
Ab-140 %zn 
/ (f r <c 

/ 

COPY NO. 
170 

TECHNICAL   MEMORANDUM   2036 

ESTIMATION OF SHELL LIFE 

OF 

UNSTABILIZED POLYOLEFINS 

FROM 

THERMAL OXIDATION DATA 

LEO REICH 

SEPTEMBER 1972 

APPROVED  FOR  PUBLIC  RELEASE:     DISTRIBUTION  UNLIMITED. 

PICATINNY   ARSENAL 
DOVER,    NEW   JERSEY 



The findings in this report are not to be construed 
as an official Department of the Army position, 

DISPOSITION 
Destroy this report when it is no longer needed.   Do 
not return it to the originator. 



Technical Memorandum 2036 

ESTIMATION OF SHELF LIFE OF 
UNSTABILIZED POLYOLEFINS FROM 

THERMAL OXIDATION DATA 

by 
Leo Reich 

September 1972 

Approved for public release; distribution unlimited. 

Materials Engineering Division 
Feltman Research Laboratory 

Picatinny Arsenal 
Dover,New Jersey 



TABLE OF CONTENTS 

Object 

Summary- 

Introduction 

Results and Discussion 

References 

Distribution List 

Tables 

1   Data for autoxidation of APP 

2   Data for autoxidation of IPP 

3   Data for autoxidation of APB 

Figures 

1 Carbonyl absorbance area vs time during 
oxidation of unstabilized atactic poly- 
propylene (APP) at 110°C at various oxygen 
c on c ent rat ion s 

2 Carbonyl absorbance area vs time during 
oxidation of APP at 120°C at various oxygen 
concentrations 

3 Carbonyl absorbance area vs time during 
oxidation of APP at 130°C at various oxygen 
concentrations 

Page No. 

1 

1 

2 

3 

6 

18 

7 

8 

9 

10 

11 

12 



Page No, 

Carbonyl absorbance area vs time during 13 
oxidation of isotactic polypropylene (IPP) 
at 120°C at various oxygen concentrations 

5   Carbonyl absorbance area vs time during 14 
oxidation of IP] 
concentrations 
oxidation of IPP at 130 C at various oxygen 

6 Carbonyl absorbance area vs time during 15 
oxidation of EPP at 140°C at various oxygen 
concentrations 

7 Carbonyl absorbance area vs time during 16 
oxidation of IPP at 150°C at various oxygen 
concentrations 

8ALog (9     I 0  1 ) vs reciprocal temperature       17 

1  for atactic and isotactic polypropylenes 
T 

8B  Log (9     I 0   J ) vs reciprocal temperature       17 

for atactic polybutene-1 



OBJECT 

To estimate the shelf life of unstabilized polyolefins from the 
extrapolation of carbonyl formation data obtained during the thermal 
oxidative degradation of such polyolefins. 

SUMMARY 

Utilizing carbonyl formation data previously obtained during the 
thermal oxidation of unstabilized atactic polypropylene (APP), un- 
stabilized isotactic polypropylene (DPP) and unstabilized atactic poly- 
butene-1 (APB) along with a semi-empirical expression, it was pos- 
sible to extrapolate and obtain arbitrary induction times (9 ) at rela- 
tively low temperatures.   Values of 6 thus obtained were correlated 
with changes in physical properties, i.e., intrinsic viscosity and the 
product of ultimate elongation (UE) and ultimate tensile strength (UTS) 
(a product which is often referred to as the impact index). 



INTRODUCTION 

Numerous attempts have been made to correlate outdoor weather- 
ing of plastics with accelerated aging (e.g., Ref 1).   Generally, such 
correlations have been reported to be poor due to the many factors 
involved in the natural and artificial photochemical aging processes. 
Besides photochemical oxidation, various workers have employed 
thermal oxidation. 

Thus, Grieveson and coworkers (Ref 2) investigated the effect of 
air oxidation of unstabilized high density polyethylene at 120* C on 
physical properties.   They indicated that, although very little oxygen 
had been absorbed at the end of the induction period, considerable 
changes in intrinsic viscosity and flex value had occurred.   For all 
practical purposes, therefore, it seemed that at the end of the in- 
duction period the polyethylene sample had reached also the end of 
its useful life.   Oswald and Turi (Ref 3) studied the effect of oxida- 
tive degradation on the deterioration of physical properties of un- 
stabilized isotactic polypropylene (in 100% oxygen at 75* C).   They 
found that the absorption of only 1.1 mg oxygen per gram of EPP re- 
sulted in a 20% loss in properties, e.g., in the impact index.   Further, 
these workers indicated that extrapolation of elevated temperature 
data to ambient temperatures was unsafe (as judged by changes in 
physical properties).   Thus, utilizing an apparent activation energy 
of 30-32 kcal-mole-1, a life expectancy of 6 years for D?P in air at 
25* C was calculated as compared with the experimental value of 
approximately 16 months (based on viscosity changes). 

The purpose of this report is to present a semi-empirical ex- 
pression which, in conjunction with carbonyl formation data at ele- 
vated temperatures, may be used for extrapolation to obtain useful 
lifetime values of unstabilized polyolefins (APP, IPP, and APB) at 
ambient temperatures. 



RESULTS AND DISCUSSION 

Based on theoretical considerations previously presented (e.g., 
Ref 4), the following expression may be written for rate of carbonyl 
formation, p    , during polyolefin oxidation: 

P     «C R.t (1) Kcow       i 

where C = k   k, / (k   + k.); k's denote rate constants; t = times; and 
R. denotes initiation rate and is equal to k.    [RH]     [O 1 where, in 

turn, k. = initiation rate constant,     [RHJ    = concentration of reactive 

hydrogen on polymer main chain, and    JO 1     = oxygen concentration 

in percent.      [in the derivation of Equation 1, it was assumed that 
the term At << 1 (see Ref 5)1 .   Upon integrating Equation 1, there is 
obtained 

T      1 t2 

[COJ    =Ck.   [RH]    [02]  T (2) 

Now, if we assume that at t = 0 (an induction time) Equation 2 is 
still valid, this equation becomes, 

[CO]ind = Cki  [RH1    [°2]    T <2a> 

where    [COJ  .   , = carbonyl concentration during induction time 
9.   When   [CO]   .   , is maintained constant, the Arrhenius relation 

is employed, and it is assumed that (k   + k.)/k   is approximately 

constant at various temperatures (see Ref 6) then, 

In S 92   [o2] J     = In K + (E. + E6)/RT (3) 

where K = 2   [co]  .   . (k   + k4)/k    [RH]  Z. Z,; Z'S are frequency 

factors; E's denote activation energies; R = gas constant; and 
T = temperature. 



In order that LCOJ ^^ be approximately constant in Equation 

3, we arbitrarily let 8 = 0.4 t    where t     = time at which the 

maximum rate of carbonyl formation is reached (see Fig 1).   At 
this value of 9»  £co] • rf should be very low and approximately 

equal at various values of | 0.,    and temperature.   Further, at this 

value of 9, the deterioration of physical properties of the polymers 
may not be too severe as yet. 

In Figures 1 through 7 are depicted plots of carbonyl absorbance 
area (from infrared measurements and in arbitrary units (see Ref 
7 through 9) vs time for the oxidation of APP and EPP at various 
temperatures and oxygen concentrations.   From such typical plots 
were obtained values as presented in Tables 1 through 3 for APP, 
EPP, and APB.   In Figures 8A and 8B are shown plots of average 
values of log (82   f0?! ) versus 1_ (reciprocal temperature) for 

APP, IPP, and APB.   In the plots for APP and EPP (Fig 8A), the 
derived data virtually coincide.   (This may be due to the equal 
reactivity of amorphous regions in APP and EPP, which results in 
a similar time interval for obtaining maximum carbonyl formation.) 
Using the mean deviations for values of log (02 |0_ J ), upper and 

lower limits were drawn (Fig 8A) for the data, and the intermediate 
linear relation was obtained from a least squares analysis (the 
linear correlation coefficient possessed a value between 0.98 - 
0.99).   The values of the apparent activation energies (see Eq 3) 
(going from the lower limit to the upper limit) were: 32, 37, and 
42 kcal-mole"1 . 

From the lower limit plot a value of 8 =6.3 hours can be 
calculated forfo J = 100% and 75°C.   Data of Oswald and Turi 
(Fig 8, 11, 127 and 13 of Ref 3) indicated that at 75°C and [o J  = 
100% and 9 = 6. 3 hours, the change in intrinsic viscosity was 
relatively small, and there was 85-100% retention in the impact 
index and in the ultimate tensile strength and ultimate elongation 
of the unstabilized polypropylene film used (which was of 25 mil 
thickness).   Further, from the lower limit and the linear regression 
line (Fig 8A), ;he values of 8 were, respectively, 50 and 100 days 
at 22°C, and      02

n   = 20%.   Oswald and Turi observed that marked 



changes in intrinsic viscosity commenced when unstabilized 
polypropylene powder was shelf-stored at ambient temperature 
in air for approximately 450 days.   ]h this respect, it may be 
remarked that relatively large changes in mechanical properties 
undoubtedly occurred long before the marked change in intrinsic 
viscosity took place (see Fig 8 and 12 of Ref 3).   Thus, the lower 
limit line may provide a fairly safe prediction of the maximum 
time that unstabilized polypropylene should be shelf-stored (or 
maintained at higher temperatures) before its mechanical properties 
would degrade considerably.   However, it should be noted here that 
much more data on shelf-life stability of unstabilized polypropylene 
is needed before any definite conclusions can be drawn. 

In Figure 8B is depicted a plot of log (92 i~02~| ) vs i-  for A-PB. 
L T 

The lower limit and least square lines afforded values of activation 
energies of, respectively, 46 and 55 kcal-mole"! (a value of 
E^ + E^ = 43 kcal-mole"1 has been reported (Ref 10)).   However, 
due to lack of appropriate data on unstabilized APB shelf-life, no 
extrapolations to ambient temperature were made. Nevertheless, 
it would appear from a comparison of Figures 8A and 8B that un- 
stabilized APB would provide a longer shelf life than APP or EPP. 
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TABLE 1 
Data for autoxidation of APP 

Temperature ^10* 

oK-l 

t m e2 N iog(e2Lo2]) 
°C 

hr hr2 
% hr2 

110 2.611 5.0 4.00 10 1.60 
5.0 4.00 20 1.90 
4.5 3.24 50 2.21 
4.6 3.38 100 2.53 

Avg 2.06 ± 0.31 

120 2.545 3.5 1.96 5 0.99 
3.5 1.96 10 1.29 
3.3 1.74 20 1.54 
2.5 1.00 75 1.88 
2.2 0.78 100 1.89 

Avg 1.52 ± 0.30 

130 2.481 3.0 1.44 5 0.86 
2.8 1.25 10 1.10 
1.8 0.52 20 1.02 
1.66 0.44 50 1.34 
1.2 0.23 75 1.24 
1.2 0.23 100 1.36 

Avg  1.15 ± 0.16 

xfo. 



TABLE 2 
Data for autoxidation of IPP 

Temperature        — x 103          tm 9         [oj logte2^"]) 

°C ggTJ hr hr*    * hr* 

120                   2.545               3.5 1.96      11 1.35 
3.0 1.44      20 1.46 
2.0 0.64      50 1.51 
1.7 0.46      75 1.54 
1.5 0.36    100 1.56 

Avg  1.48 ± 0.064 

130                    2.481                2.5 1.00 7 0.85 
2.3 0.85 11 0.97 
1.7 0.49 50 1.39 
1.5 0.36 75 1.43 

Avgl.16 ± 0.25 

140 2.421 1.5 0.36 7 0.40 
1.2 0.23      20 0.66 
0.80 0.10      50 0.70 
0.66 0.070    75 0.72 
0.50 0.040 100 0.60 

Avg 0.62 ± 0.090 

150 2.364 1.0 0.16 7 0.049 
0.75 0.090    11 0.00 
0.63 0.064    20 0.11 
0.25 0.010 100 0.00 

Avg 0.040 ± 0.04 



TABLE 3 
Data for autoxidation of APB 

Temperature      1   x 103        t              82       ("oJ log (92 [o2]) 

°C                 ToK-l          hr          te»       % hr* 

110                   2.611          10.0         16.0      50 2.90 
7.7           9.49    75 2.85 
4.5           3.24 100 2.51 

Avg 2.75 ± 0.16 

115 2.578 7.8 9.73    25 2.38 
5.5 4.84   50 2.38 
5.0 4.00    75 2.48 
2.7 1.17 100 2.07 

Avg 2.33 ± 0.13 

120 2.545 5.6 5.02 12.5 1.79 
3.6 2.10    25 1.72 
2.4 0.92    75 1.84 
1.4 0.31 100 1.49 

Avg 1.71 ± 0.11 

125 2.512 3.0 1.44    25 1.56 
1.5 0.36    75 1.43 

Avg 1.49 ± 0.07 

130                    2.481            3.0 1.44 12.5 1.26 
1.3 0.27    25 0.83 
1.0 0.16   50 0.90 
0.93 0.14    75 1.02 

Avg 1.00 ± 0.14 
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