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SUMMARY

A surface-wave instability theory applicable to spin-
ning discs and cups is presented and a new explanation of atom-
ization from these devices is proposed. The theory predicts
an unstable disturbance wavelength that correlates with experi-
mental results of Hinze and Milborn for ligament formation
from a rotating cup. The linear analysis is restricted to flows
where perturbation amplitude is much less than film thickness.
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ON ATCMIZATION AND LINEARIZED FREE-SURFACE

INSTABILITY ON ROTATING BODIES

1.0 INTRODUCTION

Flow with a free-surface on rotating bodies is of interest in the study of rotary
atomizers. Such devices find application in agriculture for dispensing insecticides and
herbicides, in combustion research and furnaces for spraying fuel in a finely divided state
into combustion chambers, and in spray-drying processes of many kinds.

The purpose of this paper is to develop a surface-wave instability theory to
explain the process of atomization from spinning discs and cups. The motivation to do
this rests on the proven surface instability of fluid ligaments and sheets and in the hope of
showing a unified mechanism for the explanation of fluid atomization. No attempt is made
to discuss drop-size distributions resulting from the atomization process and no new
experimental data are presented. However, attempts at using existing experimental data
to verify the theory are made.

The steady solution of Drummond" I for the viscous flow with a free-surface on
rotating bodies is used as a starting point and the work of Lamb 2) is used as the reference
for the free-surface perturbation analysis.

Ped!ey 3) has studied the stability of rotating flows with a free surface where the
free surface is cylindrical in form and can be either an "inner" or "outer" boundary.
His linear analysis is limited to inviscid fluids with "large" depth in conjunction with
"inertia-less" air. However, he derives sufficient and sometimes necessary conditions
for stability by a method quite different from that of Lamb. Pedley provides an extensive
list of references to free-surface instability. His results will be extended in this work to
cover approximately viscous flows by Lamb's method and the two results will be shown to
be compatible.

Consider the flow of a viscous fluid on a rotating disc (Fig. 1). The depth of the
film varies with radius on the flat part of the disc and also with a on the circular arc
edge. However, as long as a is a bit less than 900, then the film is nearly of constant
thickness on the edge. Figure 2 shows a typical thickness variation with r and a from
Reference 1. Also, if the radius of curvature r, of the circular arc edge is small, then
the radius r to any point on the arc is nearly constant and is not a function of a. The
velocity component v, in the r direction gets very small on the edge, and the tangential
velocity is the dominant component. Figure 3 shows typical values from Reference 1.
The normal component is very much less than v,. We wish to investigate surface waves
on the circular arc edge under the assumptions of constant tangential velocity and con-
stant film thickness. At first, the liquid film will be considered inviscid and of large
depth and later the effects of viscosity will be included.

2.0 INVISCID SOLUTION

With reference to Figure 4, we let y = 0 correspond to the undisturbed free
surface and perturb the surface an infinitesimal amount ii. We constrain -h < y < h'
where h is the film thickness. Later, we will let h' -- o, since the air is assumed to be
unbounded around the rotating disc.

Let the liquid have tangential velocity VT and density p, and let the air have
corresponding parameters VIT and P'. The surface tension of the liquid is T. The per-
turbation potentials P, of the liquid and €'1 of the air must satisfy Laplace's equation,
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and the pressure must satisfy a surface conditioe to be discussed later at y = 0. In
addition, the velocities normal to the free surface of liquid, air and the surface itself
must be compatible. No flow is allowed when y = -h or h' since the disc is solid (y= -h)
and the disturbance potential of the air (0'1) must be zero at the boundary of the air (y= h').

2. 1 Disturbance Velocity Potential

To satisfy the above requirements, we assume the following forms for the dis-
turbance potentials 0 1 and '1, (Lamb2)):

01 = C cosh [k(y+h)] e i (a t -kre) (1)

'1 = C' cosh [k(y-h')] e(Qtkr0 ) (2)

where k = 2r/X and X is the wavelength of the disturbance. These forms satisfy Laplace's
equation (V 20 1 = 0, V2 0' 1 = 0), and the velocity conditions (30 1/ay = 0 at y = -h,
a4, 1/Ay = 0 at y = h').

2 2 Pressure Condition at the Free Surface

Surface tension forces allow a curved surface to support a pressure drop
according to the law

where R and R 2 are the free surface radii of curvature in the r, 0 plane and axial di-
rections respectively (Lamb 2) p. 471). Now, 1/R1 = 1/r' - (d 2r'/d02 )/r 2 where r' is
the perturbed free surface shape. Here, r' = r+7 and 71 is the surface perturbation
relative to y = 0. From Lamb,

P-P'=T r1 1 2  _-q) 82 (r+1)'3
P - P, = T _ _ 3

+r72 (r+) 2  a02  z 2(

In Equation 11 we will neglect variation of ?7 with z; i. e., in the direction of
the spin axis (R 2 = co). Expanding Equation 3 and retaining only first order quantities of
i) and its derivatives results in

p p T T (17 + a2)

r 2 ! 2
r

We assume that ,i<<2n/a8 2 . This term could be retained but little accuracy is
gained when the angular velocity is large. The perturbation terms p and p? are hence
related by the perturbation equation

P _ p, + T V71 = 0 (4)
r2 a0 2 (4

2.3 Surface Conditions for Velocity

The conditions that the normal velocity of the fluids be the same as that o the
free surface for small deflections and that the tangential velocity is the only signif!cant
velocity component leads to:

+ = a (5)
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2.4 The Equations of Motion

The perturbation quantities must satisfy linearized forms of the equation of
motion (Lamb):)

°°, +( P DO ,1j 0
P - It I rDT) +(\- -Y1 - (-rf 2 sina+gcosa),q (7)

,Pt [(VT ( -0Y l

PIS + pt -( 1~ 1p \2

__ _ - at L( T r a--''-) + \-2 J - (-rn2 sina+gcosa)- (8)

where p and p, are perturbation pressures relative to the steady pressures P, and PI ,.
The centrifugal force modifies the usual force potential in the last term of Equations 7
and 8. When IR is large, it is reasonable to neglect g with respect to ra 2 . In any event,
the angle a is nearly 90 °. Expanding Equations 7 and 8, neglecting steady terms and
linearizing we get the following perturbation equations:

p/P -" + T - + rg2 77 (9)

TF V-r D3',

pt/P = I + T + rn21 (10)

Under the assumptions, sinc is taken to be one.

2.5 Surface Shape

We assume that the perturbation to the surface elevation can bc written

1 = ae (i tkr 'e (11)
Note that 3 2q/80 2 is (kr)2 17 justifying the approximation in Equation 4 for large k.

2.6 Development of Stability Criteria

We substitute Equations 1 and 11 in Equation 9 and obtain

p/p = [C cosh lk(y+h)} Ji(a-kVT)} + r 2 a]ei(O't° ' -r (12)

Similarly, Equations 2 and 11 substituted into Equation 10 yields

pt/pt = [C? cosh Jk(y-hI)1 1i(0-kV'T)l + rn 2a]ei (&I-k) (13)
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We apply the pressure condition, substitute Equations 12 and 13 into Equation 4, set
y = 0. retain only perturbations and simplify. The result is:

PC cosh kh(i)(o-kV ) - O'C' cosh kh'(i)(or-kV'T) = a['I'k - (P-P') rf 2] (14)

The surface condition. (Eqs. 5 and 6) yield:

C - ai(a-kVT)/(k sinh kh) (15)

C' + ai(o-kV',)/(k slnh kh') (16)

Substituting Equations 15 and 16 in Equation 14 results in:

P coth kh( - V,)' + P' coth kh'(k - V') '  = Tk - (P-P') rO '/k (17)

We solve for (a/k) in Equation 17 and let S = P' coth kh'/P coth kh and get

a VT + SVI T
= 7 +S 1 + S

(18)

-(V - 2 - (I+S) (p/p)(p/p) - k

The wave speed is o/k.

Examination of Equation 18 shows that u will be complex (y+i6) if the quantity
f(k) under the root sign is negative. From Equation 18,

2 L.r rU 2 (1-p'/p) _ -k(9f(k) - (V,-V') - (1+S)(P/P') L -k (19)

If f(k) is negative, then the perturbation amplitude r/ becomes

-q = ae (' + 'Ok;  e" '

which is divergent. Hence, if f(k) from Equation 19 is less than zero, the wave is
unstable. Setting f(k) equal to zero defines a boundary for stability. In the present
application, the relative velocity between the liquid and the stationary air (V, -V,) is
just rS2. Further, h' - - and the factor S reduces to (p'/p) tanh kh which is <<1. The
density ratio p,/p is also very small for air-liquid combinations. Hence, we approximate
Equation 19 by

f(k) - (r1)2 (p/p') r - (20)

and obtain an approximate stability criterion. Equation 20 is quadratic in k. We define

= 2rr= (kr)- (21)

as a nondimensional disturbance wavelength. Substitution of Equation 21 in Equation 20

-. __. .- A
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leads to the following expression for f(k*):

f(X*) -- X 2 + (p,/p)A* - 1/W 2! 0 (22)

where W is Weber's Number defined by
rV 2 p

TW- T (23)

There is one real positive root to Equation 22 denoted by X*,. Figure 5 illus-
trates the range of X* for stable or unstable waves.

Solving Equation 22 for X*, leads to the following limit on A* for unstable
surface waves:

X* > X*I

1+- (24)2 ,/) 2 w

If X* < A* an unstable surface wave results.

Pedley 3) neglected the air inertia (P' - 0) in his analysis but he did not make

the assumption 71 << a  (Eq. 4). He quotes the result of Hocking4 I for the necessary and
302

sufficient conditions for stability as

W < -(- +)

< when 7 <<2L (25)X*,
2  ao 2

where the notation has been made to agree with this work. Setting p1 = 0 ill Equation 22
lhads to A* 2 - 1/W for iistability, which is the same as Hocking's result. Since the
maximum value of A* is one, and since there must be an integral number of wavelengths
in order for a periodic surface wave to exist, it is easily seen that N = 1,2,3 ..... n
for this special case. More generally, we can include the air inertia (p? j 0) and obtain
from Equation 22

W -1 + (P/P)n n = 1,2,.... (26)

for instability. Properly, n > 10 for the approximation i <<-- Now pv/p is of
302

order 10-3 for air-liquid interfaces, so that for n < 102, W -> n2 is a good approximation

to the instability criterion while for n - 104. W 2-- P is better. For W sufficiently

high, a wide range of disturbance wavelengths lead to an unstable free surface. Squire 5)

has shown that a sheet of liquid moving in still air is unstable provided the Weber Number
(based on one half the sheet thickness) is greater than one. He quotes fair agreement
withl UJVL- -.ent.



2. 7 Effect of Parameters on Surface Stability

The surface tension enters the problem only in the Weber Number W. As
T - 0, W - and the stability criterion of Equation 22 reduces to

f*(X* + p'/p) > 0 (27) j

This is satisfied by all positive A* and shows the stabilizing effect of surface tension in
the sense that a smaller range of values of X* result when T 1 0.

The result of Equation 27 is reproduced by large values of r oi fQ. For a
given disc, the higher the angillar velocity the wider the range of X* for unstable waves.
Hence, 02 is a "destabilizing" variable.

The density ratio pt/p can vary by choice of liquid (P) and its temperature as
well as by varying ambient conditions of air temperature and pressure (P'). The addition
of P'/0 acts in a destabilizing sense. Increasing p acts in a stabilizing sense while the
converse is true for p'.

2. 8 Maximun Instability with "Large" Film Thickness

Some disturbance wavelength in the unstable region maximizes the imaginary
part of a, leading to a "fastest growing" disturbance. From Equations 18 and 21 we obtain
the following expression for a:

V1
V i pt/p tanhkh [g(*) 28)

where
T I

g(x*) = VXT + (P/p')V2t.* - (P/p') TI (29)

The hyperbolic tangent is nearly I when kh is greater than about 1. 5. In this sense, we
let kh be "large", and let tanh kh = I in Equation 28. The result for the im,'ginary part
of a is:

i g(O /(30)

r , 2

The condition for maximum instability is:

o(31)

or

d 0gx)
U7 0 (32)

The operation indicated by Equation 32 is applied to Equation 29 which results in:
3

A* + 2(p'/p)X* W- 0 (33)

for finite X*.

q 1 --I :1i' 1 : I i ~ [ l '--ii ...:l I *lwhom ,
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Equation 33 is quadratic in A* and it has one root (X*Rtz) within the unstable region:

X* = (p/P) -1 + 1 + 3 ] (34)

Disturbances with wavelength equal to X*CRIT are those which grow the fastest. Substi-
tuting Equation 34 in Equation 28 leads to the corresponding complex value of or. Note
that 1A*cRIT must be an integer leading to the conchsion that very often there is no
physically possible solution to Equation 34. Hence any X* in the unstable range is equally
likely. The higher the Weber Number, the more lik.ly a solution to Equation 34 becomes.

Integral values of (X*)-1 and (X*CRI) - wer. chcsen and the corresponding Weber
Number for p = 1.65 slugs/ft 3 and TiP = .0015 ft 3/see ' was computed from Equations 24
and 33. The results are shown in Figure 6. Properly, the points should not be joined by
a smooth curve.

For many liquids, T/P does not vary outside the range 0. 5 x 10 - 3 to 2.5 x 10 - 3.

Below a certain speed, the waves are stable. For example, for (kX)- l = 10, the waves
are stable for r3 2 < .148, (T/p = .0015). The smaller the radius, the higher this
minimum speed becomes. It is seen that X*CRIT i0 close to VI\. For W < 105, log (X*)'l
is approximately a linear function of log W with a slope of .52. Hence, for inviscid
fluids, (X*)- ' = W, 52 + constant.

3.0 VISCOUS SOLUTION FOR "LARGE"1 DEPTH

Lamb 2
) (p. 627) considers surface waves of a stationary viscous fluid. He

concludes that the wave velocity is very nearly the same as for an inviscid solution but
that the amplitude of the wave is attenuated approximately by a factor e-2k 2

t. The par-
ameter v is the kinematic viscosity of the liquid. Harrison" ) has analyzed the viscous
problem'more accurately and we interpret Lamb's result as applying when P',V,<<pv,. The
restriction is easly met for air-liquid interfaces even if v'>v. Further, the flow irro-
tationality assumption becomes more approximate the nearer one gets to the disc surface
since viscous forces increase as y - -h. Therefore, we add a further condition that the
results will be accurate only when h> X. In this event, the factor S from Equation 18
is just p'/p, and we restrict ourselves to large depth solutions.

With the above comments in mind, we replace Equation 11 by

= ae-2 k2 ,e(Ot k ') (35)

and retain the wave velocity or/k from Equation 18. A slight revision of the instability
criterion is necessary. As before, let a = y ± i6 and substitute it into Equation 35 and
obtain

il = ae(-2vk2 +6)t e i(I t- kr8 (36)

From Equation 36, 71 will be divergent if

m(k) = -2vk 2 + 6 0 (37)

Using Equation 28 to evaluate 6, we have

-2vk 2 + k f 2 0 (38)

for an Instability criterion where g(k) is given by Equation 29. As before, we substitute



-8-

(kr)- 1 and solve for X*:

h(X*) = A*' + (P'/p)X* - (1/W)X* - 4/Re 2 - 0 (39)

One positive real root of Equation 39 always exists and, defines a stability boundary. Two
negative real roots always exist. Figure 7 shows the stability boundary as a function of
Reynolds Number for various values of Weber Number. Values of P, and P are the same
as those for Figure 6.

All the curves coalesce at low Reynold's Number which shows that the stability
boundary for very viscous fluids is insensitive to surface tension.

Each stability boundary in Figure 7 tends to rise linearly and then roll off to
the inviscid assymptote as Reynold's Number increases. The roll-off point is a function
of Weber Number. The linear portion can be approximated by

- Re r + C

When viscosity is zero (Re - ,o) then Equation 39 yields the same roots as its
inviscid counterpart Equation 23. The addition of viscosity results in a smaller region
of unstable wavelengths and hence is said to exert a "stabilizing' influence on the free
surface.

The wave velocity of the unstable viscous fluid is identical with the inviscid and

equals the tangential velocity VT. The wave is stationary with respect to the disc.

3. 1 Effect of Flow Rate

For a given fluid, disc and speed, the value of h depends only on the flow rate.
An approximate equation for hU) is:

After some manipulation, the most useful form for h is:

( 67r ) 1/3

\a*2 ReV,/
where a* is the circumference of the rotating body and r is the local slope. It is seen
that h varies as

As a - 7T/2 r - 0 leading to a large film thickness but E is nearly constant
for a range which ends quite close to a = ff/2. It is easily seen that a very small film
thickness can result from high values of VT and Re or low values of Q. Hence, small
values of X* are physically possible that are well within the limitations that X<2h.

3.2 Atomization and Instability

The above theory on surface instability is applied in the formulation of a new
theory on the mechanism of atomization from rotating bodies. Consider the sketch in
Figure 8. When X*>X* , the free surface is unstable, 17 tends to h as time progresses
and a volume of liquid equal to 2X2 h is trapped in the shaded area. Since , is periodic in
0 (period = X*), the number of "sites" of formation is constant around the body, and the
amount of flow to any site is X*Q ft 3/sec Macfarlane and Colbourn") have verified this
experimentally.
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Using Equations 18 and 35, we can write

?= e n('A e . (40)

( n + i 17(41)

If n is large, then the perturbation grows rapidly. The phase shift between n
and p is about 900 because fl and n are large while X* is small. The result is a large
outward velocity over the rising portion of the wave and a corresponding large inward
velocity over the falling portion of the wave. Hence, the trapped volume will leave the
rotating body normal to the free surface with a considerable amount of internal rotation.
Three types of atomization have been experimentally observed6.7) from rotating discs and
cups:

1) direct drop formation at low Q,

2) ligament formation at moderate Q,

3) sheet formation at high Q.

Ligaments decay into drops by Rayleigh-type surface instability of rotationally
symmetric columns of fluids, while sheets decay into ligaments by a surface instability
(Hagerty and Shea8

) or Dombrowski and Johns9)) and subsequently into drops by Rayleigh
instability. The flow rate Q determines which type of atomization results. Now, if X2 h,
the volume of trapped fluid, is greater than X*QAt, the flow to the site, then type 1 atom-
ization results in an intermittent manner because it takes a finite time to replenish the
fluid and rebuild the fluid layer for a subsequent unstable ejection of fluid. However, if
X2h is about equal to X*QAt, then continuous ejection of ligaments must occur in order to
satisfy the continuous flow. Obviously, the third condition of sheet ejection results when
X*QAt is greater than X

2 h. Probably At will have to be studied experimentally, but it
probably is related to n(X*) (Eq. 40).

If the instability criterion is not met, then the linear approximation predicts a
stable flow which separates as a sheet from the rotating body independent of the flow rate.
If the flow rate is low, then the film is very thin resulting in a very short sheet which very
quickly decays to drops.

Historically, the accepted mechanism of drop formation from the edge of a disc
has been to equate the mass of the drop times its centripetal acceleration with the surface
tension force based on the drop circumference. The correlation function due to Walton
and Prewett 10) is

dS2 N = constant (42)

dM?2 -- = constant (42)

where d is the drop diameter. The constant in Eq-ation 42 did not correlate well using
experimental values of parameters on the lefthand side.

The only steady surface tension effects are the rise of fluid in a capillary tube
and the ability of the curved free surface to support a steady pressure difference. The
former requires fluid contact on both sides of a tube normal to the free surface while the
latter Is subtracted out exactly from the perturbation equations. Therefore, surface
tension forces arise only from altering the curvature of the steady free surface due to
free-surface perturbations. Only when the surface Is "stretched" should ourfnec forces
be considered. Hence it Is unsatisfying to equate surface tension forces whose origin is
In unsteady phenomena with centripetal accelerations which are steady when n is constant.
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Raylcigh instability of fluid ligaments arises from a surface instability and now a consist-
ent drop formation process from rotating discs based on surface instability is proposed.
1linze and Milborn 7) applied an instability approach in attempting to explain and correlate
their experimental results. However, their point of view was qualitative and was used
only to collect variables in functional groups for experimental determination of a constant
and ar. exponent. Pedley3 1 hints at surface instability being involved in atomization of
swirling liquid jets.

As the amplitude of the surface wave increases, the linearized form of the
equations presented here becomes less accurate and the X* of the ac~ual wave may differ
from the theoretically predicted value. However, if a non-linear system is unstable to
an infinitesimal disturbance, so is its linearized approximation. Hence, the extension of
the proposed drop formation process to real situations is immediate.

3.3 Comparison of Theory with Available Experimental Data

Experimental work which supplies sufficient data to calculate X* is sparse.
Either the fluid or the operating conditions are not completely documented. However, an
exception is the paper by Hinze and Milborn71, although even their method of presentation
leaves doubt as to the values of all the parameters for any specific data point. Their
main contribution to the present comparison is a semi-empirical relation for the number
of ligaments shed from a rotating cup. They present the relation

Z= K /P2D+nPTD 4+n (3

for the number of ligaments. K and n were found to be . 215 and 4/5 from experiment.
A reasonably large amount of scatter (+25%) existed. In the notation of this paper and
noting z aquals 1/A* we get (from Eq. 43):

X* = 1/(. 577Re0 W 114) (44)

In arriving at this equation, Hinze and Milborn allowed Q to vary provided that
the flow rate was not high enough to produce a sheet and yet high enough to exclude direct
drop formation. In addition, data for three different liquids were presented.

They noted a "liquid torus" formed at the lip of the cup. This is a reasonable
situation since the steady radial velocity of the liquid varies from zero on the cup surface
to a maximum at the free surface and the inward directed normal velocity has the same
behaviour resulting in a tendency for the liquid to flow around the edge of the cup lip.
Hence, the approximation of a in the stability equations being equal to 900 is appropriate.

The results of the stability analysis using parameter values within the experi-
mental range are compared with the experimental results of the three liquids as well as
the overall correlation function (Eq. 44) on Figures 9 to 11. The viscosity of the liquids
was the major variation between them.

On Figure 9, the experimental data for the least viscous liquid virtually coin-
cided with the viscous stability boundary, as did the overall correlation function. The
comparison is very good. Increasing viscosity (Fig. 10) showed the overall correlation
function close to the viscous stability boundary but the particular liquid curve showed
some discrepancy. The highest viscosity liquid (Fig. 11) was within the stable region as
predicted by the viscous boundary, but was within the unstable region from the inviscid
boundary. Apparently non-linear and rotational flow effects have become important. In
general, the comparison is favourable considering the comments on scatter and variable
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Q already made. This tends to substantiate the theory of this report. When the theory
predicts instability, Hinze and Milborn's data show ligaments. The only area where
discrepancies occur is for very viscous liquids.

A further check on experimental results was made from a photograph by
Macfarlane and Colbourn" ) showing atomization by direct drop formation from the edge
of a spinning disc. The picture was a shadowgraph taken looking vertically down on a
13.40 sector of a one-inch diameter disc. The regularity of drop formation sites was
evident ar.d 23 were counted at the rim of the sector. The angular velocity was 313 revo-
lutions p(.r second. Regarding each drop site as a wavelength, it was easy to calculate
A* = 3. 2 X 10- 3 . The fluid data were not specified but by using T/p of 1. 2 x 10- 3, p'/p
of 1.4 x 10- 3 , and v = 10 - 4 (the fluid was a light fuel oil) the inviscid and viscous boundary
calculations for At were 1.5 x 10- 3 and 2.2 x 10- 3 respectively. Therefore. the theory
did predict an unstable surface wave and the proposed atomization model was not contra-
dicted.

However, Stuar t 2 , in his review artic!e on non-linear effects in hydrodynamic
stability; points out that Poisseuille Flow can be unstable due to non-linear effects when
the flow is predicted to be stable by linearized theory. There may be an energy transfer
from the perturbed motion to the mean motion by Reynold's Stresses which distort the
mean flow. Rosenhead13

) states that non-linear terms do not act to stabilize a flow and
that plane Couette Flow is unstable for finite disturbances even though it is stable for
infinitesimal disturbances. The linear theory is thus considered to be somewhat restric-
tive since it does not account for any energy transfers between the mean and perturbed
motions.

Lamb 2
) (p. 417) discusses waves of finite amplitude. The free surface of a

quiescent liquid of infinite depth takes on an "approximately trochoidal form" which
sharpens the crests and flattens the troughs of the sine wave predicted by linear theory.
This is exactly what the pictures of Hinze and Milborn show for ligament formation, i. e.
the space between the ligaments is greater than a ligament diameter.

The linearized theory is valid only when a/A is small (Lamb 2 ) p. 417). In other
words, the amplitude of the surface wave must be much less than its wavelength. For
irrotationality, h must be greater than X/2. Therefore, the wave amplitude is restricted
to being much less than h. For atomization, the amplitude must equal the film thickness
which leads to the conclusion that the linearized theory can only be used to test for incip-
ient instability.

4.0 CONCLUSION

A surface-wave instability theory has been presented to attempt an explanation
of drop and ligament formation from edges of rotating discs and cups. Sheet formation
has already been explained by the separation of the fluid from the edge of the rotating disc
by the steady flow theory (Drummond'). Pedleys 3a results have been extended. Some
correlation between theory and experimental results of Hinze and Milborn 1 and Macfarlane
and Colbourn") have been shown which tends to substantiate the theory. However, the
linear theory may be too restrictive and non-linear as well as rotational flow effects may
be large during the actual fluid shedding from the disc edge.

Atomization from sheets and I.olated lig.aments has already been explained by
free-surface instability, and now atomization from rotating cups and discs has been put in
the same' framework. Some experimental work Is needed to provide data on edge waves
and their breakdown.



-12-

5.0 REFERENCES

1. Drumrnnwd, A. M. Steady Viscous Flow With a Free Surface On a Rotating
Axisymmetric Body.
Assoc. Committee on Agricultural and Forestry Aviation,
National Research Council of Canada, AFA-TN-10, 1972.

2. Lamb, H.I Hydrodyn Lmics, Sixth Edition, Cambridge University
Press, 1932.

3. Pedley, T. J. The Stability of Rotating Flows with a Cylindrical
Free Surface.
Journal of Fluid Mechanics, Vol. 30, Part 1, 1967,
pp. 127-147.

4. Hocking, L. M. Mathematika, Vol. 7, No. 1.

5. Squire, H. B. Investigation of the Instability of a Moving Liquid Film.
British Journal of Applied Physics, Vol. 4, June 1953,
pp. 167-169.

6. Fraser, R. P. The Filming of Liquids by SDinning Cups.
Dombrowski, N. Chem. Eng. Sci., Vol. 18, 1963, pp. 323-337.
Routlev, J.H.

7. Hinzc, J.O. Atomization of Liquids by Means of a Rotating Cup.
Milborn, H. Journal of Applied Mechanics, Vol. 17, No. 2,

June 1950. pp. 145-153.

8. Hagerty, W. W. A Study of the Stability of Plane Fluid Sheets.
Shea, J. F. Journal of Applied Mechanics, Vol. 22, No. 4,

December 1955, pp. 509-514.

9. Dombrowski, N. The Aerodynamic Instability and Disintegration of Viscous
Johns, W. R. Liquid Sheets.

Chem. Eng. Sci., Vol. 18, 1963, pp. 203-214.

10. Walton, W.H. The Production of Sprays and Mists of Uniform Drops
Prewett, W. C. Size by Means of Spinning Disc Type Sprayers.

Proc. Physical Society, Section B, Vol. 62, Part 6,
No. 354B, June 1949, pp. 341-350.

11. Macfarlane, J. J. A Study of the Performance of Rotary Atomisers.
Colbourn, A.J. NGTE 11-310, July 1969.

12. Stuart, J. T. Non-Linear Effects in Hydrodynamic Stability.
Proc. of the Tenth Int. Cong. of Applied Mechanics,
Stresa, 1960, Elsevier Publishing Co., 1962, pp. 63-97.

13. Rosenhead, L. Laminar Boundary Layers.
Fluid Motion Memoirs, Oxford University Press, 1963.

14. Harrison, W. J. The Influence of Viscosity on the Oscillations of Super-
posed Fluids.
The London Mathematical Society, Second Series, Vol. 6,
April 1908, pp. 396-405.



- 13 -

cr LL

uiU
cU,

9- 0-

B a cr



144

z
CD_ 0

00

wo

0 z
o z

S0 Cz
'~~~ 

w-~u.

>

b14 0D LLC

:r.~. COc-)
0.~



- 15 -

w

w

0 U-"

0 L--

S-o z

I-.

-o

z a
>0-

0>

NJ

"0 .

: zo

oas/ in .

(n Ui
0 _

:)as 4 - 4

L0

Cw ]

j.Ic IIID

0 o 0

U-O



16 -

y I

yh

y :-h

FIG.4: SCHEMATIC OF EDGE FLOW ON A ROTATING DISC



-17-

S*)
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