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Projeets Studied Under the Contract

During the first half of the present contract ycar, the program
initiated or continued the following studies: Specch analysis by linear
prediction, reconstruction of multidimensional signals from pro-
jections, applications of digital frequency warping, and development
of a digital spcech synthesizer. A review was also made ot design
and synthesis of digital filters within the constraints of finite regis-
ter length. Thesc projeccts arc summarized in the following pages.
Reprints of available publications are appended,
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1. Speech Analysis by Linecar Prediction

Recently, the analysis of specch by means of a technique referred to
as linear prediction has rcccived considerable attention, This technique
is directed toward modeling a scqucnce as the output of an all-pole digital
filter. The work carried out under this rcscarch contract is directed toward
applying thc techniques of linear prcdiction to the extraction of param-
eters for automatic speech recognition, Furthermore, we are at present
investigating a number of altcrnative formulations of the technique together
with some of the theoretical limitations,

A portion of thc work relating to the extraction of parameters fcr speech
recognition is being carricd out on the fast digital processor facility at
Lincoln Laboratory. Thc system implemented is capable of performing
the analysis in rcal time, and cffort is now directed toward] the evaluation -
of its performance. Thus far the rcsults arc encouraging, indicating that
with the use of linear prediction good speech parameter data can be
cxtracted, This aspcct of the work is reported in dctail by V. W. Zue,
Quarterly Progress Report No. 105, Research Laboratory of Electronics,
M,.I. T., April 1972, pp. 133-142,

A sccond aspect of this work relatcs to some possible theoretical short -
comings of thc technique. In particular, it has been shown that in certain
situations it is possible for the linear prediction technique to generate
approximations to the speech spectrum with large crrors. These results,
and a comparison of a numbcr of formulations of the linear prediction
technique, have been summarized by M, R Portnoff, V. W, Zue and
A. V. Oppenheim in Quartcrly Progress Report No. 106, Research Lab-
oratory of Electronics, M.LT., July 1972, pp. 141-150.

Based on the results obtaincd so far, the linear prediction tcchnique
for speech analysis appears to be extremely promising, but it hns some
theoretical pitfalls, Research under this contract on these problems is

continuing,

2. Reconstruction of Multidimensional Signals from Projection

In a varicty of contcxts, projections of multidimensional signals are ¢
available, and a reconstruction of the original signal is desircd. The basis



for the technique is that the Fourier transform of the projeetion of a sig-
nal ean be shown to be a slice through the Fourier transform of the orig-
inal signal, The problem of reconstrueting multidimensional signals
from their projcctions is eneountered naturally in a variety of eontexts
ineluding x-ray photographs and electron mierography. The purpose

of the present research is to formulate the reconstruction problem entirely
in terms of diserete signals, We approaehed the problem from this point
of view, and have obtained some partieularly interesting results, It has
been shown that it is possible under relatively mild assumptions to eom-
pletely define a multidimensional signal in terms of a single one-
dimensional projection. In addition, a number of algorithms have been
devised for reconstrueting multidimensional signals from a small num -
ber of projections. These results have potential applieation to a number
of- problems. The possibility is suggested that bandwidth eompression of
multidimensional signals ean be accomplished by coding in terms of pro-
jeetion, Furthermore, the use of projeetions to describe a multidimen -
sional signal appears to hold some promise for earrying out the design
of multidimensional filters. The theoretical basis for these algorithms
and some examples are deseribed by R, M. Mersereau in Quarterly
Progress Repori No. 105, April 1972, Research Laboratory of Electronies,
M.I.T., pp. 169-183,

3. Applieations of Digital Frequency Warping

Recently, a teehnique was proposed for proeessing a signal in such a
way as to implement a nonlinear distortion in the frequeney axis, We
are investigating applieation of this digital frequeney warping to a num-
ber of problems, partieularly the implementation of unequal resolution
speetrum analysis. We have been investigating the approximation to eon-
stant percentage bandwidth that ean be achieved using this teehnique in
conjunction with the fast Fourier transform algorithm. We have also
been investigating the application of this teehnique to Vernier speetrum
analysis., If small errors are allowable, it is possible to use digital
frequency warping for approximately eonstant pereentage bandwidth fre-
quency analysis, and it appears that the teehnique will be applieable to



Lt o, T

Vernier spectrum analysis. The need for both unequal resolution and
Vernier spectral analysis arises in a variety of contexts, including radar
and sonar processing. We anticipate that the present research will have
application to those problems. The details of the technique and some pre-
liminary results are described by A. V. Oppenheim and D, H, Johnson in
"Discrete Representation of Signals," Proc, IEEE 60, 681-691 (1972).

4. Development of a Digital Speech Synthesizer

We are working on the design and fabrication of a small, fast,inexpen-
sive digital processor to be used primarily for speech synthesis, but with
application to more general signal -processing tasks, At present, a
detailed design of this processor has been made and hardware con-
struction will begin shortly, A central component of the pricessor is a
new high-speed multiplier that has been designed with partial support
from this contract. This multiplier is described by J. Allen and E, R,
Jensen in Quarterly Progress Report No. 105, Research Laboratory of
Electronics, M, I, T., April 1972, pp, 147-152.

The synthesizer, when completed, will be connected to the PDP-9
computer, It will operate as a real-time syntkesizer and will play an
important role in a number of future research projects including speech

bandwidth compression, speech analysis, and speech synthesis by rule,

5. Design and Synthesis of Digital Filters within the Constraints
of Finite Register Length

Although in most cases the design of design of digital filters is
carried out wichout regard to finite register length, they must be
implemented with finite register length. The effects of finite register
length manifest themselves in a number of ways, including parameter
inaccuracies and truncation or rounding after arithmetic operations,
Recently, a review of these effects was carried out, These results
are discussed in detail in an invited paper by A. Oppenheim and C.
Weinstein entitled "Effects of finite register length in digital filtering
and the fast Fourier transform" published in Proc, IEEE 60 (1972).
During the coming year, new research on these effects and the synthesis
of digital filters will be pursued,
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A, NEW HIGH-SPEED MULTIPLIER DESIGN

With the advent of MSI and LSI integrated circuit technology, there is no doubt that
digital multiplicrs of very high speed can be achieved, once it is agreed what should
be incorporated in these chips.l In the meantime, we can achieve a very fast design by
simultancously exploiting the mathematical structure of binary two's-complement mul-
tiplication and existing MSI circuits which can be adapted in a natural way to the struc-
turc of this task, Accordingly, we shall show that the expression for binary multiplication
can be rewritten to suggest use of the 74181 Arithmetic Logic Unit (ALU) in a Straight-
forward way that achiceves high speed, simple layout, and very little logic external to
the ALU array.

In order to display the desired structure of multiplication, we shall consider the
multiplication of two 4-bit two's-complement numbers, Let each such number be repre-

sented as

“This work was supported by the National Institutes of Health (Grant 5 POl
GM14940-05), and by the Joint Services Electronics Programs (U.,S, Army, U,S,
Navy, and U, S, Air Force) under Contract DAAB07-7]-C-0300).
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(X1, COGNITIVE INFORMATION PROCESRSING)

Z=2z,2.72.2 =-23z +Zzz +le

(e}
3%2%)% 3 2 t 27z,

1

where each z; is either 1 or 0, so that the product of two such numbers is

N 5 4, _
XY =2 X3¥q =2 (x3y2+x2y3) + 27 x3y1+x2y2 x1y3)
+ 23(-x +x +x - )
3o XY X YK Y

2 1 ()
+2 (x2y0+xly1 +xoy2) +2 (x1y0+xoyl) +2 xoyo.

This sum is commonly arranged in an array in which each column contains factors of
like powers of 2, as in Fig, XI-1, The factors can be further rearranged, as

TX3¥o * X¥ * XY, + xyy,
X3Vt XYy b oxpyy o+ xgy,
TX3Y * Xp¥p t Xy, +oxyy,

tX3Y3 = X¥3 - Xy, - X0Y3

Fig, XI-1, Array representation of two's -complement multiplication.

f 20 1Yo %Y,
%Y1 XY %y,

X072

X3Yp  X3¥p X3y,

*2¥3  X1¥3 XY,

Fig. XI-2, Multiplication array, grouped in positive and negative terms,
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(X1, COGNITIVE INFORMATION PROCESSING)

shown in Fig, XI-2, in order to group positive and negative terms. At this stage, each
row has a constant factor for each term such as Y, for the top row, and these can be
factored out as bits that control the conditional inclusion of a given row in the final sum.
Thus, in Fig. XI-3, the top row (x, X xo) will be added into the sum just {n case

yo=l.

and similarly for the other rows. Figure XI-3 also shows 6 conditional

terms to be summed, but one of these, X3¥y affects only the most significant bit
position. If this term is included in any other row (say. row 6), the only change

QPR No.

NUMBER CONDITION
2 % % b
$ 2.8 % Y%
2 4% % Y
Xy s
% Y% *y
) X2 5 o Ys

Fig. XI-3. Multiplication array, grouped by rows and their respective
control bits,

(A +8) « C) = (D« &)

S S S N W

* L4

e S —— T S S — '-I

i

Fig. XI-4, Illustrating the parallel nature of the multiplication task.
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(X1, COGNITIVE INFORMATION PROCESSING)

in the final result might bc a earry out of the most significant bit V'hen sign exten-
sion is not dcsired, it is thus possible to incorporate the X,y term in row 6, and
we are left with just 5 rows to sum. It is this represcntation of the produet as a
sum of conditional terms that can be exploited by the ALU design.

Having rcwritten the produet as a sum of terms, cach conditioned on a control
bit, the next step is to minimize the sum-and-carry dclays by exploiting the inher-
ent parallelism of the array., ®Referring to the five rows as A through E, Fig, XI-4
shows how a tree structure permits simultaneous sums to be computed, rather than
performing cach indicated sum in serial, left-to-right order, In Fig, XI-4, cach
box denotes an ALU addcr, and we assume that each add is complcted in A seconds.
During the first A secrnds two adds are completed, followed by one add in eaeh of
the two suececeding intervals, There are two advantages in this scheme. First,
the total delay would be 44 scconds if the adds werc done serially, but when the
parallelism is utilized, only 3A seconds of dclay rcsult, Morc gencrally, for larger
sized numbers N bits long, a similar binary trec would lead to (1og2 N)A seconds
delay, whereas a serial procedure would require (N-1)A scconds dclay. For N =
16. the saving is A(15-4) = 114, a very substantial figurc, When N is not a powcr
of 2, some branches of the full binary trce are pruned, but the saving in timec
because of parallelism is still obtained. The sccond advantage is that thc binary
tree arrangement can be implemented in a straightforward and natural way by using
the 74181 ALU, 24-pin MS! package,

The 74181 ALU, shown in Fig, XI-5, operatrs on two 4-bit inputs in a manner
prescribed by the four control bits, So through S3. and the Mode Control bit M, to
producc a single 4-bit output. As shown in Fig, XI-6, all of the needed control
functions can be realized by appropriatc usc of So through S3. M, and 60. the last
being the input carry to th least significant bit. Note that only the double condi-
tional sum, (A if z) + (B if y), requircs extra circuitry to translate the condition
bits (2 and y) into ALU controls, but that this eireuitry is very simplec, containing
only an XOR gate and an inverter,

Figure X1-7 shows the ecomplete design for a 4 X 4 multiplicr, in which the con-
trol circuitry is shown in detail. Depending on the s=ize of the multiplier desircd,
extra time savings may be realized by appropriate partitioning of the array and
inscrtion of carries, but the basic details remain the same. The authors have
designed 16 X 16 and 16 X 24 arrays, which illustratc further refinements. Thesc
designs are available to the interested reader,

A further advantage of the ALU is its widc availability, Originally, it was
introduced in T'I'l,, but Schottky 'I"'l. and MECL 10,000 versions are now avail-
able.  Worst-case multiplication times will depend on which onc of thesc pack-

ages is used, but a 16 X 16 design should yicld a completion time of 95-100 ns

QPR No. 105 .
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T

veg=Pn 24
GND = Pin 12
O = Pin numbens

Fig. XI-5, Logic diagram for the 74181 Arithmetic Logic Unit,

BASIC CONTRCL SIGNALS
FUNCTICN S0 SI 52 53 M Co
0 1 1 0 0 1 x
0 0 0 0 0 1
B 0 1 0 1 | X
A+B 1 0 0 1 0 1
A-B 0 1 | 0 0 0
CONTROL
FUNCTION
A+B 0 0 1 0 1
A-B 0 1 1 0 0 0
A+(B if y) y 0 0 y 0 1
(A if z)+(B if y) @y z 0 y z 1

Fig. XI1-6, Control functions for the 74181 Arithmetic Logic Unit,
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(XI. COGNITIVE INFORMATION PROCESSING)

|
ate1 = oot
Y
|
74101 | !cor«:lmot l s

T~ T 7
A A A
Ox3 vp% % YX
L1 1 1 ]
[ 74181 f CONTROL x3
2
Y3
ol |n]T
s| Tal Ts
P T O I
L 74181 J
T T 1
Sg S5 Sy S S, 5 S
{o)
L Y0%a
% S0+53 "2
LM Y14Y3
CONTROLS 0,2 CONTROL 1
{b)

Fig. XI-7. Four by four multiplier block diagram, with external
control circuitry,

in Schottky TTL. This is considerably faster than the performance obtainable from
.specialized multiplier packages, such as the Fairchild 9344 or the Advanced Micro
Devices AM 2505, Since the ALU package has many uses, it is relatively inexpensive,
particularly considering the resulting multiplier speed., The package count, and hence
power, is high (approximately N(N+1)/4 for an NXN multiply; for N=16,69 ALU's were
required) but layout is simple, and no other design incorporating standard commercial
MSI packages has been able to yield the speed of this ALU array.

Certainly faster or cheaper multipliers have been built. The ALU in a binary tree,
however, appears to be an optimal choice when very high speed is desired from standard
commercial packages,

J. Allen, E, R, Jensen

References
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A. RECENT ADVANCES IN THE THEORY OF RECONSTRUCTING
MULTIDIMENSIONAL SIGNALS FROM PROJEC TIONS

1. Introduction

The problem of reconstructing multidimensional signals from their projections is
of interest because x-ray photographs and electron micrograghs can be considered to
be projections of three-dimensional objects. Thus mathematical techniques for per-
forming such reconstructions will permit us to reconstruct visually opaque objects from
their x-rays at different orientations and to determine the structure of macromolecules
from electron micrographs. In a previous t'epox'tl some techniques were discussed
whereby we could perform such a reconstruction; in the present report, some other
more powerful algorithms will be developed. One of these algorithms, in fact, permits
the reconstruction of a broad class of multidimensional signals of any dimensionality
from a single one-dimensional projection.

The idea of reconstructing functions from their projections can be applied 1, func-
tions of any dimensionality; however, the most interesting problems, since they have
useful applications, are the two-dimensional and the three-dimensional problems. By
extension, therr is a one-dimens.ional problem, but it is a trivial case because the pro-
jection of a one-dimensional function is the function itself. Most of the derivations in
this report will be given in terms of the two-dimensional problem because it is n . ation-
ally and conceptually simpler than the three-dimensional problem, but we shall also
explore some of the issues that are unique to the three-dimensional case.

In both of the algorithms that are developed here it is assumed that the function
which is being reconstructed is bandlimited, and it a further assumption is made they
will yield exact reconstructions. If these assumptions are not appropriate for the prob-

lem at hand, there are other tcchniques that will yield approximate reconstructions. 1ot

*This work was supported by the Joint Services Electronics Programs(U, S, Army,
U.S. Navy, and U.S. Air Force) under Contract DAAB07-71-C-0300, by the U.S.
Coast Guard (Contract DOT-CG-13445-A), and by M.I.T. Lincoln Laboratory Purchase
Order CC-570.
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(XIIl. SIGNAL PROCESSING)

Inasmuch as we shall deal with bandlimited functions exclusively, it is appropriate to
hegin with a discussion of the properties of the projections of multidimensional band-

limited functions.

2. Projections of Bandlimited FFunctions

The assumption of bandlimtedness is not especially harsh, for although most func-
tions that we shall reconstruct are spacelimited and hence strictly speaking not band-
limited. they are nearly so.  Furthermore, if any algorithm is to be implemented on a
computer. it is necessary to reconstruct a sampled multidimensional function from
sampled projections.  Thus bandlimitedness is implicitly assumed to a greater or
lesser degree by all digital reconstruction algorithms.  In these algorithms we shall
explicitly assun.e bandlimitedness and then utilize this assumption in the design of our
algorithms, with the hope that they will yield high-quality reconstructions for ncarly

bandlimited functions.  The last premise must be verified experimentally.

Limild OF INTEGRATION

SLich
PROJECTION
AXIS

IFig, X1MI-1. Relationship between a projecticr and a slice,

The projections of a two=dimensional function (picture) can be considered as a col-
lection of line integrals taken perpendicular to an axis, which we call the projection
axis. Thus the projection perpendicular to the x axis, p,,(x}), can be defined as

b e
» (x) = ) dy.
p )= [7 flxy) dy
At a peneral angle 0, a projection can be similarly defined by

po(u) ES fff f(u-cos0+v-.sin0, ~u-sin0 +v - cos 0) dv, (1)

and it satisfies the Fouricr transform relation
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(X1II, SIGNAI PROCESSING)
polt) +— F(wcos 0, wsin @), (2)

where H“x"" ) represents the two-dimensional Fourier t-ansform of f(x,y). The
right-hand side of Lq, 2 will be referred to as the slice of the two-dimensional Fourier
transform at an angle 0. Thus the one-dimensional Fourier transform of the projection
of a picture at an angle 0 to the x axis is a slice of the two-dimensional Fourier trans-
form of that picturc at an angle 0 with the wy axis, This relationship is illustrated in

Fig, XIll-1,

Fig. XIII-2. Region of Fourier plane over
which a bandlimited picture
is nonzero,

If we now assume that the picture is bandlimited, that is, that its frequency response
is nonzero only in that region of the Fourier plane illustrated in Fig, X111-2, then we
can use the sampling theorem to express the picture in terms of its samples on a regular

Cartesian raster as in

o o sin\\'x-n—]g\ sin\l&'y-m.l
f(x,y) = 2 Z t.(mn. r\]\n) i W ) ( W ) =
ms-v n=-»n W (‘(- .'.’.‘_II)( %)

Since all of the projections transform to slices, they ton must be bandlimited (in one

dimension) and cach projection can thus be cupanded in terms of its samples as in

o smW(u-n"\
ws= Y o) O\ M) (4)
Pl =/ Pol W i
ns=o 0 u - n—"
v, )

The bandwidth of ecach projection WO can be expressed as
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(XIII. SIGNAL PROCESSING)

w
W, = d (5)
6 max{]hosol.lsinel}

From Kqgs. 4 and 5 we can ascertain the Nyquist sampling rate for each projection,
which is observed to be a function of 0, the projection angle. Since we must work with
sampled projections, this will prove to be an important quantity,

We can get an alternative expression for pe(u), not in terms of the samples of the
projections, but in terms of the samples of the picturc itself. If we take the Fourier
transform of Eq. 3, we get

5 m‘ 00.
3 mgs N mr nm LI
[(wx,wy) = " /) Z f( W W) cxp{ J W (mwx+nwy)} bww(wx.wy). (6)
- n=-o
where
b it Ju | €W and ’wy, s W
bwly: wy) =

i, e rwilpe

From Eq. 6 we can cvaluate F(wcos0, wsin 8) which is the expression for a slice (from
Eq. 2),

2 - —
l"((.)cosO,(.)sinO)="—2 2 Z f % nW") exp{—j%—“’(mcose+nsin9)}
w

IN==0w N=-00

bww(ucos 0, wsino), (1)

Performing an inverse Fourier transform on Eq. 7 pives an expression for the projec-
tion at anglce 0

sin W6< == cos 0 - nw sin 0)

ES2 mr nm
Po(w 2 Z t( % ) _mn .. . - (8)

nm
e e, W cos 0 W sin 0

In the two reconstruction techniques that follow, we must impose one further
restriction on the picture in addition to bandlimitedness. We must assume that the
digitized picture f nc; a—?) be nonzero for integral values of m and n only when m
and n arc in the range 0 = m, n < N-1, for some finite integer N, We call this
assumption quasi-spacclimitedness, although note that we do not assume that f(x,y) is

spacelimited (which would contradict the assumption that it is bandlimited), but only
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that its samples are spacelimited, This assumption has the effect of making the double
summations of kqs, 3, 6, 7, and 8 finite, This, like the assumption of bandlimitedness,
is implicit in most reconstruction techniques, since only a finite number of samples
of the IFFourier transform of the picture are gencrally computed, and only a finite

number of picture samples are reconstructed,

3. An Algorithm for Reconstructing a Function from N+1 Projections

Equation 4 gives us the smallest sampling rate that can be employed for sampling
a projection in order that information not be lost by sampling, Each projection, of
course, can be sampled with a higher rate. The traditional approach for getting
samples of the slices of a picture is to find a sampling rate that is large enough so that
all of the projections can be sampled at the same rate, The resulting sequences can
then be aliased to give M point sequences, and these M point sequences can then be
Fourier-transformed by using a discrete Fourier transform (DIT) algorithm to yield
M sample values along cach slice. The M-point aliased sequence x(n) corresponding

to the infinitcely long sequence x(n) is defined by

o

x(n) = \ x(Mm+n),
L

m=-w

If this procedurc is followed, the Fourier transform of the picture will be known
at points lying on a polar lattice, The points of such a lattice can be thought of as the
intersections of the set of slices with a family of evenly spaced concentric circles,
including onc of zero radius at the origin. Once the transform of the picture is known
at these points, the next step is to approximate the transform of the picture over the

whole plane and then perform an inverse Fourier transform. There are no nice
mm nw
w'w

As a different approach, let us therefore sample cach projection at its own

polar "sampling theorems" that will allow us to obtain directly the set f

Nyquist rate, or at a rate proportional to jits Nyquist rate, then alias the resulting
sequences to N opoints (N is the width of the digitized picture) and use a DFT algo-
rithm to get samples of the Fourier transform of the picture, If this procedure is
followed, the Fouricer samples which result He at the interscection of the slices with a
family of concentric squares, as illustrated in Fig, NIII1-3.

In the special case of a bandlimited quasi-spacelimited (B1QSL) function, a concen-
tric squares lattice has definite advantages over a polar one. Along any horizontal
or vertical lines in the Fourier plane, the Fourier transform of a BLQSL function is a
onc-dimensional complex polynomial of degree N-1, and as a result any line in the
Fouricr plane is completely specified by N-1 samples that lie along that line,

Furthermore, a4 BLQSL function is completely specified by its DL, that is, by the
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Fig, NXHI-3, A st of samples of the Fourier transform of a bandlimited
function obtained by sampling cach projection at a rate pro-
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Fig, N4, Sct of Fourier plane samples by which an 8 X 8 picture can
be reconstructed exactly, under the assumption that the pic-
ture is bandlimited and quasi-spacelimited,
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samples of its Fourier transform at F('I‘q! i, -N-j). --él\l+ 1<1,j $-1%I-. These points all lie
on the sides of the concentric squares or their extensions. These properties cnable

us to reconstruct a BLQSL function exactly from a sect of N concentric-squares pro-

jections,

Suppose, for example, we have a two-dimensional BLQSL function of dimension N.

{a)

(b)

Ll

Fig, %i11-5.

Comparison of reconstructions from a coti-
centric squares grid and from a concentric
circles grid. (a) Original picture. (b) Con-
centric squares reconstruction. (c) Polar
(concentric circles) reconstruction,
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L.et us assume also that we have the
capability of obtaining the projections

of the picture at any angle we desire.

We can thus take N projections at N dis-
tinct angles in the range -45° <6 < 45°,
and we can also take one projection at

an angle outside this range. The known
points in Fourier space will then corre-
spond to those illustrated in Fig. XIII-4
for the special case N= 8. Along cach ver-
tical square side we thus have 8 samples
and along these sides the Fourier trans-

form is a 7th-order polynomial in the

variable e _wy' Then, using Lagrange
polynomials (or some other technique),
we can cvaluate the Fourier transform
at all of the DFT points on each of the
vertical lines, except for the one at wy =
0. Now consider the horizontal sides,
Along cach of these lines we also have
a polynomial of degree 7 and we also
have 8 samples, seven computed from
the column calculations, and the cighth
provided by the remaining projection,
Since this projection was taken outside
the range ~-45° < 0 <45°, it must inter-
scet all of the horizontal square sides
(and must also not pass through any of
the DFT points whose value is already
known). Thus we can apply Lagrange
polynomials to the horizontal lines to
fill in the remaining DFT values, Con-
sequently, we know all of the DFT values
exactly, and a BLQSL picture can be
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reconstructed from its DFT so that we know the set of picture samples exactly. If the
last projection had been taken perpendicular to the y axis, then the second round of
interpolation would not have been necessary, for the remaining DFT samples would be
available directly from the DIFT of the last sampled projection.

In Fig. X1I1-5 we show a concentric-squares reconstruction and compare it with
the corresponding concentric-circles (polar) reconstruction, Instead of using Lagrange
interpolation to exactly perform the reconstruction, a simpler approximate strategy was
employed. Linear interpolation was used to approximate the DFT samples from the
samples obtained from the projections in both reconstructions. Each reconstruction is
a 64 X 64 picture which was obtained from 64 projections. The projections were com-
puted from the original picture which is included for comparison. Note that the

concentric-squares reconstruction is truer to the original.

4, Reconstructing a BLQSL Picture from a Single Projection

Let us now restrict ourselves to the slice at an angle 0 = tan-l 1/N. From Eq. 7

this slice can be written as

Tw

W(Nm+n) » ,

]
=

. No w Z
K ’
<'\/N2+l '\/N2+l) m=0 n=0 AV N%+ 1
it o] <& N2+ 1

=0 otherwise

(9)

If we define g(Nm+n) = f(%, an), then Eq. 9 becomes

) e mwl
l-‘( B , s >= Z g(l) exp |-i \_. if lu,l < T\Tvz N2+1
2 ¥
VAR '\/F+l 1=0 '.-.'-.,-"H*H)'I
=0, otherwise
(10)

Thus, over the region of interest, the slice at 0 = tan—l 1/Nis a onc-dimensional poly-
2
Jomial of degrec N7-1 in the variable CXp<-j L ), and the coefficients of that

WA/ N2 41
polynomial are simply the picture samples arranged as they would be if the picture

SinceF( B - - )
JNEe1 A/NF

were scanned column by column. can be computed from
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Nz samples taken along the slice, and knowledge of a polynomial implied knowledge
of its coefficients, specification of N samples along the slice at 0 = tan -1 1/N implies
knowledge of the whole set of picture samples, (Similar statements can be made about
other slices in the Fourier plane.)

Let us now, for convenience, define G(w) = F(- Dk 0 - >, and let us
VNE Lt A/NE 4
.
/2 2 2
set Aw = ﬂtl}l_j-_l Then if we compute G(kAw) for k = - NT +1,...,0,1, ..., NT.
N 2

we shall have N2 equally spaced samples of G(w) which extend over the ecntire band.
There is a strong reason for choosing this particular set of frequency samples on this

slice. If the projection p ) (u) is sampled at its Nyquist rate, if the infinite

tan =
N
sequence that results is then aliased to give a sequence of length Nz, and if this
sequence is then Fouricr-transformed by means of the DFT, the resulting N2 point
sequence is G(kAw). Substituting in Kq, 10, we have

N?,?l 2 2
G(kAw) = 2 g(l) GXp<-j 2"‘3‘1> k=-wy, B (11)
1=0

Examining Eq. 11, we see that G(kAw) corresponds to the first N2 points of the N3 point
DI'T of the sequence formed by ‘aking the N2 picture samples column by column and
appending N N zeros,

The sequence G(kAw) could be obtained from the sequence g(1) by means of a chirp
z-transform algorithm CZT.7 To obtain g(1) (the picture samples) from G(kAw), we thus
need an inverse CZT, which will be developed.

These results have an interesting interpretation in terms of another problem. The
impulse response of a two-dimensional nonrecursive digital filter behaves exactly like
the set of rectangular samples of a BLQSL picture and thus the impulse response, or
the two-dimensional frequency response, of such a filter is completely specified by its
frequency response along the line 0 = tan” l/N As well as providing an interesting
property for such filters, this result suggests a mapping between one-dimensional non-
recursive and two-dimensional nonrecursive filter designs that may be useful in filter

design. These implications are worthy of further study.

5. Reconstructing a Three-Dimensional BLQSL Function from

a Single Projection

Probably the simplest way to reconstruct a three-dimensional sequence from its

projections is to consider that threc-dimensional sequence as a stack of two-dimensional
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sequences,  If we think of these two-dimenslonal sequences as lying parallel to the
x-y plane, and then take a projection parallel to the x-y plane nt an angle 0 =
tan-' 1/N with the x axis, then the resulting two-dimenslonal prajection of the three-
dimensional object will be a stack of one-dimenslonal projection functlons, cach of which
is .he projection of one member of the original stack af tw . -dimenalomal functlons
and cach of which 1s taken at Its critical angle. This I8 a stralghtforward extensiun
of the two-dimensional problem and hardly requires elaboration, It wauld be a compu.
tationally efficient scheme, however, If a complete reconstructlon weee not deslred, but
only a limited number of cross scections,

From a theoretical point of view, a mare interesting approsch to the three-
dimensional problem Is to parallel the reasoning of the twaedimensional analysis. In
that case we found a lne in the Fourier plane: If we knew the Fourler teansfarne of the
picture along this line, then we knew the whole set of pleture samples, Such a line also
exists In the three-dimensional case, Thix is that line which s traced out by the vector
;c' whoere

N© N 1

- - » 1]
SN O NT AN et NNt

Along this line the frequency response s a polynomial of degree N,-I. aml the coelff]

LY
]

. me nw Pe F 3
cients of this polynonial are the function samples ‘(W’ W W)’ 0= myn, p= N=1,
where W ois the handwidth, defined as in the tweedipenslonal case, i we sangle this

linc at N3 evenly spaced points over the bhand, then

N=1 N-| N-

pe .
G(kaw) = : l \ r('"“. T w mp{-;-‘-'—';m med mm}
m=0 ns = N
.3 .3
ke-B 0, o000, B "2

Thus we have the first .\" points of an Ns point requence, Fquation 12 can be xolved by
using the inverse chlrp z-transform,

The projection of a three-dimensional function Is twa-dimensional, whereas the
critical HUne along which we desire the freguency response Is one-dimensional,  Thias
frequency response can be evaluated divectly from the two-dimensjonal projeetion
samples (the projection 15 a bandtimited fonctlon! or eqoivalently a ane-dimenslonal pro.
juction of the two-dimensional projection can be computed digitally aml then transiarmed,
If the angle of this projectlon is chosen properly, this slice of a sltice will corres

spond to the desired line, It must be remembered however, when working with the
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M #g
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Fig. X111-6. Two-dimensional slice of the Fourier transtorm of a
three-dimensional function taken perpendicular to the

plane Wy = Nw_. The bandwidths of the slice are shown,

as well as the location of the eritical line, whose crit-
ical frequency response determines the whole three-
dimensional frequency response,

two-dimensional projection that although this is a bandlimited function, the bandwidth
in the two orthogonal frequency variables is a function of the direction of that projec-
tion. In Fig. X111-6 we show the relevant parameters for computing the frequency
responsc along the critical line when the original projection was projected onto the plane
wx = I\wy.
6. Inverse Chirp z-Transform

The chirp z-transform (CZT) alp,orithm7 is an efficient algorithm for evaluating

the sum

1.-1

= N xmyawk) k=0,1,..., k-1, (13)

A= A0 cxp(_iZﬂO”)
W = W() cxp(januO}.

The CZT calculates the z-truasform of the finite duration sequence x(n) at a set of
points that are regularly spaced on a spiral in the 2 plane as illustrated in Iig, XIII-7.7
Fiquation 11 can be scen to be of the same form as Fq. 13 if in place of the sequence x(n)

P
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mnr nw N2
we substitute the scquence g(1) = g(Nm+n) = f W W—) and if we set A = expl -j - +1
and if W = oxp(ij/N3). The sequence Xk and A and W arc known in this particular
case, and we desire a means of calculating g(1). What we need, therefore, is a means

of inverting Eq, 13 — an inverse CZT,

$Im(2) z - PLANE

Fig. XIII-7. IMustration of the independent parameters of the
CZ'I algorithm and thc inverse CZT algorithm.

(Modificd from Rabincer et al.s)

Since the sequence Xk corresponds to samples of a polynomial of degree L-1, we
know that Eg. 13 can be inverted if there are more than L independent values of X, ,
or if K 2 1., This follows from the fact that the matrix of cocefficients [(AWk)n] is a
Vandcermonde matrix, One possible technique to usc is to invert (13) dircctly. For
values of K of the order of several thousand, however, this is computatlonally not
feasible,

Another approach which proves to be far more attractive computationally, although
at first appearance it would not be so, is to usc the Lagrange polynomial interpolation
formula to reconstruct the complete polynomial over the whole z plane from the
set of K samples and then perform an inverse z-transform integral of this poly-
nomial to get the sequence x(n),

If N(z) is a polynomial of degree L-1 in z-l and if X(z) is spccificd at the points

-1 -1 -

0" Ay v e Zy then

K
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where

(X111,
L-1
X(z)= ) Xlzg) 4, (27, (14)
m=0
2=} = [aw™]! m=0,1,..., L-l
m

and lm(z_l) is a Lagrange interpolating polynomial
-1

) (z_l'z-l 1)(Z-l'zr-nl+1) (Z-I-ZL-I).

(-1 -l)(-l -1
7 =7 Z -7
-1 o0 1 m-
lm(z ) =
-l_z-1)<z-1_z-1) (z-l_z-l ) z-l_z-l ) z-l_ -1 )
1 m “m-=l m mt+l/°""° m zm+1

zZ
m (o] m

Since the dcnominator of lm(z_l) is a constant, lct us write it as I/Cm, Thus
L-1 -
X(z_)C L-1
X(z) = Z Lt L n (zl-z 1) . (15)
(-1 =1 =0 ¢
m=0 (z =~z )
m
Thus

I'quation 15 represents the z-transform of the scquence x(n) which we desire.
we see that the sequence x(n) can be reparded as the impulse response of a bank of

resonators and a comb filter in cascadc, as in Fig., XIII-8,

-|H|:+l."u;. il
CLT

COMB FILTER

DIGITAL RESONATORS

I'ig. XIII-8, Digital network implementation of the inverse CZT,
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Let us define h(n) to be the impulse response of the bank of resonators. From Eq. 15
we can write

I.A_l
h(n) = Z - Clx(zi) z?+l n=0,1, ... » L=1.
i=0

If we recognize that z, = AW™, then

L:l L:l
h(n) = Z - CX(z,) APl mi(ntl) | AN+l Z - CX(z,) wi yin
i=0 i=0
n=0,1,..., L-1, (16)
If we write
N-1
CZT(x(n), A, W,N) = O x(n) Awnk (17)
Y
n=0
then we ean writc (16) in the form
n+l ... -1
h(n) = =A CZ I(CnX(zn), W, W 5, L) (18)

and thus h(n) can be evaluated cfficiently by using the CZT algorithm itsclf,
The output sequence x(n) is then

x(n) = h(n) () m(n),

where @ denotes eonvolution, Inasmuch as we only care about the first L values of the
scquenec x(n)and m(n)is a causal sequence of length L+, only the first L valucs of the
sequence h(n)are neccssary, This faet allows us to evaluate h(n)using a CZT, and will
further allow us to pcerform the convolution of (18)using high-spced convolution tcehniques,
Except for calculating the arrays Ck and m(n), the eomputation of the inverse CZT
can all be done effieiently, In fact, the timc required to calculate an inverse CZT
is approximately twice that required to caleulate a CZ7T, and thus is roughly pro-
portional to 2L log2 2L if I. is a power of two. To the best of my knowledge, there
are no particularly convenient methods for calculating Ck and m(n). These quantities
do not depend upon the scquence Xk' bu: only on the loeation of the samples of the
z-transform in the z plane, and therefore tirey will be the same for all reeonstruetions
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of a given size, which will allow these arrays to be precomputed and stored, In this
sense, the calculation of thesc quantities can be overlooked when talking about compu-
tation times. To reconstruct a 32 X 32 array from a single projcction requires approx-
imately lO5 operations (complex multiplies and adds) if the calculation of these initial
arrays is overlooked, and it requires approximatcly 5000 complcx storage locations.
To solve Eq. 13 by direct inversion would require approximately 109 opcrations and
roughly 106 complex storagc locations.
A onc-projection rcconstruction algorithm is now being implcmented.
R, M. Mersereau
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B. TRANSIENT RESPONSE OF A VARAC TOR-CONTROLLED
OSCILLLATOR

A study has bcen made of the Q-related cffects on thc transient responsc of a
voltagc-controlled negative -resisiance oscillator‘.l The equation governing the nonlinear
oscillations of a second-order time-invariant circuit has the form

2
Sl—%{- + w(z)x = bf(x
dt

dx
* dt

in which f(x, g% is a general nonlincar function of the variable x and its derivative,
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and & is proportional to the reciprocal of the effective Q of the circuit. A perturbatianal
analysis of this cquation yields = solution in which the instantancous frequency of oscil-
lation is given by an expression of the form w =, + F(a), where a corresponds
to the magnitude of the amplitude envelope of the oscillations. This expression indicates
a possible variation in frequency because of a variation in the amplitude envelope during
a transient period of the oscillations, It can be argued that the frequency does not reach

a steady-state value until the amplitude reaches a steady -state value,

1. Causc and Mode of Transient Operation

An analysis of an idealized step-change in one of the frequency-determining clements
indicates that such a change could cause a disturbance from the cquilibrium steady-state
oscillation. Such a disturbance implies that the state of the oscillation, specified
in the phase plane by » and dx /dt immediately after the change occurs, does not
correspond in general to a state that is located on the steady - state limit cycle, Standard
phase-plane analysis shows that if the state of the oscillator is described by a set of
cooidinates (the vperating point) not located on the limit cycle, the oscillation will
spiral 10 the stable limit cycle. This spiraling to the limit cycle corresponds to a
variation in the amplitude envelope.  The nonlincar mechanism that dcetermines the
steady-state limit cycle operation also controls this transient response buck to the

steady  state,

2. Specific Case = Van der Pol Negative- Resistance Oscillator

A specific case of un oscillator with a Van der Pol type of nonlinearity was studied,

i(x §) = 0-xB1

The analytical soaution to a second-order approximation indicated that the parameter
6(3. ‘—lj) has a strong influence on the transient response, a first-order effect on the
rate of amplitude variation, and a sccond-order effect on the frequency, These relations
take the form da/dt = 5B(n), und W =, + 62I\'(a), where the B(a) and K(a) are spee-
cific functions of @, corresponding to the solution of the Van der Pol cquation.

It was noted that the lower the Q of the circuit, the faster the response back to the
steady state following some disturbance, but at the expense of frequency stability and

noise reduction properties of the vscillator in the steady state,

3, Lowers Limit of Transient Response ‘Fime

Spectfic consideration of a varactor-controlled oscillator established a lower limit
for the teansient response time,  First, consider the case of a circuit with an infinite Q,

the harmonic oscillator, governed by the second-order differential equation
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occurs during a synthesis run is reported with the block identificr showing where it
happened. If this occurs, signal levels in the vicinity of the offending block should be
rcduced by modifying the configuration and/or inputs to a level just under that which
causcs overflow. The only synthesizer processing blocks in which overflow can occur
are addition-type blocks and filters.

One can easily envision achieving real-time synthesis by doing the final signal pio-
cessing in hardware, either analog (for example, controlling Moog or Buchla modules)
or digital (which could be designed to be much more flexible and would be inherently
more stable). The cost of digital hardware continues to decrease rapidly, which sug-
gests that a digital hardware synthesizer will soon be economically feasible. At the
present timc wc are making a modest effort to design and construct such digital hard-
ware. With a real-time synthesizer additional real-time (at "performance" time) con-
trol inputs would become possible. The distinction between notation inputs and real-time
inputs would be somewhat analogous to the distinction between a composer and a
performer or conductor.

Richard F. Albright's thcsis resealrch5 contributed significantly to the evolution of
MITSYN. Many conversations and work sessions with Robert P. Ceely, a composer
who has been MITSYN's most demanding user.6 have also stimulated the work.

W. L. Henke
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C. SPEECH ANALYSIS BY LINEAR PREDICTION

. Introduction

This report describes the development of a spcech analysis system based on linear

prcdiction of the specch wave. The analysis is achieved by representing the speech wave
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in terms of a sct of parameters closely related to the glottal excitation function and the
vocal-tract transfer function.

The system has been implemcnted by utilizing the computer facilitics of Group 24
at Lincoln Laboratory, M.1.T. These facilitics include the Univac 1219 computer, which
is a medium-sized general-purpose computer; the Fast Digital Processor, which is a
fast programmable signal processor attached to the Univac 1219; and peripheries, such
as A/D and D/A converters and various display facilitics. The system is capable of
performing real-time spectrum analysis when both spectral crcss-section and spectro-
graphic displays arc possib’e. Effort is now dirccted toward cvaluation of its perform-
ance in cxtracting such acoustic parameters as formants and fundamental frequency of
voicing. An initial attempt at formant tracking on spccira derived from linear predic-
tion has given promising results.

We shall review bricfly the theory of linear prediction, dcscribe the implemented
system, aud give some preliminary results of specch analysis using this systcm.

2. Theory

Detailed treatments of the theory of linear prediction and its variations have been
reported. 1-4 Our analysis is based on thc speech-production modcl shown in Fig. IX-6.
The all-pole digital filter H(z) represents the combined effect of the glottal source, the

:ini__ Hiz)=—p sin)

UNVDIGED w_ ~fa,
(1]

Fig. IX-6. Modcl of specch production.

VYOICED T t T | -M-%ﬁh
i

+

vocal tract, and radiatio losscs. Inthis idealized model the filter is cxcited either
by a periodic impulse train for voiced specch or random noisc for unvoiced spcech.
The speech production model can be equivalently characterized by the difference

equation

p

s(nf= Z aks(n—k) + x(n), (1)
k=1

where s(n) and x(n) arc the nth samples of thc output speech wavc and the input, respec-
tively, The ak's are the coefficients characterizing the filter H(z), and henccforth will

be referred to as the predictive coefficicnts.
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From Eq. 1 it is clear that we can determine the uk‘s If we know the input and 2p
conscemtive values of s(n). The first p of these vilues serves as initinl conditions. We
shall restrict oursceives here to vaiced speech in which the input is a perlodic fmpulse
train.  In this case the nk‘s can be determined with knowledge of only 2p cansecntive
values of s(n) and the position of the impulses.  For this idealized model, we can define

the predicted value of s(n) as
p

S ¥ 1, 3(n=K). ()
k= |

The difference between s(n) and 8(n) will be zero except for one sample at the beginning
of each periad.,

In reality. however, s(n) is not produced by this highly idealized model und therefore
prediction of s(n) based on Eq. 2 will introduce error. Il we are to approximate s(n)
by S asg Jdefmed by Eq. 2, the ak's can only be determined with the specification of
an error criterfon,

We can choose to determine the :nk's hy minimizing the meanssquared difference

between s(n) and S(n), that is, iy minimizing
1 A
s [sm-sm)”. (3)

Note that the squared difference is summed over all samples except ane at the beginning
of cach period, and we lave agsumed that the minimization is to be carried out over a
section of s(n) of length N. 1t {5 also important to note that p more values of s(n) are
needed for proper boundary comditions.

The minimum mean=squarcd error criterion is chosen instead of other error cri-
teria becuuse the determination of the :1k's now reduees to the solation of the following

set of fincar equations,

|)
Y a,06, =0, 12 1,303, 00y 4
k=1 kUK Jo ) P '
where
N~1
6., = X s(n-j) s(n-k) k=0,h2...,p (5)
ik n=0

Note thit the sum in Bq. 5 excludes one paint at the beginning of cach peried.

Fquation 4 can be written in matrix form as
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%a = 4, (6)

where @ s a p X p matrix with typical elemert ¢ k' 4 and ¢ ar: p-dimensional vectors
with the j‘h component given by u, and ¢ o' respectively. The solution of this matrix
equation is greatly simplified by the fact that the matrix is symmetric and hence recur-
sive procedures are applicable.

It is of interest to compare the analysis procedure outlined above for two different
cases. If the fundamental frequency of vuicing is known in advance, the analysis can
be carried out directly, in the sense that Fq. 5 can be evaluated exactly. In practice,
however, it is highly desirable to carry out the analysis without a priori knowledge of
pitch. In this case an approximation has to be made and additionsal error s introduced.
We shall illustrate this point by a simple example, but the argument can casily be
generalized to include more complicated situations.

Let us assume that there is only one pitch pulse in the data and it occurs at n = m,
If m is known, then Eq. S can be evaluated ag

N=-1
%" X s{n-§) s(n-k). (7)
J =0
nfm

Equativn 5 con mt be evaluated explicitly, however, if m is unknown.
let us now approximate °jk by

a  N-I
o = X &(n-j) s{n-k). (8)
Ik ne0

Comparing Eqs. 7 and 8, we fimd that the error in ij is given by

A

Ok " %k

= ‘jk = g(m=j) sim=k). (9

By the nature of the speech wave, s(m-J) and s(m-k) are small compared with sainples
at the beginning of each perfod. Therefore the error (jk is small compared with ¢ K for
any reasonable N. Results of comparing the two anaiysis procedvres will be presented.

The theory of {inear prediction bas aiso been formulated in a slightiy different
way. Hd Let efn) denote the output of the inverse filter H-'(z) when it is excited
by s(n). If we choose to determine the nk'ﬂ by minimizing the total energy in eo(n),
the set of cquations obtained can be shown to be nlmost identical to Eqgs. 4 amdd 5.
The only difference between the wwo formulations is that, since e(n) is of length
N4 p the matrix @ in the second formuiation is of Toeplitz form,

¢ (10)

" °

J-k1, 0
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Although the theory developed thus far is for voieed speeeh, we have used the same
proeedure to determine the predietive eoeffieients for unvoieed speech.

3. Speeeh System

Figure IX-7 is a bloek diagram of the analysis system. At present, only that part
of the system enclosed in the dashed lines has been implemented. Input data are first
p,e-emphasized (10 dB/octave), bandlimited to 5 kHz, and sampled at 10 kHz. The eom-
putation of the $jk' as defined by Eq. 8, ean be greatly redueed by noting that

A A
%1, kb1~ Pt s(~1-i) s(=1-j) - s(N-1-i) s(N-1-j). (1)
A
Therefore only ¢ a forj=0,1,2,...,p need be computed directly. These are the first

p+1 points of the short-time autocorrelation function of s(n). The rest of the matrix
clements are obtained rceursively from Eq. 11. The last two terms on the right-hand
side of Eq. 11 ean vanish to result in a Toeplitz matrix, depending on how the problem
is formulated. After the clements of the matrix are formed, Eq. 6 is solved by the

method of squarc-x‘ootin;.{.5

] seecthum
I"  ANALYSIS
. COMPUTING _[[specTROGRAPHIC
SPECTRA 1 DisPLAY

FORMANT |
TRACKING __J

e e

r _ A
s |
slrd JCOEFFICENT| | | ViUV
INPYT 59::.’»7{ t-tnnc(m} T DECISION } j
| -
|
‘ | |

PITCH "7
- —of EXTRACTION l

o

Fig. IX-7. Analysis system.

From the predictive coeffieients, the approximated spectral envelope of s(n) can then

H(e‘lw)l. Note that the unit-sample response of the inverse filter H—l(z)

be eomputed as

is given by

| forn=0

o)

hin) =9 a_ forn=1,2,3,....p
0 otherwise
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Therefore | H(e‘.I )[ can be obtained efficiently by computing the discrete Fourier trans-
form of h(n) with a fast Fourier transform algorithm, and then inverting the result. Each
spectral cross section is multiplied by the rms value of the input data to provide gain
normalization.

Both the input data length N and the order of the filter p are variables; the choice
of these variables has been discussed e1sewhere.l' Unless otherwise specified, all
results presented are obtained with n = 256 and p= 12. The coefficients are recomputed

every 6.4 ms.

4, Preliminary Results

In Fig. IX-8 spectra of a synthetic vowel /a/ obtained by using various techniques
are compared: (a)and (b) by windowing (with different window widths) and Fourier-
transforming the waveform, (c) by cepstral smoothmg,6 and (d) by linear prediction.

In Fig. IX-8a the effect of glottal periodicities can be seen as the ripples superimposed
on the spectral envelope. These ripples are greatly reduced in Fig. IX-8b because of
spectral smearing of the wider frequency window. In Fig. IX-8c the effect of glottal
periodicities is removed by a homomorphic technique. This effect is also removed in
Fig. IX-8d. But, since the analysis is based on a specific wdel and thus limits the
number of spectral pcaks, there are no extraneous peaks in Fig. IX-8d. If we compare
the locations of the spectral peaks with the actual values of the five formants, it is clear
that, for this example, the spectrum derived from linear prediction provides accurate
formant locations.

Figure IX-9 shows the spectrum of the same vowel obtained by linear prediction,
except that in this case the analysis is carried out pitch-synchronously. Comparing
Figs. IX-8d and IX-9, except for the bandwidth of the second spectral peak, we find that
the qualitative difference between the two spectra is quite small.

It should be noted that we have chosen to use a lot of synthetic speech material in
our study. This is because parameters of synthetic speech are known exactly. There-
fore the use of synthetic speech can provide us with a more obje.tive evaluation of the
analysis system.

Figure IX-10 is a spectrographic display of a sentence generated from a synthesis=
by-rule program dcveloped by D. H. Klatt. Some observations can be made concerinig
Fig. IX-10. First of all, the smooth and continuous formant trajectories are clearly
visible for all non-nasal sonorants. Second, the analysis is able to separate closely
spaced formants very well, as in the case of /r/. The analysis also worked well for
fricatives, nasals, and stops, in the sense that spectra obtained during f{rication,
nasalization, and aspiration contain the important features characterizing thesc pho-
nemes. For example, spectra derived from lincar prcdiction for nasals all have a

low-frequency peak, followed by a relative absence of energy in the 500 ~ 1500 Iiz
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region. These are some of the important spectral attributes of the nasals.
Figure IX-11 is a spectrographic display of a sentence spoken by a male subject and
has features similar to those discussed above.

L

FRECIUEMCY (kM=)

TIME ()

Fig. 1X-10. Spectrographic display of the sentence "This program synthesizes
speech by rule." (Synthetic spcech.)
)

5 ""1

g E::;
< %
5 &,
&

2

&)

'&*o

TIME (s)

Fig. IX-11. Speectrographic display of the sentence "Can you
be more speeific ?" spoken by a male subject.

From Figs. IX-10 and [X-11 it is clear that during the voiced portion of speech the
formants are sharply defined and their trajectories are smooth and continuous., It is
therefore reasonable to expect formant tracking by a simple peak-picking algorithm to
give good results.  Although results of this are not included ju this report because a
voiced=unvoiced decision has not yet been implemented, formant tracking by a sinmiple
peak-picking algorithm worked well in a few examples that were tried.

The system provides highly interactive analysis and display and is capable of recal-
time processing. Figure 1X-12 is another example to illustrate the highly interactive
display capabilities of this system. The sentence is spoken by a male subjeet. By
sctting the pointer to a gpecific instant of time on the speetrographice display, we can

display and examine the next twelve cross sections on the other oscilloscope.
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FREQUENCY (kHz)

(b)

Fig. IX-12. (a) Speetrographic display of the phrase "Digital signal
processing" spoken by a male subjcct; (b) 12 cross
sections starting from the pointer in (a).

5. Summary

We have partially implemented a speech-analysis system bascd on linear predietion
of the speeeh wave. The analysis teehnique differs from all other techniques, in that
it is closely tied to a speech-production model. Our limited experience with the system
indieates that it is well suitcd to spectrum analysis and is potentially very useful for
formant traeking. The voiced-unvoieed decision and fundamental-frequeney extraction
parts of the system are now being implemented.
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The fact that the analysis is based on a specific speech production model also
imposes limitations on the technique. It is well known that during the production of
nasals and fricatives there exist zeros as well as poles in the vocal-tract transfer
function. It can be argued that we can always approximate these zeros by multiple poles
and that the important features characterizing these phonemes are generally contained
in the overall shape, not in the specific pole-zero locations, of the spectrum. There
are other unsettled issues, such as whether the input speech should be windowed, which
of the two formulations should be chosen for actual implementation, and so forth. We
are now evaluating the system with synthetic-speech material, with all parameters such
as formants and bandwidths known exactly. We believe that this evaluation, together
with speech synthesis based on linear prediction, will help us resolve some of these
issues.

We hope that this system can serve as the acoustic parameter extraction stage of
a speech-recognition system. Although it is premature to speculate on its performance
for acoustic parameter extraction, the highly interactive analysis and display facilities
now developed have proved to be useful in studying the spectral characteristics of pho-
nemes and the spectral changes from coarticulations.

Programming consultation with Mrs. Stephanie McCandless is gratefully acknowl-
edged.

V. W. Zue
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B. SOME CONSIDERATIONS IN THE USE OF LINEAR
PREDICTION FOR SPEECH ANALYSIS

1. Introduction

Recently, the analysis of speech by means of a technique referred to as linear pre-
diction, predictive coding, or least-squares inverse filtering has received considerable
attention.l's This technique is Jirected toward modeling a sequence as the output
of an all-pole digital filter, When the sequence to be modeled is specified over the
domain of all integers n, there is a well-defined formulation of the technique. When
only a segment of the sequence is available, however, which is always the case in prac-
tice, there are several formulations of the technique that are closely related but have
important differences. One objective of this report is to summarize these differ-
ences and their implicutions,

When the sequence of data to be modeled is of finite length and, over the interval for
which it is specified, corresponds exactly to the unit-sample response of an all-pole
filter, the parameters of the model obtained by using linear prediction may be nonunique,
It the data correspond closely, but not exactly, to the unit-sample response of an all-
pole filter, then the solution will be unique, but the unit-sample response of the resulting
filter may be considerably different from th: da.a and small changes in the data will
result in large changes in the parameters of the model and its unit-sample response.

A second objective of this report is to discuss this property of the technique.

2. Formulation of the Linear-Prediction Problem

We shall consider the formulation of the technique for two problems. In problem A
the data are specified for all n, and in problem B only a finite segment of the data is
available,

a. Problem A

Consider a sequence s(n) defined for all n and for which 8(n) = 0 for n € 0. We seek
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a
o]

4 k
1-% a5
&1 kJ

A A
response g(n) approximates s(n), From the form of S(j). 8(n) for n > 0 is given by

such that its unit-sample

A
an all-pole filter with trans{er function S(;) s

P

&n) = Z nkQ(n-k). ()
K=l

In the lincar-prediction technique we define a predicted value of s8(n), denoted by 8(n), as

p

~ \
s(n) = L
k=1

aks(n-k) (2)
ancd choose the parameters a, to minimize the error & defined as

Is(n)-;(n) | 2

& -

ﬁ[\/zq

) (3)
p

s(n) - 2 aks(n-k) .
| k=1

"
Ha ot

We note that the sum on n excludes the origin because s(o) depends only on a, and can-

not affect the result of the minimization,

By setting Bt/aaj to zero fur i - 1,2,...,p, we arrive at the following set of linear
cquations:
o= -
Z a, 2 s{n=j) s(n-k) = 2 s(n) s(n-j) J=h2,....p. (4)
k=1 n=1 n=1

In matrix notation,

a=y (5)
where
o
¢£j o Z s{n=-1) s(n=j), (6)
n=]
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by 2 oy
It can be shown that the matrix is symmetric and Toeplitz; that is,

dgj = &5

and

®ia1, 41 ° 4y

Therefore the solution of Eq. 5 is computationally straightforward and cmclcnt.6
We shall examine soine of the propertics of this solution. q

i. 1r 8(n) is indeed the unit-sample response of an all-pole filter s(n) = ¥ bks(n-k).
k=1
then with q < p the procedure leads to the unique solution a, = bk for k=1,2,...,q,

nndak=0fork>q. A 5
ii. It can be shown that the solution S‘f) corresponds to a stable filter,
iii. It can be shown that the error & s monotonic with p.
iv. Let us define the autocorrelation function of g(n) as

»
k= > &) Jin=p) (7)

1 .:0

and the autocorrelation function of s(n) as

o
R, = , ,
) L s(n) 8(n=j), (8)
n=0
A A A
It can be shown that R, and R, are related by nj = [Ro/l(o]l(j forj=1,2,...,p.

v. Minimizing Eq. 3 Is equivalent to minimjzing

2

é" 1 n S((,-ju)
) T = e - dw,
2n 5‘_" S((_'Ju) ! 2 (9)
where
A A
h(_;) = P k.
o kl;l ak‘;

QPR No, 106 143



(X. SPEECH COMMUNICAT 'ON)

Therefore, the error criterion can be interpreted in a slightly different manner. Let
u{n) denote the output of the filter S_l(;) when it is excited by s(n). The linear-
prediction technique then corresponds to determining the {ak} such that u(n) is best
approximated by a unit sample at n = 0,

From Eq. 9, we see that the error is dependent on the ratio of S(e)) vs g(ej“’). It
is also clear that the minimization depends on both the magnitude and phase of S(ej“’).
Since S(ej“) can be shown to have minimum phase (that is, all poles and zeros are
inside the unit circle), this procedure will work best when S(ej“’) is also minimum-
phase. Heuristically, we can argue this in the following way: Since S(;) is stable, we
shall concern ourselves only with the zeros of S(y). If S(;) has zeros inside the
unit circle, each of these zeros (excluding those at the origin) can be approximated
by multiple poles by Taylor series expansion, and the approximation will improve as we
increase p, the order of S(; ). This suggests that if s(n) is minimum-phase, the error
asymptotically goes to zero as p increases. This is no longer true, however, if S(;)
is not minimuin-phase, Consequently it would be expected that if S(;) is not minimum-
phase, the error will not asymptotically approach zero as p increases.

b, PFroblem B

In this case we consider a finite segment of data of length N which we wish to model
as the output ¢ ¢ an all-pole filter. Typically, this problem has been formulated in two

ways,

Formulation 1

The data are multiplied by a window w(n) and the N data points are numbered from
n=0ton=(N-1), The window is of duration N so that multiplication of the data by the
window results in a sequence s'(n) which is zero for n<0 and n>(N=-1), The seyuence s(n)
in problem A is then taken as the sequence s'(n). In this case most of the results of
problem A remain unchanged, although the sum over n is now finite, The matrix is
again Toeplitz and the set of equations can be solved efficiently,

This formulation is sometimes referred to as the autocorrelation method, since the
matrix ® is an autocorrelation matrix of s(n), as in problem A, Empirically, it has
been found that for small N it ig necessary to multiply s(n) by a smooth window rather
than simply to truncate it, in order to minimize the end effects.s' .

Formulation 11

No assumption is made about the data outside the interval on which they are given,
Specifically, the first p values of the data are taken as initial conditions and it is
assumed that with n = 0 denoting the beginning of the interval on which the data are given,
the input to the all-pole filter is zero for P € n <N, The error &€ is defined as
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2
N-1 p
é’ = Z s(n) - Z aks(n-k) s
n=p k=1
&
where s(n) denotes the data. To minimize the error, we set 2 - 0 forj=1,2,...,p
and arrive at the set of equations !
P N-1 N-1
z ay E s(n-k) s(n-j) = Z s(n) s(n-j) i=l2,...,p
k=1 n=p n=p

or, in matrix notation, ®a = y, where

N-1
¢iJ = Z S(n'i) S(n"j) i= 0: 1,.. o p
n=p
and
.= . i=1,2,...,p.
41] ¢OJ ] P

This formulation is sometimes referred to as the covariance method. The resulting
matrix @ is still symmetric but no longer Toeplitz. In fact,

N-1 N-2
®itl, 41 " z s(n-i-1) s(n-j-1) = z s(n-i) s(n-j)
n=p n=p-1
= ¢ij = 8(NN-1-i) s(N-1-j) + s(p-1-i) s(p-1-j). (10)

The last terms in Eq, '0 can be considered an end-effect correction,

Both formulations have been used by researchers, hence it is appropriate to com-
pare their efficiency. This is shown in Table X-1, Formulatio‘t\ll has the following
advantages. Theoretically, the stability of the resulting filter S(y) is guaranteed,
(although this is not true for implementation with finite word-length computation),
Increasing p from P, to p, +1 involves only one additional iteration; therefore, it is
easy to set an error threshold to select the appropriate value of p. On the other hand,
Formulation II has the advantages that scaling is relatively simple for fixed-point imple-
mentation, and the computation can be carried out in-place. It has also been pointed
out that the square-root method of solving the resulting set of linear equations is

numerically very stable.9
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Table X-1. Computationa) efficiency of Formulations 1 und 11,

IFormulation 1 Formulation 1l
Matrix Toeplitz Symmetric
(Can Be Solved by (Cun Be Solved by
Levinson's Mcthodb) Square-Root Methode)
Storage (data) N N
matrix equation 4p+4 (pz+3p)/2
window 2N 0
Computation
multiplies (windowing) N 0
2
(compute ¢ij) pN=p° pN +p
(solve matrix eoration) :.’p2 +5p=-6 (p3¢9pz+2p)/6
divides (or inverse) 2p p
squarc-roots 0 p

3. Application to Sequences Closely Approximating the Response
of an All-Pole Filter

The linear -prediction method is most suitable for sequences that can be closely
approximated as the response of an all-pole filter, Typically, the linear-prediction
technique is used to determine the parameters of the all- -pole filter, and spectral anal-
ysis or rcsynlh«.sib is carried out by using these parameters to generate an approx-
imation, b(n). to the data,

For problem A we assumed, by virtue of Eq, 1 and the fact that the data are zero
for n < 0, that the input was a unit sample at n = 0, Thus, to gencrate Q(n) from the
parameters, we excite the all-pole filter with a unit sample. For problem BB, the auto-
correlation method outlined in Formulation | suggests the same procedure, since the
product of the data and the window is treated as in problem A, For Formulation 1l In
problem B, we made the assumption that for p ¢ n < N the filter input Is zero, It Is use-
ful to consider the result of applying linear prediction to data that do correspond exactly
to the output ¢f an all-pole filter so that the data s(n) satisfy the relationshlp

q

s(n) = Z bks(n-k) (11)
k=1

on a specified interval, and we choose to estimate #(n) by
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p,
';(n) = Z aks(n-k) (12)
k=1

on that interval. For problem A the interval s ]} €n € @wand if q € p, g(n) = g{(n), and the
coefficients a, will be equal to b for 1 € k € q and zero for k > q. For problem B, the
uutocorrelauon formulation (l"ormulnuon 1) will not in general give s(n) = g(n), and the
a, will not equal the b because the infinite duration sequence corresponding to the data
multiplied by the wlndow no longer satisfies the relationship of Eq. 11. With q & p the
covariance method will always give :(n) = s(n) over the interval, When p = q the a, are
uniquely determined and specify a system whose unit- sample response is s(n) = 8(n). For
p > q. If the data satisfy Eq. 11 for p < n < N but not for 0 < n < p, then we conjecture
that the 'k are uniquely determined, Morcover, the unit-sample response of the all-pole
filter, s(n), wil! equal s(n) only if s(n) corresponds to the unit-sample response of an
all-pole filter, The fact kit the specified data s(n) satisfy the relationship of Eq. 11
does not require it to be the unit-sample response of an all-pole filter but only that it
be the response to an input which is zero for p < n <N, Now let us consider the case
for which the data satisfy V' . 11 for 0 < n < N: that is, all of the specified data including
the inftial conditions satisfy Eq. 11, With q € p the covariance method will always give
2(n) = #(n) over the interval, When p = q the a, are uniquely determined and specify
a system whose unit-sample response s s(n) = s#(n). When p > q. however, the (pXp)
mutrix @ is of rank q. which gives a p-q pnramucr family of solutions for the a. For
cach solutlon vector a in the family of solutions, s(n) s(n), but one and only one
of these solutions specifies a system whose unit-sample response s 8(n) = s(n). This
solution I8, of course, the one for which all of the a, vanish when k > q.
Consider the following simple example, Let s(n) be exactly the unit-sample
response of the filter

Thus s(n) = nnu_l(n). Suppose s(n) is estimated by the second-order linear predictor

?a'(n) = als(n-l) + nzs(n-Z).

We choose to minimize the mean-square i ror on the interval [n_.n_+] ). using s(n_-1)
and s(nO-Z) as starting valu-s (Formulation 1), If n, > 1, then the equation ®a = ¥ is
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Clearly, the matrix & is singular and the general solution for a can be expressed
as any particular solution g_o added to any linear combination of vectors spanning the
null space of @. We choose go = g]which is the particular solution for which 8(n) is
the unit-sample response of the filter

1 rd
l-ai_l

The general solution is given by

NENEH

where ¢ is an arbitrary constant. The solution a thus lies along the line a, = -ca, +aZ
in the a,a, plane., To illustrate a different solution in the solution space, suppose c=1.

Then a, = 0, a, = az, and g(n) = g(n) is generated by the filter

H(§)=

1 1

H.(%) = =

2 - = =
A AR 772 (may T1tey L
excited not by a unit sample, but by the sequence

x(n) = uo(n) + auo(n-l).

We see that the pole of Hl(}) at b R is canceled by the zero at ¥ = -a of the input
sequence.

That the predictor coefficients are not, in general, u-ique is not surprising. The
linear -prediction problem as formulated seeks to determine a difference equation, whose
solution approximates a given sequence on some interval., If this difference equation
is associated with a linear system, we see that there is nothing "built into" the for-
mulation of the problem that specifies the initial conditions of the system, that is, exactly
how the system was excited. All that is required by the present formulation of the prob-
lem is that the input to the system vanish over the interval on which s(n) is being pre-
dicted. Hence the multiplicity of solutions may be interpreted as resulting from the
fact that different systems with different inputs can produce identical outputs.

In practice, we are not generally interested in applying linear prediction to a sequence
that is exactly the output of an all-pole silter of unknown order. Thus we do not expect the
covariance matrix to be singular (when it is singular it can be dealt with by choosing
p = rank &), We are interested, however, in applying linear prediction to sequences
which may be modeled approximately as the output of an all-pole filter. If the sequence

-~
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s(n) closely approximates the output of an all-pole filter (as speech often does) the
covariance matrix @ will be ill-conditioned, that is, almost singular. Although a unique
solution does exist, it appears to be very sensitive to small perturbations in the data,

In particular, if a small amount of noise is added to the data which, according to the
previous discussion, results in a family of solutions, the resulting solution may be (lose
to any one of the solutions in the family, and as small perturbations are introduced into
the data, the resulting solution may change radically. A consequence is that if the order
of the predictor is too large, and the data are close to the unit-sample response of an
all-pole filter, as is often assumed to be the case in speech analysis, the unit-sample
response of the all-pole filter specified by the linear-prediction parameters and its
Fourier transform, may not approximate the data very closely, although the output of

the filter resulting from another unspecified input will.

4, Summary and Conclusion

We have attempted to point out the major differences between the various formula-
tions of the linear-preciction problem and discuss a set of important issues related
to linear prediction. We have seen that there are generally two different methods
of formulating this problem; one requires s(n) to be zero outside the domain of mini-
mization, and the other does not. The autocorrelation method provides a good match to
the spectrum, but this is by no means an indication of its superiority over the covari-
ance method,

The uniqueness of the linear-prediction solution is a very important issue. Our
experience indicates that with additive noise injected, the system does not always con-
verge to a desirable answer, What perceptual effect this has on speech synthesis is
still unclear. We hope to answer this question better after experimental speech syn-

thesis.
M. R. Portnoff, V. W. Zue, A. V, Oppenheim
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