fuel 0il
Household and Commercial 12-72 1b/1000 gal of oil burmed
Industry 72 1b/1000 gal of oil burned
Utility 104 1b/1000 gal of oil burned
Natural Gas '
Household and Commercial 116 1b/miliion c.f., of gas burned
Industry 214 1b/million c.f. of gas burned
Utility 390 lb/million c.f. of gas burned

Because of the limited amount of data available in the literature, a mean-
ingful predictor for total hydrocarbons could not be genercted. The trend and
orders of magnitudes of emissions from small sources burning oil and coal can
be deduced from Fig. 49.

Effect of Operating Variables on 0il-Fired Furnaces

The discussion in this section will center around the performance charac-
teristics obtained under controlled conditions for high pressure atomizing gun
burners which are used in domestic oil-fired furnaces. The laboratory results
to be presented will. include smoke, carbon monoxide, total hydrocarbons, and
nitrcgen oxides emissions measured over the entire range of air-fuel ratios
for several burner configurations. The basic reference for this section is
a paper by Howekamp and Hooper (Ref. 21).

Smoke Emissions

In all smoke emission tests, a modified sequential tape sampler was oper-
ated to determine smoke levels. The resultant spots on the sampler were meas-
ured on a reflectance photometer and then converted to Shell-Bachrach index
units,

Figure 50 demonstrates an interesting effect resulting from varying the
on-off periods of the cycle. With an excess air setting of 20 percent, runs
were made with preceding off-periods of 10, 15, 20, and 30 minutes. The re-
sults shown in Fig. 44 show a near linear decrease in smoke with time during
on~-periods.,

Figure 51 shows average smoke emissions vg. air/fuel ratio for various
types of fuel nozzle and air-fuel mixing assemblies, while Fig. 52 shows the
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emissions during the tenth minute of the on-period. The average numbers sug-
gest that the meaningful air pollution measurement is not the one taken during
hot running conditions. Further, the levels shown in Fig. 46 are considerably
lower during the tenth minute of operation than during start-up as would be

expected,
Gaseous Emissions
Automatic analyzers and recorders were used to monitor 0, CQ,, CO, and
gaseous hydrocarbons (methane). Integrated flue gas samples were collected

and analyzed for oxides of nitrogen by the phenodisulfonic acid method.

Emissions of CO and gaseous hydrocarbons are shown in Figs. 53 and 54,

B R R R

o v
A Fpel it

e Although the shapes of the curves are similar, the carbon monoxide emissions A
= were considerably greater than the hydrocarbon emissions. %
’S'\ f:"
3 The striking feature of all the above results is the degree of emission ?%
Re. control one can realize from a judicious choice of operating air-fuel ratio L
4 for all the pollutants, except oxidcs of nitrogen. The data suggest that air-

4 fuel ratios ranging from 1.8 to 2.0 virtually eliminate smoke, CO, and hydro-

- carbon emissicns., Unfortunately, incompatibilities exist with regard to the

control of NO, and the remaining gaseous pollutants. Figure 55 shows that the
condition which minimizes C0, hydrocarbons, and smoke maximizes the generation
of NO, Likewise, the condition which minimizes NO emissions is undesirable
for controlling the other gaseous pollutants.

Finally, it should be noted that the optimum running condition for control-
ling emissions reduced the efficiency of operation in all cases tested. This
effect is shown in Fig. 56.
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PART VI: CONCLUSIONS

Spark Ignition Engines. Fmissions of carbon monoxide and oxides
of nitrogen can be predicted by use of common engine operating
parameters. For carbon monoxide the air-fuel ratio to the engine
is sufficient, while oxides of nitrogen predictions can be made
using the air-fuel ratio, spark timinz and intake manifold pres-

. sure. The levels of hydrocarbon emissions from spark ignition

engines cannot be readily predicted. The trends of variables
such as air-fuel ratio, spark timing, compression ratio can be
approximated but the absolute level of hydrocarbon emissions ap-
pears to be dependent on the specific engine in question. Pre-
combustion chamber compression ignition engines have oxide of
nitrogen emissions levels approximately one-half those of direct
injection engines.

Compression Ignition Engines. Emissions of carbon monoxide and
oxides of nitrogen can be predicted by use of the engine fuel-
air ratio. Since the indicated mean effective pressure of com-
pression ignition engines correlates well with fuel-air ratio,
emissions of carbon monoxide and oxides of nitrogen can also be
predicted by use of engine output in terms of indicated mean
effectuve pressure. Hydrocarbon emission levels vary widely
from engine to engine and a prediction of these levels is re-
stricted to an average emission level for a typical compression
ignition engine. Prediction of the level of smoke emissions is
not feasible,

Gas Turbines. Prediction of emissions from gas turbines is re-
stricted to average emission levels for a typical gas turbine.

A severe problem encountered in attempts to correlate gas tur-
bine emissions is a lack of published data on turbine parameters,

Average particulate emission to be expected from a typical coal
burning installation can be predicted. .missions for any one
particular furnace, however, cannot be estimated with any degree
of accuracy. A quantitative estimate of the effect of operating
variables on particulate emission from coal or oil burning fur-
nace is not possible.

Carbon monoxide emissions from fossil fuel burning installations
are insignificant if proper firing conditions are maintained.

The amount of sulfur oxides emitted to the atmosphere is com-
pletely dependent on the amount of sulfur contained in the fuel,
A knowledge of the ultimate analysis of the fuel being burned
will allow an accurate prediction of the amount of SO, being
emitted to the atmosphere.
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from a particular furnace cannot ke estimatzd with any degree of
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Hydrocarbon emiszions from fossil fuel burning installations camnot

be predicted,

203

A quantitative estimate of the effect of operating
variables on oxides of nitrogen emission is not possible at present.

1 fuel burning- installation can be predicted.

Average oxides of nitrogen emission tc be expected from a typical
fossi

aceuracy.
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PART VII: RECCMMENDATIONS

In order to ob%ain more data on which to base emissions correlations, fur-
the: research should be carried out iu the following areas:

Hydrocarben emissicns from spark ignition and compression-ignition
engines. More work is needed in order to determine quantitatively
how significant engine variables determine tha level of hydrocarbon
emissions from these engines.

Total emissions from gas turbines. More emiseionc werk should be per-
formed on gas turbines in which all the relevant variables are meas-
ured, Most gas turbine emissions studies in the literatuve present
little more than overall fuel zir ratio of the turbine. The results
of this study show that this parameter is not sufficient to predict
gas turbine emissions.

Oxide of nitrogen emission from fossil fuel burning installations.

A study is needed to quantify the effect cf operating variables cn
the emissions of nitrogen oxides. This is particularly important for
commercial-domestic size units which make up a large fraction of the
units used in military bases.

Hydrocarbon emissions from fossil fuel burning installations., A study
to defire the type ard magnitude of hydrocarbon amission is needed.
The study will allow an estimate of the magnitude of the probiew.

Optimization of operating condition for minimum emissions for
commercial-domestic units.
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