SIM360: A S/360 SIMULATOR

749365

"

Wm. Arthur Mc Cray

AD

MAC Teéhnica; Memorandum 30

May 1972

This“research was supported by the Advanced Research
Projects Agency of the Department of Defense under
APPA Order No. 2095, and- ‘was monitored by ONR under
Contract No. N00014-70-A-0362-0006.

Massachusetts Institute of Technology
PROJECT MAC-
Cambridge . ' Massachusetts 02139

Rr
NATICMNAL TECHMICAL
INi ’\TI’)N SERVICE

5 e
A 22151 g
I ST R RS ‘ (™ o

Bl i L T) bk

-

UNCLASSIFIED

’

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication ol title, body ol abstract and indexing annotation niust be en‘sred when the overall report is classilied)

t. ORIGINATING ACTIVITY (Corporate author) ‘|28 REFORT SECURITY CLASSIFICATION
MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNCLASSIFIiED
2b. GROUP
PROJECT MAC NONE

3 REPORT TITLE

SIM360: A S/360 SIMULATOR

4. DESCRIPTIVE NOTES (Type ol report and inclusive dates)

INTERIM SCIENTIFIC REPORT

5. AUTHORIS) (Firaf nama, middls initial, lasf name) T

WM. ARTHUR MC CRAY

6. REPORT OATE 78. TOTAL NO. OF PAGES 17b. NO. OF REFS
OCTOBER 10, 1972 117 { 17
8a. CONTRACT OR GRANT NO.] 94, ORIGINATOR'S REPORT NUMBERI(S)
NO0O14-70-A~0362-0006
b. PROJECT NO. MAC-TM-30
c. ob, OTHER REPORT NOI(S) (Any 'ofhe' numbare that may ba assigned
this report) ' .ol
NONE

10. OISTRIBUTION STATEMENT

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

1t. SUPPLEMENTARY NOTES 12. SPONSORING MILITA®Y ACTIVITY = ﬁ
BACHELOR OF SCIENCE THESIS, ' '
DEPARTMENT OF MECHANICAL OFFICE OF’'NAVAL RESEAFCH
ENGINEERING, MAY 1972 B

13NABSTRACT

7\ Modern, large-scale computer systems typically operate under the
control of an operating system or executive program, and reserve
for the exclusive use of the operating system a set of privileged
instructions, which the normal users may not issue. This very
necessary arrangement produce2 a problem of equipment availability
for those who wish to develop or investigate operating systems
programs, because such programs cannot be run as normal user jobs
under an executive pbrogram.

Thié'thesis describes SIM360, a detailed simulator of a representa-
tive IBM S/360 computer which was written.to run student programs,
programs assigned as machine mroblems for a course in operating
systems. The simulator allows programs to issue all the privileged
instructions of the S/360, and thus provides a readily available tool

for the study of operating systems programs.(\,/
\

IS

FORM . .
DD 1 NOV esl 473 A / { UNCLASSIFIED
S/N 0102.-014-6600 " Security Classification

UNCLASSIFIED
T Becurity Classification

- KEY WOROS

LINK A

LIMNK B

LINK C

ROLE wT ROLE wY

MROLE wT

360 simulator
I/0 programming

Interrupt processing

Teaching aid for programming

E- |'n°o.v~u1 473 (BACK)

(PAGE 2)

)/

UNCLASSIFIED

Security Classification

«

SIM360: A S/360 SIMULATOR

Wm. Arthur Mc Cray

MAC Technical Memorandum 30

May 1972

This research was supported by the Advanced Research
Projects Agency of the Department of Defense under
ARPA Order No. 2095, and was monitored by ONR under
Contract No. N00014-70-A-0362-0006.

Massachusetts Institute of Technology
PROJECT MAC

Cambridge Massachusetts 02139

SIM360: A S/360 SIMULATION

by
WM. ARTHUR Mc CRAY

. Submitted to the Department of Mechanical Engineering
on May 12, 1972 in partial fulfillment of the requirements
for the degree of Bachelor of Science.

~ ABSTRACT

Modern, large-scale computer systems typically operate
under the control of an operating system or executive program,
and reserve for the exclusive use of the operating system a
set of privileged instructions, which the normal users may
not issue. This very necessary arrangement produces a prob-
lem of equipment availability for those who wish to develop
or Investigate operating systems programs, because such
programs cammot be run as normal user Jobs under an execu-

- tive program,

This thesis describes SIM360, a detailed simulator of
a representative IBM S/360 computer, which was written to run
student programs, programs assigned as machine problems for
& course in operating systems, The simulator allows programs
to issue all of the priveleged instructions of the S/360,
and thus provides a readily available tool for the study of
operating systems programs.

Thesis Supervisor: John J. Donovan
Title: Professor of Electrical Engineering

ACKNOWLEDGMENTS

The auther wishes to express sincere appreciation to
Professor John Donovan gnd Mr. Stuart Madnick for their
suggestions, guidance, patience and encouragement, and par-
ticularly for the fact that the writing of SIM360 has been a
revarding and truly educational experierce.

The students of 6.802, Advanced Opurating Systems, who
ethibited remarkable patience and a gentle insistence on
absolute accuracy, are due speclal thanks for their helpful
criticisms and faithful reporting of bugs,

Pinally, to my 1ﬁcredib1y patlent and loving wife, typist
and helpméet, I offer my profound gratitude for her constant

and irresistable encouragement and support.,

1.
2,

3e

b,

TABLE OF CONTENTS

INTRODUCTION

DESCRIPTION OF SIM360

2.1 Advantages and Features

2.2 Configuration of the Simulated System
2,3 Structure of the Simulator

2,4 Program Operation

PROGRAMMING TECHNIQUES

3.1 The Virtual Core Array

3.2 The Program Stétus Word

3.3 The Interrupt and Event Queﬁe

" 3.4 I/0 Specification Blocks
CONCLUSIONS

APPENDIX A : PROGRAMMING FOR THE S/360 SIMULATOR

A.1 Introduction

A.2 Implemented Instructions

A.3 Preparing a Program

A.4 Input/Output Environment

A.5 Debugging Aids and Monitoring Featvures
A.6 Hints |

APPENDIX B : INSTRUCTORS MANUAL

B.l Student Decks
B.2 Assembler Instructions

B.3 Simulator Instructions .

page

7
12
12
15
17
20
29
29
30
30
31
33

34
34
34
39
41
2
63
65
65
66
67

. 5=

APFENDIX C : GUIDE TO MAINTENANCE, MODIFICATION AND
REPROGRAMMING

C.1 Overview

C.2 Module SIMLINK
Ce3 Module SIMCFU
C.4 Module SIMIO
C.5 Module TRACE

BIBLIOGRAPHY

75
75
76
83
95
111

117

B, -

C=1 :

C=2

C=3 :

c-b
c-5
c-6

C=-7

C=-8
c-9

LIST OF FIGURES

Simulated Hardware Configuration

¢ Simulator Structure and Data Flow

Simulator Operation Overview

Parameter Processinrg

Program Loading

Instruction Interpretation

: Accessing the Virtual Core Array

Alignment and Protection Checking
: Interrupt and Event Processing-

: Simulation of HALT I/0

¢ Simulation of TEST I/0

't Channel Interpreter

C-10: Interrupt and Event Queue Entries

C-11: Event Processing

C=12: RFS Command to Card Reader

C-13

¢ Trace Macro Data

C=14: Trace Queue Entries

page 16
19
24

77
80
85
88
90
92
99
100
102
104
107
109
113
114

1, INTRODUCTION

A simulation of a system is normally undertaken to
provide a manipulatable model of the system for investi-
gation and study. In some cases the system being simulated
may not exist, or may be in a development stage, and thus
1s unavailable for use. This would be the case with a
proposed mass transit system, for example, where the capa-
bllities and performance of the system must be carefully
evaluated before committing perhaps millions of dollars for
development. Another, and very frequgnt use of simulators
in this respect, 1s to provide the ability to develop the
hardware and software of a new computer system in parallel,
A simulator of the computer system, written to operate on
existing computer hardware, is used tg develop and debug
the software for the computer before a working prototype
is completed, and in this way a large savings in total
system development time cen be realized,

In other cases the simulated system may exist, but for
some reason be difficult or 1mpossible to use for experi-
mentation, One cannot, in practice, block a traffic artery
in a major city to sfudy the resulﬁing flow of traffic,
or vary the mass of the moon to study the effect on the tide.
In much the same sense, a simulation of en existing computer

system can provide an important tool for research, develop-

ment, and teaching. Modern, large-scale computer systems
operate under the control of an operating system or exec-
utive program, and place definite restrictions on the op-
erations which may be performed by programs run on the
system. Typically, user programs may not use instructions
which directly affect input/output devices, protection
mechanisms, the interrupt étructure, and other basic as-
pects of the processor state. Because the operating system
provides user programs with indirect methods of performing
operations with privileged facilities, most programs can

be run; however, operating system programs, that is, com-
plete prograﬁs which may issue any instruction implemented
by the computer, programs which in fact may be intended to
provide the indirect methods for performing privileged
operations, are excluded. For this large and important
class of”brograms, then, thé computer system is ﬁnavailable1
for testing or development. A simulator of the computer
gystem provides a solution to this basic problem, and offers

other substantial advantages as well,

1 In a relative sense, Manufacturers' personnel and
softwgre.support staff members at large installations may
have access to a "bare-bones" system on a limited basis..
Most users, even systems programmers, never have this
opportunity on a large scale system, for obviocus reasons

of efficliency and economy.

A simulator is not the only solution to this problem;
it is, however, frequently the only practical one. The
obvious approach, somehow to obtain the desired computer
for exclusive use, has been mentioned, and is clearly in-
convenient, impractical, expensive, and not necessarily
sufficliently useful when it is possible at all, Most
system programmers have encountered that maddening class of
program errors which exist, are perhaps regular;y repeat-
able, but which do hot occur when the CFU is stepped through
the erroneous code one instruction at a time, Similar
timing dependencies may exist in input-output operations
of interest., Finally, the computer may not exist in the
desired configuration, if some varticular feature or device
1s desired for study.

Another method of rmnning operating system programs
involves the use of a virtual machine, such as IBM's
cp-671 provides, The primary drawback in this approach is
the requirement that a very expensive and infrequently
available S/360 model 67 is required., In addition, the
virtual machine does not accurately reflect the timing

and behavior of the‘simulated computer in the area of I1/0

1 control Program-67/Cambridge Monitor System User's
Gulde, IBM Publication.

operations and privileged instructions. This is a fairly
serlous drawback, since this area is the focus of interest
in operating systems programs,
A simulator, in contrast, offers the advantages
summarized below.
-= Readily available to users
~= Run complete progfams
== Achlieve any level of accuracy desired
-= Incorporates comprehensive debugging aids
== Allows detalled performance monitoring
== Arbitrary configuration - size, features, and
devices
-~ May be optimized for solution of problem(s)
of interest
-- May be readily modified - software program

A complete discussion of these points is postponed
to the following section, where they are covered in depth
as features of SIM360. A simulator incorporating most
or all of these features is potentially useful for:

-= Software development

==. Teaching tool - student runs

-= System testing of new versions of operating

system software

Evaluation of different system configurations

-11-

-= Evaluation of new hardware

Software development is probably the most frequently
occurring reason for using a computer Simulator, Most
development programs for new computer systems involve the
early implementation of a simulator for the reasons dis-
cussed above,

SIM360 was specifically written for use as a teaching
tool in a course in sdvanced operating systems, and has
been successfully used for two machine problems (to date)
in the current academic semester. The checkout of a new
version of an operating system, or some component of 1it,
could be accomplished on a simulator without the necessity
for ;nterrupting normal operations, bringing down the current
system, installing the new version, running the desired
tests, bringing down the new systgm, reinstalling the old
systemn, etd., etc., through many iterations of the testing
procedure. With some modification, perhaps, a simulator
could be used to evaluate the effects and operating char-
acteristics of totally new hardware in the form of new
devices, a more powerful system, or perhaps a completely
new system (transition from a S/360 to a S/370, for example).
Simulators have not been widely used in these last three
areas, but because it is a uniquely complete end accurate

simulation, SIM360 could be a powerful and useful tool
for systems work of this type.

- 12 -

2. DESCRIPTION OF SIM360

SIM360 is a computer program written in PL/I which
simulates to a high degree of accuracy the behavior of a
representative member of the IBM 5/360 series of computer
systems, The simulator ruﬁs as a problem program under
0S/360 (or other operating system which supports PL/I),
implements the full complement of privileged instructions,
and provides very detailed and accurate simulation of the
basic I/0 devices of the S/360. It is specifically designed
to run student programs assigned as machine problems for a
course in operating systems, but provides a general solu-
tion to the problem of computer rnystem availability dis-

cussed above,
2.1 ADVANTAGES AND FEATURES

All of the advantages of a simulator 1isted in Section 1
are incorporated in some measure in SIM360, It is poten-
tially readily available to any user of the computer system
on which it is in usel, and could be made available on any

1 The IBM S/370-~155 at MIT's Information Processing Center

-13- [F

L3N
\:\‘,.

S/360 or S/370 which supports the IBMJS/36O operating system
and can provide a 200K user partition, Further, it could
be made available on any comparable lafge scale computer
system which supports PL/I, with appropq;aie, but probably
minor, modifications to the simulator c9¢é. In one sense,
SIM360 can run complete programs; 1t:ﬁmp1ements all of the
1/0 and privileged instructions of thé:S/360. The complete
instruction set is not implemented, but Wés not desired; the
simulator is specifically designed to rﬁg student assiegn-
ments emphasizing I/0 programming, 1nterfupt handling, and
other operating system techniques, An instruction subset
adequate for this purpose is provided.?‘

The level of accuracy of the simulation is as high
as could be reached using available documentation, In-
struction timings, for example, for those instructions which
have variable length operands, are ad justed to reflect the
length specified in the particular instruction being simu-
lated. I/0 operations which result in data transfers by
the data channels on a cycle stealing basis are accurately
reflected.2 Interrupt timings are adjusted to account for

device characteristics such as clutch points (on card

1 See Appendix A,

2 See Appendix C,.

- 14 -

readers and card punches) and line spacing (on printers).

SIM360 incorporates powerful and comprehensive de-
bugging aids. A program being executed by the simulator
may dynamically request dlagnostic or program f: ¥ informa-
tion to be printed by the simulator on the basis of a num-
ber of distinct conditions:

1) Successful branch

2) Reference to a particular address as an operand

3) Reference to a particular address for instruction

execution
L) Execution of a particular instruction (by class,
i.e., Loa& or Multiply, not instance)

5) Occurrence of an interrupt

6) Occurrence of significant channel ectivity

7) Occurrence of a dump request
All of these conditions may be dynamically set and reset
by the simulated program through the use of supplied macro
1nstructions.1 Because the simulator, as implemented, is
not an interactive system, there are no breakpoint facil-
ities, or other very useful capabilities usually found in
interactive debugging alds., Such features could, however,

be easily added tc the simulator should it ever be desirable

1 see Appendix A

. ..~4

- 15 - ;

to use it in an interactive environment., The capabilities‘
provided for debugging also serve for performance monitor-
ing. All aspects of system performance may be selectively
examined through use of the features outlined.

SIM360 is specifically adapted for the use for which
it was written. It is being used to run student programs
for a relatively large claés, and has many features which
are desirable for this use., For example, most of the options
discussed in Appendix B are provided to give the instructor
a measure of control over how much machine time and output
volume may be generated.by student programs, To a limited
extent, the options also reflect the abllity to choose an
arbitrary configuration for the system being simulated,
but, in general, achieving a truly arbitrary configuration
1s a matter which requires modification of the simulator

.code,
2.2 CONFIGURATION OF THE SIMULATED SYSTEM

The simulated computer (see Figure 1) which SIM360
provides is a representative IBM S/360 with up to 32K bytes
of core stofage.1 Up to six channels are available, although
at present only one, the byte multiplexor channel, has
attached devices., Two 2821;c6ntrol units are attached to

multiplexor channel 0, and”each 2821 services a 2540 cerd

1 o7nis ridiculously small amount of core (for a S/360) is

considerably more than adequate for student programs,

=16 -

| COTC. 6\‘0!‘&0&
(up Yo 22K)

' 4 w\ \ \‘
: ('C:'Nkkwd O)
23\ Bwﬁgved 42 Bukblered
LCov\\-ro\. Unik . Conteol Ut
a540 Cavd 510 Card
Reader-Puneh Reader-Punch
[\4o3 403
?ﬁh‘ﬂ.r ?\"\v\\—ev
\Mo | o3
Crinbey ?‘rinﬂr

Figure 1 : Simulated Hardware Configuration

o BE7wL

reader-punch and two 1403 printers. No special features
are implemented on the CPU or any device., Certain aspects
of the CPU are not simulated. The machine check iInterrupt
and diagnostic scan-out are not available, nor is the
operator's console.1 At present, no direct access or tape
devices are available, but direct access capability for
2311 and 2314 type devicesvare under development and will
be available in the near future. Tape facilities are a
possible, but not imminent, addition. This configuration
provides the ability to run systems programs which deal with
every phase of S/360 CPU operation except error detection,
and with card end printer I/0 devices.

2.3 STRUCTURE OF THE SIMULATOR

SIM360 is a complete system for running student pro-
grams, Ac an overview of the simulator structure, a brief
deScription of how the simulator is utilized will be given;
complete,detalled instructions for using the simulator
are given in Appendices A and B, |

Students are assigned a problem and prepare their

programmed solutions in S/360 Basic Assembler Language.

1 The operators console might be a useful addition to

an interactive version of SIM360,

-18-

Student decks are collected end grouped into one large
input deck; appropriate control cards are added for the
operating system and SIM360. The entire assembled deck is
submitted as one batch run. When returned, student decks
are reseparated, and printed output of assembler listing,
simulator output, and simulator trace and diagnostic out-
put are assembled for eacﬁ student and returned. Final
results after a serles of runs are submitted by the student
for grading.

The simulator produces this overall result by first
assembling all of the student programs using the G level
assembler1 in batich mode. Object module output of the
assembler 1s held in a temporary flle, which is the input
to the second (simulation) pass over the data., When all
student decks are assembled, the simulator proper is given
control. |

The simulator consists of four ma jor modules.2 The
first module, a very simple loader, reads the object
module output from the first (only) student deck and builds
an executable program in a reserved storage area. This

activity is entirely analagous to. that of the S/360 Loaderd.

1 This 15 a more efficient S/360 Assembler written at the '
University of Waterloo.

2 See Figure 2.

3 IBM System/360 Operating System : Linkage Editor and
loader, Form GC28-6538,

- 19 -

Read an obyeck voodule,

Load \wWio virkual
cove S‘\'ora.ae. :

STMLINK

y

Siwulake: o 7
Tstruction elecution L

Oy datos tromafers [and IV\?\d’ JJ
Twkerrwpts

Tiwer activities

SImceu

e

Provide Cequested
printed \\& s of Stake
of Systewm in r&ponce +o
qpecified evewts.

[TRACE

Stwmulate:,
ccw clecod.w\a_ .
Device actiVines
Set we
T/0 whertupts
oW datos dramsfers

ST ML)

Q*'\v*cd

11 O WA put
[Caxd OucA-Qut '

Figure 2 : Simulator Structure and Data Flow

w 20 =

When the program has been loaded, the CPU simulation module
initiates system activity in a menner analagous to S/360
Initial Program loading. Thereafter, under the control of
the CPU simulator, the I/0 simulation module and the trace
module are invoked as required by the program, and the
simulated execution of the student program procedes until
it terminates, or until aﬁ unrecoverable error is detected.
Control then returns to the module SIMLINK, which loads

the next student program and reinitializes the simulation

process,
2.4 PROGRAM OPERATION

The simulator receives control from the operating system
in the module SIMLINK. First the parameters of the run are
processed,1 and then the first (or only) assembled student
program 1s loaded., When thé,program i1s loaded, the module
SIMCPU is called to simulate prdgram execution. When SIMCPU
returns, SIMLINK loads the next program and continues in
this manner until all programs have beeh simulated,

The module SIMCPU performs some initialization, and
proceeds to simulate the execution of the program by using .

the doubleword at simulated location.zero as the initial

1 See Appendix B, section B.3.1 and Appendix C, section C.2.1.

program status word. Each instruction is simulated by a
small routine (typically four or five PL/I statements) which
does appropriate processing to implement the instruction.
After each instruction the elapsed time in the simulation
is updated, and a check for an interrupt or other special
condition is made, Interrupts may occur because the timer
decrements from zero to minus one, or because an appropriate
condition exists 1@ the I/0 subsystem. Other conditions
which are handled are data transfers between core storage
and I/0 devices, I/O‘events,land the special considerations
which arise when the CPU is in the wait state.

If in the course of instruction simulation the simu-

lator encounters a request that a trace condition be en-

abled (or disabled), the TRACE module is called at an appro-

priate entry point. This module checks and decodes the
trace request, makes (or deietes) an appropriate entry in
the list of enabled trace condifions, and, 'if necessary,
prints any requested trace information. The other class of
events which causes the TRACE module to be called is the
occurrence of a condition which is currently being traced,
In this case an appropriate entry po1nt in TRACE is ~alled
to format and print the information requested by the enabled

1 Ssee Appendix C, secticn C.4,6,

4

e e

- 22 . N

trace condition,

When SIMCPU encounters an I,0 instruction, or when an
I1/0 event occurs, the module SIMIO is called. Different
entry points are used for diffefent functions, The simu-
lation of the HALT I/0 and TEST I/0 instructions involves
1little more than examining the state of the addressed channel,
subchannel, and device, and setting the CSW and the condi-
tion code to appropriate values. The HAIT I/0 routine may
also involve the scheduling and rescheduling of interrupts.
The START 1/0 instruction, on the other hand, frequently
initiates a long and very complex chain of events., In a
very simple casel the followiﬂg outline lists major active-

ities in their order of occurrence.,
- Fétch the CAW. from core and validate.
- Fetch the CCW from core, decode and validate,

= Call a routine which implements the specific device

involved in the operation.
- Validate the specific command to the device,

- Schedule_a device end interrupt to occur after

completion of mechnnical activity.

1 For example, the Read,“Feed, and Stacker Select commend to
the 2540 card reader, discussed in Appendix C, section
Couo7o

- 23 = -

- Set up data transfers between core storage and the
device, to occur at appropriate intervals over an

extended period of timoc,

- Set up conditions and parameters associated with
the end of data transfer (e.g. chanmel end interrupt

or event),
- Return to SIMCPU,

In eddition to the simulation of I/0 instructions, SIMIO
performs I/0 event processing, end initialization for and
termination of I/0 simulation.at separate entry points,
Figure 3 shows an overview of the operation of SIM360,

and may help to clarify the foregoing discussion.

w
- 24 - .

(S‘munv\)

Qo.vo.ww_’rev
?rocess\mcd

—
\-oad

or o %r&vvx

STwWC P\

Stmu\ate
Sfecurion o
progrow .

Yes Tore

ff!&'l:;lﬂnﬁ-

Flgure 3 : Simulator Operation Overview
(continued on next page)

= 85 =

wierprey
{ashouweion
- Op cedes’
- o?ﬂ.t&vds
LIRACE ‘
Yes Prink rrace
wlorwmation
Ha
SIWIO |
Siwulodre
Tlo
[4 wstruchion
A\ othnex

wstruckiong
Swul\ade

wstruckion
Q—W’\(bv\

ND . NDA

Figure 3 continued
(continued on next page)

""26-

u?h*l '\:\W\Qr.
Tberougt

TaXe
EUN T
o \nkerpret) N3
NRKE tasruck
Dekrwine eyt
ﬁ\gmf-\uw* Qewy
(*\wer cr T/DY
“d “ucfd\v\
‘\'° C-C\NA\‘“OV\ '\\u-\\
c\—trw\\ud

Figure 3 continued
(continued on next page)

-27-

Do Tequested
Feace agtording €0
wforwation Sin
Yhe tcoce Geue
-e_vd-qi

Yes |

' (Roa)

Valdate
‘race

Ceque G

i

Qui end f\x
W frace

Od.l.e.u.e

T v p Nes
T

(o 1}
Ruirw

Figure 3 continued
(continued on next page)

[Cex covdivion

\ culachawmnel
prretstely | Tt
. (Return) [Set s omd/ |
or cowdiicw
cede
o.?('rop(‘\a.*c_‘

Eamine, < |
cede omd for of WL::E\UI e | Tro
csw H&' hanne),

crmm.&e aw T
\V\ ¢ 03:&"; en Yae
c\‘\&ww\e.\

_#\:\2 condithow

Schnedud < ow
\Mces..u =
Lot 'sc'r

Fetehn CQU
poinked o oy

NId (Ve R
Decede CCW.

Do transfer:
update Cow
address

pdate data.
addvess omd

counks

Cal\ device
Siwu\akion
Couk\wne

Figure 3 continued

|

-29 - .

3. PROGRAMMING TECHNIQUES

SIN360 is a program, and some insight into the tech-
niques used in programming SIM360 is useful for increased
understanding of the simulation and .ts scope., Some of
the mbre important techniques1 and data structures used
in SIM360 are discussed in a general way in the following

sections,
3.1 THE VIRTUAL CORE ARRAY

The contents of the core memory of the simulated
computer are held in an array.composed of n elements,
where n is the memory size of the simulated computer,
Each.of the elements in the array is an eight bit logical
quantity which represents one S/360 byte. The bounds of
the array are so defined that the index of an element is
equal to the memory address of the rerresented byte,
Based arrays defined to contain groups of adjacent bytes
are overlayed (by a pointer) on the virtual core array to
allow aggregate entities (halfword, fullword, etc.) to be
referenced directly. This technique is fully discussed
in Appendix C.

3
-
coumm B e

1 A representative s. mr;. only, not by any means complete.

- 30 -]

3.2 THE FROGRAM STATUS WORD

The program status word, PSW, of the simulated com-

puter 1s represented by a structure which contains variables__w

corresponding to the various fieids of the PSW in'appro-
priaté formats. The condition code, for example, is rep-
rgsented by a bit striﬁg.of two bits; the program counter
(instruction address) is a signed integer which can be
used as an index into the virtual core array to fetch an

instruction.
3.3 THE INTERRUPT AND EVENT QUEUE

Some interrupts, such as program interrupts, occur
1mmeﬁiate1y whenever the proper circumstances arise.4
Other kinds of interrupts, particularly those associlated
with 1/0, may remain pending indefinitely after they are due
to occur either because they are masked off, or because
some other interrupt occurs first. In addiﬁion, a device
simulation routine,1 in the course of simulating device
operation, mey determine that one or more interrupts should
occur at some future time as a result of device operation,
In such a case, an entry or entries will be placed in the

interrupt and event queue, a 1list of pending and scheduled

1 see Appendix C, section C.4,7,

- 31 - -

interrupts or eventsl maintained in order by scheduled
time of occurrence. Entries in this queue contain infor-
mation which determines the channel and device involved,
status information for the CSW, channel and device, and
other necessary information. This queue is examined after
the completion of each instruction to see if an interrupt

or event is due to occur,
3.4 I/0 SPECIFICATICYL BLOCKS

The I/0 capabilities of the simulated computer are
defined by a set of spepification blocks, one for esch
channel, control unit, and device simulated. A channel
specification block (CSB) contains information on the
current state of the chanmel (available, interrupt pending,
or working), and a pointer to the control unit specification
block (CUSB) of the first attached crntrol unit. The CUSB
contains similar status information, and pointers to the
next CUCB and the device specification block (DSE) of the
first attached device. The DSB for a device contains all
necessary information to simulate the device, for example:

-- A ﬁointer to the device simulation routine

1 Events are associato&?nlth conditions in the I/0 sub-
- "-
system and are fully explained in Appendix C, section

004060

-- 32 = ’

The data transfer rate of the device

The record size of the device (if fixed - cards=80,
printers=132, etc.) '

The device status and sense state

Pointers to any data in the process of being
‘transferred to or from the device

Information on the CCW or chain of CCW's tre
device 1s executing

etc,

All of this information, and a good deal more, 1is used

by the device simulation routines, the channel interpreter,

the event processor, and other functional routines in the

process of simulating I/0 operationms.

- 33 -

4, CONCLUSIONS

SIN360 is an unusually complete simulator of & large
scale computer, complete in a mamner important in the study
of operating system programs., It makes available to a
large number of people who have no complete access to
S/360 hardware a model of that hardware which is sufficiently
accurate to be useful in many areas where most simulators
are of little use, It has proven useful as a teaching aid
and is potentially useful as a tool for:

1) Systems prograﬁ development and testing

2) Pertformance monitoring |

3) Debugging complex programs

-3 -

APPENDIX A
PROGRAMMING FOR THE S/360- SIMULATOR

This appendix is intended to be a self-contained and
sufficient guide for students or other users of SIM360,
Familiarity with the S/360 assembler language is assumed.

A.l INTRODUCTION

The S/360 simulator is a program written in PI/I
which 1s designed to execute small (less than 32K) assembly
language programs in such a fashion that the programmer is
unaware of any difference from a physical S/360. 1In partic-
ular! priveleged instructions, protection mechanisms, in-
terrupts and I/0 channel programs mey be used and manipu-
lated. There are exceptions and qualifications which surround
such a statement about any simulution, and several of the
more important of these are discussed below. 1In general,
however, any program which will run on the simulator will

run on the S/360 and vice versa. Your primary guides in

using the simulator are therefore Principles of Operation
and the S/360 Assembler Language..

A.,2 IMPIEMENTED INSTRUCTIONS

The simulator does not handle the full complement of

S/360 instructions.
systems programming use is implemented:

HEXADECIMAL
FORMAT OP-CODE

I,

11,

111,

Iv,

MNEMONIC

LOAD INSTRUCTIONS

1,
2,
3.
b,
5.

L
IR
LM
LH
LTR

RX
RR
RS
RX
RR

STORE INSTRUCTIONS

1.
2,

3.
b,

ADD INSTRUCTIONS

1,
2,

3.

SUBTRACT INSTRUCTIONS

1,

oy

3.

ST

STM
STH
STC

70
AR
AH

S
SR
SH

RX
RS
RX
BRX

RX
RR
RX

RX
RR
BX

- 35 -

58
18
98
L8
12

50
90
ko
k2

5A
1A
kA

5B
1B
LB

A subset designed to be adequate for

Load
Load
Ioad Multiple
Load Halfword
Load and Test

Store
Store Multiple
Store Halfword

Store Character

Add
Add
Add Halfword

Subtract
Subtract
Subtract Halfword

V.

Vi,

ViI.

VIII.

IX.,

X.

MULTIPLY INSTRUCTIONS

l, M RX
2, MR RR
3. MH RX
DIVIDE INSTRUCTIONS
l, D RX
2, DR BRR

COMPARE INSTRUCTIONS

l, ¢ RX
2, CR RR
3. CH RX

- 36 -

5¢
1c

1D

59
19
49

COMPARE LOGICAL INSTRUCTIbNS

1. CL RX
2. CIR RR
3. cCic RS-
b, crLI SI
MOVE INSTRUCTIONS
1. MvC Ss
2, MvI SI
AND INSTRUCTIONS
1. N RX
2. NR RR
3. NC Ss
b, NI SI

55
15
D5
95

92

54
1
Db
ol

Multiply
Multiply
Multiply Halfword

Divide
Divide

Compare
Compare

Compare Halfword

Compare Logical
Compare Logical
Compare Logical

Compare logical

Move

Move

And
And
And
And

- 37 -

XI., OR INSTRUCTIONS

l, © RX 56 : Oor
2, OR RR 16 Or
3. oC 5 D6 . or
T SI 96 Or
XII. XOR (EXCLUSIVE OR) INSTRUCTIONS
l, X RX 57 Exclusive Or
2, XR RR 17 Exclusive Or
3. XC | SS D7 Exclusive Or
4, XI ST 97 Exclusive Or
XIII., SHIFT INSTRUCTIONS (LOGICAL)
1, SIDL RS 8D Shift Left Double
2., SLL RS 89 -Shift Left Single
3. SRDL RS 8c Shift Right Double
&, SBRL RS 88 Shift Right 5ingle
XIV. BRANCH INSTRUCTIONS i
1, BAL RX 45 Branch and Link
2., BAIR RR 05 Branch and Link
3. BC RX 47 ' Branch on Condition
Ik, BCR RR 07 Branch on Condition
5. BCT RX 46 . Branch on Count
6. BCTR RR 06 Branch on Count
EX BX 4y Execute

.7.'

XV. GENERAL INSTRUCTIONS

1,
2,

XVI., I/0 INSTRUCTIONS

1,
2,
3.
b,
XVII, SYSTEM
1,
2,

Use of

LA
IC

SIQ
HIO
TIO
TCH

RX
BRX

SI
SI
SI
SI

-38-

41
43

9C
9E
9D
9F

CONTROL INSTRUCTIONS

LPSW
SVC
'SPM
SSM
ISK
SSK

SI
RR
RR
SI
RR
RR

82
0A
ok
80
09
08

Load Address

Insert Character

Start 1/0
Halt I/0
Test 1/0

Test Channel

Load PSW
Supervisor Call
Set Program Mask
Set System Mask

Insert Storage Xey

 Set Storage Key

a valid 5/360 instruction which is not imple-

mented by the simulator results in a& program interrupt for

an operation exception.

In addition to the machine in-

structions listed above, there is a set of simulator ex-

tensions to the S/360 instruetion set which currently

includes:

.1« TRACE and TRACEOFF = discussed in section A-5

2, QUIT - the simulator termination commands,

30 e

These are implemented as macro-instructions and should be

used as such, as they are subject to change.

A.3 PREPARING A PROGRAM

A program must consist of a single control section
with no external references, and must be assembled starting
at relative location zero. The simulator initiates ex-
ecution of a program in a manner similar to the hardware
IPL function, and the programmer must provide at location 0

an initial PSW. For example:

EXAMPIEl CSECT

IPLPSW oc A(0,START)
UNUSED DC 7XL8'0002000000000000"
CSWETC DC 6F10!
~ NOINTS DC 5X18!0002000000000000
START SR 12,12 SET UP BASE
USING EXAMPLE1,12
L h ,BEGINADR
SR 595
LA 16,256
INITLOOP ST ~ b5,0(4)
LA 5105
1A I, ()
BCT 6,INITLOOP

. QUIT

BEGINADR
BLOCK

zero

PsSW,

-uo-

DC A(BLOCK)
DS 256F
END

The DC labeled IPLPSW defines a doubleword at location

which will be used by the simulator as the initial

In this particular example:

1.
2,

3.

b,

5,

All maskable interrupts are disabled.

The storage protection key is zero, providing
unlimited access to all storage.

The CPU i1s in the running state and the supervisor
state,

The initlal condition code is zero.

The first instruction to be executed is at location

START.

Other detalls illustrated by this example are:

1,

2..

The programmer must somehow initialize the per-
manently assigned core addresses (24 - 127) to

the initial values he desires. The method used
here is recommended.,

The programmer must provide the assembler with a
base register and initialize the register. Anather
example will show an alternative method.

-4l - -

3. The simulator should be terminated by the use of

the QUIT macro-instruction.

A4 INPUT/OUTPUT ENVIRONMENT

The current version of the simulator 1mp1ements only
a byte multiplexor channel with two attoched 2821 control
units., Each 2821 has attached one 2540 card reader-punch
and two 1403 printers. The assigned device addresses are:
First 2821: 0CC Licader
00D Punch
00E First Printer
OOF Second Printer
Second 2821: 012 Reader
013 Punch
010 First Printer
011 Second Printesr

Detaliled information on the programming . required to
support these devices is contained in Principles of Operation

and in JIBM 282] Control Unit, Component Desgription (A24-

3312-7) [

Special considerations involved in programming for these
devices on the simulator are: -

1. No special featxres are supported.

- 42 -

2. Stacker select commands to the reader punch are
not simulated. Stacker select inrormation in
2540 commands must be valid, but is ignored by
the simulator,

3+ Carriage skip commands to the printer are all
interpreted as a skip to channel 1 (head of form),
Carriage skip information in 1403 commands must
be valid, put regardless of the channel specified,
the paper 1s positioned at head of form,

A,5 DEBUGGING AIDS AND MONITORING FEATURES

A,5,1 FACILITIES

The simulator has extensive and powerful trace facil-

ities to aid in debugging programs, Proper use of these
facilitles will greatly reduce the number of runs required
to solve a given programming problem. The trace facilities
are dynamically contrclled at execution time by the use of
the TRACE and TRACEOFF simulator control instruction. The
following trace features are provided:

1, Branch tracing: whenever a successful branch
instruction is executed, the stan-
dard trace information will be
printed, 6ptions may be specified.

2,

3.

5.

-43-

Address tracing: whenever a given location is
referenced as an instruction
ocperand, the standard trace in-
formation will be printed. Options
may be specified.

Execution tracing: whenever the given location is
referenced for execution, the
standard trace information will
be printed. Options may be
Specified.

Instruction tracing: whenever a given instruction

| (LR, M, 'SSM, etc.) is ex-
ecuted, the standard trace
information will be printed,
Options may be specified,

Interrupt tracing: whenever the specified type of
interrupt occurs, an abbrevi-
ated version of the standard
trace 1nfofmation will be printed.
Options may be specified,

Channel tracing: whenever the specified channel
performs significant operations,
an explanétory message i1s printed.

Examples are:

a) A new CCW 4s fetched in a
chain.of command chained
CCW's, This information,
and the address and text of
the fetched CCW are printed,
b) The channel receives status
from an attached device.
This information and the sta-
tus byte are printed,
Options may not be specified,
7. Snapsnot: whenever the trace command itself is en-
countered, an abbreviated version of the
3tandard trace information will be printed,

Options may be specified.i

In addition to the above, the simulator can print the
standard trace information f'or each instruction executed,
This facility is not dynamically controlled, and must be
set by the instructor.

A.5,2 STANDARD TEACE INFORMATION

The standard trace information mentioned above contains
the following information:

1. The current hexadecimal value of the location

counter (10OC),

2,

3.

i,

56
6.

7

9.

- b5 -

The type of the trace request which caused this
message. For example:

PGM INTERRUPT

ADDRESS O0F6

INSTRUCTION SSM

SNAPSHOT
The instruction count at the time of the trace
message, 1i.e., the number of instructions which
have been executed (COUNT),
The elapsed virtual (simulated) time since the
start of execution.
The contents of the current PSW (hexadecimal),
The IBM mnemonic op-code of the instruction asso-
ciated with the trace message (OP),
A hexadecimal dump of the instruction associated
with the trace message (INSTRUCTION).,
The hexadecimal absolute addreszes of address
operands 1 and 2, if present (ADR1l, ADR2),
The first four bytes of operands 1 and 2, if present
(OPERAND1, OFERAND2).

The abbreviated trace information printed in an in-

terrupt trace message contains only items 1 - 5, The informa-

tion printed in a trace nessage associated with instruction

execution(Branch, Address, Execution, and Instruction trace

_-'us- -

types) reflects the state of the CPU at a theoretical poiné
in time after instruction fetch and address generation, and
before any data has been changed by the execution of the
instruction. The information printed in a trace message
associated with an interrupt is that existing after the old
PSW has been stored and before the new PSW has been fetched.
Snapshot information is assoclated with a point in time
after completion of the execution of the instruction pre-
ceding the trace request and before fetching the instruction

following the trace request,

A, 5,3 OPTIONS

The three types of options which may be specifigd in
a trqce command are status, registers, and core dump.
Status information is that contained in the permanently
assigned low core area from 1ocation'2blo = 127;0. This
includes the old and new PSW's for the five interrupt classes,
the chamnel status word, the channel address word, and the
timer. Any status options requested are formatted appro-
priately and identified, The régisters option is obviously
the 16 general purpose registers which are dumped in hexa-
decimal and dec;mal and identified. Core dumps are in hex-
adecimal and character format. Further discussion of the

options is included in the syntax description.

A,5.4 TRACE SYNTAX

The syntax of the trace command is

[BRANCH
ADDRS , adr
EXEC, adr

[LABEIZI TRACE J INSTR,opcode) Eoption::_l

where

B

opcode =

type =

chadr =

options =

INSTPT, type
DUMP
CHANL,chadr

& label or decimal address

hexadecimal opcode of instruction

r -

PGM
1/0
{ Exr }
SVC

MK |

-

an integer 0 - 6

r.STATUss {status spec }

(status spec [,status pecJ
REGS= [integer 0 - 15
{ (integer 0 - 15 [integer 0 - 15]
CORE=(core spec |,core spec |)

!

status spec =

~

-48 o

OLDPGM
NEWPGM
OLDI/0
NEWI/O
OLDEXT
NEWEXT
OLDSVC
NEWSVC

OLDMCK

NEWMCK
TIMER
éSW
CAW

—

.oore Spec = adr, wordcount

wordcoint = decimal integer 1 -~ 128

Nofe the following points:

1. Each 'core spec! is a pair:
address,wordcount

2. In each trace command

16 registers
. 13 status "fields®

allowing options a maximum of

8 uci'e dump specifications

may be speci}fed.

-9 i

3. The example uses snapshots heavily., This is ac- “
centable for very simple programs but for complex
problens the more useful information comes from
interrupt and branch tfacing; and well chosen

instruction tracing,

The sample program which follows should help to clar-
ify the information given above. The circled numbers on

the trace listing refer 'tv tie notes which follow the example,

®3NOC 4007 ¥I3 1S3L 33X HILINS I NJJS
*SAdNWYIINT 0/1 3IHL HOLWM 071 %1494l 3Ivul
GN3IHD 1V NOILJNYASNI HY 3HL MOMS - 89 *uISN] 32Vl

{1408 T *29SH)=3U0J* (S*H*ST)=SOIYHI LTINS * SHAOY 3Jvul hxnmh
°S1dNYYILINT 0/1 ONV *NOILYIOT Vv “NOILONYASNI NV HOLVM ONFe
.uz~u<um 379N0U*3INIT v SINIY¥E HOIHM d00T A¥OHS V 00 11IM 3N MON *(MSds
M3N TUYNYILX3 3JHL 33S) 3d3H IKID 2M *SUNIID LINYYIINT ¥WIWIL 3HL NIHus

%

«0000000000022012 ¢ X 0 i1vn
ao sa
oy *1dNYYIINT ¥INIL v ¥Od LIWA 11V ASdl

“ASd LIVA ¥NO NI ND 13S SI 118 1JN¥YIAN]T TNY3LXI IHL AVHL 31DVs
. “SYNJJ0 L1dNUYILNT YINIL IHL MANN ILVIS LIYM 3HL OIN] 09 MHON#
. dWNa 3Jvil

SLOHSJYNS v 00 *uvd SIHL N3IL109 3A.3M LVHL Adi¥3A 1 e
*3SN 3wningd ¥0d4 l4g vl
“0¥OR ¥3IWIL IHL NI 3¥ILS . 0849 1S
| ; *3SITHIN E°€=~9INIHION ¥ VW 94 us
) " *1dNYY3IN] ¥3IW]IL 335 OL 1X3°1 duiNI 3DVl

i i “¥NIJ0 14NYBIINI FHL HILVA DI 3DVY L LdNUUILINI TYNYIIXI JFHL»
. NO NYNL 711X 3M °LINN YIWIL 3INOD ST LVHL 3SAVIIE Sk €°€ ANVULIY¥GdY S
NY 39 T7IA LIVA 3HL “1dNY¥YIUNT ¥3IWIL V dN 13S L1SYI4 V1IN Ins

(82140)=390)
T ..Onooon.h.o.n.O.M.N.-oo-nmow¢.tuuoa0lw=h<hw.!uu.huuhz— 3Jvul NIJ3@
: “03NIddVH 1VHAM 33S 0L Su34SI93¥ IHL OGNV 3¥02 03SN 40 1V dW1IOs

-

mw. ‘S¥NII0 INOD 31 OS *ZWIL SIHL LV SIANWYILNI WVY¥O0ud ONIL1DIdX3 1IN
N39ON IN1Y¥d
. *31N0S6Y S1 AVY9DUd 0*3WYNLS T INISN
m .
) 3 _
i *Y3IWONVH 1dNYYI INI OF tINIDI®0)Y 20
3 . *ASd Q3ISNNN +0000020000002000 s X 20
*NSd '1dNYY3INT WYHOI U4 (ININ9d 01V 20
*WYU90Ud SIHL NI ScMSd 03SNNN +£000000000002000 s X 20
" “¥3IW1l Y04 NSd MIN TYNYILXI 11815101V 20
m.
*SNOILYI01 G3SNNN ,000000000000Z0004X01T 20
N
*NSd IWILINI INI938%0)V 20
g 12353 3WYNLS
2L »«ﬁ oY) ANIWI IVAS 3NN0S
1 \uo: . G ==404 JNYLSNI
L]

L6
88
6L
99
s9

€9

19
09

8s
LS
9s
1y
9y

¥y
€y
F4 4
(13
43
1€
ot

] ¢
A ¢
N

1
€1

11
01

N®m

’ 95100 4s10 J3sé

0000030000002210

08000 0800 002w

10000 1000 0S1¥
05000 osov 090S
9781

€210030000000320
0000020000002220
vid10000000000300
00002300250023920
¥400000000000000

0230020000002200

0800000000C002320

iN1S 2u0ov ty¥oav 3003 133rseo0

-=NO1123S *3°v InVNLST
- O“ -

332230

J4000¢C
J4lIJT

Jvodlo

360330
#0300
350200

000230

340200
243230
3900C0
282330
850000

8222350

220220

20038

pIvR

2L AVN O1

Z

39vd

"y .w.r.u.», TrIxETeS vy
29SHey h |

HOLIMS 33av J303IvyHd IN)J1
°MON SN3ddVH ONIMLON LVH1 MOHS ONY S32Vul 3H1L 440 Nunls

€+ 2ISH no3 WILIES

s =LNNQJ d0O0TI 20 ISKH
2€000.) o 11] &y

*H) Z€T ONIOG LON °119 1I7S 3LON ¥%,02:X°29SN% €06 X Ml
+=INNGD 4007 L1X31 SHIISNY UL Z1° 200 4X%9SH® 3 TT o X RII MIIINI NG

OIlIVYM ASdS
: ®30IA30 3a¥S 3HL OL NOI1TY3dO Y3IHIONVS
_ mh<~h~z~zcum:uxowwnozwwu—>wndduhh~¢:.¢m>m36: .hw:tmxﬁ

*U3ISNVYYL 29SSy 18

ViIVG 40 QN3 3HL SIIJINIIS ON3 Sy xS

T3INNVHY 3SAVIIE SIHL 00 Nv) 3m 1's vl
’ ==¥31INNOD UNOD AIN3W3YI3a Z9SH'y 3 GN3HD

©$53490¥4 NI NOILVYIJO IHI KI¥Wd ON3 I13NNVHI V 109w

g *WYY90%¥d L¥D8Y 11no0
. (82140)=3422¢ (#%I°0/1C10)=SNLVLS *dWNG IIVYL 1408V
*WYYI0¥d 3HL LY0EY ONY 40W¥3 NV SI SIHL AVHL 3WNSSY THIA IMn
‘2 TdNYX3 G3ONIW-31dNIS A¥3A SIML NI °GN3 3J1A30G ¥O ON3 T3NNVHD 10N+

©d0i07 3NNILINOD °GN3 3J1A20 3I1 NOOD9 34
. °GN3 3J1A30 ¥03 1531 . 20090 X=4¢ H)
*9M1SS3J0¥d GN3 I13NNVHI 00 09 GN3HD 39
®GN3 T3NNVHI ¥03 1531 s0080.X="g H)

t °S118 SNAVIS MS) 139 89°s HY dN1Q1

. °3J1A30 ¥3d0¥d 3HLs
WOY¥J IW0D OL GIWNSSY WV SLINYWIINI LVHL JLON °*W¥O¥Y3 NV G3¥3QISN]D»
§1 3573 ONIHLANY -°ONNO3 3%V A3HL J1 NOILOIVY 31VIYdO¥ddY $3%VL ONV=s
. *GN3 3JIA30 U0 QN3 I3INNVHD V N¥O3 SN00T 3NILNOY G1dN1S AY¥IA SIHLw
. I *¥3TANYH 1dNYY3INI O/I s

i

_ *NO 118 O T3NNVHD 310N + 000000000000 2008 «X 20 OILIvm
. ! : - g0 sg
Y *3n0a 40 o/1 1L 11wm OI11VA nSdl
*F01LVY¥3d0 0/1 3M1 |1uvis aNv «300,X OIS
*MV) dn L3S (MDJUNIYdIV=4(¥)2L IAW
*LINO OS *dO¥Y3 *ION I 1¥08Y 2IN8
_ ¢33Y4 ¥3IANINd #300sX OIL
. .m»a:zzm»z.Axua 00 09 1NO2L ET]

AN3WILVLS 3IN03

. L & -,

o -=30LINY¥1 SN}

R TN

Lav
94a1
os1
6%1

IRA¢
991
1324
*»”l
13

erl
141
or1
o€l
8etl
L€l
9¢1
SEl

oel
611
811
11
911
s1t
%11
€1t
r49 &
Tt
ottt
601
801
201

s01
%01
€01
201
101
ool
6o

¥6

dW1S

Cadsus LR YR AN

¥s100 87 Y 0%ds
$390€)0%La<U9ICY

cal404035

42000302836 1C500¢0
0000208ISTOULIT

0dJ0

00100 0010 0J¢t

8s100 8S10 04%CS
9551

10003 1020 051
85100 8410 O%v s
3009/ 3000 C3LY
33104 3210 C3s8Y%
€100 €10 08L%
22100 2210 035%
%9000 900 0S¥
0300020000C02209

00100 0010 002¢

33000 3000 022Js

82100 8%000 8210 §70C €020¢
1100 U100 OLLY
30000 3000 023as

89100 8910 08BLY
2d900v 1¥OGY 3009 1)2ryo
==NJ1123S ‘d°vlInv LS

- - TCow

53

BATE 144

431220
341200
331500
2121320
71000
7?1500
2713300

32 1200
delucy
3¢13230
S€100C

211200
»113%0
011030
201222
8012322

01320
312D
E4CI00
%340330
236310
viCudce

32320
€1329)

3031

+00%0 (X= 912

40080, X= S12

: (NIIUNIYI V= 12

ON3 €12

0d344333LeX 30 SDAXVW 212

+00000080sX IO NOV403 112

I 40 so o1z
i i

°SLNYUILNI WY¥90ud SIYONII SIHL 0y MSd) ANIAId 20

. 1100 €02

" *3IVNIN¥IL HONOV3s 202

: (S*9)=593¥*dnNa 3dvul €61

) Sty uv 261

. : 2's W 161

*3¥NGIJ0Nd 34VS SOdXVN'Y 1 061

. : L wds 681

. L2 ¥s 881

i *NIVOV AL ONV [S14MMY3INI NOIL43X3 INIOd 03XI3 340 NunL MINe L8l

: . *1dNYUILNI WVHOOUd ¥ MCHS GINOHS INILSIT 3IVvdls 981

g M3 1343A0 ¥is v S8l

NV 8Snv) 0L LI 01 Z Jav awnv Z2's W ¥81

*¥36WNN 3AILISOd WANIX VW 3HL 139 SOdXVNW Y U €81

!

iy .u»a:xgw»L_ IN10d L Wes 181

G313 MOTIV DL ¥SVNW WY¥90ud NDT304 %2 1 081

(S4%) =S9IUWIdAI0=SNLVAS® WOd* L4ULNT 3Vl 11

*3HNT0A dwna SS3N

744 3ONVHI 1Suld
INIOd G3XId4 340S

¢L AVH 01

L e L

€ 3ovd

.

ATinIITS SN 3AI9 01 3Jvil LIdNEY3IIN] WVHE9Odd+ OLY

00%0
02350
§%100000

33444448
00G600020

82000 8200 0028

s*vl
0s14y
0%785s
oL%0
1131

€0000
¥J100

€000
%310

%391
0514
0485

20000
%3100

2000
%J10

oL%0

02100 0210 oL3s

°S1dTUYILNI 3HL HILVR GNv SNOILIONGD MOI3u¥3AI% 691
34V3YD 17INM 3 MON °d00V LINIGd ¥NO HLIIM 3NJAs 891
IN3W3 AVLS 32¥N0S 1WlS 2d00V 1330V 3d0J 123r8c
* ==4013NYLSNI ° -=N31133S *I°VEINVYNLST

3310¢C0
J21230
831330

221220
22123900
321330

vd 1000

yvi200
IVIJID
Jol000
v51320
861200

901300
261300
331220

381320
831200

2L AVN 01

1 39vd

- b se

IINIY3L38-SS0WD

-ty

eyt

Lé
ez

9¢1l
061

S3INFUI43 Y

€01
8%
L
85
oL
M
6
€L
(131
€81
€1
11
911
031
11
€
001

lﬁ“ -

1l
19

69

£S5l
1721
erl
802
(11
oyl
12

r48
i5

112
9¢1

(44 ¢

N330

201300
060200
360000
851200
351000
341200
v&1000
851000
251200
¥21000
9C0200
301200
300000
221900
%£1000
080300
211300

INWA

kel A K & A B AR K AR KRl

SIilvm
1i0X
lalsst
iNJIL
421183
MIILiNldd
INIADd
CISK
oSw
S24XVA
IAVNLIST
ANIJI
NJ2O
Nulasz
SAELD
N1236
Lu3uyV

TIEAAS

L AWM 01

1 3%vd

*r

AL B Y .

A¥YNOI 1JIQ NO14VI013¥

821000
v91000
161000
6%1000
020000
v80000
J10000
293000
350000
¥00000

§$S3aav

IQ“I

SOvid

10
10
10
10
10
10
10
10
10
10

UgI®13y

Ql°Sad

LA

C 2.

-

S ¥ .

-

.) 3009 ALI¥IASS LSSHOIH STt ¥
! : AM9WISSY SIHL NI 3399V13 SIN3A3LVLS ON

*AT9M3SSY N1 hzchnzou 3dAl-A 378ViVI0T13¥ 3NO ISV3T LV I9%09nSY

i @ e b & e,

2L AVH O1 39vSS3w 30LD ¥CU¥3 LALS

1 3Ivd SIILSONIVIO :

l““l

9090€0Z 4 8s10
~ 000000%0 4900
..
€4030404 8s10
4 ¢

;
£40304034 8S1)
¥2000080 L)
'
3
\ 9090€0€ 3 sy
o
. -y
0O TONVY340 Zwady Tway

!
_ k
<

.

Lue
2000
1-
8510 J3s6 11D
%00 058¢
LeLe
€000
| O3
8S10 0%0S . 1S
et
€000
1=
8510 098
Y500 058y HY
.oeeee
€000
- |
eST0 3356, 1M
m
m
NOELINYISNE| dO

000000 2 9.00,

‘13344444 1618
230000 0 8.00.

301000 0 9.00.

000000 0 @.00,

Sd4449494 ST
%1000 O 9,10,

34434444 2619
SET000 O 8.00,

201000 0 8.00,

000000 0 9.:00,

Sd4443449 ST
230000 0 9.00,

000000 0 900,

V0000 0 9.00,

$:01

9201
9:0%,

901,

9,01,

9:01,

%02

o.mn-

4:01s

.91,

.01,

9.01,

9:10s

3000

0000

3000

0000

3000

0000

0800

0000

€ 0 09 sM5d 6LL%6 1€ 1dnN3¥3InT 0/1 02300
0JE 344399 1 - ‘0500
230303403 Yy 43510
$AWNT 382D
00900000 :S ¥ YEISH9262- 424030534 :2 4o
3523151934
0 0 00 :MSd 989465 »2 86910 :S33¥QI7 2300
0 0 00 sASd 089%6 61 NCOILINELSN] H1 2210
2 0 08 :R3d 089°%5 61 AcfuY3iNI O/1 2332
00434443 =08 40500
€3040403 :9%€ 9510
S4RNG 2350
*10000000 :S ¥ ¥EISH92S2- 424040423 % »
353315195y
0 0 00 sMSd EE€9*€ 1 9510 $SS3TGLY 2910
00344344 3206 ‘0500
€30403403 2vhe ‘€310
s4ANQ 30D
400800000 *5 ¥ 1~ 34454444 9 v
2383187 .4
0 0 00. smSd 1€¥°¢ 1 . AH”Vmwmc 32037 9€10
0 0 00 :ASd 82%‘¢c 11 NOILINYLISN] 41 1ic
20 08 :M5d @Zvec " 1dn¥¥3tnt /1 0330
0033434 38 40500
€3030304 299¢€ ‘S 10V
. SdWNU Sdud
10000000 ¢S ¥ 1- $34443444 o ¥
533151934
0 0 00 sASd €.€%¢€ L 4 4510 2$S34Cav 23900
20 10 M54 €€€ € ” A””v»aaaaw»z~ 1x3 0000
0 0 00 M54 1 € 1UHSdVYNS J70D
3dIL i1N0) 3dAL 3Jvyl

- p I

*03T3VN3 SNOIL11ONGCD O

CONILSIT 3Ivds ZavniS

14030404

13040404

»L000080

9090€C1d

000000%0

2403040 4

230340404

8s10

Te®

8510

8s 0

dD TONVY340 2Z¥OV THUV

d

- e ars

PETY)
1000
=
8510 0505 1S
elte
1000
o
8ST0 O¥8S I
9500 0S8y W1
e
1000
1=
8s10 33s6 117
9500 05RY WY
YY)
| 2000
n_n
es10 ooow 1s
e
! Zooo
.
eS10 oves 1
|
zo~pu=¢»mz@ 40

|

1

DA R LA S AR T A VN XVA Ul Baen e 47 an o i v2 V3 B3 V)

000000 O 8402,

b EEECFEF IR 4 8]

Z%1000 0 8.10,

e FEEFEEFRRIAS']
8€1000 0 9,00,

201000 0 9400,

000000 O S.00.

3343434344 :S1¥

230000 2 8,00,
201000 0 8400,

000000 0 9,00,

$3443943344 26Ty
ZyY1000 0 9410,

33434334399 ST
BET1000 3 8400,

¥$ed Ul

1
.01,

§%02
.01,

9,01,

8.01,

201
- 'Y A

9:071,

9.01,

8071,

8%32
9.01,

3000

0000

0000

000C

3000

0000

0000

3000

0000

0000

LY 2 ¥ A VI V]

Z 0 09

‘10000000 : S

0 0 00

400800000 :S

0 0 00

0 0 00

2 0 o8

=fix>d

inSd

?

u3d

insd

SNSd

00400000 :=S

0 0 00

0 0 00

Z 0 08

‘10000000 =S

0 0 00

SnSd

SMnSd

Sn3d

SnSd

‘00600000 :

0 0 00

SNSd

S

®0378VYN3 SNOILIINGD 5

3L, UJao ot e ba _%e .4 N)
86400 b 1dliga 31l 71
005 J44344 308 ‘05C0
14040404 :=9%¢ $8310
SEWMNO 2.2
4 9¢ 1399252~ ‘030404335 9 o
2Ld31S1e 4
S82%861 L5 6610 :L.3:z217
00SJ3443 :Ju 4340C
14040404 :99¢ ‘y31¢C
SdhNd Jc 23
4 SETISH92G62- 14030434 4 .
sSuilslysd
¥8Z 4851 %S 4510 :$5324Q3V

182851 15 NCILONGLASH] 471

182861 1s LdNYY3iINE L/]
00SJ4444 208 0500
13040 304 :9%¢ ‘e310
s44ANC 330D
¥ SEVI599252- ‘14040404 9 ¢
s3d3L1519Cy
9814861 9y 3810 :4$S34Q2v

1814851 (3 2 NOILINYLSN] 47

1814851 6t LdNYYIINI T/1]

00t 34344
¢3030403

40500
‘8510
$dKWNa 3¥0D

13040424 % »

08
3 47

¥ SEISy92s2-

SSu3LSIv3y
Y8L%65 L€ dUsT0 :SS3uUaw
00E33444 :08 $0S00
€30340404 %€ ‘gsl10
s4dWNd 3¥0)
d YEISH9292- 22040303 =% a
353931451934
28L% 66 b¢ dS10 :SS3ua35v
34112 INNDJD 3dALl 30viL

. lhh..l

<713

st 10

3510

3330

2300

2040

3320

Z»10

2el0

R

CINILSTIT 3FIvad zaviNid

d'
9090€043 8510 610 4366
000000%0 ¥400 Y400 0S¥

d'
04040304 8510 9S10 0%0S

ﬂ'
04040404 os 10 6S10 098§
¥1000080 %500 Y400 056%

ﬂl

60 TONVNY340 Z¥AY TWOY

4

NOI 1JNYASNI

teee
+000

I

HY

dLie
0000

18

dete
.0000

Hl

(21X
0000

d0

WT000 0 8411, 84106

861000 @ 9,11, 9,10,

3LT000 0 9401¢ 9:10,
$443343444 2STY¥ 9201

€30000 0O 9400¢ 9421,
07000 0 9:00s §.01,
000000 O 9.00s 9.01,

$43d343444 :STY 1

21000 0 9410s G:01,
S44444444 261 8Y02
S€1000 0 9.00s 84016
WT1000 0 9,00« 901,

0600000 0 9400s 901,

44449344 36TV rNun

0000

8000

0000

0000

3000

- 0000

0000

0000

3000

2834510272

0 0 00 :M3d .80L2%es¢ €6 1 HSU%NS Co1C
LYIEBYLHYIZ~ 10000008 =S ¥ LY9EB¥LYTIZ *J444d44L 29
3SB831S1o.¢
861000 8 B:+T11,s Y4104 6000 2 O 29 :98d A1
2SA1vLS
0 0 00 :M3d 20L%95¢ 26 1dNYg31:l wdd 55%C
0 0 00 :M3d O00L%95¢C Le 1TH>dvuNS 221C
02583444 228 0500
43040404 :¥%¢€ E310
S3INN] 540)
*OODW0DO00 & ¥ LETISHY9252- 33040404 v ¥
SSu31S193y
0D 08 indd L69°%95¢ %8 dS10 :533aU37 <306
0 O 00 :M5d €69°%95¢ 6L NOILONnaisHl Hl 2210
€ 0 08 :M3d €69%95¢ ol LdNBYZiNI /1 23135
009vid444 :04 0300
01040404 :¥%¢ ’g510
SdnWNa =30)
10000000 =S ¥ LEISH9252- 4343030304 :% o
239315193y
0 O 00 =mSd 580°10¢€ e 9510 $$53380Jv 2v10
009V444s :0v 0500
04340404 :9%¢ ‘6510
4400 3:0)
400800000 :S ¥ 9€TI3%6262- *0124G42d4 % o
2383181934
0 0 00 :MSd 860°10€ L 7} YS 10 25S33Q37v vE€10
00 00 :nSd SB0°T0€E 1L NOILINYASNE Hl 2010
Z 0 08 :M5d S80°TIE 1L 1dNYu3LINE 271 233306
009Vd4444 :08 *0<00
04030404 :9%¢ 6510
-34WNAQ 3300
00900000 =S ¥ 9ETI599262- 04030424 9
334315195
anli iNNAaD 3dAL 3Ddval I
*0373¥YN3 SNOILIONOD S CONILST 4IVd4 5avilST

- w“ -

©szy*ozt $3KWIL Nd) Q3LY NAIS
U 499°50L *96¢€ :3nll IY3Y GIAVINKIS

INYNIST WYYO0Ud ¥3J NOILVYNIAY3L ¥CIVWNIS 1 vAdUN

SL LRSS NS SSR LAl o 22 o1 T DT T P P peeon 2004 S SR

3974 1X3AN NI W¥Id4 40 3vaH LV
SRR 2R000 00000220 00S 0L 00020008 52 0¢ S 00890005000

-

..QQ..QQ..'Q.’..OO::QQ...QQ.Q

S14ViS 300 ¥3iNIYd
haaad Lo S22 LTS L PLY L

L Al Lo ALl DI R T LT 2 TS D P e
01 i1nding IrVnLST

QQQQQOQOOQQQQ:QIQIOGQ*CGbii*&&t!ﬂtb;ir L2

0000
1000
2000
€000

=LNN3J ¢201
=LNA3) 4331
=iNNJJ dII1
=1N23) 4337

=62 -

Notes on the example:

1)

2)

3)

k)

5)

The location shown in this columm is usually the
location of the instruction following the in-

struction associated with the trace.

The time 1s the elspsed time, in microseconds,

since the start of the simulation.

See the LPSW instruction at statement 58, and its

op?*rand at statement 61.
This group defines one iteration of the print loop.

Note that although this instruction does not; address
the traced location directly, the location is con-

talned in the operand, and the trace occurs,

.-'63 - -]

A.5.5 TURNING OFF TRACING

Any requested trace facility may be removed when no
longer needed by means of the TRACEOFF command.' The syntax
of this command is identical to that of the tracelcommand,
except that no options are included, 1In addition, all
traces of a given type may be turned off by replacing the
explicit specification adr, opcode, type or chadr with the
word ALL. For example: o ‘

TRACE INSTR,U45 TRACE BAL

TRACE INSTR, 82 TRACE LPSW
TRACE INSTR, 50 TRACE ST
TRACE INSTR,40 | TRACE STH
TRACE INSTR,42 TRACE STC

= code « =

TRACEOFF INSTR,ALL TURN OFF ALL INSTR

A.6 HINTS
1. Do not place any cards containing // or /¥ in

colums 1 and 2 in your deck.

2., Use your last name (maximum of 8 characters) as
the label on the CSECT card which must be the first
card of your program, This makes It eaéy to iden-
tify your assembler listing and output, Use a

TITLE card with your name also for further ease

3.

5.

6.

- 64 -

in identifying listings.

Your deck should have one each CSECT card (above,
first card) and END card (last card).

Do not use the EXTRN or ENTRY statements or Q or

V address constants,

The first 128 locations (16 doublewords) must be
properly initialized.

The instructor can set the maximum number of in-
structions you can execute and the amount of virtual
time which you have to run. Be efficient in your

code and use the wait state properly.

- 65 =

APPENDIX B
INSTRUCTORS MANUAL

An overview of the steps in running the simulator was
given 1ﬁ section 2.3, The detalled procedures are only
slightly more involved., The following sections discuss in
detall all the necessary considerations.

B.1 STUDENT DECKS

Each student deck must be one (only) S/360 assembler
lanpuage control section. The simulator's loader cannot
1ink control sections, properly process external symbols,
or rélocate to a base address other than zero. To enable
all of the simulator output to be easily collated, the name
(1abel) on the CSECT card is used by the simulator as an
ldentifying tag on all ouptput. A student deck should
therefore look like

name CSECT FIRST CARD
assembly language statements
END ' " LAST CARD

where name is an appropriate identifier (student's last

name or assigned I,D. number, for example). It should be

- 66 -

noted that improper use of the ICTL assembler control
instruction can cause the assembler to terminate processing,
and thus abort many assemblies in a batch run, It has

been a successfu). policy to siunply make no mention what-
roever of this, since this feature of the assembier is

very rarely used. Should the problem arise, students can
be instructed never to use this statement.

B.2 ASSEMBLER INSTRUCTIONS

All student decks for a given run should be grouped
into one large deck, checking each student deck for the
presence of an END card. In front of the student decks
appropriate Job Control Language control cards must be pro-
vided. The following cards are the appropriate ones for

M.I.T.'s Information Processing Center:

// JOB, PROVIDED BY IPC
// 'SUBMITTER'S NAME',REGION=200K,CLASS=B,MSGLEVELm(1,1)
/*MITID USERa(M1234,5678)
/%*SRI LOW
/*MAIN TIME=5,LINES=6
//STEPNAME EXEC ASM,LEVEL=G,PARM.C='LOAD,NODECK ,BATCH'
//C+SYSLIB DD DSNAME=USERFILE.M4568,10113.MACLIB,
// DISP=SHR
//C.SYSIN DD *
student decks
/-l

- more control cards to follow, discussed below -

-67-

The first four cards are the Job and job parameter
cards. The number of cards and information required here
will vary widely from installation to installation., The
cards shown are included for completeness. The next three
cards shown are included for completeness. The next three
cards are thoée required when a catalogued procedure such as

the one provided by IBM is available; refer to the Assembler(F)

Programmer's Guide (C28-3756) for further information. The

important point here is that thé“temporary data set named
&&TEMP must be created, contain the object module output of
the assembler, and be passed to the next Job step. Note that
a private macro library; containing the TRACE, TRACEOFF, and
QUIT macros, must bé used,

B,3 . SIMULATOR INSTRUCTIONS

The complete JCL necessary to run the simulator is:

//STEPSIM EXEC PGM=SIM360,

// PARM:'MAXTIME=10000,MAXCOUNT=4000,CAﬂDS:Z,PBINT=3,MAXPGE=11'
//STEPLIB DD DSNAME=USERFILE,N4568.10113,LDLIB,DISP=SHR
//SIMLIN DD DSNAME=&&TEMP,DISP=(OLD,DELETE)

//SYSPRINT DD SYSOUT=A

//STRACE DD SYSOUT=A

//SIMBRNT DD SYSOUT=A

//SINPRN2 DD DUMMY f:

//SIMPRN3 DD SYSOUT=A

//SIMPRN4 DD DUMMY

//SIMPNCH DD DUMMY

//SIMPNC2 DD DUMMY

- 68 »

//SIMPNC3 DD DUMMY

//SIMPNC4 DD DUMMY

//SIMIN DD *

- data cards for simulated reader 00C -
//SIMIN2 DD *

- data cards for reader 012 -

//SIMIN3 DD DUMMY

//SINING DD DUMMY

The use of the various cards is explained below, after
the discussion of the parameters which may be included in
the PARM®= field,

B.3.1 SIMULATOR OPTIONS .

The PARNM= parameter on the EXEC card which invokes
the simulator may contain any combination of the following
options, Defaults assumed by the simulator are underlined;
any error in the parameter field produces a terse diagnos-
tic, and the simulator will not run. It does examine the

entire parameter field for validity, however,

MAXTIME=n n must be a positive decimal integer
which represents the maximum emount of
simulated real time in milliseconds

which will be allowed to elapse for one

program. Default is 1000, or one second,

MAXCOUNT=n

MAXPCE=n

CARDS= 0,1,2,3,4

PUNCH= 2.19213"'"

-69-

n must be a positive decimal integer
which represents the maximum numter of
instructions which the simulator wiil

execute for one program, Default is 500,

n must be a positive decimal integer

which represents the maximum number of
pages of trace output (printer data set
STRACE) which will be allowed for each

program run. Default is 5,

The number of input streams to the sim-
ulator, corresponding to the DD state-
ments labeled SIMIN (corresponding to 1),
SIMIN2 (corresponding to 2), SIMIN3
(corresponding to 3), SIMING (corres-
ponding to &).1

The number of punch output streams to
be used. Corresponding DD statements

are SIMPNCH - SIMPNCh,L

1 Only two 2540 card reader-punches are avai;able in the cur-

rent version of the simulator; the card input (output)

streams 3 and 4 are available for expansion,

PRINT= ovlvzvavu

PNCHDEST= PRNT,PNCH

PGMINT= YES,NO

THACE= ALL,NONE

- 70 -)

The number of print output streams to
be used. Corresponding DD statements

are SIMPRNT - SIMPRN&,

If it is desired to print ratﬁer than
punch the punch output streams, use'PRNT',
Ir fhey are to be punched, use'PNCH',

The DD cards SIMPNCH - SIMPNCH nust be

COTTES polivaig 2y adjusted.,

If 'NO', then a program interrupt which
occurs after a program interrupt and
before an LPSW instruction is executed
will cause the simulator to print a
dlagnostic and terminate the progzram,
'YES' causes the simulator to ignore
this condition,

If 'ALL', then every instruction causes
the standard trace message to be
printed. Otherwise, only trace condi-
tions enables dynamically by the program
are printed,

The following optioms rre for maintenance and debugging

use only. Note that they oan cause many thousands of lines

to go to SYSPRINT,

TDUMP= 0,1,2

IQDUMP= 0,1,2,3

PDUMP= YES,NO

B,3;2 SIMULATOR JCL

T -

'1' causes the trace qucue to be dumped
every time a new trace condition is
enabled., '2' causes a trace queue dump
as for 'l', and in addition on every
occasion when a trace message 1is printed,

'0' inhibits all trace queue dumps.,

'1' causes the interrupt and event

queue .. be dumped each time an I/0
interrupt occurs., '2' causes the channel
specification block and the I/0 speci-
fication block to be dumped after the
initiation of each device operation.

'3' causes both of the above, '0!' is

for no dumps,

The simulator's link-loader module will
print relevant information on programs
loaded and initiation of simulation if
YES®,

//STEPLIB DD DSNAME= etc,
This defines the 'library'! which will be searched first to

find SIM360 when the system starts to execute the simulator,

Refer to IBM sttem[360 Operatines System: Job Control Language
Reference, Form C28-6704,

-72-

//SINLIN DD DSNAME=&&TEMP,DISP=(OLD,DELETE)
This defines the assembler output from the previous step

as the program input to the simulator.

[/SYSPHINT DD SYSOUT=A
In the event of a serious error detected by the simulator
or the operating system, diagnostic information will be
printed on the SYSPRINT data set. This control card is
also used by the maintenance and debugging options of the

simulator (TDUMP=, etc.).

//STRACE DD SYSOUT=A
All trace information generated by the simulator goes to this
data set. Note that the MAXPGE= option may be used to pre-
vent an erroneous program from generating hundreds of pages

of trace output,

//SIMPRNT DD SYSOUT=A
Output to printer O00E goes to the data set defined by this
control card, This card and all following may be punched
as follows if the simulated I/0 device is not to be used:
//SIMPRN2 DD DUMMY

Remember that correspondence is required between the PRINT=

option of the simulator and the SIMPRNx control cards

-73-

(PRINT=1 implies that only SIMPRNT and printer O0OE will
be used; PRINT=2 implies that SIMPRNZ2 end printer OOF will
be used in addition, etc.).

//SIMPRN3 DD SYSOUT=A
Tris particular simulator run (of an assigned student
machine problem) was using printers 00E and 010, but not

printer OOF or 011,

//SIMPRN4 DD DUMMY

Not used in this case,

//SIMPNCH DD DUMMY
.//SIMPNC2 DD DUMMY
//SIMPNC3 DD DUMMY
//SIMPNCU DD DUMMY
No card punches weire used in this example., If a punch
were to be used, the corresponding JCL card would normally be

//SIMPNCx DD SYSOUT=B

//SIMIN DD #
This JCL card must be followed by the data cards which are
to be read by the simulated card reader 00C. Note that

because of System/360 Operating System conventions, none of

-7“-

these data cards may contain // or /* in columns 1 and 7.

//SIMIN2 DD +
To be followed by cards for simulated reader 012.

//SININ3 DD DUKMY

//SINING ©D DUNMMY
The simulator in its current implementation ha: no device
which uses these data sets. It is recommended, however,
that they be includec, since the simulator may attemnt to
open the data set if an error occurs in punching tre

CARDS= option.

=75 - :

APPENDIX C
GUIDE %0 MAINTENANCE, MODIFICATION AND REPROGRAMMING

Because it is written in PL/I, maintenance or repro-
grammipg of the simulator should be fairly straighiforward.
The following discussion'will therefore trace the overall
logic and functional behavior of the code, and avoid detailed

description except where necessary,

C.1 OVERVIEW
The simulator is composed of four ma jor modules:

1, SIMLINK - Beads and loads into virtual core
array tﬁe object module (assembler
output). Also does initial parameter
processing.

2, SIMCPU - Does simulation of CPU functions,
instruction execution, timer, inter-
rupts. Also does simulation of DMA
data transfers.

3. TRACE =~ Processes dynamic trace command in-
terpretation and does the processing
and formatting associated with trace
outputﬂ

4, SIMIO - “t-s all processing related to I/0
o

instructions, CCW's, and the in-
temal performance of I/0 sub-
systems,
In addition to these r'our major components, there is
a very small (42 BAL instructions) assembly language sub-
routine which does simulation of fullword multiplication
and division. This Js necessary because these two S/360
instructions (M and.D) require 64 bits of precision and PL/I
does not have this capablility.

C,2 MODULE SIMLINK

C,2,1 PARAMETER PROCESSING
 This module contains the initial entry point to the

simulator. First the parameters passed to the simulator from
the PARM= field on the EXEC card are processed. Processing
is very stralghtforward and is outlined in Figure C-1. Refer
to the Aprendix B for further information on parameter key-
words and their effect.
C.2,2 PROGRAM LOADING

When parameter processing is compléted, the error switch
is tested and if an error has occurred the program terminates,
Otherwise, some initialization is.performed (at the label
RESTRT; see Figure C-2), and the output data set of the

assembler is implicitly opened and the first card read. Of

1

the five valid record types produced by the arsembler,” only

1 IBM System/360 Operating System: Assembler(F) Programner's
Guide, Form C26-3756

- !

Set loca) variadle
[eagwm] = ?o-ra.w.hr

havacter s*r\v«&

(OnRw100p)
S e PO

PARMBONE

Scam Loe comma

Sext TEwe (Pwe cR
P alkw '
7 Set enrwm = qull
S*r‘w\&
——————————— Nes
ID e\edes £ eom we rk\m% eu&h‘{"\—l
fh‘-; PRRw “Keywoed | Se.ﬂ&metewom =
1S Patbbweter! Qaie ag 3 N s‘\rmz
LpRGEEe — *;RW s
------ W2 S\-L\:G‘N‘\
BRRw after CA.

- Tempairy OO v ikl
I[ﬁﬂlimﬁ’u.tu‘ru“‘.m "E p=--- _{
ot ""E"""‘-"—’Hﬂér

l= = o= = -

Scom PWORK Ry,

Figure C-1 : Parameter Processing
(continued on next page)

n78n

|: CARWME RR)
fint exeoe
E\es ¢ with

X Pu)ORK

Qo :e.w\q REjwean)
= Qust

o S vm%d‘ QucR® Cexr ector swtdn
Cet *t-vn(-' {INnEO)=
sg.)oah-\ A‘f RQuwcRK

cxfer—

\ .
Seardn Qor KEILORD ¢ Akw0ce
= o valid Ken\ww& '

| CARMERR)

des

Process QCCG\'&N&\ﬁ

Qe Wwkernal
awikenes.

Figure C-1, continued
(continued on next page)

Internal Switches or

PDUMP

Valid Keywords Variables Affected
MAXTIME MAXT
~ MAXCOUNT MAXI
TRACE TSWITCH
PGMINT PGM_SW
CARDS NOINSTR
PUNCH NOPNSTR
PRINT NOPRSTR
MAXPGE MXPGCNT
PNCHDEST PPRNTSW
TDUNP TQDHPSH
IQDUMP CDDMPSW, IQDMPSW

PDUMPSH

Flgure C-1 continued

- 80 -

Set E_SW

Print eccor
W\e&sa%e.

Set P.TO =
S{mbool nawme

REMD-TN

Figure C-2 : Program Loading

(continued on next page)

Setr TPLSW off

=

-81-

\ocd ":\.LN\\'\ ed
Yext

Print error m
W\tS“aaqte_.

Ger E.SW

(READ.IN)

Figure C-2 continued
(continued on next page)

-8‘2-

(DONE) (RESTRT)

Set E-SwW oﬁ.‘

Yes __ﬁIV\'\ﬁM'\‘ie. Llesy
A8 bites Yo xero.

Set TOLSW oW

?\"\w\ exvcov
W\es%a%e

(ResTRY) Call stmeeu.
Wetecute”

Q"O%"Q\M ‘

(REWD_TN)

RESTRT

Figure C-2 continued

- 83 - :

three are processed by the assembler; RID and SYM records
are ignored (without causing an error condition)., The ESD
record is used to establish the identifying name of the pro-
gram being simulated. If the conventions for program prepar-
ation outlined in Appendices A and B are followed, this will
be the name (label) on the CSECT card of tﬁe program being
simulated., The END record signals the end of the program

and causes the actual simulatipn process to be initiated, TXT
records supply the text of the program and are loaded into
the virtual core array PROG. This is a one dimensional array
of aligned eight bit elements which is used to represent the
core storage of the simulatéd cbmputer. Figure C-2 shows

the logical flow of the loading process. Note that if an in-
valid card type is detected or the student program does not
initialize the first eight bytes of core storage (used as the
initial PSW) the program will not be "executed", Also note
that when the simulation of one program is finished (return
from call to SIMCPU), SIMLINK reinitializes and continues to
load following programs, terminating only when an end of

file condition on the input occurs.

Cs3 MODULE SIMCPU
€,3.1 STARTUP AND INITIALIZATION

On entry to this module various local variables are

initialized, and two calls are made to initialization entry

- 84 -

points in the modules SIMIO and TRACE (SIMIO and SIMTRAS,
respectively). The first operand address is forced to zero
and the LPSW instruction is given control to load the initial
PSW.
C.3.2 _INSTBUCTION SIMULATION
Instruction simulation, in itself, is quite straight-
forward. The interpretation and decoding of the instructions
(Figure C-3) 1is not quite so simple, and the actions taken
after the completion of the simulation of each instruction are
quite complex. Figure C-3 shows the outline of the algorithm
for instruction interpretation; reference should be made,
if necessary, to IBM System/360 Principles of Operation.
Giveh the information in Figure C-3 and the diagram showing
the accessing scheme for the virtual core array (Figure C-4),
understanding the code which simulates the various instruc- |
tions is easy (most instructions involve only four or five
lines of PL/I code),
As shown in Figure C-4, the virtual core array may be

accessed in six ways:

1) As a byte - 8 bit logical value

2) As a halfword - 16 bit logical value

3) As a halfword signed integer in the range

-32768 to 32767 '
L) As a fullword - 32 bit logical value

- 85 -

@TR_INTERP)
I)

A M(C‘:S{v\a Sy
Seecificamotiadceqtion
A% qQQm\a\"\u.'\'t.

REGY | =INSTR{A)
REGY A = TRSTR(Y \b)
ALLRY, ABDRY, =

RDDRA= DAL {B7)
25 SfaeoRi=ni +e(@)

- 33A7b% _ﬂ
REGX\= INSTR(a,12) = TNGTY
VDRI D re(B1) + - ?N?TRCQ*“‘)
cfx\) ROBRY =D +C(B1)
ROORA= - 33748 BOLRY: * A8
Y
|9\ I

Figure C-3 : Instruction Interpretation

(continued on next page)

_-86-

Clveck Lor waedvruckion|
Trace , feCution
frace .

Call +race wodule

\f needed.

Wededke TIwE
oy \V\s*Vuc'f\ov\
+ime

‘o progriate
WMStruttion execuXion
«d ow opeede

Figure C=3 continued
(continued on next page)

Variable

ADDRY

ADDR2

REGX1

REGX2

-87-

Represents

Address of operand 1 (if present-

RX, SI, RS format)

Address of operand 2 (if present-
SS format)

Value of operand 2 (if an immediate
operand) or value of count field
(1f SS format)

Rl specification for general purpose
register operand (if RR or RX

format)

R2 specification for general purpose

register operand (RR format)

Figure C~3 continued

.-'88 -

*sJdajstdaa asodand

[BJI9USZ 8Y3 J0J pPoasn ST owsyos JeTTugs vy

— (SIIE #9°CHOMTIEN0A)Tad LIg

— (SII9 1€ PuU® NDIS‘QUOMTITINI)MI

4 (SLIE 2€°QEOMTINI)Md~LIg

T 1 (SIIg ST PUB NOHIS‘QHOMITVH)MH

T m| (SLIE 9T°‘THOMJITIVH)MH IIg

T (siIg g°sdaLxd)ooud

Accessing the Virtual Core Array

Figure C-4

5) As a fullword signed integer in the range
=231 to 231
6) As a doubleword - 64 bit logical value
The general purpose registers are also represented by

an array (extent 16-~0:15) and are accessed in the same way
a5 32 bit logical, 31 bits with sign integer, and 64 bit
logical values. The frequently referenced procedures AL_PROT
and PROT check operand locations for boundary alignment
(AL_FROT only), address tracing requests, and memory pro-

tection violation (see Figure C-5),
C,3,3 POST-INSTRUCTION PROCESSING

After the execution of each instruction, and bvefore

interpreting the next instruction, the simulator must check
for a-variety.of conditions, and perform the necessary
processing associated with the conditions found.
C.3,3,1 TIMER UPDATING AND INTERRUPT SCHEDULING

The label ND (very rarely ND2) is the point where post
instruction processing begins. The ! 'struction count is
updated (and checked against the allowed maximum), and the
simulated real time (R_TIME) is updated by the execution time
of the instruction just completed (nominally; value of temp
TIME), Then the timer counter (T_TIME) is updated and a
check is made to see if 3333 microsecbnds or more (virtual
time) have elapsed since the timer was last decremented. If
this condition exists, then the simulated timer (fullword at

location 80) is decremented by an appropriate amount, and, 1if

- 90 -

- ;
A)
‘ PRoT }— s

: \ ABTRAS.
5 1001wt frace
wnferwmation
_ "Cq\uc‘a‘\'ed)
J-Ll.
AODR.EVep ¥—tE Tppuand
cere @
Yeg,

Figure C~5 : Aligament and Protection Checking

-9 .

the timer has gone from a positive to a negative value as
a result, appropriate interrupt processing is done, 1If
the system mask allows external interrupts (bit 7 = 1)
then the interrupt is taken immediately; if externgl in-
terrupts are masked off, the interrupt is scheduled to
occur as soon as the external interrupt mask bit is set to
allow the interrupt.

Ce3.3.2 SEARCH FOR INTERRUPT

When timer processing is completed, the interrupt and
event queue is searched to see if any pending (or previously
masked off) interrupt or event is due to occur, An event
occurs when its scheduled time (in the queue entry) is less
than or equal to the elapsed virtual time in the simulation.
However, an event due to occur in time may not take place,
because, for example, it is a timer interrupt and the exter-
nal interrupt mask bit is zero. An event vhich is not an
interrupt might be the transfer of a byte to or from core
storage by a channel in the'process of data transfer, or
the occurrence of a device end for an operation initiated
by a channel command word with the command chaining bit on.
Flgure C-6 shows the outline of this process. Note that the
interrupt and event queue is maintained in sorted order by
scheduled time of occurrence, and that masked interrupts are

simply left at the head of the queue, and thus will be

\r/
!
A"4

Tiwer
?r°CtSSRvT3 |

Go \Wwhey preX
nerd
wsruckion

— Waw etate ?\‘OQtSS'\V\S —

Figure C~6 : Interrupt and Event Processing
(continued on next page)

- 03 aa

(SRCW_INT)

Sel pownter
Yo Liesy e
Q-W\‘v'i

Set pointer 4o
nest cbuf.u.e.
Q,N'rrj

Figure C-6 continued
(continued on next page)

iyt
I wastruction

I Syt
'u\:dc \oa::l? :\

N RSW_ | T\
NEw . Psw

(T‘W\E-I)

Cove PSW
opricte e\d

(\ntextupted)

PSw \ocakion

Oclete ewke
Crowa Queue

€ W nﬁ«wo.)

Do datatramsfer
(core 2 ey ce

)
dwice » CO\‘:)

Reschnediule dade,
frangfer evewt
vosed on dodtas
rake f device

(ijb,

Figure C~6 continued

('™O- EVENT)

Call EVENT
2w ry point
W w\édude.
SIWMTIO

DO EVENT

. Ok -

examined every time the queue is searched. As shown in the
figure, if an interrupt or event occurs, the post instruce
tion processing section of the simulator is re-entered st
the timer processing point (effectively the start of the
section). This is because “ime 1s required for an interrupt
or event to take place, and thus éhe elapsed time must be
again updated, and a possible timer interrupt checked for.
C.3.3.3 WAIT STATE PROCESSING

As shown in Figure C-6, if no interrupt or event takes
place, then the wait/run state bit of the CPU is checked.
If the CPU is in the run state, the instruction interpre-
tation code is invoked and the simulator continues, 1If
the processor is in the wait state, then a somewhat clunsy
and hard to follow section of code attémpts to find the
next point in tume when an event will,éccur and posslibly
cause processing to econtinue, Candidatg events are a timer
interrupt or some type of 1/0 interrupt or event. If the
simulator camnot determine that there exists such an event,
then the simulation is terminated and an error message is
printed,

Ce3s3.4 PROGRAM INTERRUPTS

Proéram interrupts fall outside of the structure
outlined above., Most program interrupts cannot be masked,

and those which can be masked do not remain pending until

e s RS | R

o S AT dad 4 B itk Il dea e i SR o

enabled; they are completely ignored. Therefore a special
section of code handles detected program exceptions., This
routine sets the appropriate intsrrupt code in the program
old PSW (simulated core location 40), and after appropriate
processing goes to the label TAKE_I in Figure C-6. The
appropriate processing may include completing an arithmetic
operation in which overflow was detected or perhaps detect-
ing that the program exception which occurred was masked
off, and ignoring it altogether.

C.4 MODUIE SIMI1D

This module has six separate entry points to perform

different functions related to I/0. The entry points are:

SIMIO Initialize the ccntrol blocks and data sets
associsted with I1/0 device simulation,

SIMIOT Called to clean up I/0 simulation on ter-
mination of program being simulated. Closes
data szts, flushes duffers, etc.

HALTIO Performs processing associated with the
HIO instruction,

STARTIO 1Implements the SIO instruction. Initiates
appropriate device activity as specified by
the CCW and the state of the I/0 subsystem.

TESTIO Simulates the TIO instruction by examining
the state of the simulated I/0 subsystem

- 96 -

and the specified device, and appropriately
setting the condition code and the cstatuc
portion of the channel status word.

EVENT Performs the processing assoclated with the

occurrence of an I/0 event.

Before attempting to understand the functioning of the
I1/0 simulation module, it is extremely important to under-
stand in detail the operaliOn Of .he S/360 I/0 subcystems.
Because the S/360 can accomodate an extremely wile range of
T/0 devices and because the I/0 capabilities of the 340
are very "powerful", I/O operations are quite complex and
difficult to understand, and the occurrence of subtleties
and exceptions 1s quite frequent. Therefore, the main-
tenance programmer who is not very familiar with S/360
1/0 is encouraged to carefully study the I/0 section of Prirciples
of Qnengtionsl in conjunction with this guide and the program
listing of SIMIO,
Colt,1 I/0 IMITIALIZATION

As mentloned in section C.3.1, one of the first

steps in initialization for simulation is to call the

1 1BM System/360 Operetj~~ System: Principles of Cperation,
Form A22-6821 '

AR SR 2 T 4 S

v p——— R R RIS TR o, | B ST Ty T T PR
g i s a4 o FLAT S Tl R

Ml A
N B A

- 97 -

initialization entry point SIMIO in the 1/0 simulation
module. 1Initialization is quite straightforward. All
channels and devices are put in the available state, printer
and card punch data sets are opened and identifying headers
are written, and a few entries in the device specification
blocks are initialized to put the system in a clean, ready
for operation state,
C.4.2 1/0 TERMINATION

The I/0 termination function simply checks tc see if
any data is contained in ‘the device specification blocks
which has been output by the program being simulated, but
has not yet been written to the appropriate print or punch
data set. If there is any such data, it is punched or printed.
C.4,3 HALT 1/0 INSTRUCTION

The entry point HALTIO, in simulating the HIO in-
struction, first checks whether or not the addressed chanhel
ié operating in burst mode, If the channel is so operating
then the device with which the channel is communicating 1is
determined, the data transfer operation is terminated, and
appropriate interrupts are scheduled. If the channel is
available, then the addressed device is found and its stote
examined. If the addressed device is working, then any
data transfer in prograss (there may ﬁe data transfer in

progress on the multiplexor channel without being in burst

- 68 -

mode) is terminated, and all interrupts which would normally
nccur due to device operation are scheduled to occur (with
appropriate changes to reflect the HIC)., The condition
code is set, and the simulation of the HIO is completed,
Figure C~7 shows the operation of this routine,
C.h.b TESTﬁ;[Q,INSTBUCTlQE

The entry point TESTIO first checks for the channel

working state (burst operation), and, if found, sets the
condition code appropriately (w103) and returns, Otherwise,
the addressed device is found and examined. If the device
s available, the condition code is set (005) and a return
to caller is executed. If the device 1s in the interrupt
pending state, then the CSW information associated with the
interrupt is stored, the interrupt is cleared, and the
condition code is set to 012 (CsW stored). If the device

is working, the busy bit is set In the stored CSW, and the
condition. code is set to 012, See Figure C-8 for further

information.

-

C.l4,5 START 1/0

Upon entry to the START IOQ routine the channel and
device are checked for avallabliity. If one or the other is
not avaiiable, action very similar to that of TESTIO for
the corresponding situation is taken. If both the channal

and device are available, the channel interpretation code

e

el SeX
P
avii\asle,
Fuind oadressed Fuad Lurst event|
cowtrol Ly associated withy
cond device ofttaXicn w
(’\’oa(‘ess
¥ \
Hud e\ evewis) Tesminade detd]
newge Yo transfer, scheddl
wmiectupls as wlerre ot Ao cctur
ac\medul\ed ok Werwdd e,
Condition Jeg [Pnedule o
Code, = O\ 5 wawmediate,
: Wwrerrw et
Condvhon

code = \O, |

l

i’.
-~

Figure C-7-, Simulation of HALT I/0

= e i MR i TS e L LN SR e Ll i i e il iR st e
— -
- 100 - ’
TESTIO
COW\(L'\‘\'\c“
Code = \0,
Rwd Cowtre)
et oond RC’(‘U.W\
device
==
Shore, CSW
L]
Shore COW
~\msv
CC =0\,
Pigure C-8 : Simulation of TEST I/0

- 101 -

is entered.

Channel interpretation starts by checking the channe)
addre~s word (location 72) for validity, and, if valid,
setting the protection key and the CCW address. The channe:)
command word location 1s checked apainst the key for fetch
protection, and if no protection error is found, the CCu
is fetched and the CCVW address is updated. The CCW i first
checked to see if it is a TIC (transfer in channel). 1If
it is, then some validity checks are performed on the commund
and its occurrence (i.e., a TIC cannot start a command
chain), If invalid, appropriate action is taken, and if
valld the CCVW address is set to the address glven in the
TIC. The channel interpretation code is reentered at the
point where the next CCW is fetched (see Figure C-9).

If the channel command word is not a TIC, then it is
checked for validity. If valid, the PCI (program controlled
interrupt) flag is examined, and if set, an interrupt is
scheduled. Then the various fields of the CCW are extracted
and the chain data flag from the previously execuvted CCW
1s examined. If chain data is on, the parameters of the
data transfer in progress are updated with the data from
the new CCW, and the data transfer is continued (note that
this particular action cannot result from a start I/C--

no previous CCW--but only from an event; see section C.4.6),

B A TR IR T el ce—— e g TR e g g i il S ey i |
LR R R 3 i Py i :

(_ =102 - : '
o .

s
ek S
LC 20lq

: Seﬂ s\uﬂ' I/ 0
% St . Sd‘ RC\'\WV\
ch adi\-tss
{ovatection Kq
. Yoen COW
@.mr.mce) ,
|Set protechon
: Cr\\ec,‘(\
Gex CCw. (Rces,)
Updake CCw

address

-Qa:\' Prog roam
e.\t\-eb\<

(Relurwn)

addreas

il INCXYS)
whe rrupt

I Qeser data

Yeanwsfer
fardwmerers

—L

Set proqrom
veck 4

@D

Flgure C-9 : Channel Interpreter

- 103 -

If there 1s no data chaining from the previous CCW, then a
processing routine for the specific device is called to
initiate the operation specifled by the CCW. i
C.lb,6 I/0 EVENTS

There are three different types of 1/0 events., Two
are data transfer events, and thelr occurrence is marked
by the transfer of one or more bytes from virtual core
storage to a slmulated device, or vice versa, The re-
maining event type 1s assoclated with the occurrence of
a channel end or device end condition which arises in the
process of an input or output operation. Since the ter-
mination of data transfer sumetimes {on a multiplexor
channel, for example) causes a channel end condition, a
data traﬁsfer event 1s acted upon exactly as a normal
(third type discussed above) event when the last byte of
data sﬁécified by the operation has been transferred
(see Figure C-6). All three event types are kept in the
interrupt and event gueue 1n sorted order by time of
occurrence. They are placed in the queué by the device
processing routines and contain information that reflects
the characteristics of the device and the operation being
performed. Filgure C-10 shows the PL/; declaration of an
entry in fhe interrupt or event queue, with comments ex-

plaining the items.

- 104 -

DECLARE
1 INT Q BASED(P_CI),
2 PREV_I POINTER,

2 NEXT I POINTER,
2 TINE_I DEC FLOAT,

2 P_DEV_DATA POINTER,

n

E_CH POINTER,
2 E_DEV POINTER,

2 TIME_INTRVL DEC FLOAT,

2 TYPE_I FIXED BIN(15),

2 CODE_I BIT(16) ALIGNED,

2 CSW_I BIT(64) ALIGNED,

2 CORE_INDEX FIXED BIN(15),

2 DEV_INDEX FIXED BIN(15),

2 DATA_COUNT FIXED BIN(15),

Figure C.10 : Interrupt and

/*NULL IF FIRST ENTRY IN
QUEUE#/

/*NULL IF LAST ENTRY*/
/*SCHEDULED TIME OF
OCCURRENCE*/

/*LOCATES DATA AT THE DEVICE*/
/*IDENTIFIES ASSOCIATED
CHANNEL*/

/*IDENTIFIES ASSOCIATED
DEVICE#*/

/*FOR DATA TRANSFER EVENTS-
TIME BETWEEN BYTE TRANSFERS*/
/*NEGATIVE FOR EVENTS*/
/*DEVICE ADR, FOR PSW*/

/*CSW ASSOCIATED W/
INTERRUPT OR EVENT#*/

/*CORE LOCATION FOR. NEXT

BYTE TRANSFER*/

- /*IDENTIFIES NEXT BYTE

TRANSFER AT THE DEVICE*/
/*¥NO. OF BYTES TO BE TRANS
FERRED#*/

Event Queue Entries

(continued on next page)

o e SR

A [S| L | AR T S LS — 121
. Il AF i 1 1

2 INCREM FIXED BIN(15),

2 CH_STAT CHAR(1),

2 DEV_STAT CHAR(1),
2 MASK_I BIT(8) ALIGNED,

2 I0_PROT BIT(4) ALIGKED;

Figure C~10 continued

R, Gt ’”"*"W""‘W"Wﬁ”“f'““mw @.%%:w
-
1
|
|
|
|
/*NEGATIVE FOR READ
BACKWARD*/
/*A,I, OR W, STATUS AFTER
OCCURRENCE#/
/*LIKEWISE FOR DEVICL*/
/¥.,AND, W/ SYSTEM MASY. TO
SEE IF INTERRUPT ENARLED#*/
/*PROTECTION FKEY AGSCCIATED
WITH OPERATION*/
i
)
i
i

LM L T T T e

- 106 -

The event processing routine (EVENT in SIMIO) handles
~ only normal events (data transfers are done in SIMCPU;

see section C.3.3.2). Upon entry to the r utine the channel
and device involved in the operation associated with the
event are determined (using E_CH and E_DEV, Figure C-10)
and the status bits of the CSW assoclated with the event
are examined for unusual status (usually an error). If
there is unusual status then any chaining in effect is
cancelled, and an interrupt is scheduled to notify the
program of the unusual condition. In the absence of un-
usual status, the status bits of the CSW are tested for
device end. Upon device end, and data if chaining is
present, the channel interpretation loop is entered
(CH_INT_LOOP, Figure C-9). If command chaining is on
from the previous queue, then the event is dnleted from
the queue, and the channel interpretafion loop is entered,
If there is no chaining, then the event is changed to an
interrupt.(to occur immediately, if enabled) and a return
is made, If the event is not a device end, then if data
chaining 1is on,the channel interpretation loop is entered.
If command chaining is on, the event is deleted from the
queue and otherwise ignored; in the absence of chaining,
an interrupt is scheduled as above., See Figure C-11 for

further detail.

ol AT FriL IR ¢ T | SN bl 4
- i R SR W T T — G S | Y [[YRS L)) —" A
e SR W o — ol B B

- 107 -

Tretermime
emiwnel ol
device

wedule
i“"l\‘hid.iﬂ..'q.:
e o l't-,l.'.tf

‘it!- 3 1'5 hﬁ‘.lﬂ TyYE =t
CHIINTLoop ' : rom quucee

Mo No

Ma ‘?u.‘udu.it
Vi tdia ke m
m‘t‘un...[ﬂ
Yes
M‘&L Lyewk Rﬂhﬁ.l‘\\
gfhﬂlﬁﬁﬁﬁl
CH_INT. LooP

Figure C-11 : Event Processing

C.4,7 DEVICE SIMULATION ROUTINES

The detalils of the simulation\gf an- I/0 operation to
a given device are handled by a set.of foutines, one for
each class of devices (see section C,?.j‘and Figure C-9),
Each individual device is defined by g}aevice specification
block (DSB) which contains all necééégry,information about
the device and its current state; one piece of this in-
formation identifies the particular device routine which is
used in simulating the device. The deyice routines decode
the command byte from the CCW and initiate appropriate
action, Entries are placed in the ;nterrupt and event queue
as necessary. Any necessary 1/0 opérations are performed, as
in the case of a simulated card reader where an input data
set of the simulator supplies the "cards" for the simulated
reader, All relevant command information is checked for
valldity and proper sequence (theré are invalid command
sequences on many devices), and appropriate error action is
taken if an anomaly is detected. Since these routines vary
widely in form with the device simulated, an example of
such a routine is shown in some detail in Figure C-12, but
no attempt will be made to explain. in detail the functioning
of each such routine. The appropriate reference manual for
a device will provide detailed 1nformétion on its performance,

and a complete understanding of the behavior of the device

- 109 ~

Vecode
Cowawand

oyte

Comeend s
Read, Feed an}
Stacker Selecy

o Oy

hhdu.tt 3 5

<

St wat el e

Swedule o-davie tiow in (o
end event Cor Sthus g, Set
Qresent time 4 54 5ms sense ‘o |
+ ok peint delay ‘
Hime, (0 ~20 ws)
Sﬁ\\qdu e
et oo otus Om Wnkercupt

Mo [ovs vo dhamnd

fend et cweck.

et sewse ot & I

Get CSW stavus

oits 4o CSNU‘M\
evd

Puk device 1w
work'\v\a Stafe

()

Qet \neevrect
\Qna’*\f\ shudus
ot

Figure C~12 : RFS Command to Card Reader
(continued on nmext page)

B e T R W s TR, Cunpa—g Jupe T

- 110 = -

--_.____..

[Qc\\t&»\e aw T\w\c S preSent Fme
tvent 4e occuy ‘ I (awevaqe \oﬂ'& Hime
ok peopec dime -For device) * (wo. of

|b\{*€s S‘X’C\(\CA W
:QCM) Want {edd :

e U |

Schedude oo fecurry
&Q:\'O."}\'Maﬁ er eye ‘g
DaXa. waoves §reem
J\W\Ct \-N(fer X0
Swadated Ceve

|

!

Set CDM\'\:\OV\
code +v "00,

F.}n:ure C-12 continued

) .

LA e 4 T it T e W S A (——
1 1 4 Y 41

- 111 -

will tend to lead to an understanding of the device simulation

routine,

C.5 TRACE MODULE

There are 9 entry points to this module, two to pro-
cess dynamic trace requests by the simulated program, and
6 to do the formatting and printing associated with a trace

message., The entry points are:

TRACE - enables a trace condition in accordance with

information supplied in the trace requect

NO_TRAS - turns off any existing trace conditions of

the type specified

BTRACE -~ called to do printing associated with a branch

trace
ITRACE -~ called to do an instruction trace
NTRACE - called to do an interrupt trace
ADTRAS - called to do an address trace
ETRACE - called to do an execution trace
CTRACE - called to do a channei trace

SIMTRAS initializes for simulation

The processing done by the TRACE module is not particularly
interesting or difficult to understand. With a few 2XCeP-
tions, it consists of getting such and such a ficld to
print in character position n, and thus is painfully de-
talled but conceptually unchallenging, Discussion will
therefore be brief,

C.5.,1 DYNAMIC TRACE REQUESTS

A trace request extracts information compiled into
the program code by the Trace macro instruction, checks
it for validity, and makes an entry in the trace queue,
a 1list of enabled trace conditions, Figure C-13 shows the
data format in the program code, and Figure C-14 gives the
PL/I structure declaration of an entry in the trace queue,
The transformation from one to the other is almost one for
one, and quite obvious, One item of interest is that if
invalld data is found in a trzce request, it is assumed
that the program being simulated has erroneously modified
instruction locations. In this case, an attempt 1s'made to
find the end of %trace request flag, and if it can be found,
the invalld trace request is ignored; otherwise, an op-
eration exception (program interrupt for invalid op-code)
is takeh. Tnere i1s a separate routine to process each
type of trace request, but they are very small (about five

PL/I statements) and are necessary only because a different

- 113 -

DS OH - ALIGN ON HALFWORD BOUNDARY
DC X102! TRACE OP-CODE
DC X'0n! TRACE TYFPE:

* 0: DBRANCH

b 1: INSTRUCTION

k] 2: ADDRESS

* 3: iINTERRUPT

L: EXECUTION

o 5: CHANNEL

* 6: UNUSED

& 7: UNUSED

* 8: DUHP
DC Xr21iq¢ ADDRESS , OPCODE , INT,TYFE ,ETC.,
'DC BL2'status bit switches! BIT SWITCHES FOR

* STATUS DUMPS.
DC BL2'register bit switches!

*FOLLOWING PAIRS ARE CORE DUMP SPECIFICATIONS
DC Y(address) FIRST ADDRESS TO BE DUMPED
DC ALl(n,s) n = NUKBER OF WORDS DUMPED

indirect nwitch

* 8
*THERE MAY BE UP TO EIGHT PAIRS, TERMINATED BY THE

*FOLLOWING SENTINEL,
DC XL218000¢ TERMINATOR

Flgure C-13 : Trace lacro Data

DECLARE

1 TRACE_LIST BASED(P C),

2

2
2
2
2
2
2

PREV POILTER,
NEXT POINTER,

TYPE FIXED BIN(15),

ID BIT(16) ALIGHED,
STATUS BIT(16) ALIGNED,
REGS BIT(16) ALIGNED,
DUMP_OPTIONS(B),

3 ADDRESS FIXED BIN(15),
3 DCOUNT FIXED BIN(15);

Figure C-14 : Trace Queue Entries

AL LR 3 PR TN gy SRS b b R TI d SO el i it

- 115 -

internal indicator for each trace type is used to indicate
that a trace condition is enabled,

A Traceoff command is processed at entry point NO_TRAS,
and simply removes from thé trace 1list the particular in-
stance of the trace type specified, or, if ALL of the piven
type were specified, then every instance,

Cs5.2 TRACE OUTFUT ROUTINES

The six entry points associated with trace output
all do very much the same thing, The trace 1ist is searched
for the entry associated with the trace condition., lote
that because the Traceoff command only removes the entry
from the trace 1list, the internal indicator vhich flags a
trace condition may still be set. In this case, when the
list.is searched, no corresponding entry will be found, and
the output routine will then reset the internal indicator
.and return. In the more normal case, where an entry is
found in the trace list, then a call is made to an internal
procedure (TDUMP) which formats and prints the trace out-
put as specified by the information in the trace queue
entry,

It should be noted that the snapshot (DUMP) type is
something of an exception. Because the dynamic trace re-
quest is, in effect, the trace condition in this case, a

slightly different sequence of events results. Eowever,

— - s - L - I N L e ey e L T

examination of the code wi.ll show that no difficulties are
involved. Using existing code and procedures, a DUMP

trace request:
- sets up an entry in the trace 1list in the normal way

- calls TDUMP in the normal vay to print the informe-

tion requested

- enters the NC_TRAS routine in an appropriate place U
to delete from the trace 1list the entry created in

the first step above

- returns to caller (SINMCPU),

- 17 -

BIBLIOGRAPHY

CMS Program Logic Manual, Form GY28-0591,

Control Program-67/Cambridge Monitor System User's Guide -
IBM Publication.

CP-67 Program Logic Manual, Form GY20-0590.

IBM System/360 Component Descriptions - 2841 and Associated
DASD,Form GA26-5988,

IBN System/360 Operating System: Assembler(F) Programmer's
Guide, Form GC26-3756,

IBM System/360 Operating System: Assembler Language, Form
GC28-6514,

IBM System/360 Operating System: Job Control Language
Reference, Form GC28-6704, :

IBM System/360 Operating System: Job Control Language
User's Guide, Form GC28-6703,

IBM System 360 Operating System: Linkage Editor and Loader,
Form GC28-6538,

IBM System/360 Operating System: Linkage Editor(F) Program
Logic Manual, Form GY28-6667.

IBM System/360 Operating System: Loader Program lLogic
Manual, Form GY28-6714,

IBM System/360 Operating System: PL/I Language Reference
Manual, Form GC28-8201. .

IBM System/360 Operating System: PL/I(F) Programmer's
Guide, Form GC28-6594,

IBM System/360: Principles of Operation, Form GA22-6821,

IBM System/370 Model 155 Functional Characteristics, Form
GA22-6942, .

IBM System/370: Principles of Operation, Form GA22-7000,
IBM 2821 Control Unit: Component Description, Form A24-33}2.

