AFRVL-IR-72-88

NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL
COMBUSTION INSTABILITY IN METALIZED
PROPELLANT SOLID ROCKET MOTORS

VOLUME I: ANALYSIS AND RESULTS

by

Jay N. Levine and F. E. C. Culick

TECHNICAL-REPORT, AFRFL-TR-72-88
' JULY 1972

ULTRASYSTEMS, INC. D D C

FORMERLY DYNAMIC SCIENCE
2400 Michelson Drive
Irvine, California 92664

SEP 21 1972

S

"APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED."

Reprodu:ed by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Dopartment of Commerce
- Springfield VA 22151

AIR FORCE ROCKET PROPULSION LABORATORY
UNITED STATES AIR FORCE
EDWARDS, CALIFORNIA



v
e

1
&
e

S S AYAILASTLNTY COBES

2

AL, Ehigd SPECiAL

"When U. S. Government draWings. specifications, or otﬁer

data are used for any purpose other than a definitely related
Government procurement operation, the Government thereby
incurs no responsibility nor any obligation whatsoever, and

the fact that the Government may have formulated, furnished,

or in any way supplied the said drawings, specifications or

other data, is not to be regarded by implication or otherwise,

or in any manner licensing the holder or any other person or
corporation, or conveying any rights or permission to

manufacture, use, or sell any patented invention that may
in any way be related thereto."



CYTPTCREGTE ST

T

LAk piePnE e Rl g2 g 0r e

=

T e T

SRR SN S 37 L iy

TR

TR

AT O TR T

-
o

o e,

i

v

o~

BETe ar

g
PR

wiroy

R F 5,5

PR

REER T
b

323

“ryg

ot e
s

£~

AEN

A IR e

3
UNCILASSIFIED s

DOCUMENT CONTROL DATA-R&D

(Securlty classification of title, body of abstract and indexing annotation must be entered when the overall teport ls clacaliled)

Security Classification 1

1. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION

Ultrasystems, Inc. (Formerly Dynamic Science) Unclassified

2400 Michelson Drive 25. GROUP
Irvine, California 92664

3. REPORT TITLE

NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN

METALIZED PROPELLANT SOLID ROCKET MOTORS
' VOLUME I: ANALYSIS AND RESULTS; VCLUME II: CCMPUTER PROGRAM USER'S MANUAL

4 DESCRIPTIVE NOTES (Type ol rezort and inclusive dates)

8. AUTHOR(S) (Firat name, middis initial, last name)

Jay N, Levine
F. E. C. Culick

6. REPORT DATE 78, TOTAL NO. OF PAGES 75. ND. OF REFS
July 1972 255 70
Sa. CORTRACT OR GRANT NO. 94, ORIGINATOR’S REPORT NUMBER(S)
F04611-71-C~-0060
b PROJECY NO. Technical Report
5730 AFRPL-TR-72-88
c. 9). OTKER REFORT NO(S) rAny other numbere that may be assigned
this roport)
d.

10 OISTRIBUTION STATEMENT

"Approved for public release; distribution unlimited."

11. SUFRPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Edweards Air Force Base
Edwards, California

13. ABSTRACT

S The primary objective of the current effort was the development and solution of a nonlinear analytical
iengitudinal instability model, which would allow all of the various governing phenomena to be accounted
for in 3 coupled manner. The two primary elements uf the cumrent instahility analysis are 8 method of
characteristics solution of the two phase flow ir the combustion chamber of the motor, and a coupied calcu~
lation of a transient buming rate. The transient buming rate analysis presented, herein, is a unigue and
interesting development, .It {s based on an extension of the most popular, linear, harmonic combustion
response model. The current method allows the calculation of propellant burning response to & pressure
disturkance of arbitrary waveform, for all time, lacluding the period immediately following the initiation

of the disturbance. The analys!s also Includes a model for velocity coupled response. Therefore, for

the firat time, the nonlinear effacts of velocity coupling on the growth of pressure waves in a combustion

chamber can be computed.

The instability solution, itsem begins v-ith the calculation of the steady state two-phase flow in the motor.
The flow In the combustion chamber is ca.culated by numericslly integrating the equations of motion. The
nozzle flow is found using the constant fractional lag approximation. The stezdy state conditions are then
perturbed and the subsequent wave motion {n the motor 1s calculated numerically, using the method of
characteristics. The nature of the engine response is dependent upon the interaction the various gain anc
loss mechanisms in the engine, which are, in turn, a function of the propeliant burning response, the size
and amount of particulate matter prasent, the magnitude and shape of the initiai disturbance and the
geometrical configuration of the motor.

The Instability model {s currently subject to the following limitations. Only motors with cylindrically
perforated grain were congidered. The gasdynamic flow wag agsumed to be one-dimensional and the
particles in the gas stream were taken to be of uniform size and inert. The nczzle flow is assumed to be

guasi-steady.
A series of inetability solutions have been calculated, wherein some of the main parameters such as
particie z - ..ming rate constante, and initial disturbance wzveform and magnitude have been varied,

in 3n atte. , ‘o qualitatively asaess the behavior and validity of the present model. From all appearances,
the behavior of the model is quite reslistic and limited comparisons with data have bsan quite encouraging.

>
PIIIOII, -  /- ey prny ot Sx ke -

' UNCLASSIFIED
{ &o Security Classification

DD V1473

e e ——— . ——




AR LT A e Rl Sl

Qi i T it B R R

TR T T,

P Ay
Rl At Al A e A e 1 o S L R R C e ¢

TR

L e ) Tt

Ui totiod i)

Bt b e L Saal e Wt AL e o e e L e S ST

e S TR S
T W
UNCLASSIFIED N
Security Classification
14. LINK A LINK B LINK ¢
KEY WORDS
ROLE wT ROLE wY ROLE wY
Combustion instability
Solid propellant combustion
3 Nonlinear
¢ Metalized propellant
}f Two pnhase flow
f{;*‘:: Velocity coupling
gi‘ Transient burning rate
%’{ Oscillatory burning
B
B
%
§
&
3
A
P
K3
)
N
»
: Y UNCLASSIFIED {
\ Security Classification !




NUMERICAL ANALYSIS OF NONLINEAR LONGITUDINAL
COMBUSTION INSTABILITY IN METALIZED
PROPELLANT SOLID ROCKET MOTORS

VOLUME I: ANALYSIS AND RESULTS

TECHNICAL REPORT, AFRPL-TR-72-88
TULY 1972

Prepared by: Jay N. Levine
F. E. C. Culick

ULTRASYSTEMS, INC.
FORMERLY DYNAMIC SCIENCE
2400 Michelson Drive
Irvine, California 92664

"APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. "

AIR FORCE ROCKET PROPULSION LABORATORY
UNITED STATES AIR FORCE
EDWARDS, CALIFORNIA




R RN T IR T A S e T R T T T e T A\ PPV MR RS ST
4 b GO = PR : A

rva

FOREWORD

——a

>The present report is part of a two volume set which describes
a nonlinear solid rocket motor instability analysis and computer pro-
gram. Volume I contains the analytical basis for the computer program

¢ and a discussion of the results obtained to date: Volume II of the set
describes the computer program and serves as a user's manual.
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This investigation is entitled NUMERICAL ANALYSIS OF
NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN METALIZED
PROPELLANT SOLID ROCKET MOTORS. The two volumes are additionally
subtitled as follows: ;

Volume I - Analysis and Results

Volume II - Computer Program User's Manual
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technical monitor. Jay N. Levine of Ultrasystems (formerly Dynamic
Science) was program manager. :
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ABSTRACT

The primary objective of the current effort was the development and
so - fon of a nonlinear analytical longitudinal instability model, which
would allow all of the various governing phenomena to be accounted for in
a coupled manner, The two primary elements of the current instability
analys.s are a method of charactoristics solution of the two phase flow
in the combustic.: chamber of the motor, and a coupled calculation of a
transient burning rate, The transient burning rate analysis presented,
herein, is a un!~;jue and interesting development. It is based on an extension
¢t <he most popular, linear, harmonic combustion response model. The
«.cent method ¢ *lows the calculation of propellant burning response to a
wressure disturbance of arbitrary waveform ," for all time, including the
period immediately fcllowing the iritiation of the disturbance. The analysis
also includes a model ior velocity coupled response. Therefore, for the first
time, the nonlinear effects of velocity coupling on the growth of pressure
waves in a combustion chamber can be computed,

TeF

T R T
i Kt A T e A =

TP

The instability solution, itself, begins with the calculation of the
steady state two-phase flow in the motor. The flow in the combustion
chamber is calculated by numerically integrating the equations of motion. i

The nozzle flow is found using the constant fractional lag approximation. The
ste3dy state conditions are then perturbed and the subsequent wave motion in
the motor is calculated numerically, using the method of characteristics.

Th2 nature of the engine response is dependent ur :n the interaction the
various gain and loss mechanisms in the engine, which are, in turn, a
function of the propellant burning response, the size and amount of parti-
culate matter present, the magnitude and shape of the initial disturbance

and the geometrical configuration of the motor,

Saahiio e & LR MECRC A o ha S
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The instability model is currently subject to the following limitations.
Only motors with cylindrically perforated grain were considered., The gas-
dynamic flow was assumed to be one-dimensional and the particles in the
gas stream were taken to be of uniform size and inert. The nozzle flow is
assumed to be quasi-steady.
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A series of instability solutions have been calculated, wherein some
of the main parameters such as particle size, burning rate constants, and
initial disturbance waveform and magnitude have been varied, in an attempt
to qualitatively assess the behavior and validity of the present model.

From all appearances, the behavior of the model is quite realistic and
limited comparisons with data have been quite encouraging.
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NOMENCLATURE
A - burning rate parameter, Eq. (4-14)
f Ab - admittance function
3 . A n - nozzle admittance function
- - a - gas only, sound speed
’ ap - sound speed based on PF and TF
. B - burning rate parameter, Eq. (4-32)
B also, fractional lag parameter, Eq. (5-6)
3 1 B v - burning rate parameter for velocity coupling
_' x* C ~ ratio of solid to gas specific heats, CS/C
;& ¢ -~ constant in steady state burning rate, Eq. (3-5)
r B Cp - particle drag coefficient
Cy - eresive burning constant, Eq. (3-5)
' E Co, - see g,
. Cp -~ specific heat of gas at constant pressure
; C s - specific heat of solid particles i
‘“ C, - specific heat of gas at constant volume
- C1 Ca . ‘
¥ C,. C4 - defined in Eq. (7-34) ]
5 Dp - port diameter _ :
E - normalized surface activation energy, E /R T :,
also, integral defined by Eq. (8-16) 3
8 E, - activation energy of surface reaction i
E o e - internal energy
& ‘: Fp - particle~gas interaction force per unit volume, Eq. (3-8) “
;B f - frequency 1
‘; also, as defined by Eq. (8-14) ‘
B G - defined by Eq. (7-8) 3
9 - defined by Eq. (6-17) 3
¥ H - defined by Eq. (4-20) i
h -~ enthalpy -
i hy, - defined by Eq. (8-12)
l‘ K - fractional lag constant, Eq. (5-3) r
¥ 7N K' - chamber fractional lag constant, Eq.(7-44)
“. k - thermal conductivity, also ccmplex wave number
"-. vi ;

£
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]
: i
: ks ~ thermal conductivity of the solid particles
S L - length of the grain, also fractional lag constant, £q. (5-4)
" L' ~ chamber fractional lag constant, Eq. (7-44)
4 ) - perimeter of the grain
M - Mach number, also number of points on initial line
; § Mb - Mach number at burning surface
2 @ m -~ particle mass, also surface mass flux
B
L B Nu -~ Nusselt number ]
E %’i n - pressure exponent in steady state burning rate
E*: n, - constant in velocity coupled analysis, Eq. (4-75)
f 3 n., - exponent of pressure dependence of surface reaction rate
3 P - pressure
: 2 Pref - reference pressure in steady state burning rate "‘
é ' PF - chamber pressure
. & Pr - Prandtl number
E s o] - pressure, also used for Laplace transform variable
% P11 - defined by Equation (8-10}
g Qf - heat release per unit mass
¥ Qp - particle-gas heat transfer rate per unit volume, Eq. (3-14)
) i Ow ~ heat of reaction for processes at burning surface
3 ) q ~ see;
i R - gas constant, also normalized throat radius of curvature
o R, - universal gas constant '
f.; Rb - response function, Eq. (4-35) [
1 = Re - Reynolds number based on particle diameter and particle-gas l.
; ¥ relative velocity s
1 E RHS ~ right hand side of a characteristics compatibility relation |
% r - linear burning rate ]
% Sy, - area of burning surface
1 s - dimensionless Laplace transform variable, = ix ¢/
: %: T . = temperature
é 3- TF - adiabatic flame temperature
3 t - time
§ t - defined by Eq. (7-33)
§ u - axial velocity
g u, - threshold velocity
%’ w - defined by Equation (4-28)
vil
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reaction rate divided by gas density
axial distance

growth constant

particle damping constant

defined in Eq. (8-35)

particle to gas weight flow ratic

ratio of particle to gas mass burning rates, wp/w
ratio ot ,as specific heats, Cp/CV

a small increment in time

equal to tcé

convergence criteria for characteristics calculations, also used
in velocity coupling analysis (Eq. 4-72)
thermal diffusivity of the propellant
defir.ed by Eq. {4-27)

complex function of frequency, Eq. (4-8)
viscosity

equals rx/H s

density

density based on PF and TP

density of the metal oxide particles
density of the solid propellant

particle radius

defined by Eq. (4-62)

nondimensional time, r2t/4% , also used in Section 2 to
denote period of oscillation

characteristic relaxation time for particle velocity, Eq. (3-1)
characteristic relaxation time for particle temperature, Eq. (3-1)
defined by Eq. (5-10)

phase angle

nondimensional frequency, Eq. (4-9)

mass burning rate, per unit length, per unit cross-sectional
area, Eq. (3-4); also occasionally used for angular frequency
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F Subscripts
e - end of the propellant grain
E f -~ flame
] g - g3s
2, L -~ for the £4th mode of oscillation
3 p - particle
;’ o - initial or stagnation value
ﬁ t - at the nozzle throat
w

- at the burning surface of the propellant

o LA AL Bl

Superscripts

()* - in Sections 3, 5 and 6 only, denotes a dimensional “yriable
S () - denotes fluctuation
3 () - in Section 4 denotes steady state variable, in Section §

denotes an "equivalent" gas value, in Section 7 denotes
an average quantity

VP

9 + .

: () -~ pertaining to a right running characteristic
()" - pertaining to a left ninning characteristic
( )(r) real part of
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1, INTRODUCTION

Solid propellant rocket motors are often subject to chamber pressure
oscillation during the course of their firing. The existence of these
fluctuations is indicative of the existence of a coupling mechanism, or
mechanisms, between the combustion at the surface of the propellant and
the gasdynamic flow in the chamber. When the rate at which energy is
supplied to the flow, by this coupling, exceeds the rate at which energy
is lost through the various dissipative mechanisms that exist, the chamber
pressure oscillations are amplified. They may grow to such amplitudes
that the oscillating acceleration of the vehicle may produce failure of the
equipment or even failure of the motor.

Of the various unstable motions observed in solid propellant rocket
chambers, longitudinal combustion instability is currently the most
troublesome. The axial, or longitudinal, mode of combustion instability
* occurs in the frequency range intermediate between the very low frequencies
of bulk, or L*, instabilities, and the high frequencies associated with the
tangential, or transverse, instability modes. Unlike transverse mode
instabilities, which are very often eliminated by the addition of powdered
aluminum to propellant formulations: the existence of a remedy of
comparable simplicity for longitudinal instabilities has not yet been
demonstrated.

Efforts to deal with the problem of longitudinal instability, most
logically, have begun with experimental, and analytical, investigations
designed to shed light on the governing physical phenomena. Both
laboratory scale experiments, and full scale firings, have identified the
existence of numerous, complex, mostly nonlinear, processes which actively
play a role in determining the stability characteristics of a rocket motor.
As a result of this complexity, investigators attempting to predict these
disturbances have, in the past, been almost universally forced to linearize
the equations governing the various phenomena. Attempts to solve more
realistic nonlinear models have been made, but, only by focusing on one
of the many processes at a time. In view of this, the primary objective of
this program was the development and solution of a nonlinear analytical
model for describing lcngitudinal mode instability, which would allow all
the various processes to be accounted for in a coupled manner. A second

1-1
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analyses of the burning rate response to harmonic disturbances.

The formulation of the boundary and initial conditions for the problem is
discussed in Sections 5 and 6. The numerical methods employed in solving
the governing equations are discussed in Section 7; while in Section 8,

a lirear stability analysis is developed, for the purpose of comparison
with the nonlinear numerical results.

Time has limited the number of instability solutions which could be
obtained during the course of the present investigation. However, as
shown in Section 9, the calculated results are quite interesting, and exhibit
all the proper qualitative trends. The nonlinear analysis described here‘n
appears to have the potential to lead the way to greater understandinrg of
longitudinal combustion instability, and to the realization of more accurate
quantitative predictive capability.

A further discussion of the conclusions that can be drawn from the
present study may be found in Section 10. At the end of the report, in

Appendix A, the behavior of the transient burning rate model is examined
for some special cases,
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2, BACKGROUND AND SURVEY OF EXISTING EXFERIMENTAL AND
ANALYTICAL RESULTS

2.1 Finite Amplitude Waves in a Closed Resonant Tube

The problem of acoustic waves in a closed tube is of course a very
old one. Oniy those recent works concerned with finite amplitudes are
cited here. In simplest form, the experimental apparatus consists of a
rigid tube closed at one end and fitted with a piston at the other. All
reported experimental results, and all but one of the analyses give information
only about the waves after limiting amplitude has been reached.

A periodic motion can be excited in the tube at any frequency, but the
most interesting behavior occurs when the piston oscillates with a frequency
at or near one of the resonant frequencies of the tube. It has long been
known (see Ref. 1 and other works cited there) that as the amplitude is
increased, the wave motion in the tube changes from a simple sinusoidal
motion in both space and time, into one having both a continuous and a
discontinuous part. At sufficiently high amplitude, one or more weak shock
waves propagate to and fro. The appearance of weak "discontinuities" is @
consequence of the nonlinear convective effects and the dependence of the
speed of sound on temperature.

Analyses of the steady wave motion as a weak shock embedded in
a continuous periodic motion have been given by Saenger and Hudson (Ref. 1)
and Betchov (Ref. 2). Subsequently, Chester (Ref. 3) discussed in more
detail the relative importance of the mechanisms involved and produced a
single solution valid over a range of frequencies near resonance. He showed,
in agreement with Betchov, that the effects of heat conduction and viscous

forces provide small corrections to the inviscid solution but are not required
to limit the amplitude of the motion.

In Ref. 4, Coppens and Sanders analyzed the motion in terms of the
generation of harmonics. Their results are not carried far enough, explicitly,
to apply to a discontinuity. They also quote measurements which, as do
other experimental observations, show an important feature, namely the
appearance of harmonic distortion of the waverform at quite modest ampli~
tudes. For example, when the amplitude of the fundamental mode is approxi-
mately one percent of the ambient pressure, the amplitude of the second

2-1

: . arirs
P TIR . ] T X




HA I R v TR N TVowRTLL

harmoric is already fifteen percent of the amplitude of the first harmonic.

A discontinuity is apparent when the amplitude is one-tenth of the ambient
pressure. This is a general result for acoustic waves in resonant tubes--
nonlinear behavior is obvious 2t these low amplitudes.

s McTare Ky

On the other hand, in solid propeliant motors, quite clean sinusoidal
motions, with very little harmonic content, are often observed to amplitudes

%

as high as 20% or more of the average pressure. The explanation for this
has not been definitely established, although it mus! evidently rest on the
behavior of the combustion processes.

TR TN

TITFRTF

The stability of wave motions in a rocket motor is a primary problem.
It is then necessary to examine the transient growth of waves from some
specified initial disturbance. The corresponding problem for waves in a
t . resonant tube has been treated in only one work, Ref. 5. Perhaps the main
. reason for this is that the situation arises only for a self-excited oscillating
system, and hence is not of interast when waves are driven by external means.
The computation of Ref. 5 does not include the influence of combustion or
mean flow, and hence shows only the transient development of the weak
discontinuity. Numerical results were reported for a finite-difference
calculation and for the method of characteristics.

Cighpe 250720

As an aid to interpreting later results for the behavior of nonlinear waves
in a motor, it is useful te sketch an idealization of the motions in a resonant

TR

tubé. Measurements of pressure are usually made at the end of a chamber,
ek but it is also interesting to see the distribution of pressure along the chamber \
as it varies in time. Three cases will be examine: a purely sinusoidal
oscillation at the fundamental frc aency, a weak shock, and the sum of
these two. These are shown in Figures 2~1 to 2-3, with the distribution

of pressure shown for every eighth cycle. The position of the shock

wave relative to the sinusoidal oscillation has been chosen such that it
arrives at one end just as the sinusoidal pressure at that end is a
maximum. This will not in general be true in actual cases, owing to

the influence of energy losses, average flow and, of course, strongly
nonlinear effects. Also, for the example shown here, the shock is assumed
to be sufficiently weak that it propagates always at constant speed equal to
the sound speed for the standing wave; the period of both niotions is T.

R T,

WA

e i o Wae—or

2-2

#,
N y . RS a csiachlihs SEAnkonuACiDe el &‘AJ
. - 2 N = e z S,




L oo £ S L e SN

TR

T T, SN T S ATy

DAL R R R A AR

Yy
"t

R RS N

i -i-j;z-‘ IR

X3

g

=3

e ey " AR M2 o7 002 et CLIG \ DAL o SN )

31/4 -

77/8

Figure 2-1. Distribution of Pressure Along the Chamber and Pressure
at x =L for a Sinuroidal Standing Wave
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Distribution of Pressure Along the Chamber and Pressure

at x =L for a Weak Travelling Shock Wave
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Figure 2-3. Distribution of Pressure Along the Chamber and Pressure
at x =L for a standing wave with a weak travelling
shock wave
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Note that if the standing wave is weak, so the motion is dominated by a
travelling shock wave, the pressure measured at one end appears roughly

as a sawtooth or triangular wave. In time, the pressure jumps abruptly, and
then decays until it jumps again upon the next arrival of the shock. Many of
the pressure traces reported in the work at CARDE and SRI, discussed below,
exhibit, qualitatively, this kind of behavior. Even for the case of nonlinear
motions in a simple resonant tube, the pressures measured differ from the
form shown here, owing to contributions from many harmonics.
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It is clear that previous work on the classical problem of waves in a

resonant tube provides background, but no useful results for the problem of
transient waves in a rocket motor.

2.2 Experimental Results for Longitudinal Waves in Solid Propellant

Rocket Motors

Longitudinal instabilities arise spontaneously in full-scale motors--
a number of examples exist, but few have been reported in the open literature.
The most recent reports of such observations appear in Refs. 6-8. Most of the

data which are available for motors have been taken in laboratory devices,
and almost all involve pulsing.

It is possible to produce sharp fronts propagating in a tube by introducing
an impulse of mass, momentum, or energy. This may be done, for example,
with an electric spark or a small explosive charge. If the tube contains only
an inert gas, the subsequent motions are not particularly interesting~-they
die. For a rocket motor, however, introducing a pulse during a firing is a
useful--indeed, the only--means for determining completely the stability
characteristics. The combustion processes constitute a source of energy;
the amplitude of the pulse may grow, remain unchanged, or decay. Whatever

happens must, of course, reflect the nonlinear conflict between the gain and
loss of ene gy ior the pulse.

Qualification of liquid rocket motors by pulsing has been a standard
procedure for some time. Although the technique has, for practical purposes
essentially not been used for solid propellant motors (an exception is program
for developing motors used in the Canadian "Black Brant"” vehicle, cited in
Ref. 17), there exists a substantial amount of laboratory data for instability
studies using T-burners as well as burners with cylindrical configurations.
Only results for end-vented burners will be discussed here.

It should be noted that in laboratory tests, the strength of the pulse
can be controlled, although precision is a problem. Thus, it is possible
to produce perturbations much larger than one would normally encounter in
an actual motor, as, for example, might occur due to partial blockage of the
nozzle by a small piece of material. Laboratory tests therefore offer more
flexibility, and by proper interpretation should be applicable to real motors.
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A significant amount of experimental data has been taken at the
Canadian Armament and Research Institute (CARDE) (see Refs. 9-18) and
at the Stanford Research Institute (Refs. 19-22). More recently, work on
small pulsed motors has been done at the Aerojet-General Solid Propulsion
Company (Ref. 23). Limited results on spontaneous longitudinal oscillations
have been obtained at the Naval Weapons Center (Ref. 24), for a center-
‘vented configuration. A few observations were reported earlier by Hercules,
Inc. (Ref. 25) and by the Ballistics Research Laboratory (Ref. 26).

2.2,1 Data Taken at CARDE and SRI

In both the CARDE and SRI work, pulses were introduced at the head end
of a motor by introducing small explosive charges. Apart from a few important
visual observations (Refs. 13, 15 and 16) the data consists of pressure
measurements taken at the head and aft ends of the chamber. Rectanguler,
slotted, star, and other cross-sections have been used, but most of the
tests have been mude with circular ports. Experimental variables which
have been studied include chamber diameter and length (hence frequency),
throat/port area ratio (hence chumber pressure and Mach number), initial
temperature , and composition of the propellants. The last involved ballistic

additives and aluminum content as well ss changes of binder and size and type
of oxidizer.

Pressure traces suggest the presence of one or more discrete finite
pressure waves propagating up and down the chamber. (See Figures 1-3 and
following remarks). Subsequently, optical observations {Refs. 13, 15, and
16) established that indeed the instability involved a weak shock wave,
usually travelling with Mach number less than 1.2. It is evident from the
experimental results that the disturbance introduced by the explosive charge
very rapidly settles to the nearly planar wave travelling to and fro in the
chamber. The strength is a function of pcsition in the chamber, mainly
because of the losses incurred upon reflection at the ends, particularly
at the nozzle. The influence of the mean flow was more pronounced during
travel from the nozzle to the head end; the wave front was then concave in the
direction of propagation.
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The wave motion therefore appears to be analogous to the case of
the classical resonant tube driven at high amplitude, an idealized example
of which is shown above in Figures 2-1 to 2-3. However, in a moior, there
are obviously strong perturbations due to the combustion and related
processes. That the instability is often predominantly a discrete travelling
wave (in some cases two waves are present) is probably related to the
pulsing, but insufficient information is given in the accounts to draw any
conclusions. In the CARDE work, the explosive charges used were 0.3 gm
1 . to 12 gm depending on the size of the motor. No further details are given.

Moreover, only portions of a few records are reproduced and all show
the discrete waves very shortly after the pulse. It is not possible to deduce
any information about growth or decay rates of the waves. Indeed, in the

latest work reported (Ref. 18), only time averaged pressures were recorded.
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The experimental results therefore relate to the qualitative question

of whether a pulse is stable or unstable, although in a few cases the limiting
amplitudes are given.

AT S

The severity of the instability is interpreted usualiy
in terms of the shift of mean pressure.

7

AT AL

Ip the motors used, progreésive burning causes the mean pressure to
rise d;'.nring a firing; testing the stability characteristics consists of intro-
ducing a sequence of pulses which therefore occur at successively higher
pressures. Typically, pulses zarly in a firing, at lower mean pressures,
may be stable, while those at the higher pressures late in the firing may
produce the travelling wave instability. (It is of course possible that in
some cases all pulses may be stable or all unstable). Since there is
generally an increase of the mean pressure when the pulses are unstable,
there are some delicate questions involved in determining a stability
boundary with any precision. How this has been done in the work cited

(especially Refs. 13 and 18) will not be discussed here; it is thoroughly
discussed in those references).
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The behavior of the mean pressure during a firing in which an unstabls
pulse is initiated is sketched in Figure 2-4

Actual mean pressure
Mean

Pressure

-

- \ Pressure during

stable operation

Pulse

Time ceee=tm
initiated

Figure 2-4. Mean Pressure for a Typical Firing from
the CARDE and SRI Work

If no pulse is introduced, the firing is normally stable; thus the data truly :
relates to @ problem of nonlinear instability. Much of the interpretation of
data is based on plots of mean chamber pressure, measured at a fixed fraction 4
of web burned, versus K , the ratio of burning surface to throat area. An
example is shown in Figure 2-5; such data can be obtained, for example,

from a series of firings identical except for the initial value of throat to
port area ratio.
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Locus of unstable
operation

Mean
Chamber
Pressure

\- Stable operation

Per b= == o

g = Burning Surface Area
n Nozzle Throat Area

Figure 2-5. Sketch of Stable and Unstable Operating
Pressures for a Fixed Fraction of Web
Consumed

The intersection of the two lines in Figure 2-5 gives "critical" or "threshold"
values of pressure and Kn.

Early work seemed to suggest that the dynamical characteristics of many
propzllants could be correlated in terms of the threshold values of pressure
and K (Refs. 10,12 and 21), However, subsequently (Ref, 18) it was
established that not only was this correlation severely limited by the motor
configurarion, but also that by no means all propellants could be characterized
by the same stability boundary. Even worse, in many cases the stable ana
unstable lines shown in Figure 5 had slopes so nearly alike that a well-defined
threshold point could not be established. As a result of the last conclusion,

Roberts and Brownlee (Ref. 18) were forced to interpret their data in a
different way. They chose to use the difference of the mean pressures for
stable and unstable operation, taken at some arbitrary value of the stable
value (1200 psia).
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It is therefore not possible at the present time to discuss this data
in the context of analysis. Obviously there is a great amount of information

contained in the experimental results. The qualitative trends have been

discussed thoroughly in Reference 18, but it seems worthwhile including
here a brief summary of the main conclusions.

(1)

(i1)

(i11)

(tv)

For a given propellant and grain geometry, there is always an
operating pressure above which finite disturbances are unstable.
This has been found true for all propellants tested by both SRI

and CARDE. It should be noted that theoretically the effects of
the mean flow, and hence Mach number, are important to the
question of stability. No attempt has been made, apparently

to correlate data with this parameter, or to determine its influence.
The proper strategy is by no means obvious at the present time.

Although the time-averaged pressure increases with time

(see Figure 4) the amplitude of the wave (change of pressure
divided by the mean pressure) measured at the head end remains
essentially constant. The amplitude is also insensitive to the ratio
of port-to-throat area, and Kn. Thus, there appears to be a

limit cycle determined largely by the processes occurring during
propagation,

Tests in motors geometrically scaled from lengths of 20 inches
to 80 inches show that the larger motors remain nonlinearly
stable to higher operating pressures. The design of the nozzle
has very little influence. Increases to larger sizes (180 inches)
showed only a small further change in the minimum stable
operating pressure.

For a given propellant and grain cross-section, motors having
"low" values of length to port diameter (and hence higher
frequencies for the longitudinal mode) tend to be more stable.
"Low" here means about five or less. At larger values, there
seems to have been relatively little influence on the unstable
waves. Whether or not his behavior is closely related to the
frequency response of the propellants is not known.

2-11
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(v) Changing the grain cross=~section has essentially no influence
if Kn is fixed. In other words, the waves really are close to
being one~dimensional,

(vi) Very roughly, propellants having high burning rates tend to have
higher threshold pressures. Put another way, it appears that
if all variables including the mean pressure are fixed, an
increase in burning rate (as, for example, by adding rate modifier
or ballistic additive) is a stabilizing influence. This is contrary
to much of the evidence for linear stability.

(vii) Addition of lithium fluoride which reduced the burning rate
of an aluminized propellai. greatly reduced the threshold
pressure and in fact produced "extremely violent instability
at practicable K levels" (Ref. 13).

(viii) It is difficult to generalize about the influence of aluminum
(Ref. 18). However, it certainly is true that the addition of
aluminum is by no means a guaranteed stabilizing influence
and may very well aggravate a problem. This has been noted
also in other works (Refs. 24 and 25, for example).

In summary, the data reported in these works is related directly to
nonlinear stability. However, since there is no information concerning
the growth and decay rates of pulses, the measurements cannot be treated
quantitatively within the analysis presently available or covered in the work
reported here.

2.2,2 Other Experimental Results

The early observations raported in References 25 and 26 centain
insufficient detailed information to permit quantitative interpretation. One
of the main conclusions of Reference 25, however, is of considerable
practical interest, and is consistent with (viii) above: The addition of
aluminum may cause a stable motor to become unstable in the longitudinal
mode.
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Although the observations discussed briefly in Ref. 24 were taken in
a center-vented configuration, which will not be treated in the analysis
discussed here, the data are important for at least two reasons. First,
the unstable motions arise spontaneously, and second they exhibit very
distinct nonlinear behavior.

Wi Lo i St bty

The more recent measurements taken by Micheli (Ref. 23) are
potentially very useful, These comprise approximately two dozen firings
of tubular motors having a fundamental frequency of about 800 Hz for the
longitudinal mode. The motors were pulsed, but spontaneous instabilities
were also observed, Detailed records are available, but unfortunately the
data have not beer: reduced from the raw state. It is particularly important
that growth and decay rates can be found from the records. The instabilities
appear to be mainly standing waves.

The same propellant (ANB3066) was used in all tests. As a result of
current efforts in several laboratories, the dynamical characteristics should
be quite well known in the near future. One interesting conclusion, based
on a comparison of two firings, is that, as Brownlee has reported, an
increase of mean pressure se¢ "~ to be a destakilizing influence. Linear
analysis (Section 8) shows thati .ne major reason for this behavior is the
decrease of the Mach number of the mean flow, and hence a decrease in the
losses at the aft end, as the mean pressure is increased. Some of the
numerical examples presented later in the present work have been based
on these pulsed-motor firings.

2.3 Analytical Work on Longitudinal Instabilities

The numerical analysis discussed in the present report is, in an
essential way, a new contribution to understanding the problem of nonlinear
instabilities in solid propellant rocket motors. That is, in no previous work
have the gas dynamical nonlinearities been taken into account in a computation
of transient wave motions. In this section, what has previously been done
is briefly summarized.
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Available analytical works which are relevant here may be conveniently

divided into two classes: those which are concerned primarily with the problem

in solid propellant rockets, and those which are concerned with other kinds
of nonlinear wave motions mainly in liquid rocket motors. None treat the
problem in the detailed quantitative manner discussed here. On the other

hand, they may provide certain results more easily and economically than an
elaborate numerical calculation.

A very special feature of the longitudinal instability in solid propellant
rocket motors is that there are necessarily substantial fluctuations of the

gas velocity parallel to the burning surface. The combustion processes are

surely sensitive to these unsteady motions, @ phenomenon called "velocity
coupling.” There must also be fluctuations of pressure, to which the
combustion processes will respond, producing “pressure coupling."

Pressure coupling must always be present under unsteady conditions, but
velocity coupling need not be, as, for example, in purely radial modes in

a cylindrical chamber, or in an end-burner oscillating in a longitudinal mode.

Consequently, much of the work concerned with longitudinal
instabilities in solid propellant rockets has be=n directed to characteristics
and possible effects of velocity coupling. (Refs. 27-31). A fundamental
characteristic of velocity coupling is that it is intrinsically nonlinear. This
is a consequence of the fact that the combustion processes respond to the
magnitude but not the direction of velocity fluctuations, thereby introducing

rectification effects. This idea has been discussed in considerable

detail in the works referred to. The stability of motions and the possible

generation of harmonics have been discussed. But growth of waves to a
limiting amplitude, and the nonlinear effects within the volume of the chamber’
have not been studied. It should be noted that since the nonlinearity
associated with velocity coupling is of first order in the amplitude, while

the cas dynamical nonlinearities are of second order (and higher) the

nonlinear influence of the velocity coupling should be significant at

relatively lower amplitudes. It is not presently possible to establish this
conclusion definitively.

Two qualitative consequences of nonlinear velocity coupling are that
higher harmorics should be generated and that an increase of mean chamber
pressure may be produced. Both features are evident in some of the data.

2-14
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The connection is appealing but cannot at this time be supported quantitatively.
The major problem in doing so is that the coupling cannot be described
quantitatively. Particularly in Reference 30, and in subsequent unpublished
work, one may iind speculations and estimates, but all conclusions remain

tentative. However, nonlinearities and the mean flow in the chamber are
ignored.

In Reference 22, the group at SRI attempted to interpret their data in
terms of a model for the coupling between a small-amplitude pressure
disturbance and the combustion processes at the surface. Certain agpects
of the gas dynamics in the chamber (but not the mean flow) are discussed
qualitatively and to some extent quantitatively. This work was based on
the idea that the instability observed is a shock wave sustained by mass
addition at the boundary, which in turn is related to a response function
for pressure coupling only. They supposed that the response function had
to have a certain arbitrarily chosen minimum value in order that the wave
exhibit sustained periodic motion. They then examined the values of
parameters appearing in their formulation of the response function to
determine what values were required to match some observed stability data.

Although those results appeared at the time to be satisfactory, they
are severely limited, No attempt was made t» account in detail for the
losses in the system; only a few test results were checked. Moreover,
the relationship of the technique, and data obtained in the laboratory to the
full-scale motors has not been treated.

The problem of combustion instability in liquid rocket motors has of
sourse motivated a large number of works in the past twenty years. Of those,
References 32-34 are concerned with the longitudinal, discrete wave motions.
The techniques used are applicable only to periodic shock waves and hence
have nothing to do with the transient growth of waves, although nonlinear
stability is examined. The same sort of analysis was applied in Reference
35 to an end-burning solid propellant rocket motor. Obviously, because of
that restriction, the important influence of mass addition aiong the lateral
boundary is absent.
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A modification of Galerkin's method has been used in References 37 and
38 to study stationary nonlinear wave motions in liquid propellant motors.
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Extension of the technique to solid propellant motors with mass addition at
the boundary, and to study travelling discrete pulses is not obvious and
might encounter serious difficulties. Moreover, the transient growth or
decay is not simply represented, and ultimately numerical computations
are required. The important advantage of the approach is that only ordinary
nonlinear differential equations need be treated.

In Reference 38, the observation that the instabilities in solid
propellant motors often remain simply sinusoidal was used as the basis for
constructing a single nonlinear ordinary differential equation to describe
the motion. The equation is that for a nonlinear oscillator, and its solution
gives a very good qualitative--to a limited extent quantitative--representation
of transient growth of waves in T-burners. The failure of that work to
produce anything like the harmonic content actually observed (albeit small)
has motivated the work in Reference 39. It appears that the results will be
simple to use and applicable to three-dimensional as well as one-
dimensional, motions.

All of the analyses discussed above involve approximations of one
sort or another. It is practically impossible to ' ~termine how good they are,
particularly when the periodic motions are not re_resented as simple shock
waves. Comparisons with experimental data are not entirely satisfying
since usually fairly good results can be obtained by choosing appropriate
values for the many parameters which necessarily arise. The situation will
be much improved if an "exact" numerical analysis becomes available for
checking approximate analyses. Thus, even if--as is likely the case-- it
should be impractical to use numerical calculations to attempt correlations
of all available data, nevertheless, an important gap is filled. A
reasonable goal to head for is an approximate analysis valid for any
configuration, and an accurate numerical analysis which can be used to
check the approximations used, at least for one-dimensional problems.

2.4 Nonlinear Analyses of Ingtabilities in Liquid Rocket Motors

In addition to the works discussed above, there are some calculations
of nonlinear waves in liquid rocket motors which are not applicable to the
problem covered here but should be mentioned for completeness. One of
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the most widely applied nonlinear instability models was originated by

Priem and Guentert (Ref. 40). Their work has been modified and extended
by several different investigators (Refs. 41-47), however, the mode! in all

its forms is basically limited to the consideration of a two phase, liquid
drop~gas, reacting mixture in a thin annulus. Depsite some of the short-
comings of the model, it does lead to the definition of stability limits in
terms of engine design parameters; a feature which has led to a better
understanding of liquid rocket instability. Priem's model is, however,
not particularly well suited for an extension to solid rocket engines, and
is limited to the consideration of transverse instability modes which are
not being considered in the current program.

Burstein and Schechter (Ref. 48) have developed two-dimensional
transient models. Two separate and“icomplementary programs were developed
describing, respectively, a pancake type motor (r- 6 model) and a toroid
with incremental thickness Ar (toroidal or 6 -z model). The toroidal model
is the first nonlinear analysis for investigating both tangential and
longitudinal motions. Limited results were obtained mainly due to the

excessive expense associated with solving two-dimensional transient

governing equations. The pressure amplitude determined using the pancake
model appeared to be unrealistically high. This can be partly attributed to
energy accumulation in the plane z = constant. This is very similar to the
constant energy assumption in ihe annulus required by the Priem analysis.

Recently Agosta (Ref. 49) developed a three~dimensional transient
analysis. Numerical analysis was only carried out only for the one-
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dimensional case. Nonuniform droplet temperature was considered as a
result of assuming finite thermal conductivity. Evaporation kinetics for
nonequilibrium conditions were also included (Ref. 50) although the validity
of this work at high pressure has yet to be proved. Theoretical wave form
results were obtained for the transient one-dimensional model.

o
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Many nonlinear extensions to the linear theory of the time lag model
have been developed in studying instability of liquid rocket engines. Various
approximation methods were used and the analyses do not depend totally on

Sl

computerized solutions as those previously described. Based on this time-lag
concept, Sirignano and Crocco (Ref. 32) studied longitudiral combustion
instability for pressure waves of finite amplitude. Mass and energy addition
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was assumed to occur only in an arbitrarily thin region next to the injector
face. The solutions were shown to be unstable thus indicating the
possibility of triggering longitudinal instability. Based on similar concepts
Zinn (Ref. 51) studied transverse mode instability using ~scillatory nozzle
flow conditions while Sirignano employed the short nozzlc concept.
Michell (Ref. 33) extended the work of Sirignano to include possible
discontinuous waves and distributed combustion. In this manner he was
able to show that the final form of triggered longitudinal instability
consisted of shock waves moving back and forth along the chamber. As
noted above, the Galerkin method, with some modifications has been
applied to some problems associated with combustion instability in liquid
rocket engines. The important simplification actieved by the Galerkin
method is that the nonlinear partial differential equations governing the

problem are replaced by nonlinear ordinary differential equations. This is
achieved by direct integration of the original equations over the volume of
the chamber. Time remains as the sole independent variable. It is therefore
natural to consider a disturbance which is distributed in space and maintains
essentially the same spatial form in time, but has amplitude which changes
nonlinearly in time.

Unfortunately, the analyses developed for liquid rocket instability
studies cannot be easily applied to investigate solid propellant motor problems.
One of the most crucial parts of all combustion instability problems is the
coupling between the flow and the combustion processes. It is there that
the source of energy for exciting and maintaining combustion instability
resides. Heterogeneous combustion processes of solid propellants are totally

different from liquid droplet burning which are usually governed by the rate
of vaporization and/or gas phase kinetics. Furthermore, the spatial
distribution of solid propellant grains, as ' . the case of motors with
cylindrically perforated prppellant grains, presents an entirely different
problem formulation as compared with head-end injectors employed in liquid
engines. As shown very strikingly by the results obtained here, the truly
transient character of tt}e burning under unsteady conditions is a fundamental
part of the problem. Es'\'sentially all of the computations for instabilities

in liquid rockets involve the assumption of quasi-steady coupling between
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the flow and combustion. If that assumption were used in the present
work, the results would be unrealistic and misleading.
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The works of Powell and Zinn {Refs. 36,37) are most applicable to
the analysis of standing waves where disturbances are alstrlbuted in space
and maintain the same spatial form in time. These methods, with difficulty,
could probably be modified and/or extended to treat solid rocket longitudinal
instability, However, it is doubtful that all of the nonlinear coupling effects \
could be properly accounted for,
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3. EQUATIONS OF MOTION

3.1 Discussion of the Mathematical Model

The flow in the combustion chamber of a metal loaded solid propellant
rocket engine is calculated from a set of one~dimensional, unsteady, two-
phase flow equations. Before presenting the equations, the assumptions
upon which they are based are discussed.

It is assumed that the gas is ideal and nonreacting; the flow is inviscid
and one-dimensional; the particles are spheres of a single size with
uniform internal temperature, the particles are of negligible volume and do
not interact with each other. The mass and particles coming from the
burning surface are assumed to enter the chamber normal to the burning
surface with zero tangential momentum, and at the adiabatic flame tempera-
ture.

Mast solid rocket engine combistion chambers do not have rapid area
changes, and the time for a pressure signal from the propellant surface to
reach the centerline is usually a small fraction of the period of the longi-
tudinal pressure waves; hence, a one-dimensional analysis should provide
a reasonable approximation to the flow.

The combustion of a metal loaded solid propellant does not directly
produce solid particles. The solid particles--aluminum oxide for aluminized
propellants--are formed by the combustion of metal droplets which have
been entrained by the gas flowing over the burning surface(61 ) . In the current
work, however, the formation and combustion of the metal droplets has not
been modeled and inert solid particles are assumed to be carried into the

flow by the burning gases at a specified, and constant weight fraction.

In the analysis the particles are also assumed to be all of the same
diameter, and all particles at a given location are assumed to have the
same velocity and temperature. In actuality, the particle sizes form a
distribution, which is at least bimodal due to two modes of oxide for-
(61’. Quantitative particle distribution functions are not available,
but the particle formation mechanisms are such as to produce both small
0-2uparticles (smoke) and larger 5-20u particles.

mation
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Particle injection takes place continuously along the entire length of ? '
, '.& the chamber. Within a small volume, at any one time, various particles
: may possess different velocities and temperatures (even if they are all of
the same size). This is a result of the fact that the history (trajectory) of
each particle is different, and, in time, particles from different locations,
4 injected at different times, can be in the same place. The ability to
: g distinguish between particles because of their varying past histories is
3 diminished with time, since all the particles eventually acquire the local
velocity and temperature. For particles of radius, ¢, mass, m, moving in
3 A a gas with viscosity, uy , characteristic times required for the particle to

approach the local velocity and temperature may be defined (for Stokes
flow) as:(sz)

T

(3-1)
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K Under typical conditions encountered in & solid rocket motor e and
‘ Tp are usually about 0.1 to 0.01 milli-seconds; only a fraction of the
typical period of a longitudinal wave. Therefore, the current assumption
Z that all particles at a given location and time have the same velocity
and temperature, is a reasonable one. Although this assumption is a
reasonable one it raises the conceptual problem of how the particles
injected at a given time instantaneously acquire the local velocity and
temperature of the gas. There are two modes by which this nonphysical
event could be postulated to occur. The required energy and momentum
could be instantly acquired from the gas, corresponding to infinite drag
coefficient and Nusselt number. Or, alternatively, the newly injected

o g
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particles may be said to instantly exchange energy and momentum with the
other particles through collisional effects (infinite cross~section). The
choice of one, or the other, of these postulates is reflected in the momentum
and energy equations; however, as might be expected, as long as T and

Tq are small compared to typical particle stay times in the chamber, the
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choice makes little difference.

The equations, as used herein, imply the assumption of instantaneous
acquisition of momentum and energy through coliisions. The alternate forms

of the equations-are presented, for referznce, in a footnote to the equations.

The assumptions previously mentioned, and discussed were made to
allow the formulation »f a relatively realistic nonlinear combustion
instability model, without undue complication. The present model should
allow for a reasonable assessment of this type of approach, and should it
prove to be warranted, the model may be enhanced by the removal of one,
or all, of the above assumptions.

3.2 Conservation Equations

Subject to the previous discussion, the equations of motion for the
two phase mixture are as follows:

Continuity
Gas Phase at* (p*A*) + = aX* (p*u*A*) = p*A* (3-2)
j Particles 3% (P A*) + ax* (p*u*A*) = w*A* (3-3)

where asterisks denote dimensional variables, p* and p; are the gas and
particle densities, respectively, u* and u; are, respectively, the gas
and particle velocities, A* is the chamber cross-sectional area, while

ek

ﬁ% w* and w; are the mass flux of gas and particles given off by the propellant
"'} per unit length, per unit cross-sectional area.

g’% The quantity, w*, is related to the burning rate of the solid propellant,
Q

r*, as follows:

W

B

*kpk gk
_Ds!‘Jl

w* = m) . (3-4)
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where p; is the density of the solid propellant, ¢£* is the perimeter of the
grain, and Ry is the weight ratio of solid particles to gas, The steady
burning rate, r*, is assumed tc have the form

ot s

: r*=C*|g— | (1+C} u¥) (3-5)
N ref

t ; Momentum

¢ - O [k RAK) 4 B (pFy KCAK) = — DEF Ak oy PHAR <R
: Gas Phase St* (p*u*A*) +ax*(p u*“A%*) ax A +FpA (3-%)
: & ; D (kR AK) 4 D (kRS AK) = - FRAR -
F Particles e (ppupA ) e (ppup A¥) FpA (3-7)
: where the term F; represents the effect of momentum transfer between the

F " particle and gas. The momentum interaction is equal to the drag force

3 ;; exerted by the particles on the gas, per unit voiume, and is given by

: 3 P¥p¥

5 F; = 3 p——-gr;o* CDIUS- u*l(u;-u*) (3-8)

where o* is the particle radius, pr*;l the density of the solid particles and
CD is the drag coefficient of the particles. The drag coefficient CD is
obtained from a well-established correlation of the so~called "standard"
drag coefficient versus Reynolds number data. These data represent
measurements for a single sphere in steady flow. The formula used was

B T e e b N S T AN B T A

originated by Kliachko(63), and is,
2/3
- -2-3. Re AY 3-9)
CD Re (1 + 6 / (

d

The second term in the above equation represents a correction to the Stokes
value, 24/Re, and allows the formula to be used at Reynolds numbers up
to several hundred.
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The gas and particle momentum equations (3~6) and (3-7) can be
rewritten in modified form by subtracting the respective continuity
equation, (3-2) or (3-3), after it has been multiplied by velocity (u* or
u; as the case may be). The resulting modified momentum equations are:

+ ou¥* du* ap*
Gas Phase p* 3tF + pru* 3x* = - uig* o 3k ‘*’F; (3-10)
du* dux
+
Particl * —B 4 pxyk Pl y* % -p* -
articles pp 3t* ppup W Up wp Fp (3 11)

Energy

The energy equations for the particles and gas can be written in several
different ways, in terms of internal energy, enthalpy, temperature, entropy,
etc. The equations are written below in terms of temperature.,

Gas Phase’ p*CBr S—a—g—: +pryrcr 21T - L 3

3p*
p 3x* ~ A¥ 3tx (PN +ur S

, (3-12)
+ w*[c;(rg -1 + L 4 Fg (uf - u¥) +Q¥

+ 3T* AT* u*e
*O%x —L * —P = - ~B_
Farticles PECE BT * PRuECE e mup[or (g Tt

{3-13)
- Q;

+As discussed in Section 3,1, the momentum and energy equations are slightly
altered if it is assumed that the entering particles immediately acquire their
momentum and energy from the gas flow, The differences are as follows: the
term. u* «* must be subtracted from the r,h.s. 3( Eq. (3-10), and added to the
r.h.s.fof Bq. (3—1&); the terms u* u; u.g and wp._C*;(Tf.-T;) - 1/2u*®

u!l')-_C;(Tf. - T;) + —-2&- _]must be subtracted from the r.h.s. of Eq. (3-13).
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where C; and Cg are the heat capacities of the gas and solid,

respectively, and Q; represents the voluw stric rate of heat transfer
between the particles and gas. :

m*C* p* C*(T* - T*)
R I R < R

N

= - ’.—-_._Q_.\ = -
Q= P55 (T; T )/KzNuno*k*/ T (3-14)

where k* is the gas thermal conductivity, Nu is Nusselt number and m¥ is
the mass of a particle,

TR RV TR TN

T

3
we = et o 619

The parameter -r,i.* = (m*CS)/(ZNuno*k’“-‘) is the thermal relaxation time
constant, i.e., T.i.‘ is the characteristic time it takes the particles to adjust
to the local gas temperature. The Nusselt number is a function of Reynoldr
number and Prandtl number. The following expression suggested by

Carlson(64) is used:

Nu =2 + .459 Re" 9 pr-33 (3-16)

T
SRR T

Here again, the second term represents a correction to the Stokes flow

value, i.e., Nu =2. The gaseous equation of state is also required and is

-
o st e g A

P* = o*RT* (3-17)

3.3 Nondimensional Equations [

3

In an effort to improve the accuracy and reduce the possibility of round- "'
off error in the solution, the independent and dependent variables have been
normalized. The resulting normalized (nondiniensional) variables are more
uniform in magnitude. The following new variables have, therefore, been

P ILIINTHLAGLE

)
H
i
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defined:
x = x*/L T = TH/T% A = A*/L*
t = traky/L* P = P*/PX w = wL*/ppag
= * * = = 7. %
u u /aP P p*/pg wy w;L /pgag (3-18)
2
= * * = Yo * = *T % * ok
Pp = P5/PF T, = T§/T4 F,= FrL*/pfag
= * = * = * * *
up up/ag C C;/Cp Qp QpL*/pg Cpai‘,'TF
a = a*/af

where T; is the propellant adiabatic flame temperature, Pf is chamber
pressure, p; and a; are the density and sound speed evaluated at the chamber
conditions and L* is a reference length, usually the length of the grain.

In terms of these nondimensional variables equations (3-2), (5-3),
(3-10 to 13) and (3-17) become:

Continuity
2. - = -3
ot (pA) + 3% (pud) = wA (3~19)
E g 2 N - -
: 5t PR + 55 (PLup) =w A (3-20)
r Momentum
s
[ -a-l-'-l. -a_.g = - - l ig -
B PyT FPUGX TTuw Ty 3x *Fp (3-21)
5 du ou
% P + . =W - 3~
g% Po 3t T Pp¥p ax pY " Fp (3-22)
4
?E
&
&
é‘.{{
g‘é 3-7
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aT

aT AT _ y=1 [1 3(pa) 3P~ ' y=1.2
eat FOUFXT v iR ot TUagx. Tw (@) + 5 “J
(3-23)
+ (y-1)F -u) +
(v )p(up u) Qp
2
oT dT @ u Q
D —P - - y=1 pp. _>p -
T: +opup S wp(l Tp)+( ) C G (3-24)
State
P=pT (3-25)

Ths nondimensional sound speed, a = a*/ag, is given by,

a=+AT (3-26)

3.4 Characteristic tquations

The equations of the characteristic lines, and their corresponding
compatihility rclations, can now be developed as follows: p =P/T is
substituted into equation (3-19) and the resulting ten.lperature derivatives
are eliminated using the energy equation (3~23), this yields

-]

_1.[.5.? 2
- t +u

o/
A

2l

i du __ P B3A _uP 2A y=19 2
_|+P x YA at A x+w+[2 qu

(3-27)
+ (v~ l)PD(up—u) + QlD

e —————— o
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The momentum equation (3-21) is then multiplied by an unknown
multiplier, q, and added to equation (3-27), this gives

1°3Pp 2P, du P 13u__ P 3A
vLat T*ad 555 teq 53 +pq[“+ qla TTYA ot
(3-28)
- p—té—é - -1 [l 2 \ H
A 3y TW(l-uq) + (_Y_lz wu +FpL(Y"1)(Up"U)+QJ+Qp

If the total derivatives of pressure and velocity are to be the same
then the condition

= P 2_P
1% o5 or " = 3 (3-29)
must be satisfied. Since a2 = P/p, this condition leads to
q=+a (3-30)

8. 2 1 8~ _ 3 2 -
If ét at+(u+a)_ax and 'E-i:— —--a—-t-'f'(u—a)-—a-?c (3 31)

are defined as the total derivatives along the characteristics lines given by

dx _ .. .
dt ~uzxa (3-32)

then equation {3-28) with (3-30) yields the followir.g compatiblity relations:

18, 8w __ayl2a, 23Al,
Yoa ) t AlYat B'

O

-% [(Y- Dy ~u) + aj + _;p_a_
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The gas energy equation (3~23) is already in characteristic form.
The gas streamlines

vl (3-35)
are characteristic lines, and if
oo & & -
5t At tu % (3-36)

is defines as the total derivative along the streamilines, then

the energy equation becomes the compatibility relation, and may be written
as

LT _ (=1 3P _ {y=1) P 3A . "oy 4 x=l 27
T — s Ty At+m_(lT)+2u_§
(3-37)
+(v-1)F -u) +
(v=~1) p(up u) Qp
A particle path,
%{S =y, (3-38)
is a dual characteristic. Defining,
)
=9 -1 -
* <31t Yo% (3-39)
3-10
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as the total derivative along a particle path, allows the particle momentum
and energy equations (3-22) and (3-24) to be written as

C sy
LDP . _ - -
0 bt o, Fp (3-40)
6 T ~ W Q
P'D _ ) ry=1~ %¥p 2 “p -
o Bt - wp-T)*+ S5 Fug- g (3-41)

The particle continuity equation (3-20) becomes uncoupled from the
remaining equations (since there is no particle equation of state which
relates particle dznsity to particle temperature) and cannot be written in

characteristic form. It can, however, be written in the following alternative
form

5 o du _OE ELA_
6t +°p ax Yo~ A Bt (3-42)

The required equations of motion are, therefore: the equations of the four
characteristic lines, equations (3-32), (3-35), (3-38); the five

compatibility relations, equations (3-33), (3-34), (3-37), (3-40), (3-41);
a2nd the particle continuity equation (3-42). These equations, together with
the equation of state, (3-25), the transient burning rate analysis (Section 4),
boundary conditions (Section 5), and initial conditions (Section 6), form the
complete mathematical model of the instability problem.

3-11
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4,0 RESPONSE FUNCTION FOR TRANSIENT BURNING

3 ' In general one must expect that the combustion processes will respond
: to both pressure and velocity fluctuations. Moreover, aithough this has
t not been established experimentally, the response may be nonlinear in
; K addition to the intrinsic dependence on the magnitude of velocity fluctuations
! mentioned in Section 2,3. Other than a numerical calculation of the

i response to an exponential change of pressure (Ref, 58), there have been
three treatments of the nonlinear response to pressure coupling (Refs. 55,56,
E 57). All are restricted to harmonic motions, and seek to obtain nonlinear
: , heat conduction solutions. There are open questions, however, about the
; 1‘ validity of these analyses., The present treatment is based on a linear
solution for the heat conduction in the solid, coupled to a nonlinear solution

of the chamber flow dynamics. This approach seems to be justified based on
observation of data,

T AR

The method for calculating both the pressure coupled (Section 4.2) and
velocity coupled (Saction 4.3) response to disturbances of arbitrary waveform
is essentially an extension of the analysis of the response to harmonic
oscillations, Therefore, a summary of the harmonic analysis is included here
to clarify the origin of the parameters required in the numerical analysis. The
influence of aluminum is not explicitly accounted for,

QU s I AT el

TR Y

4.1 Linear Response To Harmonic Pressure Oscillations

It has been shown (Ref. 59) that almost all existing analyses of the
response of a burning solid to harmonic pressure fluctuations lead to
essentially the same functional dependence on frequency. The reason,
logically enough, is that all are based on the same assumptions, namely:

(1) The gas and solid phases are treated as homogeneous
phases, and only variations in the direction normal to the
burning surface are accot nted for.

R R R R S R S S B A T

(2) Conversion of solid to ga:: occurs at an infinitesimally thin

interface; in particular, no chemical reactions are present
in the solid.

(3) The gas phase responds quasi-statically so that only the
steady-state solution is required. This assumption is
justified by the fact tuat processes in the gas phase
are much faster than those in the solid.
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The analysis is then conveniently split into three parts: the
solid, the gas, and the interface.

4,1.1 Solid Phase

A coordinate system fixed to the gas/solid interface is used. With
the approximations listed above, and assuming also that the material

properties are constant, the problem reduces to the heat conduction
equation,

2
ar aT _ . A (4-1)
PsCsat t 905G ax ~ Xs 32

The equation is linearized by writing T =T + T , =1 +r's the steady-
state and fluctuating temperatures satisfy

— 2.—
-~ r d_I‘ = d 'I
dx
AT — 3T A T
0, C. - +pCyr 2L AT _ » AT -
s 7sat s b T (4-3)
s X [ Mz S dx
From (4-2), with the conditions
T= T x~- -9
T= T, x=0) (4-4)
one finds
T -T, 3 (4-5)
T——— =e S
w’o Ts
where ’
£y = ,—f— X . (4-6)
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It is sufficient for linear problems to examine the case of harmonic time

variations. The solution to Eq. (4-3), yields the formula for fluctuations
of heat transfer from the interface into the solid,

- - T ~T.. m .
(ke 3x)-=mairmy, + (55, 2 (4-7)

where m"” =9 sr' is the fluctuation of mass flux, T;V is the fluctuation of
surface temperature, and A is the complex function of frequency:

A=1/2 1+ j— if1+1602% + 1]1/2} (4~8)
. 2

-

Q= =2 (4-9)
=2

where w is angular frequency of the waves.

It is common practice to assume that a simple pyrolysis law of the
Arrhenius form applies:

n, -E/RT
- w
My = B e W OV (4-10)

Thus, the fluctuations of mass flux and surface temperature are related by

W g W N
m E T + nw 'p' (4'11)
w
with the normalized activation energy for the surface reaction
E=E /R T, : (4-12)
Equations {4-7) and (4-11)may be combined to yield the desired result,
' T! 1-T_/T ' (4-13)
L7 = Al w ____s___w] B
[ksax- [)‘+X]§ nw[ A P
w
4-3
" X A sadian stk sl ‘ﬂ
- A . e . - R




o Sl AL

TP TEN PO T o

O T TR T T

Lo

ek fat i e

T

Y

where the important parameter A is defined as:

T,

A= Kl—}: \ (4-14)

4.1.2 Interface

By examining conservation of mass and energy for a control volume
encompassing the interface, one finds the general "jump"” conditions

= (4-15)
0gr = pgu

- - &I
[ks'ﬁc =g ughw+ TG 3k ]+ (4-16)

in which the enthalpies on the solid and gas sides of the interface are h

hW 4o respectively. The heat of reaction zcsociated with the processes at
the interface is QW

4
-

Q =h_ -h (4-17)
and QW > 0 for an exothermic reaction.

The perturbation of (4-16) is
ol aT n - R -
g ax] '_ks 3 X +m(Cp Cs)Tw M Qw (4-18)

and with (4-13), one has

. T
1 3T 7 A" —P_.1.aH) |
= o BT )@ I3
T ! C (4-19)
+nw[1-§3v] [-X-H_lb.
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where

H= —% (4-20)
CAT,, -Tg)

4.1.3 Gas Phase

This is the most difficult part of the problem if one wishes to cope
with the details of the flame. However, it turns out that, owing to the
assumption of quasi-static behavior, no matter what model one selects for
the flame structure, the ultimate form of the response functions will be the
same. For simplicity, the most elementary model will be discussed.

The energy equation for a thermal theory of flame propagation is

(o}

T_d dT >

x = ax &g ax_ T w (4-21)

me

Q.

where Qf is the heat release per unit mass, and w is the reaction rate

(sec_l) divided by the gas density. This equation must be solved subject
to the conditions

[k, £, =nifr,T)-Q,] (a-22)

at the surface (x = 0), and

(4~23)

at the downstream edge of the flame (x » «).

Now suppose that the energy release is uniform in the region from the
surface to the edge of the flame (x = xf) so Q;w is constant. This case has
been treated in References 58 and 59. Equation (4-21) can then be integrated
directly (note that m = Py Ug is constant) to give the formula for the heat

.....
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: transfer to the surface
i k et w (4-24) |
] [ g dx + = Cp [1-exp(- mexf/kg)] - z
. }
~ .\
It happens that for typical values of the quantities involved, the exponential ‘
3 involving x; is negligible: i
1 mC pr - -

—P = s = X

5, k, £ kg Cp * LG _l " |

~ (1) (L cm/sec)
(1073 cm/sec) f

2 Sadh (Al A

~ 1000 X¢

il ar Bl ol i tHA T

Even if X¢ is as unrealistically small as 20 microns, 1000 Xe = 2; hence the *
approximation is quite good, and (4-24) becomes

v

e a7 = Qfky -

ke g Yo o o

; TR w20

where
(2 = Qfl‘g;”
(m Cp) T,

(4-27)

It remains only to find an expression for w, and, hence, w'.
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Suppose that the reactions are mainly sensitive to changes of pressure,
so w' . p'. It is convenient to define Wby

C 2 ' '
i1 v
s 1--Ts/‘1‘W
With this assumption, (4-26) becomes
Mk 9LV - R c7F "(1-—?-$ we - e,z my (4-29)
L gdx]+ S*w _T->5 C, ' m
w

which is the result required of the solution for the gas phase.

4.1.4 Linear Response Function and Fluctuations of the Flame
Temperature

Equations (4-11), (4-19), and (4-29)can be combined to yield the ratio

C
_ AW+=Pn )+n (A-1)
m'//_m - CS w W
p'/P C C (4-30)
AR 4P R g
AT C C

In the limit of zero frequency, A\ + 1 and (4-29)must reproduce the
smallchange of burning rate due to a small change of pressure in steady
state burning. For the common case r . pn, this implies that the ratio
(4-30)must equal n for u: » 0; i.e.,

- C C._- C_n
niA(1-H) + =P EA% + =P =alTw+ =D -‘"L] (4-31)
C C 4 L C_ A
S S S
Define the parameter B as
C n
=-Lr —P —.V!-‘ -32
B an+Cs A _J (4-32)

4-7
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and the cendition (4-31) is

c c
LE?-HA+ R -1+ @A+]1) =AB
S S

Hence, (4-30) has the simpler form

~  nAB+n_ (A-1)

p'/P >\+%-(1+A)+AB

(Incidentally, with a bit of effort, one can show that (4-33) implies

satisfaction of the mean energy balance at the gas/solid interface written
in a slightly obscure form).

Equation (4-34) is proportional to the response function, Rb' usually
defined as

A second quantity, the admittance function, is also important in studies
of instability. This is defined as

- u:/g_ =M w'/u

Ab -—7-—-p - b —7——p, - (4-36)
Now from the definition of m = pu* ‘
m_u,
m u P
or
M, R_=A +p'/p M (4-37)
b"'b b p' / Y; b

*Note that owing to the way in which the mass flux is used here, the assump-
tion is implicit that the propellant contains no metal. When applied to metal-
lized propeilants, m and m' must then be the values for the gases only,
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With the perfect gas law, (4-37) can be written

- /T
Ro =My *Y - /AT

Here T' is really T%, which can be written as the sum of an isentropic
part and a nonisentropic part:

T T T AT
L s (;f) = xal ooy ] (4-39)
T, Tf “isent. ‘T, “non-isent. Y F T,

Thus, (4-38) becomes

AT/ T,
= i -
R -1=MA - Y (4-40)

The last result is generally true for linear variations. With the
analysis leading to (4-34) one can deduce an explicit expression for AT% and
hence for the admittance function. Consider first a control volume extending
from the solid/gas interface downstream beyond the combustion zone; the
energy balance for this region is

[“gﬁil‘m(hwth) =m[Qf'Cp(Tf-TW)] (a-a1)

where Qf is again the energy released, ver unit mass of flow, by chemical
reactions. The perturba:‘on of (4~41) is

1 o= M o — m™ 1 'd_
f—Tw+%[C'(fT -5 Lkdx

-’ Q C 1 el T -
et 2 [ (F 7T Vle—p2\m _[,_.8 ol -
T =T, + . (T, TW)J+CSA}E 1 = Jwe (4-42)
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The mean energy balance for a control volume extending from deep within
the solid to a plane on the gas side of the interface is

o s S S ebid

T R -
i_kga; +=G(T,-T) -Q (4-43)

TR R P

With (4-41), or.e has the identity for use in (4-42):

Q - Cp (Tf - Tw) =Cs( T~ Ts) - Qy, (4-44)

Also, combination of (4-25), written for steady burning, and (4-43) gives \
a formula for A%:

C
EPEA"’ =A(1-H) ' (4-45)
S

TUNR DL T T

Now after the Arrhenius law (4-11) is used to eliminate T.s from (4-42),
and Equations (4-~43) and (4-45) are substituted appropriately, the result is

g L

™ T C . .
~wrl, ,_s A, v Tw nAB | p' - )
=z [E+chg(1n)_l_ LCJ[ 2 (4~46)
£

The bracksted terms multiplying m'/m can be rewritten, using (4-33) and
(4-45) 3s

- C C
Lhvaefan-m =42 B (4-47)
P = P
nd with (4~35), one now has
™ C. T
4.8 ‘wnlB 1l Ry = 1) £ (4-48)
Tf Cp i,-f E yn P

To find the nonisentropic part of (4-48), write T%/"ff as in (4-39), and
the last equation produces

[} C T
M fhswABLLy (N _cxlNiE (4-49)
& '"C_ = E van vy -4 P
T » I
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W, (R, )|p

This completes the elementary linear analysis for harmonic motions.

The fluctuations m', T%, etc., are of course complex amplitudes with phases

measured with respect to the pressure oscillation. It should be noted that

(4-50) is a general result, whereas (4~49) involves the assumptions listed at
the beginning of this discussion.

Although the flame temperature must in principle oscillate according
to the preceding result, this behavior is not currently included in the numerical
analysis. There is no reascen why it cannot be incorporated, and, in fact,
variable flame temperature will be added to the model as soon as possible.
In the meantime, the exclusion of this effect should not affect the immediate

task of assessing the possible value of the current approach to solid rocket
instability.

4.2 Linear Response to an Arbitrary Change of Pressure

The response function, Equation (4-34), has been derived as the
sensitivity to harmonic oscillations. However, simply by taking i0 as the
vrriable, {4-34) can be treated as a Laplace transform. Henceforth, the
influence of surface reactions will be ignored (nW =0) sowiths =iQ,

- g = Me) 2(s)

(4-51)
A%(s) + (AB-A-D} A(s) +A P

Note that s = inw /r< is the dimensionless Laplace transform variable as
associated with the dimensionless real time t,

o]
-+

t =

(4-52)

d
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Thus, for any function f('tv) having transform F(s),

F(s) = Sf(?) e~St gt (4-53)
0
£(t) = z—jr—i SF(S) ¢St as (4-54)

Now define a new Laplace transform variable p,

p=1+4s (4-55)
so that the quantity A is
1 —" _ 17 I
= -5[1+«!1+4s_! =31+ | (4-56)

Substitute (4-55) into the Laplace transform pair (4-53) and (4-54) to find

F(p = .; [4e7H(r) e P dr (4-57)
0
T = 1 Pt -
[4e76(2) | = 737 (PR ePmap (4-58)
where
~ -2
r=t /4=t (4-59)

Hence, what appears now is 4e” times the desired function of time, not the
function itselt.

The inverse transform of (4-51) gives m'/ m as a function of T

m Sy L A(s) ' st -60)
5 (t)= = —~ E-(s)e®" ds (4-6
m 2! S Lx’ +(AB-A-1)A +A | S

1
nAB
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and if the substitutions t + ¢, s % p are made,

ZnAB ": el m' ] -51—— e (1+4p) B P4y (4-61)
(ﬁ;' 0'1) (\,-I;-Oz)
where 01+ Oy are the roots of the denominator,
o, =-AB-1) +1y 48 -(aB-A-1)> (4-62a)
o) = 0, =~A(B-1) - 14/ 42 - (AB-A-1)° (4-62b)

Thus, o1r Oy are complex conjugates.

In principle, (4-61) can be ﬁ_sed for numerical calculations. For by
use of the convolution theorem, if p'/ p(7) is the inverse transform of

p'/ p(p) and K (1) is the inverse of the remainder of the integrand, then
formally

1 ] b Pt - U
TR ]'481 %’—(T)J = S 4efK(g) - 4™ %—('r-e) de

or

-8-—1—8 %'(7) = S K (g) %-'(-r- g) de (4-63)
0

Note that the factor 4e™ must be carried alorng according to earlier remarks.

Unfortunately, the function K(g) turns out to be extremely awkward
to handle numerically. It contains terms involving complex error functions

7% (1-¢)
and exponentials such as e ! erfc (ol's/ 1-€) . This combination can

be shown to be equivalent to the W(2) function defined on page 297 of
Reference 70.




Several different series representations may be used to represent
the above term. Each series, however, is either convergent in only part
of the complex plane, or if convergent everywhere, is only very slowly
convergent in part of the range of interest. It turns out, therefore, that
even by using different series with overlapping regions of convergence

there are parts of the complex plane of interest where many terms have to
be taken in the series.

Since, in an instability solution, the burning rate integral must be
carried out from 0 to the current time at each of many x locations, every time; -
the computation time involved in evaluating the integrand becomes prohibitive
when the series are so slowly convergent. The fact that complex arithmetic
must be used further serves to amplify the problem,

The numerical difficulties of the direct approach can be avoided by
use of an alternate procedure. If (4-51) is written in terms of P, using
(4-56) and (4-62), equation (4-51) cen be written in terms of P as,

1 a%o
2nAB'

<.G10q -
+ _1p_l | %.(p) = i +71_—; -g-—(p) (4-64)
- »e p -

. ,‘
o I T R R D SN et
B R T W N R ey - N

Now take the inverse transform to find

A AR

s
E!IIB
—

-3
o
0l

i (4-65)

T T
+ 2nAB {—l;—é%-( -g)e >——+e é%( )eS q '§}

Although this is not an explicit formula for m'/ E, the functions under the
integrals are easy to handle numerically.

Equation (4- 65) does present a problem at the lower limit of the integral,

£+ 0, since the integrand becomes infinite. This singularity can be handled

by dividing the integral into two pieces, and a pproximating the part near ¢= 0.
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f(r-g)e 398 = (f(r-gle 84 + (f(r-g)e s & (4-66)
S b

0

Ve

where § + 0. If only the first two terms in a Taylor's series expansion are

retained, the first {ntegral has the following value:
6

6 )
f(r-gle 9 ~i(r) (e84~ L (e EyEg

(4-67)

zf(ar)[Z«/_a_- 3/2] dff'z 32 _ %65/2'}

-

where powers of § greater than 3/2 have been ggnored'.
All the integrals in (4~65 can be treated in this way, and after some
rearrangement, the final result used in the numerical calcuilation is

' 01 *0y 2 3/2 .
%—(T)[1~-;~/:;—~(2\/_5_-'§6 ) + 01090 |

- 0y+0y

- 040 Ie
[ 1(x =§) 1722

Bll?

(2) ~(1-2) ge

0
T=8

+ 2nAB S +11e(m8)

(F)[ m 1 e (4-68)

o oy toy 2 §3/2 d ( \+ p_( )r.&nAB(ZA

e 2,3/2 4 rass
7 e (538 )

SE- LG 1)

The accuracy of this formula has been checked by examining several special
cases which can be worked out exactly (see Appendix A).
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The result (4-68) contains, in addition to the pressure index n, two
parameters, A and B. Over rather broad ranges, they can be chosen
independently. Previous experience has shown that A is probably in the
range 5 <A <50 while B<1. This constraint on B assures (see Ref. 60)
that heat conduction to the solid from the gas is positive. However, A and
B cannot be set entirely independently for the following reason. Both (4-61)
and (4~68) produce a response, m'/ E, which consists of transient oscillations
and a long-time “steady-state" behavior. It is necessary, for acceptable

solutions, that the transients decay. This condition is met if and only if
A and B satisfy the inequality(sg)

A< By (4-69)

One would like to choose A and B to match the dynamical behavior
of the particular propellant used. In principle, data taken in T-burners,
for example, should provide adequate basis. However, the available
experimental results are limited. Hence one is forced to make crude
estimates. One aid in this respect is the result(sg) that the response

to harmonic oscillations exhibits a peak occurring approximately at the value
of dimensionless frequency, &,

Q.. zA«/B (4-70)

4,3 Velocity Coupled Response

At the present time, the probelm of velocity coupling is unsolved.
There is little question that the burning of a propellant will respond to
disturbances of the velocity parallel to the surface, For steady-state
burning this is called erosivity, One simple and commonly used represen-
tation of this effect is the modified form of the formula for the burning rate
given by (3-5). Under unsteady conditions, visual observations, particularly
of metallized propellants, suggest that the behavior is likely to much more
complicated. Consequently, the simple response function based on un-
steady heat conduction in the solid is probably not an accurate representation
of the behavior, Additional time lags associated with processes at the

interface between the solid and the gas, and possibly in the gas phase itself,

are probably important,
p Yy tmp 4-16
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Unfortunately, no quantiative information about those processes is
available., For the purposes here, then, a very simplified approach is taken,
It is assumed that the transient behavior is due solely to the unsteady thermal
conduction in the solid phase, While this approximation may not adequately
mo’ el the total response of real propellants, there is little .eason to doubt
that the thermal wave must be present in any case, An assessment of the
importance of the thermal wave response relative to the complete velocity
coupled response of a propellant must await further study.

This does not mean that the response to velocity coupling will be either
qualitatively or quantitatively similar to that for pressure coupling. The reason
for this is that velocity coupling is intrinsically non-linear, a point which has
been emphasized in Refs, 27-31. This non-linearity arises because the burn-
ing is sensitive to the magnitude but not ihe direction of the velocity parallel
to the surface. It is therefore independent of details of the physical processes
and is always present, This ls essentially the only feature peculiar to velocity
coupling which has been discussed quantitatively in the literature. In the pre-
sent work, the intent is to obtain numerical results for comparison with results

obtained for pressure coupling. The latter is ot course treated here as a purely
linear phenomenon.

In view of the above remarks, and with appeal to the discussions of
Refs, 27-31, the response of the mass flux to transient disturbances of velocity

parallel to the surface is written, by analogy with the result (4-34) for pressure
coupling, as
nvABv

= ~u) -e,(u - 4-71
m A+ 3 - (1+A)+AB, {ertlul-vg - ey -w) } (a-71)

m!

Here u, is the threshold velocity. If has been introduced in previous i
work as a result of experimental observations on steady burning which |
have shown that the effect of erosion on the burning rate appears in some
cases to be absent unless the parallel velocity u is larger than some
value u,. The quantities € and €, are defined as follows:

4-17
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{O lul <u,
| lu|>u
|u|<u (4-72)

€~ |u|>ut }

The subscript ()v on n and B is used to indicate that the values of these
parameters may differ from those for pressure coupling. In the limit w-o0 - i.e.
a step change of u is imposed - Equation (4-71) becomes

A= n s(ul - u) (4-73)
v t
m
The change of course, is all in |ul; u, is held constant. If the threshold velocity
is introduced in (3-5), the linearized form gives

*
& o= m =ngp +__k & (lul-u,) (4-74)
r m ) 1+Ci:(|u[-ut)

Comparison of (4-73) and (4-74) shows that the correct limit is obtained only if

the parameter n__ is given by
v C*
n, = k_ (4-75)
1+C (ju] - )

It obvious that for velocity coupling alone, the formula (4-68) can be used
to compute the transient mass flux, but with n replaced by n, B by B and ~2—
by ¢, (lul ~u) -, (Ju] - u u). P

When pressure and velocity coupling are accounted for simultaneously, and
they are assumed to be additive, the transform of the mass flux is given by

' ' n_ AB -
vy B b e Ly (lulu) -6y uy)
m At - (1+A) + AB p x+-r‘--(1+A)+AB

v (4-76)
The total transient burning response can then be calculated as
I = (B o+ (B, (4-77)
m m . m

_r_x:' ) , the pressure coupled response, is calculated from equation (4-68),
and (—_r%'ég]the velocity coupled response is similarly calculated by making the
propelsubstitutions (indicated previously) in equation (4-68).

where (
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5. BOUNDAEY CONDITIONS
5.1 Head End -x=0

The boundary conditions at x = 0 assume the head end is riqid. The
boundary condition for the gas phase is then,

x=0 u="n (5-1)

The "correct” boundary condition for the particles at the head end
would have to allow for particles colliding with the wall. The collision
could be assumed to be completely elastic, inelastic, or anywhere in -
between. However, if particles were allowed to bounce off the wall,
there would clearly exist two classes of particles at locations near the
end wall; those that were appro~ching the wall, and those that had already
been reflected. The existence of particles having different velocities
at the same location is not compatible with the assumptions underlying
the two-phase flow analysis, as outlined in Section 3.1, and, hence,
cannot be accommodated in the present model. With this in mind the
particle boundary condition has been simply taken to be,

x=0 u =0 (5-2)

This approximation should not seriously affect the overe!' solution.

5.2 End of the Grain - x=1

The boundary condition at the end of the grain (x =1, in the non-
dimensional coordinate system) is approximated as follows. In rocket motors
with short nozzles the gonvective derivatives, u a—a; , are much larger than
the time derivatives, 3t ¢ in the flow field between the end of the grain and
the throat. A quasi~steady approximation for the flow in this region should,
therefore, be a reasonably good approximation.

While it is possible to obtain an "exact" one-dimensional two~phase g
nozzle solution, (65) the “fractional~lag" approximation(es'ss) has been shown !
to vield very good results, and is much simpler. The fractional lag

5~1
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§ analysis is based on the usual two phase flow assumptions (see Section
: B 3.1), with one important difference. It is assumed that the particle :
N velocity and temperature are constant fractions of the gas velocity and ¥
1 temperature, respectively.
L B
3 1 * * *
- u T T 1-T
8 o =K o - o <L (5-3)
o - g F "g g
-
% = It can then be shown that
] 5 )
- L=[1+3 Prc(-K)/AK]l"} (5-4)
-
where Pr is the gas Prandtl number and C is the ratio of particle to
- B gas specific heat.
r,‘ :j‘ The fractional lag assumption allows the one-dimensional two-phase
‘ equations of motion to be reduced to the one~-dimensional isentropic
fs ,; equations for a perfect gas with altered properties. If m = £ uA and
’Q rﬁp = pp upA are the mass flow rates of the gas and particles, respectively,
3 :f at the end of the grain, then the fractional lag analysir yields the following
3 for the equivalent isentropic exponent, 7.
i _
(=14 (-1 2 (5-5)
3 g .
; & where,
|
é .
E, 1+ K2
; B=—f— (5-6)
1 + !
¢ 1 ?‘_1_9 CL

m .
=1+ =R K[y (1-K +K] + (v -1) CLB;} (5-7)
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and the equivalent Mach number, M, is given by+

M = E/2M (5-8)
The value of the lag parameter, K, must, in practice, be determined
1 “: iteratively. The following expression for K may be obtained(SS) .
g o bt (62 ;4@)1/2 (5-9)
E . where
- $—] [Tt 610

and R is the nondimensional throat radius cf curvature, R = Rt/rt. In order
to find K from equation (5-9) Y must be known. However, equation

(5-5) shows that K must be known to find y. The establishment of
compatible K and ? values requires iteration.

RIS L A N

2l

EhadLis

Once the values of K and Y have been established the Mach number
at the end of the grain is then found by solving the usual isentropic equation

)
o
¥R

£
ey
g
3
Yo
iz
3
i
3%
2
N
B
N

P PR T

o for Mach number as a function of area ratio.

=

-
& Ben? 1 r2 g, @-l g2 Ta (5-11)
5 [A*J T2 7 1\ 2 e/1¥-1

&

) Mﬁ‘ﬂ"éﬁ‘rif’fﬂr«

e

LEPs

e o ans ol &

+The fractional lag analysis yields the choking condition, M, =1, i.e.,
the Mach number of the "equivalent" perfect gas is unity at the physical
throat. The actual gas Mach number does not reach unity until some
point downstream of the threat.
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.
: The actual gas Mach number at the end of the grain is then
. u - -
: P M = -2 =g 1/2 § (5-12)
- e a. e
9 €
: The boundary condition at x = 1 is then, that the gas Mach number
; g .'; be equal to that given by equation (5-12). This matching condition assures
n “ that the flow will properly choke at the throat (at least within the confines
2 .
5 B of the present assumptions of one-dimensional quasi-steady nozzle flow
r with constant fractional lag). The treatment of the nozzle flow and boundary
5 condition at the end of the grain, as presented, is a simplified and
3 approximate one; but one which should give a fair representation of the
3 - actual flow. If, after further study, it can be deduced that a more accurate

treatment of the nozzle is required, it will not be inordinately difficult to
g K
3 do so.
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6. INITIAL CONDITIONS--STEADY STATE SOLUTION

In order to initiate the method of characteristics instability solution,
the steady state equations of motion must be solved. The initial condi-

tions are then generated by adding a perturbation to the steady state
solution.

6.1 Steady State Equations in Conservative Form

The steady state two-phase analysis assumes that the mass added to
the chamber (from propellant burning) is at constant enthalpy and has no
axial momeantum. The rate of particle mass addition is taken to be a constant
fraction of the gas phase mass addition rate. In addition, the typical two-
phase flow assumptions are made, i.e., the particles are spheres of a
single size with uniform internal temperature, the particles do not interact
with each other and are of negligible volume, etc. With these assumptions
the steady state equations may be obtained from the time dependent
equations (Section 3.2) by removing the time derivatives. The gas phase
equations become:

Continuity: a%*(p*u*A*) = p*A* (6-1)
Py
4
B - a4 = . ax9BF -
g.é Momentum: oo, (pRfF2A%) = - A, + FX A* (6-2)
?’3 Energy: &7 e (C_T*+ 1/2w?)ax | =a*C_T* + P* (u* -u*)A* + Q*A*
;‘% ax* p . PF "pp p
ff; (6-3)
‘{ State: P* = g*RT* (6-4)
Z
g
5
&

:e n

o,

3
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Many times it is advantageous to work with the equations of motion
in conservative form. Equations (6-1) and (6-3) are already in consermvative
form and equation (6-2) may be written in this form as

] . .
Sov (P*+ prodiar pxax s pr I8 (6-5)

The particle aquations are already in conservative form and are:

» T al) . .-Ci—. * * = (¥ * -
Contiruity: 4=, (pp ug AY =y ; A (6-6)
Momentum: 3- (0* u*? A¥) = « F* p* (6-7)
Yo dx*Yp Up p
Energy: L, prurerr + LA cpr gk QX A*-F*u*a* (6-8)
dx* "p "p™s'p 2 Y - p  +°F P PP

6.2 Nondimensional Equations

Using the definitions presented earlier in Section 3.3, the steady state
equations can be written in the following nondimensional form (Note: pressure
has been eliminated from equation (6-2) using the equation of state (6-4).

gd)z (pud) = wA (6~9)
S0 u A = A (6-10)
dx “pp p
d - 2,7 _ dA
a;_pA(T +yu )... = YAF'p + (pT) ax (6-11)
d 2a) = -
ax (pp upA) AFp (6~12)
SonaTH 2 R e o (6-13)
dx . - 2 . ¥ P up u Qp _ZA !
Stepualer + (4 Wl =leC-0r=DF u - Ja  (6-14)
dxi pp L p 2 ./ p p pp DJ
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Equations (6-9 to 14) represent six simultaneous first order differential
equations which can be conveniently integrated, since they are of the form

(i =1 ... 6) (6-15)

B oul rfl
]
ppupA f2

PA(T + uz) £
t= 2 = 3 (6-16)

Opup A £,

pUA[T"'(X%uuz] £

CAAaOM L M L HACANE ) NS R Eab e )
R R I
R R R -

&
%

-1 -
+ .(L_) &
J b -J

{

and

Cwa g

i LRt SN

pr 9,
dA
YAFp +pT o g3
- AF (6-17)
p
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[w+(y-1) Fpfu -u) + Q,lA R

_[wpc - (Y—l)Fpup -QJA | _gsJ
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Equations (6-9 to 14) in the form of (6-15) are integrated using an Adams-
Moulton intejration routine. At each step the solution yields new values
for the f's (6-16), and the flow variables themselves must then be calcu~
lated so the g's (6-17) can be reevaluated, and the integration continued.
With the fi known the flow variables may be calculated as follows:

f
u = &
p 1
: £
- p = =
g, p Al
f . 2.
T =-1-L__6.. _Q.Y;l\k_fl_\ I
(6-18)
> f. - f_f 1/2
3 =L N3y L oat 51
s. veGE g e |
3
A T _ 55_ ‘:. - 12 2
1 T f - 2 ¢
L !
' 3 f 4
‘ = L
- ° T uA
%: The steady state equations are integrated fromx=0tox =1,
3 (the end of the grain) where the gas Mach number must be matched to that
of the nozzle solution to insure the choked flow condition is satisfied.

As discussed in Section 5.2, the fractional lag two phase nozzle
solution establishes the Mach number at the end of the grain, Me' once
the nozzle radius nf curvature chamber to throat area ratio, chamber
temperature and particle to gas weight flow ratio have been selected.
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Successive solutions with varying values of chamber pressure, PF' are
then carried out until the value of Me predicted by the steady state chamber
solution matches the value set by the fractional lag solution. In other
words, varying the chamber pressure varies the amount of mass addition
into the chamber through the pressure dependence of the solid propellant
buming rate until the mass flow required to choke the nozzle is achieved.
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7. NUMERICAL SOLUTION

The longitudinal combustion instability model developed in the previous

_sections has led to a set of nonlinear partial differential equations, which

are coupled to the integral equation for the transient burning response. In
general, closed form sol :tions to this set of equations cannot be nbtained
without resort to further approximation. Therefore, numerical techniques
have been employed in order to obtain instability solutions without additional
simplification of the model.

The numerical solution of the total problem is made up of several
distinct elements; the characteristics equations, transient burning rate
equation, and steady state equations. Each of these is individually
discussed, in turn, in the remainder of this section.

7.1 Method of Characteristics

The one dimensional unsteady equations of motion are hyperbolic, and,
therefore, are amenable to solution via the method of characteristics. The
method of characteristics is itself, in the broad sense, a standard numerical
method, however, the details of its application to a particular problem can,
and do, vary over a considerable range. Each application, and set of
equations, is subject to its own little innuendos, which should be taken into
account in the formulation of a finite difference analog to the equations. The
modified Euler method is the one most frequently emplovyed in method of
characteristic solutions. Prior experience with problems of the present type,
however, indicates that it is preferable to handle the streamline characteristics
in an implicit manner. This allows larger step sizes to be used, and higher
gradients can be tolerated without deleterious effects.

The actual solution of the present problem consists of the repeated
application of three types of calculations:

1., TField Points
2. Right Boundary Points
3. Left Boundary Points

Each of these calculations is described, in detail, below.
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7.1.1 Field Points

A field point is created by the intersection of left running and right
running characteristic lines. By definition, it cannot lie on one of the
boundaries, since a* * “oundary one of the characteristic families is absent,
Figure 7~1 shows how the finite difference mesh for a field point is created.
Although higher order methods, involving more points, can, and have, been
used, the usual characterisitc mesh, as shown, utilizes information at two
adjacent points to solve for the flow variables at a third point, more advanced
in time. Here, it is assumed that all required information is known at
points 1 and 2, and the solution at point 2 is to be sought.
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Figure 7-1., Field Point Calcuiation
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In the present scheme, the solution is begun by assigning the flow
variables at point 3 values equal to the average of their values at points 1
and 2. Using equation (3-32) for the directions of the characteristic lines,
the location of point 3 yields,

+ -~
t=ctl-ct2+ig-x1 (7-1)
3 ct. ¢
=x, +c (t, - t,) (7-2)
x3—-x1 c t3 1

where the average slopes of the characteristic lines are (the plus and
minus signs are used to denote right and left running characteristics,
respectively),

¢t =l +ay) + (uy +a,)1/2
(7-3)

c = [(u1 - al) + (u3 - a3)]/2

Average values of u, p, T, w, @, etc., along each of the characteristics,
are then defined, e.g.,

ut = (u1 +u3)/2
(7-4)
u = (u1 +u2)/2
This enables the compatibility relations, equations (3-33) and (3-34) to
be written as

(P,-P,) (u,=-u,)
+ ~3 1 3 "1 +
G + = RHS (7-5)
(t3 - tl) (1:3 - tl)
(P,-P,) (u, -u,)
G- 3 Ai. - 3 Z - RHS- (7...6)

(1:3 -t (t3 - tz)
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where RHS+ and RHS™ are the right hand sides of equations (3-33) and

(3-34), respectively, evaluated in terms of the corresponding average
values of the variables, e.q.,

+ - +
to_a . 1l23A + 9A LW oy
REST == 20 | ¥ §7 1 g + 0" Slor o | + 0 (-t
(7-7)
(y=1) Fg r - Qf;
i +2 . - + ot +
PR e (D -t s et e
and
G+ = (Y p'*'a"‘)-l
(7-8)
- e eyl
G =(yp-av)
Equations (7-5) and (7-6) are easily solved to vield the pressure
and velocity at point 3
G*P, + G™P, +u, -u, + RHST At* + RHS At™
_ 1 2 1 2
P, = < —t— (7-9)
G +G
=y ~ctp - + a4t -
u3 =uy G (P3 Pl) + RHS™ At (7-10)

Since the burning rate w, is only pressure and/or velocity dependent,

its valne at point 3 could now be calculated, in principle. In practice,

the complexity of the transient buming rate analysis precludes it, from

an economic standpoint. The burning rate analysis is used to calculate

w only after the completion of all the characteristics calculations for

two or more time levels, When burning rate values are calculated at

other times, they are done so by simple first order extrapolation from
previous results,

7-4
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The temperature at point 3 is found by utilizing the compatibility
relation (equation (3-37)), along the gas streamline, dx/dt = u, (shown
as line segment 3-4 in Figure 7-1). The intersection of the gas streamline
passing through point 3 and the line segment joining points 1 and 2, shown
as point 4, is not known, a priori, and must be located. The slope of the
streamline is taken to be the average of u, and u 4*,‘ hence, the location of

point 4 is found to be

REEAR £

(t, ~t;) Xy apflty-ty) ;-1
x4——‘[‘:3%1-")(1 (x, - ;) - .5(u3+u4)J[(x2-x1) - .5(u3+u4)_!

(7--31)
9 A (X -x.)
; tg=t3 ™ 3 u4:; +u:1) {7-12)
.
[; All of the flow variables at point 4 may now be evaluated by lineraly inter-
? @ polating between points 1 and 2. Average quantities, denoted by a (), are
‘ ;; defined based on the values at points 3 and 4. As mentioned earlier, the
g solution of the streamline characteristics is carried out "implicitly". Here the

e}

term "implicit" is used to denote the fact that the temperature derivative in 3
equation (3-37) is not evaluated strictly in terms of known quantities. Rather,
the temperature on the right hand side is approx:mated as (T3 (the current

PR

,
03

X
CEt

e Fack) 2 aan S it e

& unknown)+'t'4)/2. This has the effect of couplit.g the value of the derivative *f
% to the value of the variable, itself, and helps ‘- pt= vent wild over or under-
B prediction. In the manner discussed above, the c~lut'sn for T, is found to be

3

A

0

53

[p-%w(t,-t)IT + 8= _p) +RES |
7. = 3-4- 4" vy "3 74 (7-13) |
3 P+.5w(t3-t4)

NGRS

*On the first iteration, u, is set equal to (u1 +u2)/2; a good approximation
when the velocity is smaﬁ.
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where RHS is defined as

RES = (-t )[ DM 5 22 o+ B01+3(v-1 31 + (- F (3 -0) + T, ]

(7-14)

The sound speed can then be found as

3, a/?[‘? (7-15)

and the equation of state yields

(7-16)

The particle velocity and temperature at point 3 are found from the
particle pathline characteristic (equation (3-38)) and its dual compatibility

relations (equations (3-40) and (3-41)) in a manner essentially identical to

the solution for T3. In this case, the intersection of the particle pathline

through point 3 and 1-2 , shown as point 5, is located. Values at point 5
are established by interpolation and averages of the variables at 5 and 3

are defined (denoted by a subscript av). The solutions foru_ and T
also done "implicitly." 3 3

were

The equations for Xg and t5 may be obtained by simply changing all the
4's to 5's in equations (7-11) and (7-12), and are not given here. The final
equations for up and Tp are easily shown to be

3 3
o, u -(Bw_ u. +F_ ), -t
u = paV pS paV DS pav 3 5) (7_17)
p P +3¢ (t,-t.)
3 Pyy Pyy 3 5
7-6
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4 “[ppav ﬁwpav(t3 ts)]Tp5+(t3 ts)[wpav 1+ -ﬁ’-—lz c< > >] .__._ALC ]
?‘: 2 N P FTEW_  (to~t.)
“- 3 Pay Py, 3
!E (7-18)

It will be recalled that lacking a state equation for the particles, the

? equation for p_ cannot be put into characteristic form. The equation for

!F z P, maY be written as (see (3-42))*

PR

? ) du

d % s s =% x (7-18)

wherein the velocity derivative is treated as an ordirary variable, and is
placed on the right hand side. In the form shown, equation {7~18) is
analogous to the compatibility relations, equations (3-40) and (3-41), and
Fap may be found in the manner previously outiined for velocity and tempe-
rat%lre, provided a suitable approximation can be found for the velocity

derivative.
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Figure 7-2. Calculation of Aup/ax
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*The areca derivative term has been left out of the numerical analysis at this
point. If varying area solutions are scught in the future the solution for
pp, shown here, will have to be modified.
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A first order method for calculating —2

Depending on whether t
along 2-3 at ty, if t; >

= has been devised, as follows:
g > or< t (see Figure 7-2) a new point, 6, is located;
t,, or along 1-3 at ty if t, > t;. The velocity at

point 6 is found by linear interpolation and is

Pj l:

= t 1 - >
(7-19)
= + - >
The location of point 6, itself , is given by
Xg =X, +c (tl-tz) t1>t:2
(7-20)
- +
Xg =X *tc (t2 tl) t, >ty
and the velocity derivative can then be approximated as
du up B up
X x6--x1 1 2
(7-21)
N u_ -u
3u
b4 Xy = Xg
The density, Dp » can now be found from equation (7-18),
3
ou_ -
0 +|‘w -%0 p {t, ~t.)
p P,, - P i3 5
o = —2 v 9x. (7-22)

3 BuoW
LA2(ty-t) <3 |

deiad ot Al aniatdr had




Rt Al

s aoy el e )

S K R ey

T

LNl cad

"

CRITES

5
%
:

WEBTEG TS W DA I AT ALY W R AN

TN b, TN e B

EES R S 2

VTE

PRI TRPU Y e | 1

A b i T RS T AN TR
T RS AL T Tel T T TN T RN LW SRR T LTI TE e - 4 P
TN T ELIC G~ N - -

At this point, all of the flow variables at point 3 have been found. The whole
procedure, from the locating of point 3, to the solution for pp ., is then
repeated until satisfactory convergence has been obtained. '1‘?1e tests made
to determine wheother further iteration is required are based upon the relative
change in a3 ' 93 and pp3 from one iteration to the next. If

NONRES

a3(1$ <€
(7-23)
pgi) - p%i—l)
) < e
P3
and
(H _ _(i-1)
op3 op3 .
p(i) <e, (7-24)
Py

are all satisfied, the field point calculation is complete.

7.1.2 Right Hand Boundary

A right hand boundary point is created when a right running character-
istic reaches the boundary at the end of the grain, x = 1. Since any left
running characteristics passing through such a point would have to come from
outside the domain of interest the information carried by them is not available.
Without the compatibility relation on left running characteristics, one less
equation is available; this is compensated for by the right hand boundary
condition given by equation (5-12). This boundary condition fixes the Mach
number at the end of grain, such that the flow will choke at the throat in a
quasi~steady manner.
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The finite difference mesh and method of solution for a right hand
boundary point are quite similar to that of the field point.

Figure 7-3. Right Hand Boundary Point Calculation

Again, points 1 and 2 are known, and the solution at puoint 3 is sought. In

this case, X3 = 1, is known; and uq = Mea3 must be satisfied. M _is

e
known f.om the boundary condition, but a, is not known unti; the energy
equation is solved to vield T3. To begin the solution Us and all of the other

quantities at point 3 are se* equal to the value of the respective variables
at point 2. The location of point 3 1s fc.und to be

(x3 -xl) (7-25)
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where c+ is defined in equation (7-3). Proceding in a manner similar to
that shown, previously, for the field point, P3 is found from the compatibility

relation on the right running characteristic T-3.

Py =P +[RhS" (ty~t)) ~ (ug-uI/G" (7-26)

where RHS+ and G+ have been given by equations (7-7) and (7-8).

The calculation of T3, Az, g, up . Tp , and p_ from the streamline

and particle pathlines follows, 1denticaf’ly, t?lc proced%re outlined for the
field point solution. The only additional step is the calculation of Uy, from

the toundary condition, after T3 and, hence, a., have been found.

7.1.3 Left Hand Boundary

A left hand boundary point is formed when a left running characteristic
intersects the wall, x = 0. Like the right hand boundary point calculation,
the relation lost through the nonexistence of one characteristic family (here
the right running family) is replaced by a boundary condition. In this case,

: % the boundary condition is u = 0 at x = 0. (See :quation (5-1)). As discussed in
] g Section 5.1, an additional boundary condition has also been placed on the
3 gé: particle velocity, i.e., up =0 at x = 0. As - result of these two conditions
. the line x = 0 is both a streamline and a particle pathline. The fixed location
é of these lines, in this case, makes the solution somewhat simpler, since
g the points denoted 4 and 5 in the field point and right hand boundary point
§- calculations need not be established.
i The left hand boundary point calculation is initiated by setting the
; variables at point 3 equal to their respective values at point 1. The location
?- of point 3 is found to be*
2 X, =0
= ’ X, (7-27)
3 * t3 =t - -
i % *The program currently allows the left hand boundary to have a velocity, so
’ that piston problems can be analyzed (without particles). This option was
: used only for program checkout and will not be considered here.
A 7-11
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Figure 7-4. Left Hand Boundary Point Calculation
where ¢ is defined in equation (7-3). The velocity at point 3, Uy, equals !
zero, by definition. The pressure can then be found from the compatibility f
!
relation for left running characteristics (equation (3-34)), and is !
- - - - = X))
P, =P, + [RHS (t3 ty) u2]/G (7-28)
where RHS™ can be found by analogy with equation (7-7) and G~ is specified
by equation (7~8).
The temperature is found by integrating the gas streamline ccmpatibility
relation (3-37) from point 1 to point 3, and is given by
7-12
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where () quantities are base.. on conditions averaged between points 1 and
3.

The particle velocity, te .*s been assumed to be zero, hence, in

a similar manner, using equatlgn '13-41), Tp is found to be
3

[np - éfvp(ts-tl)]T B, + (1:3—t1)[&»p - Qp/c]

T = (7-30)

P
3 oy +Ew(ty-t))

The particle density is found in the general manner discussed in the
field point calculation; however, in this case, a point 6 does not have to
be located, since aup/ dx can be simply approximated as

du u2
—a—;(p = ;{-; (7-31)

The value of p can be computed from equation (7-22) by replacing the
S's with 1's. L%ke the other calculations. the left hand boundary point
calculation is iterated until equations (7-23) and (7-24) are satisfied.

7.1.4 Ordering of the Calculations

As mentioned earlier, the method of characteristics solution is
obtained by the repeated application of the three unit processes previously
‘agcribed; the field point, and right and left hand boundary points. In
order to achieve a useful solution, however, a logical method for determining
the order in which these calculations are to be perfcrmed is required.

Severa!l possible ordering schemes are possible, each having certain
advantages and disadvantages. The scheme outlined below was selected
as being the moust appropriate for the problem; all constraints considered.
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After a steady state solution has been achieved, an initial pertur-
bation is added to it to generate the initial line, at t = 0, for the character-
istics solution. The number of points, M, used on the initial line
determines the mesh spacing for the solution. The characteristics solution
is initiated by a field point calculation using points 1 and 2. Additional
field point calculations are successively carried out until a total of M-1
have been performed, the last one involving points M~1 and M. At the

completion of this first stage of the solution the x-t diagram has the form
shown in Figure 7-5.

1! 2| 3l Nl

Figure 7-5. x-t Diagram After First Time Step

Another series of field point calculations is then performed using
points 1*, 2' .. N'(see Figure 7-5). Upon completion, a left hand boundary
point calculation is carried out using points 1 and 1', and a right hand boundary
point calculation using points N'and M is also performed. At this point the
x-t diagram looks like the one illustrated in Figure 7-6.

M-1

N

M-1 M

Figure 7-6. x-t Diagram After Two Time Steps (one complete
"cycle" of the characteristics calculation)
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The features to be noted from this figure are as follows:

1. Except for the new point M (right boundary point), all of

the other points {1-(M-1)) have about the same value of
time.

2. At the end of these two rounds of calculations the number
of points remains the sams, however, the locations of the
points are somewhat displaced from their original positions.
These features cause the characteristic mesh network to become skewed.
The skewness of the network generally becoming worse as time passes.
%’ This skewing of the mesh is a normal feature of characteristics solutions,
& and, as long as it does not become drastic, is not usually a cause for

PV R 2RSS i

concern. In the present case, however, the skewness is undesirable due

to the coupling between the flow and the transient burning rate calculation.
The burning rate analysis is one dimensional in that it considers each x
location independent of the others, and neglects longitudinal energy transfer.
At each x location, however, the transient burning rate is a function of the
pressure history at that location, for all time. In order to carry out the
burning rate analysis, then, the pressure must be known at specific x
locations, not at the somewhat random intervals that result from the usual
characteristics mesh. This situation could have been relieved by essentially
carrying along two different meshes; the characteristic mesh, and an ortho-~
gonal one, obtained by interpolation within the characteristic mesh, having
fixed x locations, for use in the burning rate analysis. Such an approach,

™
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however, results in large computer storage requirements and an unnecessarily
complex code.

g

The remedy for this problem that was adopted does not require two
N szparate meshes to be carried along. Rather, when the point showu in
: Figure 7~6 is reached, the mesh is reciified by interpolation; thereby creating
1 , a set of points all at the same time, and at the same spacing as on the
E : initial line. This pattern is then repeated until the computation reaches the

desired time level. The details of the interpolation procedure are presented
in the following s..ction,

e e
-
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7.2 Interpolation - Rectification of the Characteristics Mesh

The interpolation of the characteristics results, in order to obtain a
rectilinear mesh, could be carried out to varying degrees of accuracy. It
was felt that the increased complexity and computation time associated with
higher order interpolation schemes was not warranted since, in many practical

cases, their theoretical accuracy advantages are often not realized. Thus
linear interpolation has been used throughout. *

Tass

The interpolation is performed in the following manner. First, values
of the variables at the original x locations are obtained by interpolating
along lines connecting the new points 1, 2, ... M, Each of these points
(denoted by primes in Figure 7-7) will then, in general, differ only slightly
in their time coordinate; except for point M, at the right hand boundary,

which usually lags considerably. The "regular" points, i.e., 1, 2, ... M-1,

SN TEETITRe T T XY =TT T R - -
e i B . N - '

LCAs ATa shgar

L i

are then searched to determine the one having the smallest value of time,
denoted tmin’

t A

2't 2 3 3 M- M-1 .7

min

R P A O T RO R

>
- »
AR

2y

N

1 2 3 M-1 M

g uiin i N Dl

Figure 7-7. Interpolation Diagram For Rectifying
the Characteristics Mesh

PP

*The interpolation procedure can affect the accuracy of the results. Test

cases with, and without, interpoiation, using a quasi-steady burning rate,
have been computed and a comparison of the results showed essentially no
difference, at *".e end of 200 time steps. These cases did not have steep-

fronted waves; if they did, differences between the solutions would
probably have been evident.
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This is usuully point 1. Interpolation is then performed on each of the x =
constant lines to obtain a set of points at the uniform time, tin® These
points are denoted by double primes in Figure 7-7. The original differences
in the time coordinate are shown greatly magnified in Figure 7-7 so that the
procedure may be clearly illustrated. The new right hand boundary poinrt,
M'', is established by extrapolation. This could be avoided by solving

for an extra "dummy" right hand boundary point (shown as M') using points
M and M-1, and then interpolating. This latter procedure is probably some-
what more accurate; however, it has not yet been incorporated into the -
computer program (and probably will not be unless the extrapolation procedure
is found to be seriously lacking).

e et ia

When the double interpolation procedure is completed the set of points
obtained are directly analogous to the original set of points on the initial
line, t = 0. The whole computation cycle can then be repeated as many times
as desired. In the nondimensional! coordinate system employed the points
on the initial line are a distance 8x = 1/(M-1) apart. It turns out that the
time increment for a computational cycle, tmin in the illustration, is almost
exactly equal to Ax. This result can be used as a rule of thumb to determine
how many computation cycles are required to :ach a given value of time.
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3;% It should also be pointed out that since the time step is directly proportional
% to the spatial increment, the total number of mesh points, and the computation
% time, for a given problem varies as Ax®. (If the number of points on the ‘.
g initial line is doubled, the computation time will apprcximately quadruple).
?‘” As a consequence of this situation, efforts to optimize the accuracy-mesh ’s
Ei size tradeoff are well rewarded. /
, Incidentally, the interpolation procedure also prou. :es two desirable ‘
: by-products. First, the randomness of the usual skewed characteristics %};
i mesh makes the interpretation of the calculated results difficult. In fact,
in many apglications the characteristics solution is stored on tape and later «
i processed by a separate interpolation program. Second, the interpolation
’ procedure allows the mesh to advance equally in time across the entire I
domain of interest. This eliminates the requirement for additional logic ,
to prevent the calculation of points past the desired maximum time in some .

areas of the mesh, while the remaining portions of the mesh catch up.

7-17

o V‘: RrEL T A DA ) rd

o e T AR LR




P — e T T T AR 7 L AL LR TR S AR R A Y R AS
ATV S R R e TR o TR e el T B e A A R Rt N 4 .
A SRR L BT Ty € SRS TR T ORI Sty A 2

: 7.3 [TIransient Buming Rate Soluticn
1 The interpolation procedure, just described, provides the pressure and
velocity histories required for the transiet burning rate calculation. However,
before the burning rate expression can b2 numberically evaluated the deriva-
1 tives in equation (4-68) must be written in difference form., A simple two
= step formula is used, which yields the following*
b
F % _c_i_(_lj)_PT-P’r-b
ﬁ’. T d'T -P- - 6 ;
3 ' , (7-32) 7
: B - L(r-9)
; si.¢m§ = - m
3 dv 'm 8
&

Since m'/ m(7) is the unknown being evaluated, the term involving it is
brought over to modify the multiplier on the left hand side of equation (4-68).
The burning rate expression is @lso written in terms of the nondimensional

time 7 (see equation (4-59), the t in this equation is dimensional), while

the remainder of the analysis uses the nondimensional time t {equation (3-18)).
The two times are related as follows:

R R N T R AR SRR R

g
>

L
¢

T=

e T

';2
ottt (7-33)

Since? is a function of axial distance the relative time constant, tc, also
varies axially. Defining,

| : §' = 6/tc

C= %("1*"2)(%/”)%

- C,= 0,5, (7-34)
k G,= 2nABt_

]

- 4 1
C,= 3 nAB(t /m)

*The details of the solution are worked out only for the pressure coupled case,
The calculation of m'/M for velocity coupling is essentially identical if n,. B
and ¢, (]uI—ut) - & (U-u,) are used instead of n,B and p'/p. v
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and using equations (7-32) and (7-33), the transient burning rate can be
expressed in the final form used on the numerical solution.

t-5' t _(5-t)

. ~1 (o}
m' 1 3 m' e
Dy=l1-cs @-te)+c.6'] {2c, ( D) e 4t
m [ 1 c 27 3 {2 1 § m '/t-g
t-8' t (§-t) =)
+ 3¢, S £ (8 S=dt +C; | F®e dg
0 0
(7-35)
t-8
] t (g-t) ] ]
- ¢, S Dge®  df + cls'i’ Dt-g) + c4c'§§-(t-a':
0

-

+Ewlc,st s + o)

The first two integrals in (7-35) must be integrated from 0 to ine current
time, t (actually t-5'), each time step. As time goes on these integrals take
longer and longer to do, and require increasing amounts of computer memory
to store all of the required past history.

The second two integrals in equation (7-35) may be written as

tr,. t % t-& t 2
c T -~ ..2' = c: _ c nm! - c> =
e | Cg 5 f,.(D)e dg 023 =Qe ng! (7-3€)
0 0

with their dependence on the parameter t explicitly removed. Hence, these
two integrals need not be reevaluated from € " each time; rather, a running

sum is kept, which is added to at each time .. :p. The latest value of the

sum of the two integrals is then multiplied by the pre-exponential factor
involving t.
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The integrals are currently evaluated using the trapezoidal rule.
Numerical tests have confirmed that this simplest of integration formulas ’
yields accurate results for most cases of interest.

If cases are encountered
for which this method proves inadequate, it would not be too difficult to

replace it with a more accurate (but more complex) formula.

7.3.1 Extending the Transient Burning Rate Solution to Long Times

The current method for computiag the pressure and velocity coupled
transient burning response requires four quantities to be stored at every axial
location each t.me ‘hat a calculation is made. These quantities are:

£ anu () (7-37)
p

el(lul-ut -cz(a-ut) and (-;_‘;:—'—)V

As time increuses, computer storage requirements will eventually exceed
the available core of the computer being utilized. Additionalily, as time in-
creases, the burning rate integrals (Eq. 7-35) must be evaluated over longer
and longer intervals. This causes the program execution time to increase non-
linearly, i.e. if the final time of the solution is doubled the execution time

increases by a factor greater than 2. A method for at least partially ameliorating
these drawbacks has been developed, however.

In practice the effect of a disturbance at a given time does not last for-
ever, Its effect on the burning rate should decrease as time goes on, eventually
damping out., Thus, one should be able to limit the amount of :ack history that
need be considered. The time interval over which the effect of past distur-
bances disappears is dependent upon the values of A and B in a rather complex
manner. Based on the analytical results, presented in Appendix A, for the
special cases of step or experimential pressure changes it can be hypothesized

that the effect of a disturbance at a given time, 7, should decay exponentially
with time at a rate something like e -r"l)(T-TO’DWherr

A(1-B)
[4A-(aB-A-1)°F (7-38)
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Figure 7-8 shows the locus of the successive peaks in the transient burning rate
response to a pressure disturbance of the form

[]
£ = .1 cosim) t<3.48 (r=<,274)
p. (7-39)
2 = 9 t>3.,48 (r>.274)
p

This response was calculated using a small computer program which was devel-
oped solely to integrate equation (4-68) for a given pressure variation,

The result shown was obtained with the burning rote parameters A and B
equal to 15 and .7 respectively. With these valuesof Aand Bx=4,5and y=

5.454, therefore, based on the aforementioned hypothesis it would be expected

that the response would die out at a rate like e-m'ST. The actual response,

shown in Figure 7-8, damped, essentially exponentially, at a rate between
e-9° 5Tand e_mT; in relatively good agreement with expectations.

The example just discussed serves to illustrate that the response to a
disturbance which occurs at a particular time eventually damps out, Since the
current transient burning rate analysis is linear, this feature can be exploited
to limit the amount of computer storage required to obtain solutions over long
times. By using the principle of superposition the pressure or velocity distur-
bance history, at « given axlal location, can be considered to be the sum of a
series of discrete disturbances, each localized in time,

4!
%
K
E:
3

Lk Ty At

[y

turbance which exists only fromt=t,tot= t2 will damp out (to within any
given tolerance) in some time interval after tZ' denoted at q° The size of this

interval being a function of A and B, Thus knowledge of the disturbance which

The response to a dis- 1
existed between t1 and t g

2 and the subsequent response to it becomes superfluous

after a time equal to t2 + Atd. 2
p-]

Based on this concept, a method for obtaining instability solutions out to é

as large a time as desired can be constructed, which requires no more storage 3

than would ordinarly be requirer to compute the solution oat to t = ZAtd. The '
procedure is as follows: A
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Figure 7-8 Example Of Transient Response Damping Subsequent To The Cutoff
Of The Pressure Perturbation.
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3 1, For times less then Atd, the burning response is computed in the 2
straightforward manner discussed earlier, ;

This is shown pictorially

s ‘ in Figure 7-9, for the case of a pressure coupiud response. (Actually,
L the disturbance will typically have several cycles in At q’ hcwever
only one is illustrated).

Y
e & kb R ZER b

At times between t = Atd andt = ZAtd the disturbznce history at a ,
given location is divided into two discrete parts (see Figure 7-10).
One a, ‘turbance beginning at t = 0 and ending at t = Atd, and the
other beginning at t = Atd. As shown in Figure 7-3, after Atd the

response due to the first disturbance begins to damp while that due
to the second disturbance grows,

simply the sum of the two, i.e.

wVIR, T
o y » —————————— -
™N

TR T

T T T

The total transient response is

ot e NS A SRR PG AR R 8 B

m' . m' ~-m'
(=hea = 57+ =) (7-40)

When t pecomes greater than ZAtd the respc .se to the first distur- B
bance shculd have diminished to the point where it is negligible.
Th arefore, the calculation 2f it is ceas2d; the second disturbance

NN IIOPN By LSRN
Yrdid 74 o

becomes the first, and a new disturbaace, now considered the second,
is initiated at t = 24t q°

The situation it then exactly as it was at

i
t=n dq° This process is repeated after each Atd time interval until the ;
; desired time is reached.

When velocity and pressure coupling are treated simultaneously the afore-

mentioned procedure leads to a total response given by the sum of four contribu~
tions (at t >Atd), i.e.

L m' = (g s (B o+ [y o+ 2y -4
[5 ]total LE Py [m ]pZ [m ]vl m ]VZ

where the p and v denote rressure coupled and velocity coupled response, re-

spectively; while the subscripts 1 and 2 pertain to the first or second distur-
bance o{ each type.
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7.4 Steady State Solution

The method of solving the steady state equations of motion has already
been discussed in Section 6. Basically, the procedure is as follows. The
equations of motion, in conservative form, are written as a set of six
simultaneous first order differential equations (equation 6-15); which are

then integrated using 2ither an Adams-Moulton or Runge-Kutta integration
routine.

As discussed in Section 6, the solution is actually an iterative one;
wherein a value of chamber pressi.e, which yields the proper Mach number
at the end of the grain, must be found. Newton's method is used to provide
further "guesses" of the chamber pressure, after the initial solution has been
carried out. This technique has worked quite well. Typically, about two
iterations are all that is required. Even when very poor initial pressure guesses
were specified, solutions rarely took more than six iterations to converge.

There was, however, one problem with the steady state solution. The
boundary condition specified at x =0, u = up = 0, corresponds to an initial
state of dynamic equilibrium between the particies and gas. Like the
chemical reaction rate equations these equations are of the "stiff" type
and are very difficult to handle, at near equilibrium conditions. Standard,
explicit, integration routines like Runge-Kutta and Adam-Moulton are
unstable under such conditions, unless extremely fine integration steps
are used. This problem can be overcome by the use of an implicit inte-
gration technique, as proven by the results of Reference 67, for the chemical
kinetics system of equations. In the present case, however, the numerical
difficulties at near-equilibrium conditions have been overcome by using an
approximation, which serves quite well. The time, and expense, of changing
to an implicit formulation and solution was thereby avoided.

The approximate method for overcoming the numerical problem is based
on the observation that the gas velocity increases in a very nearly linear
manner in constant cross-sectional area chambers. This is due to the fact

that the burning rate does nct vary to any great extent from the beginning
to the end of the grain, for most motors.
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It will be recalled (see Section 5) that the fractional lag nozzle solution

is based on the assumption that velocity is proportional to axial distance in
the region of the throat. The fact that u is also approximately proportional
to x in the chamber means that a fractional lag analysis, similar to that of
the nozzle region, should yield a very good approximation., The fractional
lag analysis in the chamber differs somewhat from that in the nozzle due to
the pressure of mass addition, however, very similar resuits are obtainea.
Starting from the fractional lag assumptions

u =K'u
P (7-42)
=1]1~L'(1-T
T, (1-T)
it follows from the continuity equations that
)
o = P22 (7-43)

p K

where Bz is the ratio of particle to gas burning rate (equal to Bl, the
particle to gas weight flow ratio). Without going into details, it can be
shown that when the burning rate w is then assumed to be invariant with
respect to axial distance the constants K' and L' become,

K' = %— f-l + (1+4,/D)’3“]
' (7~44)

L'= 1/7 143 PrC(1-K)/K |

where the constant, D, is based on a Stokes flow analysis and is

=2_,__L7. 7-4
D 4 © omu L ( 5)

E

This approximate chamber fractional lag solution is used in one of
two ways. If the particle size is =o sm&ll, or other conditions are such,
that near equilibrium (almost no lag) conditions exist throughout the chamber,
then the approximation is used to obtain the complete solution, from x = 0 to
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x =1, On the other hand, if conditions are such that near equilibrium exists

only near the head end, the approximation is used only until the normalized
particle velocity is greater than .01 (up > ,01).

The accuracy of this approximate technique has been tested in a few
cases by comparing the results to ones obtained by using the exact equations
and very small step sizes. The so-called "exact" solutions required that
the initial conditions, at x = 0, be slightly perturbed out of equilibrium.
Even without accounting for the slight differences in initial conditions, the
"approximate" and "exact" results agreed to within a fraction of a percent,
for the conditions considered. The steady state particle and gas velocities
calculated for one of the test cases are shown in Figure 7-11.

For these conditions the gas velocity satisfies, almost exactly, the
assumption of linear variation with distance; the primary assumption in the
fractional lag analysis. The steady state solution for the case illustrated

was actually found two ways; by using the ifractional lag approximation

for the first 8% of length, and using it over the entire length, Tae calculated
velocities were identical; illustrating the accuracy that can be achieved wit

the approximate technique when the assumptions upon which it is based are
fairly well realized.
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8. ANALYSIS OF LINEAR STABILITY

Since the numerical calculation is valid for all amplitudes, it is useful
as a check to compute independently the result for linear stability of a normal
mode in the chamber. Eventually one finds a formula for the growth rate of
an initial disturbance having the spacial distribution for a classical natural
mode. The procedure followed here is that presented in References 31 and 52.

The calculation breaks down broadly into two parts: (1) linearization
of the governing differential equations and construction of an inhomogeneous
wave equation; (2) solution for the complex wave number for each of the
stationary (harmonic) natural modes. All flow variables are assumed to be
sums of steady, { ), and fluctuating, ( )', parts. The fluctuations are

taken to vary harmonically in time; thus, for example, the perturbation of
pressure is

i ATt

Sy 43 uwﬂh Yo gk Aok b e

%_' - &%)o Jiakt (8-1)

where (p'/ _p')o is the initial value and k is the complex wave number,

»~
]
fjr

{w-ia) (8~2)

Therefore, if che growth constant, a, is positive the waves will grow. For use
in checking the numerical results, consider the value of p' after one period

of the oscillation, sot = 1/f = 2/w. Then since o/ is normally much less
than unity,

. . 21 . . Q
'Y _rp ilw=-ia) S= _pty 027 2n=
(s o 2m ('5 )¢ @ Qv.,)oe e v

(1))

~ (%—')O (11 +2m &)
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Hence, the calculated value of the growth constant is

(% t=-fl- p‘>] (6-3)

a=~f

A value for q is, therefore, =a-ily found from the numerical calculation; the

purpose here is to obtain a formula for the linear approximation to the
problem.

The analysis begins with the complete inviscid conse. .« . n equations,
given in Section 3.2 but repeated here in slightly altered from.

Conservation of Mass

—a__ —A- — -
(Gas Phase) 5t (0A) + Tx (pud) = wA (8-4)
. AU u
Conservation of Momentum I +ou -g-;{ +%}% F-uw (8-5)
Conservation of Energy 0CA 3 LT +0C_Au -g—}; _.5;( (uA) (8~6)
='§3+Ae +u2.wA+QA+u2wA
g o tu”) p* Tl Yp
+ -
®pos ep) pr

where F and Q are given by equations (3-8) and (3-14) respectively,

—e = - he energy of the
and tey=e o me = Cv(Tos T ) is the difference between the gy

gas entermg at the surface and that at the same position in the chamber ,
and ep 0s is total energy of the particles at the surface.

*In the numerical analysis, it has beea assumed that the flow coming in at the
surface enters always with the steady flame temperature. Hence AT' = - T'.

It is also assumed that epos = ep.
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An equation for the pressure can be formed by adding RT times (8-4) to
R/CV times (8-6):

N <. AR _ (2 2
3t (pA)+y:>m((uA)'rtxlsAax (@“+RAT +u ) wA

(8-7)

R i 2
+ 2 -u)F+ +us w
CVAL(UP u) QpJ uy pA
where, as in the numerical analysis, epos ~ ep is assumed.

The linearized forms of (8-5) and (8-7 ) are

P- R AP - LT AR (T oyt -

P gy Au')+A L0 PA-S (uu') +AF - u'w) (8-8)

-a. ! -_j_ t _—_:_— é-gl - '—-a- o J -
where

P, =a? '+ (, RT'+R2T") » *‘aB‘ AQ; (8-10)

A\

Here the speed of so'nd is for the gas only, a2 =y p/ o .

The wave equation for the pressure fluctuation p' is constructed
by differentiating (8-9) with respect to time and substituting (8-8) for
slau)/at:

L..b_ 4 iE:"-—l— M: 8-.‘1
Aax&A 3X ;2 atz ha ( )

*See footnote to_previous page.
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i ;l
é with i
: - 3% = u 23p’ o ap' l - ( %
2 h,, =~-p — (uu') + = + - = 8-12 .
: 11 0 3x2 ( ) 32 dt3x 7o ot A dx (ud) ) %
E b & mdlna AN - :

pr = L) 5L LS x N - e eecm— LR [ L)
2 ax 9 T =% 3t th axAE-utel 3
‘ 4
E The boundary conditions on p' (usually at x = 0,L) are set by solving the ‘:
3 momens .m equation (8-8) for ap'/a x). i
f ap' - _ - %
A% f (8-13) 2
| e»
; =0 M' - __a_ Tt o R R - q
f=rp At +oax(uu) (F'-u'w) (8-14)

TSR O

A formula for the wavenumber is found by comparing the problem
governed by Equations (8~11) and {8-12), with the unperturbed problem
(i.e., hy; =f=0). As shown in Ref. (52), the result is

T
AENSITTIINE R T YIRS PR

L Lt Mk a2 e Bt et 308 UR pr ATl e AN

; L
: - L
3 2 2 1 : 1
"t K =k +——{ \hap Adxtp, fAdeO} )
1 £ 0 ‘
: > where
7 W L :’
g E2 = szAdx (8-16) L
2 b
0 L
o
and p X k g are the mode shape and wavenumber for the unperturbed problem. v 3
With hyy a:d f given by (8~12) and (8-16), the formula for k2 can eventually {
¢ be put in the form l
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kz ‘1 %_2 1 ,dpz 2
- - ‘\L z kz - dX -
a 0 0

o)

‘ dA T 1 ~dp, 7 du
_(gaa 2 A ) (52 gu
g.“ x 2T oy .sz ax A dx,
0

4 0

dp k
] ' 4 )
“XF———X Adx +1i

a

. -
.QpplAdx(’ (8-17)

Qe .~

o Lo R e
- R‘\AT'pzwAdx""ude @, Adx
0 0

t
-

For the purposes here, it is sufficient to consider the case of constant
cross-sectional area. Then the continuity equation for the average flow gives
the relation between w and du/dx:

g?l:‘ = w/y (8-18)

since it is assumed throughout that the mean values of pressure and density
are constant. Hence (8-17) simplifies to
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F 3.k3) \ p2dx= i k "u'p + L -13ak ' dx
3 (k% - k) \ py dx rax, up, =22 L3P

3 0 0 0

4 L

] dp

: e L (8-19)
3 oak N ax s

$ £ 0

; L dpt kl L

] : - * F ax dx +1'—g— Q pz dx

t ’3_ 0 0

] : L L

. k - ¢ dP

1 -i-—= R AT piwdx+ “p_d._L,l dx

. a 0 0 X

The first group of terms represents the interactions between combustion

and the wave motions at the head end (x=0) and the lateral boundary (the
integral aver o').

The influence of the nozzle is represented by the term
evaluated at x = L. An impcrtant stabilizing effect is represented by the
integral over (dpl/dx)e. This is due to the inelastic process of accelerating
the incoming gases to the acoustic speed (u' 'vdpl/dx). The next group of
terms represernts the effects of particles in the gas phase - a stabilizing
influence. For precise correspondence with the numarical analysis, Qp' is
{ the fluctuation of heat transfer from the particles to the gas.
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The last term
(2T') is due to non-isentropic interactions between the wave motions and the

combustion processes at the boundary.
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Now for a uniform port, the unperturbed mode shape and frequency are

SR

: ; p,= cos (klx) (8-20)
3 ¥
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and the acoustic velocity is ' ?
dp :
u=___i —a-i& =~ _—1:' sin (kfX) (8-22) ’
oak od _ %
2 .
T is conventional to introduce an admittance function for the exhaust g é
3 nozzle, defined as 3
8 g
: : : q
: % Mo=p B (8-23) g
. by n - 3
:L | @ P g
g gig :‘1
;o -
% Then withu'=u=0atx =19,

r u P; __‘L - f

¢ + or——— = 3 + - 3

.: ipa kzlu ) = J lk;z(An Me) (8-24) ] j

? 0 ]

: where M, is the Mach number at the entrance to the exhaust nozzle. :
The souwrce of mass, y, is defined so that gA is the local rate at which

mass is added per unit length of chamber. If g is the perimeter and my is 4
the mass flux of gases inward from the burning surface, then wA = m,q. Now

the fluctuations of mass flux, mb', is related, for pressure coupling only, ,
to the pressure fluctuation according to (see Section 4.1.4): g
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4
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-
%
Ei
g
-
é

g il b us ki i)
3

m ' '
b = R . (8-25) 3
b - 4.

=1

Hence, the contribution from the lateral boundary in (8-19) can be written .
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w' =

L s  m L
- . Vg =g 2 '/__Q_\__b_( , ‘i\
1akz(pz‘”d‘ tak,  x. N Rb""z"(L/ (8-26)
0 0

where Sb = qL is the area of burning surface. With p' = pL= cos (kzx)
and Rb independent of position, this gives

I\* ky /Sy o
iakz‘)pzw dX-‘-‘iT 3 MbRb (8-27)
0

Herem =pu and M, = ub/a = mb/ pa.

The contribution from the inelastic accelzration of the incoming

gases is
L 2
. . dp k S
iV 740 sax=i L T BN -
23k \\ dx . wdx 12 \A/’Mb (8-28)
- 2 0

The last integral in Equation (8-19) will in general involve both the
admittance and response functions since, as shown in the discussion of
the response to transient burning,

AT - B "y, A - Ry - 1) (GENERAL) (8-29)
T ¥p . ol -

If the processes are isentropic, the fluctuation of flame temperature, Tf' '
equals the local fluctuation of chamber temperature, so AT' = Tf‘ -T' =0.
But as noted earlier the fluctuations of flame temperature have not been
taken into account in the numerical analysis: Tf' =0, Hence AT'=-T',
the isentropic value associated with the waves in the chamber:

AL = (y- 1) 2=

(ISOTHERMAL) (8-30)
vP

(1]
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For these two cases, the integral becomes

r L ks (y- 1) (ISOTHERMAL)
-yt RO Ap dx =i & "= M
b= R AT wdx=izy K. Mo R -1
0 ( =——— )~ A, (GENERAL)
M.
2
(8-31)

Hereafter, for comparison with the numerical results, only the isothermal
case will be discussed.

For simplicity, consider only the particle/gas force term in (8-9) and
ignore the heat transfer for the present. A straightforward calculation of
the linearized motions for small particles in oscillating Stokes flow gives

= 1+1 wT, dx (8-32)

where Cm is the mass fraction of particulate matter in the chamber, and r
is the characteristic relaxation time for a particle. Since C and rare

m
constant throughout the chamber, one finds

dp C k 2L
' '_.__.2 = m £ -
SR Tl Bl e wyn, 2 (8-33)
0 -

With all the above results, (8-19) is explicitly

-L—(kz-ka)=«'1k(A+M‘) ELEP-I\‘«R7
2 o) TRV MY i T My Ry
k S
2 b =
+i—é-AMb
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Now k2 - kzz(w/é')z - kj -21 akz/g and the imaginarv part of the last
equation gives

-

<)

@
Vm(wl ‘rv , kf,L

1= (wz":)? ~ 2

gé'é- " R R -n-a) W) -

Nl

Si=-1 =
- \ 2 ‘ / \—f— 4 Mi) (8_34)

2

The factor Cm(w£ /(1 + v, T‘f) is exactly the result shown in Equation {8-39)
of Reference (53); that is, the attenuation constant due to particles is

=L (c_w) YTy o Lloa (8-35)
°p 7 Um % TH (w7 T 7 p

The factor 1/2 arises from the integration over the mode shape, while the
remaining factors constitutz an approximation to the particle damping. Hence,
it is clear that more accurate estimates of the particle damping are
accomodated in (8-34) simply by defining :’ip as shown, and using whatever
numbers are available for Gp:

I Y SR ) 1 0. T8 T
sl bbb p® .2l emy) -2 (8-36)
= 2 - A b v/ n e =
Q a
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This is the final result for a uniform port. Recall that it involves explicitly
the assumption of isothermal pressure coupling.

8.1 Numerical Example

Consider the pulsed motors tested by Aerojet; the following values

are used:
D = 1.99in,.
p
L = 23.5in.
p = 1400 psia
r = .436in./sec.
a = 3830 ft./sec.
T = 6110 °R
b = yp/a®= .01655 slugs/ft.> ,00852 gm/cm.?
A = 3,11 in.3
= = 1 2
Sb n DpL 147 in.
pg, = 1.5 gm/cm.® (density of propellant)

The Mach number of the gases leaving the burning surfaces is computed from
the continuity relation applied to the interfacial conversion of solid to gas:

+'Bﬁ==o r

P P s

Then assuming that the particle and gas velocities are the same,
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For the Aerojet propellant }'.p/}') ~ .37 and

- (1.5) (.436) - _
3
:
The Mach number of the gas flow is therefore r
M, =280 - 45122 (8-39) '5
b 3830 : ]

By applying conservation of mass to the average flow in the chamber,
one finds for Mach number of the flow entering the nozzle,

wn

M o= Mo
M, =3 M, =.0577

(8-40)

For quasi-steady behavior of the nozzle, the admittance function is real,
and equal to

o .00577 (8~41)

With these numbers, (8-36) gives

A
a  _ o) _ _ _ip -
1926 .0389(Rb 1.17) .0635 3840 (8-42)

(Lateral Burning) (Nozzle) (Particles)
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A wave will grow if a > 0, or, if the real part of the response function is

sufficiently large,

(8-43)

!c‘»

)
Ry ' > 3.37 + 3y

Pt

’

2
Equation (8-36) gives the symbolic result,

) A
.A < a L
Rb(r) >1.17 +2 ——+1 + B— (8-44)
M, 7 aM,

This shows the obvious stabilizing effect of increasing Mach number

of the mean flow.
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9. NUMERICAL RESULTS

In order to check out both the analysis and the programming,
several simple test cases were solved. First, the left hand boundary
condition was modified to correspond to that of a piston undergoing
constant acceleration. A perfect gas solution was then obtained without
propellant burning or particles. The flow field generated by the piston
motion is isentropic, and the solution at any point in the flow can be
found using the Rieman invariants. The numerical solution accurately

reproduced the known flow field, thereby verifying the characteristics
analysis by itself.

The programming of the transient burning analysis was checked by
comparing the transient burning rates computed by the instability program
to those obtained from a simple check program (see Appendix A). When
the pressure field calculated by the instability program, at a given x
location, was input to the check program, the results of the two programs
were identical, and served to corroborate the numerical accuracy of the
transient burning rate solution. (In Appendix A the rasults of the check

program were verified by comparison with theoretical solutions for several
special cases).

The aforementioned test cases were basically designed to check the
accuracy of “he computer programming, and do not, themselves, centribute
to the assessment of the present instability model. During the current
project there was not sufficient time to systematically vary all of the
solution parameters, or to try to optimize the iaevitable accuracy-solution
time trade~off. However, a limited number of instability solutions have
been obtained and the effects of varying many of the solution parameters,
over, at least, a limited range, have been demonstrated. Many of the
solutions were obtained for a solid rocket configuration for which experi-
mental data was available(zs): however, no attempt was made during the
present effort to obtain quantitative results. Rather, the solutions were
obtained, and compared with data, so that the qualitative validity of the
results and the predicted trends could be ascertained. The results obtained
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to date are summarized in the rest of this section. Except for Section 9.6,
all of the calculations considered pressure coupling only.

9.1 Waves In a Closed End Tube

Another, of what might be termed a consistency check was made by
modifying the right hand boundary condition to correspond to a solid wall.
This allows the problem of wave propagation in a closed tube t> be studied.
If an external means of driving the waves were also added problems of the
type discussed in Section 2.1 could be analyzed. No attempt to do this
was made at this time. For waves with amplitudes low enough for the
propagation speed to approach that of an iafinitesimal sound wave, there
should be no distortion of -he wave form as it travels up and down the tube;
although, if a loss mechanism is present, the wave will eventually damp
out. Without a driving mechanism waves cannot grow, however, if they are

of finite amplitude their wave form changes during propagation, and should
become steener.

Figures 9-1 and 9-2 show the pressure and velocity waves over one
cycle (the time for a wave to travel from one end to the other and back)
for the following conditions: langth, 23"; chamber pressure, 360 psi;
chamber temperature, 6110°F; particle diameter, 10w, particle weight
fraction, .37; v =1.2. The initial pressure perturbation corresponds to a
first harmonic standing wave with normalized amplitude (small) of .01.

At the frequency corresponding to the above conditions (about 1400 hz)
particle damping is large, and the amplitude of the wave diminishes rapidly.
At these low amplitudes the flow remains linear, as can be seen from the
invariance of the wave form and the fixed location of the node point (x = .5).
The amount of particle damping predicted by the current program was semi-
guantitatively compared to the results of Dehority(54). The
agreement between the results was within the degree of uncertainty to which
the comparisons were made (approximately 10%). The pressure and velocity
waves at approximately onc half, one, and two cycles, for a closed tube
with no particles and an initial first harmonic pressure disturbance of 0.1
amplitude, are shown in Figures 9-3 and 9-4, respectively. This is not a
very high amplitude case that rapidly demonstrates nonlinear behavior,

however, at the end of two cycles noticeeble steepening of the pressure
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wave can be seen, and the presence of a second harmonic is easily seen
from the form of the velocity perturbation.

PIURERIS 25 <

o - ~, 2 g e RIS
s ata L e T A ARRLI ST N S £ s e L8 2 Yot et el A 0 ORI

9.2 Effect of Burning Rate Parameters--A and B

The transient burning rate analysis developed in Section 4 contains
two parameters, A and B, which govern the burning response of a propellant
to an applied pressure disturbance. (The thermal diffusivity, * , can almost
be considered as arn additional parameter, since its value for a given
propellant is still subject to a sizeable degree of uncertainty).

Depending upon the values of A and B, the transient burning rate
perturbation can lead or lag the pressure disturbance, with amplified or
diminished response (i.e., the amplitude of the burning rate perturbation
can be larger or smaller than the amplitude of the pressure wave). Ina
linear analysis, with the pressure assumed to be harmonic, equation (4-34)
vields the relationship between the burning rate and pressure. Implicit in
this expression is the assumption that the pressure has been harmonic for
all time; or, in more physical terms, that the process has been going long 2
enough for the initial behavior associated with the origin of the pressure
pulse to be inconsequential. In the present analysis, the pressure variation :
need not be harmonic, and the response at times immediately following the
generation of a disturbance can also be calculated (Equation 4-68). It is

T IRSEPFCTNCN4

PRI S

still informative, however, to look a bit more deeply at the linear, long '
time, response; since many of its characteristics carry over, at least ‘ f
qualitatively, to the more general case. t

Figure 9-5 shows the real part of the response (normalized by the
value of the steady state pressure exponent, n) forA=15and B =.7, .9, -
1., (""w = () as a function of a nondimensional frequency, Q, defined as

A e ey o

f, being the frequency of the pressure wave in hz., Figure 9-6 is similar, :
but forA =40, B = .8, .9, 1.0. In Section 4.2 it is pointed out t~at A and ]

9-3




B must satisfy the inequality

. B+1
; A < (B"'l)? :
] and that the peak response occurs in the neighborhood of .. = A«/ B. The

responses illustrated ia Figures 9.5 and 9.6 do peak riear the values given

by this relation. Furthermorc, the magnitude of the peak value is seen to ' 1

grow larger as the values of A and B come closer to violating the above
inequality. At low frequencies, to the left of the peak, the burning
response leads the pressure, while at high frequencies it lags. (At long
times, when equation (4-34) is appropriate).
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The transient burning response to more general nonlinear waveforms,
which are not pure harmonics, and have variable frequency, will of course
be somewhat different. However, when faced with the task of trying to find
values of A and B which yield calculated results that correlate well with
engine firing data, knowledge of the burning response to constant pure
harmonic pressure disturbances can be quite valuable.

AR A Ry
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Time has limited the extent to which the effects of varying the burning
rate parameters could be studied, using the present nonlinear model. In

order to make the calculations that were performed more representative and

: : meaningful the engine geometry and propellant parameters were selected 1
i r to approxima tely simulate the conditions of the experimental engine firings 4
;% reported in Refarence 23. In these tests the engine was usually subjected :

to pulsing, however, the configuration selected was one which was
spontaneously unstable, i.c., without being pulsed.

o

;i The main engine paramecters were as follows: ;
& :
% Throat diameter 0.775 in, -2%
- "g: Port diameter 1.99 in. :
A Grain length 23.5 in. 4
1 éf Chamber pressure 1400 psia 1
£ Chamber temperature 61100R , i
¢ Burning rate .32 (P/500)"" ¢
;3 Particle weight flow 1atio .37 oo
:
£ 3
H b
1 1
i 3
¢ .
i %
,; 9-4 i
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In order to bring out the burning rate effects more vividly particle
damping effects were kept to a minimum by selecting a particle size of
2u+. Linear analysis (see Section 8.1)was used to provide a guide as to
the size of the response factor needed to initiate instability. Curves
such as illustrated in Figures 9-5 and 9-6 were then used to select

values of A and B thought to correspond to stable and unstable response.
The A and B values chosen were:

A=15 B=.7
A=11.5 B = .64

In order to begin the calculations a steady state solution was obtained,
which was then, in turn, perturbed by the addition of a first harmonic
standing pressure wave with amplitude equal to one~tenth of the mean
pressure. Instability solutions were then carried out for approximately
three cycles++. Figure 9-7 shows the calculated pressure histories at the
head end, x =0, and end of the grain, x=1, forA=15and B =.7.

Figure 9-8 contains the corresponding results for A =11.5, B = .64. These
results correspond to the type of measurement one obtains with a pressure
transducer, except that the values shown are perturbations, i.e., they
have the unperturted steady state values subtracted out.

As expected, the results indicate that if A =15, B = .7 the initial
perturbation damps. While, withA =11.5, B = ,64, the wave ultimately
amplifies. In the former case, the wave damps approximately i0% per
cycle, while the unstable case shows an interesting nonlinear phenomenon

+The measured (as well as calculated) frequency was approximately 875 hz.
Reference 54 was then used as a guide in selecting the particle size,

Other calculations were also inade with §; and 9y particles (see

Section 9.4). At the quoted frequency, 9u particles are approximately

the size corresponding tc maximum particle damping.

++Time has been nondimensionalized by L/af; a. being the gas only sound
speed. If the wave speed in the two phase mixture were exactly equal to
3¢ then a cycle would correspond to @ nondimensional time of 2. Since

the two phase wave spced was less than a; a cycle corresponded to
t~ 2.3.
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After the first cycle the wave is almost unchanged; however, the second

cycle sees the wave grow by about 40%, and by the end of the third cycle

the perturbation has been amplified an additional 50%. Figure 9-22 contains’

results for the same conditions, except for particle size, which show that the
perturbation may actually first damp before ultimately amplifying. It appears
that this behavicr may be related to the "necking" phe-.mena which can be

observed in experimental pressure traces, followin

<! ..g. An explanation
for the calculated results, and, hopefully, at leasi .+ .urtial expianation for

the "necking" phenomena, can be inferred from the nature of the transient
burning response.

e AR A G S N S e

The normalized values of the transient burning rate perturbation,
(as calculated using Equation 4~68), for the same two sets of A and B
values, are presented in Figures 9-9 and 9-10. The usual response factor

calculations are not applicable at short times after the onset of a finite
size disturbance.

e
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They assume that @ harmonic disturbance has been

present for all time. Realistically, however, the propellant cannot be

expected to respond instantaneously to @ sudden pressure change. The

change in pressure alters the heat transfer rate to the propellant and
initiates a thermal wave t'iat travels down through the propellant. The
initial response of the propellant, therefore, contains start up "transients"” ‘

which, if the frequency and amplitude of the wave do not change rapidly,
eventually die out.

- e ph
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Only under these conditions of constant or slowly varying
wave form, and damped initial transients, can the historic form of response
function vield even approximately valid results. 3

As shown in Figures 9-9 and 9-10, as well as in Appendix A, the
nature and duration of the initial transient burning response is a strong
function of the values of A and B, as well as of the nature of the disturbance.
With A = 15 and B = .7, the transient burning rate initially varies at a frequency
close to that of the pressure wave, but with shifting phase angle. The ratio of the
magnitude of the burning rate fluctuations to the magnitude of the pressure
perturbation, |(m'/m)/(P'/PB){, ((m'/m)/(P'/F) is simply related to the
response function by Equation 4-35, and will at times be referred to as the

response function) can be scen (using Figures 9-7 and 9-9) to vary from
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a little less than 2, initially, to a value of about 4 at the end of one cycle.
It then decreases over the next two cycles to around 2, which is approxi-

mately equal to the usual "long time" value of this ratio for the given A
and B values and frequency.

Here, the most vivid aspect of the initial transient, is the peak in
response at the end of the first cycle, at a value about twice that of the
"steady state" response. Even with this initial boost in resg.onse the
pressure decays over the first cycle, although not @s rapidly as during
the succeeding cycles. It is worth pointing out here, that the fate of the
pressure disturbance depends not only on the magnitude of the hurning rate,
but also on its phase relationship to the pressure. Since neither the
magnitude, nor the phase, of the response remains coastant it serves to
somewhat complicate the interpretation of nonlinear instability calculations.

The second set of results presented in Figures 9-9 and 9-10were for
A =11.5, B=.64. Comparison of the pressure and burning rate histories
at the head end shows that the response factor is initially about 1.5, and
then grows to around 6.25, 7.75 and 8.0, at the ends of the first., second
and third cycles respectively. The "long time" value of the response factor
for this case is in the neighborhood of 8, so rather than exhibiting an
initial peaking behavior, these results show a gradual climb to a "steady
state" value over several cycles. It is this relatively slow build up in
response that accounts for the fact that the pressure does not increase
during the first cycle; only to be amplified at an increasingly faster rate
during the succeeding cycles. Although not proven yet, it can be readily
hypothesized thct the "necking phenomena," referred to earlier, that is
observed in pressure traces from pulsed engines, can be attributed to a
similar slow build up in burning response. It is hoped, that in the fature,
an investigation relating to this phenomena can be carried out, and the
validity of the hypothesis proven.

The previous discussion was based on observation of the pressure
history at a fixed location. It is also illuminating to look at the results
as a function of axial distance, for different times. Figure 9-1l shows the
pressure distribution in the chamber ‘ust after the disturbar.ce was
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initiated and at the approximate end of each of the first three cycles.
Figure 9~ 8 demonstrated that the wave amplitude was unchanged after one
cycle. The new figure, 9-11, shows that the waveform also remained
essentially the same during this interval. At the later times, t = 4.6 and
6.9, the wave is seen to have grown, while the null point moves towards
the left and the positive portion of the wave beccomes somewhat larger

in magnitude than the negative part ([P, _q|~ [P__,[). The wave is still
predominantly a first harmonic, but it is not pure any longet.
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gasdynamic effects have caused the wave to steepen a bit; which, in

TR

other words, says thc wave contains some higher harmonic content.

Since the current analysis is nonlinear, the wave is, and must be,
treated in its entirety; however, it is still constructive, at times, to
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consider the wave as made up of a basic frequency and harmonics.

TR

Consider Figure 9-12, which shows the velocity perturbation in the chamber

Fhepirs

(u —ut=0) at the same, end of cycle,times. If the pressure disturbance was
a true standing wave the velocity wave would be passing through the null
position at the end of a cycle. As the number of cycles increase it can

be seen that the velocity wave develops a small remainder at the end of
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a cycle (note the scale factor on the velocity axis), which by the end of [

N ST RRYS

the third cycle is beginning to look reminiscent of a secena harmonic
velocity wave form.

Remembering the indications of at least a small amount ¢ higher

harmonic content in both the pressure and velocity waves, it i1s instructive to

look at the wave form of the massburning rate perturbation (& - ‘tt=0)+

shown in Figure 9-13. The wave forms depicted are definitely purer than
those corresponding to the velocity and pressure. Note the central nodal

T O N

point at x = .5 has hardly been displaced even after three complete cycles.
Obviously, the burning rate, for this case, does not rapidly respond to
small, higher frequency, disturbances. This is the first cvidence that the

current transient burning rate model yields a response which, essentially,

+The so-called transient burning rate perturbation shown in Figures 9-5
and 9-10is actuaily (o - u’t=0)/""t=0 .
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is able to discriminate between harmonics. Something which it must do if
it is to be a viable model.

The next section will deal in further detail with the response of the
propellant to different harmonics.

9.3 Eflect of Initial Disturbance Wave Form

Since uneither the form of the disturkances which occur randomly i
a rocket engine chamber, nor the exact conditions ger.erated by an experi-
mental pulsing apparatus are really known, it would be accommodating if
the instability results crlculated using ths present madel were insensitive
to the nature of the initial disturbance. As it turns out, however, this is
not the case; at lea: ovoer the first few cycles.

Admittedly, the exact form of a small random disturbance should
hardly matter in an engine which is spontaneously unstable, since the
tendency of an engine-propellant combination will be to amplify only those
modes which are ultimately observed. If an analytical model is to be
truly representative, it too must possess this properiy. In such & case
one should use some general wave form, made up of arbi“rary percentages
of the first harmonic and various overtones, as the initial disturbance and
let the model dictate which mode or modes will be amplified and which will
disappear. If a single pure harmonic is used ('st, or 2nd, or 3rd, etc.)
as the initial disturbance ore runs the risk or. not being able to simulate
the actual response, since all the rest of the harmonics will not be present

initially and may not be created, even through nonlinear modification of the
original wave form.

Similar considerations also hold with respect to predizting the results
of pulse tests. However, there are further complicatiag factors in this case.
(Neglecting, for the present, the fact that pulse guns usually introduce
foreign gases). First, the pressure pulse iatroduced is accompanied by
velocity and temperature disturbances. Accurate representations of each
of these is, of course, not feasible. Second, the location and magnitude
of the pulse can inflaience the measured results, even after many cyclas,
and to the extent of 2ven determining whether thz pulse will eventually grow
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or decay. Hopefully, the present medel, with suizable modification ,
if necessary, will be able to serve the dual rele of both predicting and

helping to understand the basic mechanism underlying e=ch of these
eftects.
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Several instability solutions have becn obtained in an initial -ffort

to understand the ch~racteristic behavior of the present model, as 1t velates
to the foreyoiag discussion,

§o i

The engine gemetry and propellant properties
were the same as those listed in the previous section, and the same two
pairs of A and B values were used.
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The first solution to be discussed was identical to the A = 11.5,
B = .64 case presented in the previous section, except the initial

disturbance was taken to be a 10% second harmonic, instead of the 10%
first harmonic employod e-rlier,
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The pressure and transient burning rate
perturbation histories at the h:ad end and end of the grain are presented

in Fiqures 9-14 and 9-15. Like the earlier cases, this solution was also

carried out for 3 cycles, however, since the frequeincy is twice as large,
the elapsed time is only half .hat of the first harmonic cases.

In comparing these results for the second harmonic to the earlier i
results (Figure. 2 and 9-10 one is immediately struck by the fact that the
second harmonic damps, while ithe first was amplified. This difference can

s y .
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be traced to the bzhavior of the transient burning response. At the higher
frequency the response factor (ratio of 1ormalized burning rate periurbation
to normalized pressure perturbation) peaks in the neighborhood of 2,
before decreasing to order unity; while, it will be recalled, that the
response factor for the first harmonic rose steadily to a value around 8.
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Additionally, the rzsponse at the primary frequency was approximately

in phase, while the second harmonic response oxhibits a significant phése
lag. This bchavior was, of course, to be expected, in view of the

CENMERANR

characteristics of :he usual linear rasponse factor; as shown in Figures 9-1
and 9-2.
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For the engine configuration under ¢ nsideration, the frequency

TR e

For instance, thz addition of velocity coupling to the transient burning
rate model.
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of the first harmonic is very near the peak in the response versus
frequency curve. The frequency corresponding to the second harmonic

is then significantly dispiaced to the right of the peak, and, hence,
results in a much lower burning rzsponse. The pesk also corresponds

to zero phase shift, while the amount of phase lag rmonotonically increases
as the frequency bzcomes higher. Under these conditions, each of the
higher harmonics should be increasingly deamped, as their frequencieas
move further and further away from the peak on the response curve.

The pressure and velocity waveforms in the chambker, for the second
harmonic case, are presented in Figures 9-16 and 9-~17, respectively.
Figure 9-16 shows the initial pressure disturbance, and the waveform
at the end of two cycles (t = 2, 39). The velocity peaks one-quarter cycle
after the pressure; therefore, in order to show the velocity waveforms
at close to their peak values, they are shown in Figure 9-17 att = .3,
and t =2.7, Earlier, in discussing the type cf initial disturbance to select
when solving a8 spontaneous instability problem, it was suggested that a
general waveform containing the first and several higher harmonics be
employed. In order to see how this idea would work out in practice, an
instability solution was obtained starting with an initial pulse consisting
of the sum of a 5% first harmonic and a 5% second harmonic. The same A and
B values (11.5 and .64) and engine configuration were stipulated. It will
be recalled that individually the first harmonic was amplitied, while the
second was damped. The results presented in Figure 9-18 should, therefore,
comre as no surprise. This figure shows the initial pressure distribution in
the chamber, and its subsequent development. The curves are spaced in
time at approximate intervals of At = 1.3, corresponding to the time for a
full cycle at the frequency of the second harmonic. Every other curve,
then, corresponds to a full cycle of the first harmonic. It can be seen,
that as time progresses, the presence of a second harmonic becomes less
and less obvious, until, at the last time (t = 6.90), it has all but
disappeared. The same effect can be seen in the velccity, as demcnstrated
by Figure 8-19. Here, as in Figure 9~12,the velocity waves are shown
only slightly displaced from their null positions (the times plotted are not
exactly full cycles, and there is also some effect of nonlinearities) so

9-11
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their magnitude is small. In fact, a comparison of the pressure and
velocity wave forms at t ~ 6.9, with those of the corresponding first
harmenic only (initial pulse) case in Figures 9-1 and 9-12, indicates that
there is less second harmonic content in the waves which started with

50% second harmonic. This seeming paradox is due to the presence of
ronlinear effects, as explained below.

Both the "first harmonic only" and the “mixed" case were initiated
with 10% magnitude pulses. In the former case the pressure grows, atter
the first cycle, and by t = 6.9 has been amplified about 22(1%. In the
"mixed" case the first harmonic continues to behave in the same manner,
however, the second harmonic content (50% initially) is almost completely
damped out by t = 6.9. As a result, the wave, after initially being damped,
has only amplified by about 17% att = 6.9. The nonlinear effect of wave
steepening, is, of course, amplitude dependent. The wave steepening
process corresponds to the generation of higher harmonics. At the higher
amplitude of the "first harmonic" case second harmonic content is being
produced more rapidly than in the lower amplitude "mixed” case. Thus,
while the second and higher harmonics damp fairly rapidly, they will always
be present to some degree in high amplitude waves, for they are continuously
being generated.

The pressure and burning rate histories at x = 0, and 1, are presented
in Figures 9-20and 9-21, so they may be compared to the earlier ones for
the "pure" first and second harmonic cases (Figures 9-8, 9-10,9-14 and
9-1%). The disappearance of the second harmonic content and lack of
burning response to it, is also vividly portrayed in Figures 9-20 and 9-21.

It was gratifying to observe this ability of the model to selectively
amplify the first harmonic, since the experimental pressure traces recorded
for this engine configuration showed it to be spontaneously unstable; with
very little higher harmonic content in evidence, even after many cycles.

The idea of using an initial pulse containing all the modes of interest
(at least the primary and lower harmonics, the higher frequency elements
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will always be created by nonlinear effects) has proven to be an
interesting one, and is probably worth adopting as standard. The effort
to perform further quantitative comparisons with data is certainly
warranted. This will involve, among other things, continuirg the
calculations for many more cycles so that calculated and measured
growth rates and limiting amplitudes can be compared.

9.4 Effect of Particle Size

For a given particle weight fraction, the amount of damping is a
strong function of both frequency and particle diameter. Several linear

analyses of acoustic wave particle damping have been performed,e.g., Ref. 53.

These show that, at a given frequency, the amount of damping peaks for

a certain diameter particle, and falls off, usually fairly ra;..dly, for larger
and smaller particles. Nonlinear damping calculations(sg) have shown
that nonlinear effects tend to shift the particle diameter corresponding to
maximum damping without affecting the maximum amount of damping, itself.

When all of the other gains and losses are fairly well balanced the
amount of particle damping can be the factor which determines the
stability of the rocket motor. Also, 1ii the amount of particle damping is
large, it can improve the stability characteristics of an engine even if the
other gains are much greater th¢ the losses.

The present analysis represents a step forward since nonlinear particle

damping is included in a total instability model so its effect is completely
coupled to the other combustion and flow phenomena. Currently, the model
assumes the particles are all of uniform size. This assumption was made
to enable the basic model to be assessed in as straightforward and simple
a manner as possible. There is no theoretical restriction ot the type of
particle size distribution which could be incorporated into the instability
analysis, e.g., an analytica! particle distribution function, or an
approximation to a distribution using a discrete set of particle sizes. The
use of even two particle sizes would be a significant step towards
realistically matching the bimodal type particle size distributions
typically found in solid rocket motors.
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The instability calculations presented previously were all based on
a particle diameter of 2,;. A few instability solutions were also performed,
varying only particle diameter, in order to assess the hehavior of the
solution, with respect to this parameter.
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Figure 9-22 shows a comparison of the pressure histcries at the
head end for cases with particle diameters of 2, 5 and 9 microns. The
results of Reference 54 indicate that, at the frequency and weight flow

pt

ratio of these test cases, the maximum damping occurs for about 9,
particles. The results shown do indicate that as the particle size goes
from 2 to 9 microns damping docs increase. The peaked nature of the
damping versus particle size curve is not illustrated, since larger than
9, particles were not considered in this brief initial look at particle
damping. With A and B values of 11.5 and .64; linear analysis (see
Section 8.1) predicts that the engine would be unstable for all three
particle sizes considered. As seen in Figure 9-22, the present calcu-

lations corroborate the linear results. Thus, this particular engine, could
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not be stabilized by efforts to vary aluminum particle size. Increasing
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the weight fraction of aluminum would, of course, eventually provide

enough damping, assuming no other deleterious effects were also induced.
The actual particle size distribution in the experimental engine that this t'
case was based on, is not known. The engine firings were, however,

TR S R T PR,

spontaneously unstable; thus, there is qualitative agreement between the
current findings and experiment, regardless of the particle size.

Particle damping is, of course, due to the inertia of the solid particles,
which causes them to exert a drag force on the gas in their efforts to keep
up with it. In a constant velocity flow the particles would eventually
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attain the gas speed. When the gas is accelerating, however, the
particles can never quite reach the gas velocity, no matter how small
the particles or the rate of acceleration. Figures 9-22 to 9-25 show the
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particle and gas total velocities (not velocity perturbations) about one-
quarter cycle past the end of the first cycle (t ~ 2.9), when the gas
velocity is passing through its peak; for cach of the three particle sizes
considered. Figure 9-23 shows that the 2, particles are small enough to
just about keep up with the gas. The difference in particle and gas
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velocity being only a fraction of a percent. As the particles become
larger their inertia causes them to lag further and further behind the gas.
Figures 9-24 and 9-25 show approximately a 6% lag for the 5, particles
and a 15% lag for the 9u particles. Note that the magnitude of the gas
velocity (and pressure, see Figure 9-22) decreases as the

increased from 2 to 9 microns, due to the larger amount of energy

dissipated through drag.
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9.5 Effect of Initial Disturbance Ampliwde and Drag Law (

The extent to which pulse amplitude serves as a determining factor
in the stability of a solid propellant engine is not yet understood. Nor is
the role of the initial pulse known with respect to its influence upon the
limiting amplitude. The foregoing are, of course, nonlinear phenomena,
and, as such, are not amenable to solution by the linear techniques which
have been the backbone of solid rocket instability analysis, in the past.
The present computer program represents a tool, which, hopefully, will
allow these phenomena to be investigated and the extent of their influence

to be determined. :

BT ST TR IR

All that has been done to the present time, is to look at the
differences in response (over the first cycle only) to initial disturbances of

INENP R

varying amplitude. This preliminary effort serves only as a relative
indicator of the extent to which nonlinear effects are encountered at

TTTITT T EN CC T  TT

various amplitudes. Some of these results are presented below.

Figure 9-26 shows a comparison between the head end pressure
histories for two instability solutions which differ only in the magnitude

B R e R e R 17

of the initial pulse. The pressure perturbations have been normalized by
these initial values, in each case, to allow the differences to be more
easily discerned. One solution has been discussed earlier; the 10%

L magnitude, A =11.5, B = .64, first harmonic case. The second solution
3 employed an initial 2% pulse. As illustrated in Figure 9-26, there is not

: too much difference betw en the two solutions. The normalized ampli-
€. tudes of the two solutions are essentially the same at the end of the first
cycle, however, the history of the larger amplitude wave shows it has
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become somewhat steeper than the smaller amplitude wave. The differences
between the two soluiions would continue to grow as time increased, and
the waves amplified (this case was unstable). These results do indicate,
however, that waves in the 0 to 10% amplitude range are not rapidly
distorted due to the influence on nonlinear effects.

A similar pressure plot, which covers a wider amplitude range, is
presented in Figure 9-27, for somewhat different conditions. The
chamber pressure was 360 psi, port to throat area ratio was 4.5, and 10
particles were used. The transient burning rate parameters, A and B, were
taken to be 10 and .8, respectively. All other conditions were essentially
the same as those for the solutions previously discussed. These new
conditions correspond to significantly increased particle and nozzle
damping and decreased burning response. (The frequency of the first
harmonic for this case was about 1400 hz). It is not surprising, therefore,
that the waves damp quite rapidly.

Two of the curves shown in Figure 9-27 correspond to first harmonic
disturbancec with initial amplitudes of 1% and 50% of the mean pressure.
The third curve also corresponds to a 50% initial disturbance, however,
in this case, a Stokes law drag coefficient was used to see what the
difference would be. (The drag law used in all the other solutions is
given by equation (3-9)). It can be seen that the 50% initial amplitude
waves are subject to large and rapid steepening, even though they have
damped to one-third their starting amplitude during the tirst cycle. Although
not too evident in the Figure, the 50% initial amplitude waves were damped,
percentagewise, somewhat more than the 1% wave. To be exact, the 50%
waves were both damped about 67%, while the 1% wave was damped by
only 63%. Although the conditions for which these solutions were
obtained are not the most representative of solid rocket engines, in

general, the results are interesting because they show the current
model is capable of predicting an amplitude dependence for the damping
rate. This is an important feature, one that is necessary, if a model is
to be capable of calculating limiting amplitudes.
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The results for the two 50% initial amplitude cases are also interesting
since they illustrate the effect changing the drag law. At this large amplitude,
particle Reynolds numbers (based on relative velocity between particle and
gas) on the order of 300 are encountered, far beyond the range where Stokes'
law is valid (Re < 1). At such Reynolds numbers, the nonlinear drag law
given by equation (3-19) vields a drag coefficient several times larger than
Stokes' law. Despite this fact, Figure 9-27 shows that even such a large
change in drag coefficient did not measurably affect the amount particle
damping even when particle damping was, itself, quite large. (Particle
damping accounts for about 2/3 of the total damping for this case). The
Stokes law wave is seen to have steepened up considerably more than the

other one, however, the amplitudes at the end of one cycle are almost
id>ntical.

The relative insensitivity of the computed results to the form of the
drag coefficient~Reynolds number relationship can be explained as follows.
Other things being equal, a larger drag coefficient will cause the relative
velocity between particles and gas to decrease. The drag force exerted on
the gas is proportional to CD“‘VQ , therefore, the combination of higher CD
and lower 4V creates at least a partial balance, leaving the total force
relatively unaffected. That the above actually occurs is graphically portrayed
in Figure 9-28. The solid lines denote the gas and particle velocities
calculated using Stokes' law, while the dashed lines show the same quantities
at the same time as calculated using equation (3-9). As mentioned previously,
the nonlinear drag coefficient is several times larger than its Stokes flow

equivalent, but, as seen in the Figure, the corresponding relative velocities
have an inverse relationship to the magnitude of CD.

In other cases, where the waves grow or remair: large for may cycles,
the form of drag law may be more important, however, based on the present
result, it does not appear that the exact form of the drag law is critical.
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9.6 Velocity Coupling

A method for calculating the nonlinear effects of velocity coupling on
the growth of pressure waves in a ccmbustion chamber has been developed
(see Section 4.3), and a limited number of solutions have been obtained
in order to observe the qualitative characteristics of the model. The scope

of the present effort did not allow for a systematic investigation of the
effects of velocity coupling.

A series of instability solutions have been obtained for an engine
configuration quite similar to that described in Section 9.2. Some of the
dimensions and the propellant properties were modified, however, so the

results are not directly comparable. All of the following solutions used
A=11.5, B=Bv= .64, n=n
differed as follows:

vo .3, and 2y particles. The four solutions

1. Velocity coupling only, Uy = 0

2. Pressure coupling only

3. Pressure and velocity coupling, U = 0
4. Pressure and velocity coupling, U, = .04

Figures 9-29 and 9-30 show ti.e waveforms of the pressure and burning
rate perturbations, respectively, for the fourth case, i.e., pressure and

velocity coupling with Uy = 04. The four curves on each graph depict the

results at t = 0 and approximately at the end of each of the first three cycles.

It can be seen that the pressure initially damps during the first cycle, but

begins to be amplified during the following cycles, as the burning rate response

builds up. At the end of the third cycle the pressure wave has recovered to
just about its initial amplitude. Looking at these pressure waveforms in
Figure 9-29, it can be seen that very little harmonic distortion has been
introduced into the pressure wave over the first three cycles. This
contrasts with the burning rate waveforms in Figure 9~30, which show a
marked degree of distortion (compare Figure 9~30 with Figure 9-13).

The distortion in the burning rate waveform is, of course, due to the
addition of a velocity coupled response which is inherently nonlinear. The
fact that the pressure wave had so little harmonic content is evidence that,
in this case, the energy coupling between the velocity coupled response and
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the pressure wave was quite inefficient. Further evidence of this will be
preser.ted in later figures, as well as an explanation of the reason for this
weak coupling. The pressure and pressure coupled burning rate histories
for this case are, qualitatively, quite similar to those shown previously

in Figures 9-8 and 9-10, Figures 9-31 and 9-32 show the time histories
of the velocity perturbation function (Eqs. 4-~71 and 4-72) and the transient
velocity coupled burning rate at several different axial locations. The
nonlinear nature of the velocity driving function is quite evident in

Figure 9-31. The burning response tends to smooth out the distortions of
the driving function as shown in Figure 9-32. There remains, however, a
bias in the burning response that results in the waveform having a positive
contribution greater than the negative contribution during the balance of the
cycle. This bias generates a net positive contribution to the mass and
energy in the chamber and could be responsible for the increase in mean
pressure observed in so many instability traces.

Figure 9-33 shows the pressure histories at x = 0 for case 1, 2 and 4.

The results for case 3 are quite close to those of 2 and 4 and have been left

out for the sake of clarity. Here, again, it is apparent that the energy

transfer from the velocity coupled response is quite inefficient in this case.
Thus, the pressure coupled only and pressure plus velocity coupling pressure
histories are almost identical; while with velocity coupling only, the pressure

damps rather quickly since there is not enough gain to offset the significant
amount of damping in the chamber.

The extremely inefficient transfer of energy from the velocity coupled
response is due to the phase relationship between the velocity coupled burn
rate and the pressure. The results of the linear analysis (Eq. 8-19) show

that the coupling between the combustion and the wave motion is proportional
to (in nondimensional form)

T pz w'dx (9-1)
0

If the waves in the chamber were pure harmonic standing waves the pressure,
velocity and velocity coupled response would vary as follows, in the
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absence of rectification or threshold effects.

5 P (k, %)

f: g = cos (k, x

j

. A H k -
Y v, ~ Sin ( , x) (9-2)
: m'N _—

(m,\,“sm(k,ex)

] L

£

% Thus, if the velocity coupled response were linear (i.e., rectification and

A =4 threshold effects nc* _-esent), then Equation (9-1) shows that the coupling

4 between the velocity coupled response and the pressure wave would be zero.
{ ¢ In the present model the amount of energy transferred to the pressure wave

thus depends upon how much rectification and threshold effects modify the

E waveform of the velocity coupled response. For the conditions of the present
ﬁ 4 solutions the coupling rema%ns quite weak. General con sions about the

! effect of velocity coupling must be deferred until solutions at a range of

’f conditions, and for longer durations, have been obtained.
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10. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

10.1 Summary and Conclusions

After surveying the existing experimental and analytical solid rocket
instability results, a new analytical instability model has been developed
and solved. Unlike previous analytical solutions, the current longitudinal
instability model is nonlinear and all of the various phenomena affecting the
flow and stability of a motor can be treated in a coupled manner. (All of the
possible flow and combustion processes are not yet included, but the model

is general enoug* to allow for their future incorporation).

The two primary elements of the current instability analysis are a
method of characteristics solution of the two phase flow in the combustion
chamber of the motor, and a coupled calculation of a transient burning
rate, The transient burning rate analysis presented, herein, is a unique and
interesting development. It is based on an extension of the most popular,
linear, harmonic combustion response model. The current methrd allows the
calculation of propellant burning response to a pressure disturbance of arbitrary
waveform, for all time, including the period immediately following the initiation
of the disturbance. The analysis also includes a model for velocity coupled
response, Therefore, for the first time, the nonlinear effects of velocity

coupling on the growth of pressure waves in a combustion chamber can be com-

puted,

The instability solution, itself, begins with the calculation of the steady
state two-phasz flow in the motor. The flow in the combustion chamber is
calculated by numerically integrating the equations of motion, in conservative

form. The nozzle flow and choked flow condition are found using the constant

fractional lag approximation. The steady state conditions are then perturbed
and the subsequent wave motion in the motor is calculated numerically, using

the method of characteristics. The nature of the engine response is dependent

upon the interaction the various gain and loss mechanisms in the engine; which

are, in turn, a function of the propellant burning response, the size and

amount of particulate matter present, the magnitude and shape of the initial

disturbance and the geometrical configuration of the motor.

.....
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In order to proceed with the development and assessment of the current
approach in the most rational manner, a number of simplifying assumptions
were made. Only motors with cylindrically perforated grain were considered.
The gasdynamic flow was assumed to be one-dimensional and the particles

in the gas stream were taken to be of uniform size and inert; thereby ignoring
the processes leading to the formation of the particulate matter.
Jdow was assumed to be quasi-steady.

The nozzle

A series of instability solutions have been calculated, wherein some
of the main parameters such as particle size, burning rate constants, initial
disturbance waveform and magnitude and type of response coupling have been
varied, in an attempt to qualitatively assess the behavior and validity of the
present model, The results obtained are quite encouraging., From all appear-

ances, the qualitative behavior of the model is quite realistic and comparisons
with cne set of data tend to corroborate its efficacy.

When this effort was initiated it was hoped that it would lead to a
greater understanding of longitudinal combustion instability, and, thereby
to the realization of an improved predictive capability. It appears that these
goals wili be realized, since the limited number of instability solutions

obtained to date have already provided some new insights, or confirmed what
previously could cnly he hypothesized.

For instance, whean test motors are pulsed, to initiate an instability,
the initial disturbance is often observed to partially damp, before ultimately
being amplified. Linear analysis cannot account for this behavior, however,
as "necking" can, in all likelihood, be attributed to the existence of a time
lag between the occurrence of a disturbance and the time at which the pro-
pellant burning rate can fully respond to it. During this initial period the
surface combustion cannot supply eneigy to the wave at a rate fast enough
to overcome the effect of the always present damping mechanisms. Given
time, however, the propellant response builds up, in many cases, to the
point where a net amount of energy is supplied to the wave, and it amplifies.
The curation, or even existence, of such a response lag depends upon the
values of the parameters appearing in the transient burning rate model. By
varying these constants the initial response may be made to build up slowly,
rapidly, or even overshoot, the response level it will attain at later times.

Attempts tc correlate the calculated and measured wave amplitudes immediately
following pulsing should, therefore, provide some input towards the empirical
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determination of the burning rate parameters. The selection of values for
A and B, as these parameters are denoted, for quantitative use, must also A .

be based on the ability of the calculated results to match measured growth
rates and limiting amplitudes.

In many instances, experimental pressurz traces, under unstable
conditions, are observed to have relatively little harmonic content, even at
relatively high amplitudes. This is in contrast to the results obtained for
acoustic waves driven in closed resonant tubes, where significant wave
steepening, and even weak shocks, are observed even at relatively low
amplitudes. It has been felt that this difference in behavior must be attri~
butable to some characteristic of the surface combustion response which
allows the higher harmonics to be attenuated while simultaneously amplifying
the primary acoustic mode. Such a cause and effect relationship has, however,
never been previously demonstrated analytically. It was, therefore, quite

gratifying to nbserve such an effect in the present instability solutions. The
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results presented earlier conclusively demonstrate that the current transient

burning rate model is capable of producing a response which discriminates :
3 between the various harmonics contained in a general pressure wave;

% amplifying one, while attenuating several or all of the remaining harmonics.

g These results, therefore, appear to contirm the hypothesis that the low

51,' harmonic content exhibited by many instability traces is du~ to the attenuated

g%;‘ response of the propellant to the higher frequency elements of a disturbance.
2

TR

TG

To date, instability solutions have not been continued out to a large
number of cycles, therefore, the ability of the current model to predict a
limiting amplitude has not been demonstrated. The present results do, how-
ever, exhibit a nonlinear feature which while not guaranteeing that a limit-
ing smplitude will be reached, must be present if such limiting is to occur,
Thei feature is the amplitude dependence of both of the ga‘n and damping
mechanisms,

It has also been concluded from the results that calculated particle
damping effects do not appear to be sensitive to the exact form of the drag
coefficient relationship. While based on only limited results, this
circumstance, if corroborated by further study, ia a welcome one, since
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there is still some disagreement about the proper variation of C
Reynolds number.

with

D

10.2 Recommendations

Based on results achieved tn date, the method of analyzing longi-
tudinal combustion instability developed, herein, certainly merits further
investigation; including quantitative comparison with experimental data.
In ordar to achieve such quantitative agreement it may be necessary to
elimi. some of the simplifying assumptions made during this initial
effort. It may also be desirable to relax some of the other restrictions,

: i currently imposed, in order to widen the applicability of the method. Some

of the possible refinements or extensions of the present work are discussed
below.

MGk Fdddare s,

In order to fully assess the current instability model, or any further
modifications to it, solutions must be carried out for many more cycles than ¢
have been computed to date. Only in this way can it be determined if the

model is capabie of predicting realistic growth rates and limiting amplitudes. ;

s R W

When such solutions are sought, any improvements that could be made in com- '
putational efficiency would be quite significant from an economic standpoint.
In this regard, it appears that replacement of the method of characteristics ' ‘
solution of the fluid dynamic equations of motion with a straight finite dif-
ference solution of the Lax-Wendroff type (see Ref. 68, for example) would
be in order.

L D oSl Sy

QoA atiun e
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; When the method of characteristics was selected as the numerical
technique to be used in solving the flow equations, the nature of the
transient burning rate analysis was, as yet, unknown, As it turned out,
the need for pressure histories at fixed axial locations was satisfied by
interpolation, and rectification of the characteristics mesh at every other
time step. These steps could be eliminated if the computations were per-
formed in a rectilinear mesh to begin with, The difference solution of the
equations of motion is also somewhat simpler and more straightforward
with the finite cifference approach. It is estimated that a change to a Lax-
Wendroff schame of the type discussed in Reference 68 could reduce the
computational time by 30% or more, from the current level of about 2 min- 1
utes per cycle (on a CDC 6600 computer). l
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The development of an alternative, or improved method for calculating
transient burning response should also be considered, since the relatively large
amount of computer storage currently required is not a desirable feature. Con-
sideration should also be given to the development of a nonlinear transient re-
sponse model for pressure coupling. Further investigation of the velocity coupling
phenomena should also be considered, as the existing model may not prove to be
adequate, A transient response model based on the nonlinear solution of the heat
; conduction equation may be able to provide a framework within which all of the
aforementioned items can be accomplished.,
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It may also be possible to reduce the number of axial locations at which
the transient buming response need be calculated., Currently, linear interpolation
is used to calculate burning rate at locations between those at which it is directly
computed, Replacing the linear interpolation with a higher order spline interpolation
procedure should allow equivalent accuracy to be achieved with larger spacing be- :
tween the locations at which transient buring response is calculated,
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3 ;f Other refinements, or extensions, that would be worthwhile, and not g
. 7 too difficult to incorporate into the solution are the ability to handle more ]

complex motor geometries, and the adoption of a more realistic particle size
distribution. The additional geometries that could still be considered on a
one~dimensional basis include more general grain perforations, and motor :
cases having gaps in the grain, end grain, or a grain that does not extend the 1
full ler.gth of the chamber. It would be possible to incorporate a particle size
distribution function into the analysis, however, it is recommended that the
next step in this direction should be the extension to two discrete particle sizes
groups. Such an extension wou:d be relatively simple, yet it would be a sig-
nificant step towards realistic~1l, -.2tching the bimodal type particle size dis-

O R R A

'rr
Tl

tributions typically found in sciid rocxet motors,

The development of a model for metal particle formation and burning is
not recommended at this time. The whole mechanism of particle formation
is still subject to wide uncertainties, and the relative significance of
particle burning as a determinant of motor stability has yet to be established.
1f these processes can be realistically modeled and are shown to be
important, at some later time, thereis no intrinsic reason why they cannot
be incorporated into the instability model.
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APPENDIX A

ey

THE TRANSIENT BURNING RESPONSE--SOME SPECIAL CASES

The final form of the current transient burning rate model (Equation

TRV ARY MR T AL TR ~
S A R TR TN e 5 A A R TR

(4-65), or the approximation to it, Equation (4-68)) is not an explicit
formula for m'/ m, and is not very useful for formal analysis. For example, ‘,
it is not possible to deduce from (4-65) closed form results for the transient )
burning rate behavior at all times 720, It is relatively easy, however, to

TR

obtain short time approximations and the long time steady-state behavior, valid
after all initial transients have died out. This latter property may be used to

[T e R
B St 21 oo D OV ¢ e e e ot L o 0 3 R TS e Tt

advantage by comparing the long time "steady-~state" results obtained from

TR I N ror e

Equation (4-65) to the known response for two special cases. Such a com~
parison serves as, at least, a partial consistency check on the current

SRS

;

: formulation. !

; % :

§ 1. Response to a Harmonic Pressure Oscillation for 7 « ' I

- Z? For this case, %

33 > i

. /S

Lk - iwt_ _4i0+ Ho
4 i L (1)=¢ =e (A-1) 3

3 §‘\ P - ;
au ;

3 :‘g s B

S After a long time, the fluctuation of mass flux also varies harmonically, but Y

< ¥, 3 K
3 §: with phase shift ¢, and amplitude leI 3
L ¥ .
N ' QT +3§ -
= Br) = I, |407 +9) -2

Substitution of (A-1) and (A-2) into (4-65) should lead to the result that
'Rbl expl(ip) is the original response function R, given by (4~34) with

L i s acia )

et
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nw=0, After the substitution, one has

T T
i 1 "2 - - ~pT ¢ oy
,Rb‘e(p lR Ie \/'r Bepg Oluzep' Bepgdgj
i D
0 0
(a-3)
3 (
‘ + 2nAB| 5 Pr Al omPT ( oPE a |
:: J
O -
k- The integrals :iay be simply evaluated, in the limit as 7T +», as follows:
i
, , i
: 1’-p::d':~_125-c 1
; .= e ey e dar .3~
: R Vg Wp Am B
(Aa-4)
1
PT o PP oa 1 ~pTT 1l
e Vet ds PRI N I P
0

- where p =1 +i4(. With the result (A-4) Equation (A-3) becomes
3 -C. +7 G0 -
: § o _ . R S 12, ¢l 1
L Ry le™ = iR [} 7 o~ |+ 2naB \ =t 5.
[ which can be solved and rearranged to give
- L+ /p
] IR, le!®= 2nAR
3 b p-(31+02) \/'5"'0102
] (A-5)

)

= 2nAB —
(’E"Cl)(‘\jp"'z)

as required.
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2. Response to a Step Change of Pressure for T + ®

Now set

; ,

g— =4 (1>0) (2-6)
%}Sf After a long time, m'/m should approach a constant i, equal to n4. As Eg
é’% above, the contributions for T small, from m'/m different from K, are 3
: gz supposed negligible. Hence, (4-65) becomes 1 ‘
¥ 0y %9, g .
1 b - : o :1
£ = “{ S %1% Bed
-k (a-7) I

B
2

:: / "S
3 3{; + 2nAB i F

Q.
1luv~
+
(0]

\

-

oA
(0]
un
[o R
3]
LV_J

AR s
NGO TRV __,31;:'3

. B Ve :

By a simple transformation, f ‘

2 1 _g gi _ '. .

t \[—T 5 e s —erf(,\/—'l_) 2wl (a-8) q

3 0 X
<8

, and (A-7) becomes, for large T7:

E B

[ =g {cl-roz-oloz} + 4nABO (A-9) :, ,
:'~ ‘

1 , From the definitions (4-62), it follows that 3

? 01+ 02-0102=1-4AB

3 and

: “ =y (1-4AB) + 4nABb (a-10)

1 A-3
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which produces the correct result, 4 =nd . 3

3. Exact Solution of Equation (4-61) for Step and Exponential Changes
of Pressure

Bl R o
At d B

In addition to checking that the numerical solution for the transient
burning rate avproached the proper long time limits, indicated in Sections
A.l and A.2 above, for harmonic and step pressure disturbances, a further
accuracy check has been made. The numerical results have been compared -
with exact results deduced from Equation (4-61), for the response to step
and exponential changes of pressure. All of these comparisons corroborated
the numerical calculations. Exact solutions for step and exponential
pressure changes may be found as follows,

FE VARSI

An exponential pressure change which approaches the finite value 4

f;j for long times is represented by
A p ~B7 :
S B - L(l-e ") (A-11)

& The Lanlace transform in the variable p is 3
g K ' . 8¢ —pT 3
¢ 2 (p)= \ ge’ c(1-e® )P ds é
bR P < b
PoE ° Lo
S - (A-12) (1
E £ P8

% { :
g % _ 4 44 : )
. p-1" p-0f o
P where
|

f 2 1
] : -’:3 =1-8 (A-13) !
:
5
? : Equation (4-61) becomes
: ; 1+ _ -

1 “m' : 1 VP i1 1 pv
-le = (7)|= 5= - ——='e" dp
2nABs l_ m 17771 B (,\/’ﬁ-cl)(.\['ﬁ-oz) Lp-l p-u3.J

3 A-4
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Inversion is accomplished by using standard tables, after the integrand
has been expanded in partial fractions. The result is

1 _ m (g? -bT -
7aABs m (1) = (Dy=Cyloye erfc (-0, .,/7)

(02

)
+(D,-Cylo,e 271 erfe(-o,T)

+ D3 erfc (~F) (a-14)

(62-1)1

- “ 3 -
o, Cye erfc ( 03\/7)

(cg-l)'r
+°304e erfc (03F

where Oy = VI—T—B and the constants are:

1+o1 1

C, = - D. =
1 (01-02)(01 ~6§) 2 (02-01)(02 - 1)

1+ 02 1 1
Il R T (L) Dy = T=53(-0 = 248

2 1'Y2 3 1 2

1+ 03

c, = - (A-15)

~(1-c,)
c 3

4 203(03 +c51)(c53 +02)

_ 1
1 (01-02)(01-1)

D
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These constants have the following useful propertizs which can be verified
by direct computation.

4 3
P C, =0 Z D, =0
i=1 i=1
3
1cricl=0 Zl 0,D;=0 (A-16)
i= i=
4 3
2 c?C. =1 2 0°D. =1
i=1 1l 1 1=1 1 1

Also, C2 is the complex conjugate of C1 and D2 is the complex conjugate
of D1 .

The exact solution for a step change in pressure may be simply

obtained from Equation (A-14) by setting Cl’ CZ' C3 and C4 all equal to

zero. Equation (A-14) is not in the form best suited to obtaining numerical
values for m'/m, for, while all of the quantities on the r.h.s. of the
equation are complex numbers, m'/m is real.

The real form of m'/m may be found as follows. The definitions
given by Equation (4-62) are written as

Oy =x+iy

(a-17)
9 =X - iy
and thz following identities are used :
erfa(-z) = 1 -erfc(-z) = 1 + erf(z) A-18)
The error function, itself, can be expressed in series form as
erf(z) =J%— io %1 (A-19)
A-6
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Using Equations (A-17 to A-19), Equation (A-14), with the C, = 0, can then
4 be expressed, after much algebra, as
:E:: ———— -“—l- - L
: InABL m - 2R T ZAB ‘.“4‘; L SiensD) i
3 “ n=0 ;
: (A-20) p
3 % i
3 o E
o 1\ - -
i + A T H"'((_zln)_-i-—l_) r(2n M I)LR cos(2n+1)6 -8 sin(2n+1)6J 3
g VT nsg ;
3 i ;
3 s 3
: 3 where; 3
ur . !
- R=-¢e (fcos vi-mnsinvT) 1
-
: 4 S =- e“T(n cos vT + ¢ sin vT)
3 o
v= 2XYy %
3 r= ax-By == =0 (A-21) ‘.
1 = 8AB [ S
4 n= Bx+ay i
: 3
‘- .
f 2= @B
8yAB ::
3 r= [-\-.“"‘Yz)]é = (T clcz)% i
6= -1 y :
\ = tan = y/X
The real part of Equation (A-14) with the Ci # 0 (corresponding to the solution
for an exporential pressure change) may be established in a similar manrer.
A~7
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4, Transient Responge to Harmonic Pressure Disturbances

The value of the response function obtained from Equaticn (4-34)
actually corresponds to that which wouid be attained after many cycles of
a harmonic disturbance. During the period immediately following the initiation
of a disturbance the value of the response function may be quite different
as a result of transient phenomena. The portion of the response resulting
from the start up process following initiation of the disturbance damps out
exponentially, and the limiting value given by Equatior: (4-34) is asympto-
tically approached as time increases. The number of wave cycles required
for these initial transients to damp out in response to a harmonic disturbance
varies quite significantly as a function of A and B. The response may also
initially overshoot, or undershoot, the asymptotic value.

Examples of the transient burning rate response to a pressure disturbance

of the form AP = .1 cos Tt are presented in Figures A-1 to A-3, for three sets
of A and B values:

A =15, B= 7
A=11.5 B =.64
A =20 B=.9

The e examples illustrate the significant effect of A and B on the

initial characteristics of the response, as well as the effect on the ultimate
magnitude of the response function.
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