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SCATTERING BY WATER WAVES GENERATED 
BY A MOVING PRESSURE POINT 

R. H. Ott, G. A. Hufford   and   A. Q. Howard, Jr. 

ABSTRACT 

An analysis for scattering of scalar waves in 

air by a Wike on the surface of water is developed.    The 

wake on the water surface is generated as a concentrated 

pressure point travels over the free water surface.    The 

wake has characteristics resembling a diffraction grating. 

The grating produces maximum constructive interference 

(resonance) in the backscattered wave under certain 

conditions.   At resonance the acoustic wavelength, water 

wavelength and angle of incident satisfy a simple geo- 

metrical condition. 

1.    INTRODUCTION 

An analysis for studying the scatter of scalar waves in air by 

a wake cm the surface of water is developed.    The wake on the water 

surface is generated by a cone Crated pressure point traveling with 

uniform velocity over deep water.    The only surface fore, it pressure, 

the only body force is gravity and the motion is irrotational. 

A number of authors have investigated the wake left by a pres- 

sure point as it travels over the water.    The wake is largely confined 

to the sector bounded by two cuspidal lines which form angles of   sin"1 ft) 

with the track of the pressure point.    The disturbance drops off expon- 

entially outside the cuspidal lines.    This angle was first determined 



by Lord Kelvin (1887).    Within this sector the wake consists of a system 

of waves that envelope the hull lengthwise and i. interwoven with a 

system of transverse waves.    The amplitude of the surface within this 

sector has been treated by a number of authors (e.g. ,  Peters (1949). 

Ursell (1960), Hufford (1972)). 

In this paper we introduce the boundary value problem for the 

velocity potential   V(x.y.z)   and the surface elevation   C(x.y).    The 

velocity potential satisfies Laplace' s equation.   The velocity potential 

and surface elevation together satisfy two boundary conditions:    1) the 

pressure equation and   2) the equation of continuity across the free 
surface, 

Sommerfeld (1950)   is a good introduction to the theory of waves 

and the equations of hydrodynamics applied to our problem. 

The approach to the solution to   Laplace' s equation plus boundary 

conditions is through the two-dimensiona1 Fourier transform (Havelock 

(1918). Hogner (1923), Peters (1949)).    These equations are solved in 

terms of the transformed potent^!   I (§. r,, z)   md surface eievation 

Z (§, n).    The final st^p consists of identifying the transform   Z (§, q) 

as the solution to our scattering problem.    A simple expression for the 

scattered field is obtained which depends upon the acoustic wave 

number   k.   the water wave number   kw  and the direction of the source 

and observer relativ« to the track of the pressure point.    This expres- 

sion has characteristics resembling the field scattered by a diffraction 

grating.    The interference phenomena in this problem are explained 

physically by reflections from neighbouring curves having water wave 

phase differences which are multiples of   2TT. 
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2.   ANALYSIS 

Consider a monochromatic scalar wave having   e        time 

dependence incident on the surface   z = C(x,y) in figure 1.   Assume the 

potential   Cp   satisfies a sound-hard boundary condition (corresponding to 

a vertically polarized incident wave in the electromagnetic problem) 

SCO 
^=0 .       rp   on   C (1) 

where differentiation is with respect to the outward normal.    The 

scattered potential from Helmholtz1 s formula is 

*S(P)    -  -    | m) |S   da (2) 

c 

where P is the location of the source and observer for the case of 

backscatter and Q is the integration point and C is the surface of 

integration.    The free-space Green's function is 

-ikr-, e G " ^T— (3) 

with 

ra    =   PQ . (4) 

Neglecting amplitude terms of the order   (krg)"1   ,    we obtain from (3) 

öG ör, 
r^ ■    -ikG   SS. (5) 
dn dn 

We assume that near grazing the field at the integration point 

Q   is the unperturbed field of a point source at   P   radiating over a 

perfectly conducting flat surface;   i.e. , 



i                    -ikr2 

CP(Q) ■ 2CP (Q) =  2  (6) 

The elemental area   da   projected onto the   x-y plane be 

da=    dxd^ 

comes 

e     •  e 
—n     —z 

(7) 

where   e n   is the outward directed normal to   C in figure 1 and   e      is 

a unit vector along the positive z-axis.    The normal derivative of   r2 

in (5) is 

or, 
■- =   e       •  e 

-ra      -n an —r»  ' —n (8) 

with  £^   a unit vector from the observation point  P   to the integration 

point   Q.    The unit normal is 

^n =f-VTC + e    I I  e     •  e -n     I-T        '~z /     ~n     ~'' (9) 

with 

-TC   =   ^'x   ^   +    ly   ä7 (10) 

and   V^C   is shown in plan view in Fig.   1.    That is,    V   ^    is the projec- 

tion (to within the normalization   e    • e   ) of   e      onto the x-v Diane.    If 

ihe surface elevation   Q   is small compared with the acoustic wavelength 

X    and the slopes   öC/äx   and   dC/äy   are small compared to unity we 

find for an observer close to the   x-y plane 

with   ±k- c^  a unit vector from   P   to the origin in figure 1.   From (8), 

(9),  (10) and (11) 

^■(*kV)lt.».l (12) 
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Substituting (3),  (5),  (6),  (7) and (12) into (2) g 

-iZkr-, 

ives 

vS(P) - £l(ik-V') 2 dxdy (13) 

where   C      is the projection of   Q   onto the   x-y plane. 

From figure 1. 

r2   ^ R + ek •  r (14) 

or 

r2 -^ R + (x cose  - y sin9) (15) 

Substituting (15) into (13) and making the usual approximation regarding 

the amplitude factor   r2
_1    we obtain 

.,     -i2kR 
11        2TTR2 

c 

r/ w   -\     -i2k(x cos6-vsinB) Jf£.k-VT,je y 'dxdy     (16) 

which is a two-dimensional Fourier transform of ( e     • V   C 1   .     The 

surface   C' is assumed to extend from   -•   to   +00   along the   x- and 

y-axes. 

From 

£„• ZrC • «.« H . .fa» |& „7) 

and the property for the Fourier transform of the derivative of a 

function,  we obtain 

^(P)=^r    e-i2kRZ(§.r1) (,8) 

where 
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za,^)- J   dx f dyC^y)«-1«5^^ (19) 

is the Fourier transform of the surface elevation   C(x,y).    We have 

assumed in (16) that   C    is infinite in extent and at the same time to 

arrive at (16) we make approximations regarding the phase   kr3    in 

(14) and the amplitude factor   rg"1 .    These approximations can be made 

rigorous using the theory of generalized functions (Hufford,  1972). 

Hufford shows, by considering a sequence of surfaces   [Cn]   whose 

limit is   Ci    that in the limit as   C    -,co   the scattered field approaches 

the result in (16). 

The variables   §   and  r]   in (19) become 

;=2kC°s9 (20, 
r\ = -2 k sin 9 

when they are used to denote the components of the acoustic wave 

number;  otherwise, they will be thought of as the components of the 

water wave number. 

The result in (18) shows that finding the field scattered by a 

rather complicated surface   Q    is reduced to the problem of finding the 

Fourier transform of   C.    In order to find the Fourier transform of   C 

we need to introduce the hydrodynamical equations for a pressure point 

moving at constant velocity across the water surface.    The hydrody- 

namical problem is classical (e.g., Lambj  1879) and has been treated 

by a number of authors.    Most of the classical treatments are con- 

cerned with the form of   Q.    However, here we are only interested in 

its transform   Z   which is somewhat easier to derive. 

-6- 



We assume the pressure point moves with velocity  V   in the 

negative   x   direction and at the instant of observation it is located at 

the origin.   Assuming irrotational flow we may introduce a velocity 
A 

potential   tp   and the equations of hydrodynamics become:   the equation 

of incompressibility 

V2 cp = 0        ,       z< 0 (21) 

the equation of motion 

V H" «f C+   ^PU.y)     ,     z = 0 (22) 

and the condition that the normal component of velocity be zero at a 

fixed boundary 

|5 +v |i   =o     .     z = 0 (23) 
o z ox 

In these equations, p    represents the density of the water, P = P 6(x,y) 

is the magnitude of the pressure and   g   the acceleration of gravity.    It 

should be pointed out that (22) and (23) are linearized approximations 

and require   cp   and   C   be small.    The origin of the   xyz axes is moving 

in the negative   x   direction with a uniform velocity   v.   Now we take the 

two-dimensional Fourier transform over   x   and   y;   i.e., 

l(5,n,«)-   J   dx  jdy^(xfy,z) e"i(§X + Tly) (24) 

-00 -oo 

together with the Fourier transform of   C   given in (19)   and equations 

(21),  (22) and (23) become 

-(?2 + T1s) I +  lli   =0      , Z< 0 (25) 
o Z 

A P^ 
i?v§=gZ + -2 , z = 0 (26) 

^i-=-iv§Z , z = 0 (27) 
o z 



Eliminating   Z   from (26) and (27) gives 

SÜ |        ^        i5vPo 
g Ti   "   IT' ' z = 0 (28) 

The solution of (25) is 

'o    e 

Substituting (29) into (28) and solving for   le   gi ives 

-ivP 
*e = 

(29) 

From (27) we can solve for   Z 

P 4 
ZK n) - -2 (g3 + T13)2 

The water wave number is   kw = g/v2    and substituting   k      into (31) 

yields the desired result 

Z(M)-(^)f ^f*     ^ (32) 

the Fourier transform of   C(x,y).    The quantity (Pk   / gp)   has dim( 

s ions (length)2   and   Z   has dimensions (length)3.   Substituting (32) 

into (18) and using the acoustical interpretation for  §   and T]   given 
in (20) gives 



cp (33) 

the scattered acoustic field.    The scattered fiold has dimensions 

(length)"     which is the same as the incident fiel J. 

We now turn to an interpretation of (33).    The denominator 

vanishes when 

2 k cos2ö  a k 
w (34) 

The resulting singularity perhaps requires further analysis,  but it is 

clear that it represents a "resonance".    For the moment we will think 

of   5   and 11   as components of the water wave number and not the 

components of the acoustic wave number as defined in (20).    This 

interpretation is motivated by noting that the denominator in (32) is 

identical to that in (33) and the result in (32) has nothing to do with the 

acoustic problem.   It is the Fourier transform of the water surface. 

The water wave phase is 

It» « K|+ yri (35) 

and the stationary water phase points are solutions to 

ä?     0  (or äV 0j (36) 

At resonance, from (32),    §   and r\   are related as 

§2   =   k     (52   +T12)* 
W 

Solving (35),  (36) and (37) for   x   and   y   in terms of a parametei 

u = § /k      gives 
w   0 

(37) 
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x-a w-1) 
X " a   ^?— (38) 

y = ia       ^~ (39) 

with   a = \l//kw.    These two equations represent the surfaces of constant 

water wave phase.   One water wave crest is shown in figure 2 where 

a = \w.    To generate the next crest   a = ZX^  and in general the   pth 

crest is generated by   a = p^.    The cuspidal lines forming the boundary 

of the sector occupied by the wake may be determined from (38) and 

(39) by defining 

tana = 1  = lüLdl! 
x       2u2 - 1 (40) 

and finding the point where 

5 (tana)  _ 
~T^       =0 (41) 

Substituting (40) into (41) gives the point 

-t/T (421 

Substituting (42) back into (40) gives the angular sector defining the 
wake (Kelvin,  1887) 

a
c = ttan"1 (-~\ ^il^7 

(43) 

This cuspidal angle is shown in figure 2.   For 1 ^ u ^    /T   ,    x   and 

1 yI    lie on the portion of the curve starting from the point x = 1, y = 0 

and going to the cusp (transverse component).   For   u ^    /T     '   x and 

I yl    lie on the portion of the curve between the cusp and the2 origin 
(lengthwise component). 
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The tangent to the curve in figure 2 is given by 

dy       dy/du   _ 1 
dx    '  dx/du  "  +(ua 11)1 (44) 

The tangent to the cusps in figure 2 are given by (44) where   u2 = 3/2 

aT = tan"1  7"   - + 54• 44* (45) 

This angle is shown in figure 2.   The angles a    and   a      satisfy 
c T 

a    = 2a     - n/ 2. 
c T 

Finally , we return to the interpretation of (3 3) from the scat- 

tering viewpoint.    Consider our acoustic wave incident at an angle   9 

with respect to the negative   x-axis as shown in figure 3.    A tangent 

vector to the water wave phase surfaces  in figure 3   (shown as a unit 

vector   e    ,  in figure 3) is 

'-'•-{^)---,m)- ■ * 1 (46) 

The incident acoustic wave will be peipendicular to the water wave 

phase surfaces giving maximum reflection in the backscatter direction 

(resonance) when 

I '   £k = 0 (47) 

with 

e.   = e     cos 9   - e     sinö (48) 
—k     —x —y *     ' 

Substituting (46) and (48) into (47) gives 
i 

tan9 = (u2 -I)2 (49) 

It is not surprising that the result in (49) is the reciprocal of that in 

(44).    The surfaces of constant water wave phase can be thought of as 

representing a diffraction grating.    When twice the path length   d   (to 

•11 
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go in and out) is equal to the incident acoustic wave length  \ , neighbour' 

ing water wave lines in the grating will interfere constructively pro- 

ducing maximum backscatter (resonance).    Twice the distance   d   in 

figure 3 is 

2d = 2 R-  ek (50) 

where 

?*-„ tm-Jl    i\ /„2     i\2 
1 

w ;      (2^-1) .       (u2-!) 
R = xe    + ye     = ~T=—i e     i 3—*-+ e      Jr"4—f   (51) 
—        -x       -y      2n     L-x       u0 -y      u J    4 

Substituting (48) ar>.d (51) into (50) yields 

2d. -^ tcose Q^U . sine l^iL5 ) (52) 

This distance remains the same for any two adjacent water wave 

surfaces in the grating.    Substituting for   u   in (52) in terms of   9   from 

(49) gives . ^ 

2d = —S cos2e (53) 

The phase difference   |   between two adjacent water wave crests is 

2TT   and (53) becomes 
2d = 2X     cos2e (54) 

w 
or 

X = 2^ cos2e (55) 

which is identical with (34). 
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3.    DISCUSSION 

An analysis for scattering of scalar waves in air by water 

waves is developed.   In the analysis we have made the assumption that 

the wake extends to infinity.     In cases where noise or clutter is pre- 

sent the wake would attenuate and would not continue indefinitely behind 

the pressure point.    The effect of clutter or dissipation may be intro- 

duced into this analysis; however, the condition for resonance given 

in (55) remains unaltered.    The dissipation factor that is introduced 

into the hydrodynamical equations (21)-(23) eliminates the standing 

wave that extend an infinite distance in back of the pressure point.    By 

considering the scattered field as a generalized function (Hufford, 

1972) and taking the limit as the dissipation tends to zero we obtain the 

result given in (55). 

The result in (55) is interesting from another viewpoint.    Kurss 

and Crombie (1971) derived the following resonance condition 

\ * 2\     cos(9-ac) (56) w        * 

Their analysis was based on examining the behavior of the scattered 

field only in the vicinity of the cuspidal lines.   From figure 2 we see 

that the cuspidal region is only a small portion of the wake.   An excel- 

lent photograph showing the intensity of the wake near the track of the 

pressure point is given in Feynman et al. (1963).    This photograph 

shows the intensity near the track to be nearly as great as the intensity 

near the cuspidal lines.   Numerically generated wakes (Tuck et al. , 

1971) also show a strong component of wake along the track.    Thus,  it 

is not surprising that the resonance relation based on the entire wake 

is different from the resonance condition based upon the cuspidal 

component of the wake. 

■13. 
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P,   Source and 
Observer 

z = C(x,y) 

Q, Integration Point 

Figure 1. Geometry for scattering problem. 
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{2x,2y) 

Figure 3. A geometrical interpretation of 
the resonance condition. 
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