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ABSTRACT
\ ————————

N
It is shown that Kalman filtering may be applied to the radar track-
while-scan problem. No attempt is made to rigorously derive the Kalman
equations, but the equations are related to more familiar ideas.

It is demonstrated ihat the least squares of equations constitute
a special case of the Kalman filter. The approach used, however, does
not require a constant data rate or constant measurement accuracy, meaning
that information from various sensors (including links) may be used.
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INTRODUCTION

1. This report is intended to be the first of a series resulting from a study on
Fhe general subjects of target tracking and association. The purpose of the study
1s t9 prodn e a generalised package, 4 subset of which would be chosen for any
Particula system with any particular combination of sensors. Alternatively, the

generalised package could be used as a standard with which to compare simplified
proces.es.

2. The aim of the first phase of the work is to produce a generalised tracking
system capable of using elevation and doppler information, as well as having a
predictable performance against manoeuvring vehicles. Because this present work
does not include any turn handling capabilities, it is not considered a viable
process on its own, although some people have used such a method on its own with
limited success in other applications.

3. Many of the ideas presented may be expressed in a considerably simpler way by
using some matrix theorems. This has been avoided since the author assumes very
little knowledge of matrix algebra on the part of the reader; one purpose of the
report being to indicate the benefits of this approach.

4.  This report is thus concerned with deriving equations of motion of tracks from

information from imperfect sensors, and minimising the noise on these tracks. This
report considers only two dimensional applications.

5. It is shown how information from a one-dimensional sensor may be incorporated.

WHY USE A COMPUTER TO FORM TRACKS FROM SURVEILLANCE INFORMATION?

6. We need to remind ourselves of the answers to such fundamental questions in

... order to keep sight of our objectives. The author sees three basic reasons.

a. Te provide a tactical picture

A display of the tracks of all vehicles observed by sensors showing present
positions, courses and speeds etc is essential for the deployment of a ship and
its weapons. The computer enables rapid use to be made of sensor information
thereby ensuring that the picture is accurate and up to data.

b. For use in processes such as threat evaluation and weapon assignment.

The computer can forecast future llkely positions of tracked vehicles and rapidly
perform necessary calculations to assist operators in the assessment of threats
and in the optimum weapon deployment to deal with them.

c¢. To provide target information for weapon deployment.

“he computer can be used to generate smooth tracks from noisy information thereby
being able to pass information to a weapon sensor more accurately than information
derived from a single plot on a display. The computer may also provide continuous
‘nformation obtained by continually increasing the extent of the extrapolation
from its previous best estimate of target position.

The third roason is generally thought to specify the most stringent requirement.
llowever, association processes usually demand the most of the tracking.

7. Thus the uses of the computer are basically to provide quick calculations
using input data and to remove the tedium from man's task in tracking, ie taking
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carc of most tracks (and possibly new detections), while the man would be able to

concentrate on the overall situation.

The man would also need to handle those

iétuatfoni.at which the computer is less capable; such situations would generally
e ones which require the use of qualitative information for their solutions.

SUMMARY OF PRESENT METHODS

8.

a. The traditional method (known as a-8 tracking) is well documented (for
example see Reference 1-4).

The method is basically as follows: a forecast position of the vehicle being
tracked is calculated, and a fraction of the difference between this forecast
and the observed positions is added to the forecast to give an estimate of
true position at the time of the observation. The assumed velocity is
incremented by a fraction of the difference between observed and forecast
positions, divided by the time between observations. The next forecast
position is then the present estimate of position extrapolated using the
estimated velocity. The process is started by calculating a velocity from the

first two observations, and using this to forecast from the second observed
position,

The equations are thus:

G, = F, +ud (Pn-Fn)
Vo=V .+ S p-F)
n n-l1 T n™n
En+l = Gn + VT
where:
Fo= forecast position for nth measurement
Py = nth measured position
Gn = estimated position after nth measurement

V = cstimatée of velocity after nth measurement

n
T = time interval between measurements
» = position damping factor
5 = velocity damping factor
b. In most previous real time weapons systems, these equations have been

applied in a Cartesian co-ordinate system, one set of equations being used for
cach dimension. It may be seen that, for positional smoothing, if o = 0, all
sensor information is ignored whercas if a = 1, there is no smoothing of
sositional intormation. Similarly B8 = O causes sensor information to be
ignored in the estimation of velocity whereas g>1 will cause overcorrection
(ic noise amplification, with the ability to predict inside turns). Simpson
(Reference 1) calculated the limits of stability in terms of a and 8, the
result of which is that o and 8 should normal 1y be h.fucen 0 and 1.

-2-
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The simplest possible system is one in which « and B8 are fixed constants, and
the theory of such systems has been studied by Simpson. For such systems,
Bordner and Benedict showed that, for a manoeuvre expressible as a ramp input
of position, the relationship between o and 8 which optimises noise response
for a given manoeuvre and also manoesuvre response for a given noise is:-

2
= 3
8 = 2-a
c. Constant parameter systems suffer from the incompatible demands that good

smoothing requires heavy damping (ie small values of o and 8), while good
response to manoeuvres requires light damping (ie o and B large). Light
damping and therefore poor noise response, can lead to low probabilities of
weapon sensor acquisition and p'ot-to-track association problems. Heavy
damping, implying poor manoeuvre response, can cause sudden loss of tracks
(sometimes termed track deaqh) through failure to associate with subsequent
plots.

d. These limitations led some workers to opt for variable parameter systems
where a and 8 are varied according to the state of the track. Some systems
have been developed wherein o and B were initially selected arbitrarily, and
changed during program development by trial and error, various operational
sets of values being derived for various states of track. Such methods are
adaptive and are usually economical in computer use, tdoth in terms of required
storage and run time, but generally have no theoretically optimum adaptation.

€. More recently, processes have been developed in which o and 8 are made to

change with time in order to continually compute the least squares line through

the observations. Such approaches assumed that errors are equally distributed

in x and y and had a constant standard deviation. The formulae for changing
a and B in this manner were worked out by Marks (Reference 2). For the
incorporation of the nth measurement:-

o = 2(2n-1)
n(n+1) (1)
. . 6
5= n(n+l) (2)
f. It is clear that, for large n, a and 3 tend to 0, ie observations will

be increasingly ignored. This suggests that there should be some maximum
value of n. To the best of the author's knowledge, the maximum value used

is generally 7 to 15. Such a method may be made adaptive if a means of
detecting changes in motion is used, ie if turn detection is provided. Then,
if a turn is detected, the values of o and 8 may be raised simply by lowering
n. Doing this will improve the turn following capability. Another approach
to turn following is to assume the turn is circular, and to try to track round
this. However, this requires that the turn be quickly detected and that turns
generally be of sufficiently long duration.

g. As has been previously stated, the preceding methods are fundamentally
Cartesian. There are also methods in which the track data is held as x-, and
- co-ordinates, course and speed. Assuming that, for an aircraft the course
is more likely to change than the speed, this method allows speed to be morc

heavily damped than course.

h. Magowan (Reference 3) took a fresh look at the subject and produced a
logic which takes account of the usually polar nature of plot noise. This
-3-
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automatically allows for the fact that the area of uncertainty round a plot is
a function of range as well as the range and bearing errors. The method stored
track data in range, bearing, coursc and speed. llowever, the main difficrlty

4§ j of the approach is that the last best estimate of position of a track is
3 ; treated as having zero error.

k. More recently still, Clynick and Milner (Reference 4) proposed to
caiculate an optimum time constant (ie, in effect an optimum value of n) based
on the target range and derived velocity. This was an attempt to achieve a
reasonable comprcmise performance in calculating course and speed over a
considerable range of operating conditions.

R e i et et

. m.  The approach followed in this report is based on Kalman filter theory,
; which can take the polar nature of plot noise into account and can provide the

é ' exponential weighting in the form proposed in Reference 4, It is not proposed
3 ; to derive the Kalman filter equations in this repoit, since this has been done
3 ; adequately in References 5, 6, 7 and 8. Instead, a "picture" will be given

i for a single dimension case.
.‘: A SIMPLE APPROACH TO LEAST SQUARES SMOOTHING
3 9. Before dealing with the Kalman filter, we shall try to introduce the concepts
3 involved in smoothing, and to show why a least squares criterion is used.
E a. Let us assume that we have two independent estimates, x'; and x, of the
same variable, with mean square errors (variances) a' and r respectively.
-4 Assuming that the errors have Gaussian distributions then from the first
3 estimate, the p.d.f. for the probability that the true value is x is:-
kX 1 X'5-x)2
M P1=/2—,5'8XP{“(—‘°§31—“}

Similarly, from the second estimate, the p.d.f. for the probability that the
53 true value is x is:

1 -x)2
P2=/2—,,—I:exp{'(§u-)—f

¥ 2r
y The joint probability that the true value, from both estimates, is x is p = pip2
A where
(x'2-x)2  (xp-%)2
P = onar exp{ 2a' 2r }
‘; Now it may be easily shown (see Appendix C) that the product of these two
- Gaussian distributions is another Gaussian distribution given by
_x2
p = constant x exp { - (§—§l- }
252
~
RS where x = (x3 r+xza')/(a'+r) ()
'
3 ard a2 = a'r/(a'+r) @)

This joint probability is therefore maximised when x = x, while the standard
deviation associated with x is 7, which is always less than a' and Y. The
actual value of the constant in the expression for p does not matter here,

i
5
i
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since we do not want *¢ kpow t.e actual value of p, but rather th- value of x
which maximises it. (The "constant" in the expression is not strictly a
constant, since it is a function of the a' and r, x'; and xz, but the important
point is that it is not a functi ™ of x which is the quantity of interest.)

b. It is -ic doubt apparent that x'; coul' have representad a forecast of x,
and that x, .ould nave represented a measurement. If x changes with time, it
is also ner -ary '» estimate the rate of change (which we will assume to be

: constant).

3

: c. Let us - ide~, th: . "2t x'5 1f an estimate baseu on a previous
(estimated) y siticn x_ .7 there is an -stimated velocity Vi, and that x;
is an observaus‘n. Le* u «osume that x'; has variance a' (as before) and

that x; has variance r. : also assume that x1 has variance a, that vy has
variance d, anc that the covariance betwesn x1 and Vl is b. (The covariance
of X; and v1 is deflned tivs: if an error in X is 6X; and in Vi is 6v1 then
the covariance o/ - and vy is the mean value of all products (6x; 6vy). This
is analogous to the variance of a single variable being the mean square error:
the covariance is the me-n value of the product of errors in two variables.)

PRl SN

p S ,.‘f‘ 3:’,:@ &- IR

Appendix C shows that the best estimate of velocity after making the
measurement x, may be written:-

_ (b+td) (xp-x'
V= e 2b£1t%ai} (5)

where v; = previous es*timate of velocity

S
oty

VPR

b = covariance of previous position and velocity estimates
a = variance of previous position estimate

t = measurement time interval

d = variance of previous velocity estimate

and that its variance is given by s? where:

5 _  d(atr)-b? .
ST % w2bt+tlder (6)

We may reconfigure (3) to have the same form as (5) hence:-

R ' VY “
Xy = Xé + 2 X" X 2. g?+rx ) (7)

or, in terms of the a, b, d etc,

o (a+7bt+t2d) (XL'X 2) (8)
a+2bt+ted+r

Hence we may write:-

~<
[ )%
u

x'r+a(xz-x'2) (9) !

vi+ %—(Xz-Y'z) (10)

<
S
L}
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a' _  a+2tb+t4d
a'+~ T a+2tb+téd+r

t(b+td)
a+2tb+t2d+r

wvhere o

and B =

Now, 02 is the new value of a, and s* is the new vaiue of d. It can readily be
shown that the new value of b is

TITTRYE T .

(b+td)r
a+2bt+t’d+r °

d. Initial Conditions

ATV IR SR AT

‘ Let us consider two initial measurements xg and x; taken time t apart. The
best estimate of position is thus x;, and the estimate of velocity is

X1-Xp
t

.

the error in estimating velocity is (8§x; - 8xg)/t.

)
¥ { If there is an error in measurement of xg of 8xp and one in x; of 8x;, then
{
§ The variance of this velocity estimate is the mean value of

!

;

i

(8x3 - 8x9)% _ (8x1)% - 26x96x3 + (86%)2
t2 - t?. ‘

The mean value of 5x86x1 = 0 for uncorrelated measurements, hence variance of
; vy = d = (mean (§x;)% + mean (6xq)2)/t?

= (r) + 19)/t?, say.
The covariance of x; and vy {called b) is the mean value of:

4 ix- (8x] - 3xg)

.‘ t

: which gives b = T .

Thus we may construct a covariance matrix which relates to x; and vy and is:

5
¥ a b

l whose elements are the mean values of the elements of
9 h d

5 ( |5x] [Px; 3vy]

i
\ iy
; vy
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We would have obtained the same vresult by applving Appendix B equation 3 to:

- . - - - -
‘'rg 0 |x1i o 1l ' X
{ , using the transformation R | .
0 T AG B T

We wish to forecast over a time interval t to calculate a forecast position
x'g.

We thus use the transformation

- . -

rx'z 1 ¢t ;(1
fs
;. iVl O 1 Vl
Y t. - . -—
8
%; We may apply Appendix B equation 3 to calculate the covariance matrix for the
B forecast state
; -
£ X'z
b i . This is
- V1
-~ -
Y ‘a+2bt+t?d  b+td
3 5 (12)
B * b+td d
e If the variances of measurement error are assumed equal and since
b
T + A
o a=ry, b= El-, d = EJZ§Q and writing 62 = r; = 1
i we find that the covariance matrix for
s - 1
EZ - - ] 2
: B X', { 592 39 }
- Y . is: { t .
35 Vs . | 302 202 :
B - Tt T2
ey t
s L =
: 'ﬁ: When we conbine the forecast x'; with the observation x;, which has variance r
h.% using (5) and (8) we get
Lo SN i €% APY ‘
L ¢ (sotrol .i
&
Ay . %!
’.‘ = VI + (EZ_.X_.Z)
5 2t :
{ 2 :
- ~-x! .
0 C+0
j? 5(x,-x' p
¥ = x'2+ 6-—2)
9
WAy

o “.l‘fé“,‘wf“; ¥

<
F
3
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i fhus, tor constant variances of observation of errors, we find, using the
} %{ definitions of the two damping factors given by (9) and (10), that « = 5/6 -
; k& and ¢ = 1/2 are the optimum valucs for incorporation of the third plot into
. the track.
3 i Marks (reference 2), has shown that, for constant errors and time intervals:-
‘ KA

o _ 2(2n-1)

: o e R
x 3 n(n+l)
f 3 = .__6.__.
3 n{n+1)

where n is the observation number, the first observation for the track having
n = 1.

In the above example n = 3, which gives a = 5/6 and B = 1/2.

Now in {9), a is effectively defined as the ratio:

o3 T &t

; 1 variance of forecast position
- F variance of forecast position + variance of observation

If a is less than 0.5 it therefore means that the variance of forecast position
' is iess than the veriance of the observed position. Whenn = 6, a = 11/21;

B “henn =7, a = i3/28. Thus, when n = 7 the forecast is about as accurate as

;. the measuremeats. Also, the variance of the smoothed position = ar, which, for
3 n =7 gives 13r/28. Thus when n = 7 the variance of the smoothed position is
. 3 just less then half the measurement variance, ie the '"noise power" has been
halved.

: It is not proposed to go any further with this example, since its purpose was
3 solely to introduce the basic concepts of tracking, but the illustration serves
5 to demonstrute the following drawbacks of this simple approach.

c. The example was given for tracking in one dimension only, and assumed that
the time interval between observations was constant. If we wish to track in

'f more than one dimension, this simple theory can only work if the measurement
;f, errors in all the dimensions are not related in any way (ie are uncorrelated),
' in order that the tracking may be scparately performed in those dimensions.
{f, ‘ Now, radars with auto-extraction equipment have independent errors in range

4 ‘ and bearing, This would constrain tracking to tracking in range and bearing:

linear forecasting is then not good enough for finite range and bearing rates.
fhe theory is only valid for tracking in x and y when the variances in x and y
can be considered independent and constant. This is so in manual detection
systems which employ Cartesian frames of reference.

7 It should be remembered that, if variances in range and bearing are constant,
4 3 tae variances of x and v after transformation from the r§6 to the x&y

L. w-ardinatc system will be related and will be functions of r and 6 (or x

K and yy and will not, therefore, be constant for a moving target.

I
."{ Tiie Kalman filter, which forms the basis of this tracking study, does not
] suffer from the restrictions above: it is a generalised version of the method
ewpirically derived and is in matrix form - thereby conveniently handling the
corrclations between errors. The Karman filter equations were first derived

i by Kalman and Bucy, (References 6, 7), but many others nave produced different
s derivations from different viewpcints (for examplc see References 5 and 8).
& _8_
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!
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KALMAN FILTERING
a. In this section, all upper case letters will refer to matrices and

lower case letters to scalars. We wiil take the ideas already presented

and represent them in a di€ferent way as an introduction to the Kalman
filter equations.

Equation (11) states:-

rx'gg .-1 t; t‘i;%
L= ,
VlJ c 1 %_Vl_j

which means that the state of the track which is given by il and v: is
transformed to another state given by x'z, vi over a time interval t. We
may represent

QJ A x!

=
as X) and hence represent ! as X';.
Vl—l

Vi

The matrix which we may call ¢ transforms X; to X'z.

NG =
Long B, . |

L

We may thus write equation (11) as X'; = ¢X; or, in terms of transition from
state Xk to state X'k41
»

X'k+1 = &% - (13}

This expressiou is in effect the equation of motion from which a future state
)('k#1 can be calculated from a past state X, .

The covariance matrix associated with il (or Xk) was given in (5) as

b .

>
o )

Py =

d

That associated with X', (or X'k+1) was found in Appendix C as

‘ar2bt+t2d  betd

(=P ..).
b+td d | k+l

the superscript T indicating the matrix transpose.
deriving °P1°'r and comparing with P';,,

This imay be checked by

-9-

piizdik, |




BN v STWeRSLRI TSR P D S - S

_§+2ht+t3d
a+2bt+t-d+r !

' . . . (brtd) t
and 3 was defined by (10) as: E:EEE:E%EIF .

The denominator of both of these quantities is the (1,1) element of P'; plus r.
We may obtain this (1,1) element of P', by the operation

1
(1 0] Py = a+2bt+t?d.
J

a was defined by (9) as:

»r being the measurement variance

-

Hence, if we define a matrix ¥ = [1 O], the denominator for a« and 8 is

(MPMT+R), where R is the measurement covariance matrix (which is the same size
as the MP}ﬂ'product and is a 1X1 matrix in our example).

The numerators for o and 8/t are the contents of the first column of P'k+1 in
this example, and we may obtain these thus:

a+2bt+t2d
b+td
T T “1 . . .
Thus P'k+1M (MPM1+R) gives a matrix which we shall call Kk+1

where the first element of Kk+1 is a and the second is %n

Our smoothing equations are:

X = x' als -
Xl = el * 200 7 ®ya)

3
Viel = Vit T (Bag T X ge)

which is clearly the same as writing:

X = X!

MX !
kel X

kel ¥ Kier Yoy =MK% 00)

vhere Yk+l is the matrix of observations, and is 1X1 for this case.
It is more usual to write this as:

v - - '
X = X! Kk+1 (MX K+

kel = M'kel 1~ Yke1)

iance of X, W i . 82 = I3
The variance of X1 al was found in {4) to be: & o

In (12), a', the variance of forecast position, was found to be given by:

a' =z a+2bt-tad.

Hence we may rewrite (4):

sz _ r(as2btetid)
arlbtetZder

-10-
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We may further rewrite this as follows:

%

2 . 24 (a*th+t2d)2
07 = andbtitid - o tiar

Now, MP'k+1 = [a+2bt+t2d b+td]

SR ot W ki d

P! (a+2bt+t23d)?

. e The (1,1) element Of Kk+1 k+l = a+2bt+t2d+r

Thus it is correct, for the (1,1) term at least, to write:

T MR

~

Pk+1 = P

- [ ]
Kk+1MP k+1

We may now move on to a more formal definition of the Kalman filter.

b. The Kalman filter equations which are derived in References 6-8 may be
written thus:

X'ear = % X (14)
P ® % P B * G G G (15)
Kr = P'er M [Mk+1 P'ier Moot * Rk+1] o (16)
Yol = X'ke1 Kol Oher X'hap = VoD (17)
Peel = Pliar Ko M1 Py (18)

where a prime (') represents a forecast value, a hat (") represents a best
estimate of a variable, superscript T is the transpose of a matrix and:

X is the state vector of order nxl

$ is thetransition matrix, nxn, and defines the transition from true
state Xk to true state Xk+l

is the nxn covariance matrix of the estimate of X (ie P'k+1 is the
covariance matrix for estimate X'k+1)

is nxj matrix representing the effects of j elements of ‘plant noise'
sometimes known as process noise on the n elements of the state vector;

Q is a jxj matrix, being the covariance matrix of the plant noise
Y is an mxl vector and has as its elements the measured variables
M is the (so-called) measurement matrix and is mxn

R is the mxm covariance matrix of the measurements Y

K is a matrix, nxm and essentially contains the damping factors.
-11-




Y

D R T SRR T

iz iy

ssybloaias

S P

VTFUTCRTE TVRTRIRSTFIRTILL T T TR SRR T S R PR W RS S e BT L T

¢c. Some explanation of these terms

The true state at time tk is Xk. The true state at time tk+1 is

Xk+1 = okxk + GkUk

where Uy is a set of random inputs known as plant noise. In essence, the G, U,
Q terms represent Low true the equations of motion implied in ¢ are, or; for
example, how straight a nominally straight track really is. This noise is
assumed to have zero mean, thus the best forecast is as given in 13. Having
thus mentioned plant noise, we will now ignore it for the purposes of the rest
of tie report, since the main effect is analogous tc the time constant concept
in Reference 4 which is not of concern at present, but will be discussed in a
future report. (It may be apparent to the reader that the effects of plant
noise reduce the rates at which variances of successive estimates change.)
Other terms may be used in Kalman filters, these are also ignored for the
purposes of the report.

d. Incorporating a measurement

When a measurement is made, what is actually observed is some function of the
true state together with noise.

Thus what is observed is:

Yol T ka1 g1t Nk (19)

where xk+l is true state at t = tk+1’ and Nk+1 is a set of noise components.

This equation then defines Mk+1°

e. Working through the Kalman Equations

As a simple example consider a state vector to represent a position (say x)
and a velocity (say X). Let us consider that x is observable (as Y = x+n) but
X 1s not. Then:

r

X
A represents and Y represents a measurement of x, thus Y will be a
X
1x1 matrix which is the true value of x corrupted by noise. In this example
M is obviously a 1x2 matrix:

(1 o]

x}
tience Y = [1 O] J + [N]
X

f. Forecasting

In this simple example we assume linear equations of motion, hence:

X' X + X(At) (At being tk+1'tk)

x'= x

-12-
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i
or, in matrix form :
- -
rx" [_1 Atl l—j
[xj E 1J | | ‘
Comparison with (14) shows that we have defined ¢ to be:
- <
o 1| :
To simplify matters slightly, we will write t instead of At. This new variable
should strictly be written tk K1 but is written as t for obvious reasons. :
? -
¥
Let us assume that, at t = tk’ Pk is: ;
a b
i ;
b4 f
(this matrix is symmetrical since the covariance of x and X equals the
covariance of X and x).
1 =
Hence P kel
- - = - -
1 t. a b ll 0]
. ' i :
i ; ! .
‘o1 b d! [t 1
i 7
= ia+2bt+t2d b+tdi
t
Now K is nxm and, as stated earlier Rk+1 has one element which we will call -
Tl .
T a+2bt+b?d  b+td irl
M P, .M = [1 0] .
k+1 = k+1 = k+1 betd 4 lq
= a+2bt+t?d.
~ )
ar2bt+t?d  betd! {1 , -
.o K = | i [a+2btst?der, 1)
kel I betd d |o '
i *
a+2tb+t2d
a+2tb+t2d+rk+1
b+td
a+2tb+t2d+rk+1-
-13-
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Now, the expression a+t(2b+td) is the variance of the forecast position x'k+

If we call this a'k+1

1
a k+1
t
3 kel Tkl

If this is compared with (9) it will oe seen that this is precisely .

also be seen that the estimate of velocity variance in (6) was in fact a
combination of velocity variance and position velocity covariance.
be clear that the second element of K

g. Smoothing

then the first element of K

k+1 1s

We can now move on to (17).

. . .
Mk+1 X'k+1 is simply x K

[ k
ixt !

k+1!
k+1 %
k+1.

Similarly, using (18),
T
. a+2bt+t2d

- {

P =
kel ;b+td

k+1
+1° Thus,
[ 2
l(a+2bt+t d(x'y,, - yk+1)
V)
! a+2bt+t d+rk+1
‘ Gred) (X'ypy = Yied)
(. a+2bt+t2d+rk+1
r
i a+2bt+t2d
betd } :a+2bt+t2d+rk 1
d ! b+td
K

a+Zbtrt2d+T, lj

To simplify the manipulation, we write

a' = a+t(2b +td), and r = r

then

k+1

(x'k+1 h yk+1)

(b+td,( \
ca'+r k+1

yk+1).

fa"’ [10] fat betd

.+.
"

,_._._
Q
N
&
g
L

b+td d

is the %defined.

{1 0]

]

a

b+td

[,

It will then

+2bt+t2d be+td
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( at)? a'(b+td
oo [ sgu

b+td %] a'(b+td)  (b+td)?

a'+r a'+r
a'r (b+td)r
_ Ja'+r a'+r
(b+td)r  d(a+r) -b?
at+r a'+r .

The variance of estimated position at (k+1) may be seen to be exactly that
derived earlier in the single dimension case. Similarly, as mentioned
earlier, the first element of Kk+1 corresponds exactly with the derived a
and the second element with B

h. Initiation of the filter

The next problem to consider is that of starting up the filter. However, the
starting of the filter requires knowledge which may not be available. In
particular when we have received one observation, we need a velocity estimate
and its variance. Let us consider that we have a stream of measurements yj
each of variancg r. Thus,

[l | |
Xo = assuming zero velocity.
o}
e o
Yo
Thus X', = at time At .
o

We know that the variance of Yo Was r. We assumed that X was zero, thus we
are justified in assigning a large variance to this value. In reality, we
may assume initial velocity components such that the target is approaching.
It should also be possible to use a sensible value for the variance of this
estimate since target speeds ave limited.

The covariance between x, and Xy is zero since the errors '« them are nct
related.

T o
Hence Py = » L being a large number.
0 L
-
ret2L el
Thus P{ =
tL L
L
. ., B [ [1 olp; i] + |1
s e Kl = t'l
o oJ
-

1
mw" P R e AR O A nceara - e aiaSSAL AR _
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r+t2L

>
<1
(=]

o tL
| 2r+tl],

; ‘3’0")’0*)’1 Y1
L Y1-Yo T yimye
LTt Tt

which is perfectly sensible.

My - KMPYy

Fr+t2L [Yo'Yl].

Since L is large (at present, at any rate)

r

. r+tlL (1 0] r+t2L tL
=Py - F2r+t?L
| el
LZr*tZL tL L
;(r+t2L)(2r+t2L-r—t2L) tL(2r+t2L-r-t2L)
. 2r+tlL 2r+t2L

+tL(2r+t2L-c2-t2L) L(2r+t?L-t21)
! 2r+til 2r+t2L

; r(r+t2L) rtl

i - 2r+t2L 2r+t2L

: rtlL 2rl
'2r+t2L 2r+t2L

'
f— he

Now, since L is large,

1
-4

. By

s

T 2

T ?XJ

L=

e}

Whe cariance of the position x; is thus r, and that of estimating x; is 2r

both of which are reasonable results, and in keeping with those derived
} empirically in (4).
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We can easily show that the covariance terms, L tie in with the empirical
theory by calculating P'; and showing that the  variance of x'; is 502.

: Pry = 0PyOT
g’ 1 £] T z 1 o
X = : t
1 % o {} r 2r t 1
: 4 “t ?2‘ (8
§
: 1
b ?
é g Sr Sr:
y <!
. = v
r 2ri
t 7 .
The filter may also be started by observing the first two plots and calculating
3 initial velocity, varianc s etc.
: j. Equivalence of Kalman and a-8
4 Thus the Kalman filter has been shown to be equivalent to the least squares
3 af tracker provided that:
(1) all measurements have equal variance
% (2) data rate is constant
; (3) there is no plant noise (ie the track really does follow the
3 assumed equations of motiecn).
2 (4) an error in one co-ordinate of the track's position dves not affect
- the other co-ordinate.
/:
E: Hence the least squares ad tracker is a restricted Kalman filter.
v
3 ; Restrictions (1) and (2) become important when information is derived from
& two or more unsynchronised sensors of different accuracies.
3 i
b
3 s Restriction (3) is difficult to deal with in the aB tracker. Item (4) is
e perhaps the most significant restriction. If a track is stored as range,
3 range rate, bearing and bearing rate, then the errors between range and
4 5 bearing will not be related (unless data is input manually from a device
] B driven in Cartesian manner). If the track is represented in Cartesian
3 £ co-ordinates and their rates, the errors are related unless data is input
p! £ from a Cartesian device.
3 23 It is shown in Appendix A that the Kalman filter, the least squares aB tracker ‘
: 4 and linear regression give the same results, for special conditions mentioned
3 & abové. When -plant noise is absent, the Kalman filter represents
3 2. multi-dimensional linear regression worked out on a continuous basis.
3 i k. Choice of equation of motion
£ 28
. .
: Br As has Leen mentioned previously, radar information is available as a range
3 8 and bearing, with the errors in the two measurements wnrelated. At first

15
87
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¥ ? sight, it may appear reasonable to attempt to store tracks as range, range
E ﬁ rate, bearing and bearing rate, ie to use:
N 5 3 :r
g & o1 r 17"
< 53 r 1
¥ 2 K+l t o o Ty
> > 3 t )
: g o 1 o
8 g T k+1 ° rk
S -
k 3 gt o A
’ ' K+l o 1 t ek
X :;4
3 B 8' o o o 1 8
<

\POTED
i
-
+
—
L
t
t
i
o
[

R p '
g as X k+1 k*

it
<
-

Such a representation attempts to fit a spiral through all plots which is not
: generally valid particularly for targets which pass by the origin. However,
. , this error is not significant for crossing at zero or large ranges. Crossing
3 ' at zero range, is of course, radial. If 2 system is only interested in point
defence, such a method may be adequate. The effect may be reduced by use of
E 3 the time constant giving exponential decay referred to carlier. In the
1 1 simple a3 system this would be derived (approximately) by fixing a maximum
. , value of n. In the Kalman filter, introduction of plant noise terms has a
k 3 similar effect. Such a term must be used anyway, otherwise the filter will

eventually ignore plots since the variances ¢ plots would become very large
compared with forecast variances.

] One would expect that use of a second order state vector would improve matters
} for straight tracks. However, one would expect that it would still tend to
! pull tracks into the origin, exhibit less damping than the first order ré
tracker and have better response to manoeuvres.

For such a system the equation x'k+1 = ¢Xk would expand into:-

. ) r tz - ™= A -T
' i —
] f; Lag | 1 t > 0 0 (0] rk
3 ! ’
i . ' A
¥ :r kel | o) 1 t o] o] 0 rk
4 : |
: L ] .
4 !1k+1 ] o o 1 o] 0 o rk
5 1 Vo= i)
: P Lol I
: kel o 0 o 1 t 5 ek
: ]
} N i ! 2
"4 Lt !
! e i o 0 0 0 1 ek
¢ {
'3 . o) > 1 0
i i k+1 ' ° ° © k
l_ _. \_ A . _

However, this is still not a perfect representation of a straight track and it
has the demerits of gcomplication and the large variances associated with
estimates of T and 6. We thereforc need to transform measurements from r and
5 to x and y. This is simple enough:
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Re(x,y)=

i1,

s *-“ haid

X r sin 6

v

T Ccos 8 (6 being interpreted in the nautical sense).

The covariance matrix of r and © is
2
0°py O
o o©

2
89

It is shown in Appendix D that the covariance matrix for x, y is

2 vi 22 Z 2 _n242 3
o rrSm 8+r-0 eeCos ] (o e ee)SmeCose
2 _p252 3yeai 2 2049242 in2
(o MRS ee,SmeCose o rrCos 0+r<ao eeSm 9

provided that Tgg = sinoee, which is true for all practical radars.

Hence, all measurements are transformed to Cartesians, the R matrix beingz
transformed as above. The system is then:

x! 1 t o o-1 r x
k+1 k
xk+1 ) o) 1 o o xk
y'k¢1 o o 1 t Yk
§k+1 o o o 1 yk

TESTING RESULTS

a. Each of these three types has been programmed on a computer for
comparative testing. A simple simulation has been built round each of the
trackers: the simulation generates tracks which consist of two straight
parts, the parameters for these parts being provided as input data. Noise
is superimposed on each generated plot, the noise being added as range and
bearing errors. The noise is produced by a noise generator which produces
Gaussian distributed pseudo-random noise (See Appendices E, F and G).

The trackers were tested with various sets of input data. The variances of
errors in range and bearing, and the data rate were all kept constant for any
one run. This was not due to any limitations of the trackers, but purely in
order that the whole system could be set to work quickly. Also, keeping
things simple in this manner made it easier to predict what ought to hapven.

Some tracks with turns included were generated: it was not expected that
performance should be good on tums, since no turn detection or turn handling

~19-
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facilities have been built in, Overshoot on turns was shown by running some
of the tracks without noise (the R matrices were not zeroed as the filter
would ignore measurements after the first).

b.  The results obtained were very much as expected, as may be seen from Figs.
1-15. Both types of polar tracker perform tolerably well with tracks which
turn towards the origin, but poor performance against crossing targets. If
the distance units are considered as Km and time units seconds, 1 distance
unit per time unit corresponds to approx Mach 3. One would expect the r6
trackers to have poor performance for targets which turm away. Thus the

polar trackers tend to assume all tracks are going to approach the origin,
whereas the Cartesian trackers do not.

The standard deviations of the plot noise were 0.4 distance units for range
measurements, and 0.4° in bearing.

Figure 1 shows the response of the three trackers to a noise free track which
consists of two straight parts. All three trackers are satisfactory on the
initial radial portion - this is as it should be. The responses to the turn
may be clearly seen. If the track had continued beyond the point at which it
stepped, the xy tracker would have eventually rejoined it. The purpose of
this graph is to show the effect of continually increasing damping in the
event of actual motion being significantly different from assumed motion.

Hlow to deal with this situation (turn handling) will be dealt with in a later
report.

Figures 2-4 show the performances of the trackers against a short noisy track
which crosses at 10 distance units. It is clearly seen that the first order
polar tracker pulls the track towards the origin - because it is trying to

fit the best spiral through all of the points. This effect is less noticeable
with the second order polar tracker (Figure 3), and absent with the first
order Cartesian Tracker (Figure 4).

Figures 5-15 all have the same speed, 1 distance unit/time unit. Figures 5, 6,
7 and 8 show the relative performances against a straight track with a crossing
distance of 30 distance units. The first order r® tracker (Figure 6 and 7) is
clearly poor 'n that the incorrect equation of motion introduces systematic
errors. The 2nd order ré tracker is ''reasonable" in removing these systematic
errors until the plot at v = 26.3, ie to plot number 19 (see Figure 8).
However, the xy tracker (Figure 5) is considerably better, both in terms of
position and velocity: .after plot 6, the xy tracker always has velocity
estimates within # 0.02 of the true values. When the 2nd order polar tracker
applies enough damping to do this, the non-linear assumed equations of motion
start to "pull' the track systematically to one side<.

Figures 9-15 depict a similar track to that in 5-8, except that the crossing
distance has been reduced to 15 distance units. The performance of the xy
tracker (Figure 9) is quite reasonable, particularly when Figures 10 and 11
arc considered. 7These two graphs show plotted and smoothed errors together
vith their ='s and 3c's. The curves of o and 30 for the smoothed errors are
approximate, in some later runs the true values will be output during the runs.
The first order polar tracker does not perform adequately for very long

F.gures 12-13), The second order polar tracker performs adequately up to
around piot 11.

It may be apparent that limiting the number of plots used in the two r6 based
trackers would have improved performance. Ir particular, if the track depicted
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in Figurs 11 had a time constant of 11 plots it would probably have maintained
good contact. This concept will be pursued further in a later report. It

is a/so worth mentioning that, at the closest point of approach, the equations
of motion assumed in polar trackers are valid since motion is circumferential
at this point. Of course the above scction demonstrates the importance of
selecting the correct equations of motion,

12. USE OF THE METHOD USING D.rFERENT MEASURED QUANTITIES

a. We may now make a further point about the usefulness of the Kalman
filter in application such as "Bearing only". Consider that we have, in
addition to normal radars, a sensor which only provides, say, bearing
information. In a polar tracker, we may use this information readily. It
may be recalled that M was defined in (19).

For a polar tracker, the state vector, X, may be:

-
T
; the measured variables may be:
3
L 8
r 1 02 o
Y r
Y = ! swith covariance R = .
o | o a2
[ )’_j 3]

Hence Mre may be seen to be:

- -
T o o o

' |
.
o o 1 o

el

If we only measure bearing, (19) indicates that Me would be:

[o o 1 o]

to give
[o o 1 o] K3
by
= 6 - noise .
" "
8 ’ '
!
8
L. J

The covariance matrix applicable to ey, Re is oze; a Ix! matrix.

b. It may now appear difficult to incorporate this single variable measure-
ment in a track represented in Cartesians. However, the fact that we were
-21-
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able to make a bearing measirement at all conveys the information that the range
of the target was somewher< -etween O and the maximum range of the sensor.

Thus it would not be unrea: :nable to assign 1 value of range to the bearing
measurement, this range bei.ag, say, one half maximum range of some function of
signal strength. The R matrix associated with the '"'measurement'' would contain
the bearing variance and a variance for range. If the range were better than
just a guess, then ozr could be made reasonable. This would not prejudice the
assumption made in Appendix B, since the approximation for this transformation
is only effective in bearing.

CONCLUSIONS

a. The Kalman filter approach provides the basis for an effective and unified
generalised tracking system. Cartesian representation of tracks appea s
advantageous at this stage. However, when the effectc of plant noise ure
considered, it would appear that this is best applied in a track-oriented
manner. Alternatively the knowledge of forecast accuracy could be used in
deciding whether or not a turn had occurred - in which case the filter could
be reset in some fashion.

b, It has be=n shown that a system which takes information from various
sensors with differing accuracies can be produced and that not all sensors
need provide the same sort of iaformation.

c. It is perhaps worth noting that the tracking process can only be as

good as the data it receives. Thius it is dependent on the accuracy and rate
of input. The amount of use it can make of this information depends on how
much of the old inrormation the target being tracked allows us to use. If the
targets being followed may only turn slowly, we may use a long time constant
to match this, the long time constant giving a high variance reduction ratio
ie high gain in precis.on. 'Li.ely" targets only allow a short time constant
which in turn gives 2 low gain. Consequently, high gain for lively targets
requires a higher data rate (ie we make time units smaller). The method
should allow us to put figures to such arguments.

d. A long study of the subject of tracking by Bordner and Benedict resulted in
them concluding '"to improve tracking, improve radars'". The approach adopted

for this study should provide the basis for quantitative statements on the
improvements that new radars could bring dbout, eg with regard to data rats,
accuracy, elevation information, Doppler information etc.

FUTURE_WORK

No tracking process is of any value without a means of associating extracted
plots with tracks. Reference 9 discusses some ideas and methods for such a
process.  Any such process requires knowledge of accuracies of forecasts

ard measurements - these will be available if a Kalman filter is used for
the tro-%Xing process.

Current work on tracking is directed at studying the problems of turn
han”iiny, and taen, having a solid base, consideration will be given to the
benefits and uses of elevation and Doppler information in a generalised

manner.
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APPENDIX A )

EQUIVALENCE OF KALMAN FILTER, LEAST SQUARES af TRACKERS AND LINEAR
REGRESSTON, FOR SINGLE DIMENSION CONSTANT ERROR CONSTANT
DATA RATE CONDITIONS

Assume measurements are available as follows:
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1 §  All measurements have variance o? q
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: 1. Kalman estimation: ¢ is ", Mis [1 o]
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. - 1223 + 75 - =
; X3 = "6 2 6
E i (23-2)) ,
§ L 2t J
{ e
: 5¢2 o2
Py = 6 2t
; 2t Zt2
/ L
: -
1
: 3—(4234-22-221)
! X'y,=
. u=
(z3-21)
L 2t
“ .t (2]
3 t 10 !
; Ply= i Ky = :
| 2 2 3 |
3 : t 2t2 | l_lOtJ
.' |
[ L7y 04 22 ]
-y . 16( Ly+dZ3+2p- .,1)
: : Xy = i ! I
! 1 -t
3 ! i_o— 321,"'23 22-321)
- ]
i 2. Linear Regesswn Estimation
‘ We assume observations are related thus:
X = mt+c
o
E We thus wish to minimise s = ﬁ'i (zi-rnti-c)2
3 i=1
E We do this by finding -3—% ,%%, setting both to zero and solving for m and c.
]
8 _ nrzt - Lzit
k: We get M= = (z0)2
i
X c = tt2iz - Itzlt
3 nite -~ (Lt)2
3 ! ilence, in this example, n = 4 and z's and times are as given, (ie o, t, 2t etc)
b
. m = 10t(3zl,~*z -22~32})
c = = (721+422+23-224)
10
|

- o ar i gealy, A
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‘. Position at time 3t is:

~

Xy

T%? (3z4+23-25-32;). 3t + j%'(711+422*23'224)

T% (724+423+25-22,)

and its velocity is m.

3. Least squares aB tracker

_ 2(2n-1) _ 6
Now, ¢ = nel) and B = n(n+1)
Thus 5(2 =272
t
and ;(2 = 2

x'3 = z22+(22-2))

X3 = x'3+ %{Za-x's) = %{-21+222+523)
o 1 |
Ry = ko + zp(z3-x'3) = 5{-21+23)

. " s 1
. X'y = X5 + X3.t = 3(-2214'224'423)

Xy = X'y + T%(Zu‘x'u) = T%(-221+22+423+7Zu)

. 3 . 1
and Xy = X3+ 757 (zy=-x*y) = 10t (-32y-2p+23+32y)

Hence all three methods give the same results, which is not surprising since they
ail originate from the same criterion. Proofs which demonstrate a difference
between linear regression and least squares aB tracking must therefore contain an
error of some sort,

-26-
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APPENDIX B

TRANSFORMATION OF VECTORS AND THEIR COVARIANCES

The problem discussed here is the one which arises when we transform a given
vector in one plane to another plane. We wish to find how the covariance matrix
which applies to the original vector is transformed.

T LARTNIASAC IR

Consider that we have a set of n variables, which we group into a vector Y,
together with a covariance matrix RY which is nxn and contains the covariance of
the variables in Y. We will transform Y to a new vector X and we now wish to find
the contents of a matrix Rx’ which is nxn and contains the covariances applicable

AW

ey

3 to X.
3 - Ty u B
Y1
. xl
Y = . R X = .
Ya *n
b = L. =
T T . . . T
Y1 Yi2 yin

T T T
ym mp ynn

T T . . T
X11 X12 Xin

R =
X
r T N . T
xn) xnp xmn
L

By definition,

m
= 1i 1 = T
T = limo oo qzl (xiq - xi)(xkq - x)

or, ia increments from the mean values ii and xk

m
Tk = llmm*m - qgl Gxiq kaq (B.1)
-27-
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From the total derivative theorem,

axi axi 0X,
dx.l = Fy Y1 B7% dy, + . R 3;;- dyn
- ¥ Mgy, (8.2)
=1 V5 )
Now, if the derivatives of Y are linear over the intervals Gys = /—;;;;

s =1,2,3. . .n, we may use (B.1) and (B.2) to give:

n Bxi n Bxk ]
xik Mmoo Z —§—'6yjq ) ( ) &Yy 6ysq )J

i=l 7 ) s=1

11}
—
-

%a
gl
o~
o~
ne-1
Q
<
Q
<
<
d
Ka)
<
[7]
0

"
o~ S
~13

@

s X
o
—~

These last two steps are valid for these summations.

The last part (ie following limm+w) in the expression for Toik is the definition of

the covariance of yj and Y hence:

X, axk

n
1
— e T, B.3)
51 sz ( ayj g YJS) (

~53

T .
xik

We have therefore established the relationship between Ry’ the covariance matrix of
Y, and Rx’ the covariance matrix of X.

This may be written in matrix form as:-

R = AR AT
X y

wvhere Aij = Sy




APPENDIX C

ESTIMATION OF MOST PROBABLE POSITION

The joint probability density function is given by (see text 9 a.)

-l . (x'2-x)%  (xp-x)2
P= fomra: XP - 2a' 2r

1
= S o )

The value of x, x which maximises p is given by the solution of g% =0

' - -
Hence %%~= X g’x +X27X 9
T
. X = rx'z2+a'x2
a'sr

We also wish to know the variance of X which we call o2

T K al

let h = =

T a'+r

Then X

hx'?_ + kXZ

Let us assume an error of 8x'; in x'; and 8x; in x,.

Then the error in X, 8X = h.6x'; + k.8xs

The variance of x is defined as the mean value of (6x)2 over many samples.
Thus o2 = mean (F4(8x'5)2 + 2hkéx',8x%; + k2(8x3)2).

We assume that measurement errors are uncorrelated, ie that 8x'; and 6xp are

independent; we also assume that they have zero mean. Hence mean (8x',8xp) =

Thus 0% = h2a' + k?r
_rfa' +r(a)? _ ra'(r+a))
(a'+r)= T ()2

ra'
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ESTIMATION OF MOST PROBABLE VELOCITY

The method of estimating velocity is basically the same as that for estimating
position with one important difference. Our two estimates of velocity are:

Vi

and vy =

It is clear that the two estimates are related since they both include data from
the same point. If we call these estimates v and v, respectively, and assume
variances s;% and s2® and covariances s122 (these values are calculated in C.2)
then the joint probability density function may be shown to be given by:

-(vy-v)? . (vy-v)2 . 2o (v-vy) (v-v,)

1 s14 s s152
P = o7sys,/i-p2" ©¥P T T2(1-02)
2
_ s%1
where o} §I§;

We wish to find the value of v which maximises p ie the value of v to satisfy

%% = 0, where J is the argument of the abcve exponential function.

2{vy1-v) . 2(vo-v) . 20(2v-vy-v,)
dJ s1° S92 S1S2 =0

dv 2(1-079)

522vy + 512v) - 5122 (vi+vp)

Hence v =
$1%+552-2512% (C.1)

~ ~

: Xp - -X
Now we know that v, = ztxl and v, = 22°%1

which may be expressed in matrix form as:

V = FX ie .
- r 1 1 X1
1 i - =
‘Vl! . bt t ° x'2
.v ' i- 1 o 1 X
S "t tJ 2

If we consider errors in each element of X, we may construct a matrix out of them:

-30-
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Now the variance in Xy is the mean value over many samples of (6%1)%, and so on
for x'; and xp. The covariance of xy and x'; is the mean over many samples, of
(8x).6x'3). We may represent these variances and covariances in a covariance
matrix, which contains the mean values of the elements in:

Gil [5%1 5x'2 6X2]

ie the covariance matrix elements are the mean values of the elements in:
(6%1)%2  8x16x'y  8X18xp .l
§x'26%x; (6x'5)2 §x'28x;
-6x26§1 8xp8x"'5 (6x2)2

Now the covariance matrix associated with X is

e

lp a' o
‘o ) T
. -t
where a is the variance of x;, r is the variance of x5, p is the covariance of Xx;
and x';, and a' is the variance of x';. Note that the covariances associated with
Xo are zero, since we assume that errors in this measurement are not related in any
way to errors in previous measurements.

We may apply (B.3) of Appendix B to calculate the covariance matrix of V, which is:
2 2 a+a'-2 a-
{51 S12 1 r*——gzjl —;E
2 2 B a- a+r
22 = i-—fg ! (c.2)

We may apply a similar approach to estimate p ie

given X' = [1 t] ?i11
; i
ivll
- b
with covariance for X1 lra b1
of ' ;
vy tb d‘
. 19 b4

~-31-
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. 3
3 a pj {u a+ht
: ip a" jasbt  a+2bt+ted
é (™ J - s
" Thus P = a+bt
é We may thus combine this result with (C.2) and (C.1) to give:
{ ~ a
3 (x'2-X1) (a+r+bt) + (xp-X1) (t2d+tb)
: V= t(a+2bt+t2d+r)
g Now a+T+bt 1 (t2d+bt)
3 t(a+2bt+t?d+r) t = t(a+2bt+t2d+r)
( We may thus rearrange (C.2) to give
1
] L= X'2oX) |, (bt+t?d) (xp-x'p)
3 t t(a+2bt+t2d+r)
. _ (b+td) (x2-x'3)
: LY i ObtetZder (C.3)

) v] being the previous estimate of velocity.

We now move on to calculate the variance of v which we will call sZ2.

Now, V=V] o+ %-(Xz-XZI).

Thus we are performing the transformation:

j =12 .8 -
g ' .

13 [" 2 .
p Vi .

In order to find the variance of v, we need to determine the covariance matrix
associated with

Xz]
X211,

v

e

PRI

'} We assume that x, has variance r, and is uncorrelated with x' and v; (ie that
errors in measurement X, are not related to errors in forecast and velocity
estimates). Thus all that remains to be estimated is the covariance matrix for
FXZ'
]

]
i
i
1
k]

~32-
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X! = x +v ,t
2 1 1

a+2bt+t2d betd |
!
n

giving the covariance matrix

Lb+td d
"
[xz] [r 0 o !
Hence the covariance matrix for: ,i is |o a+2bt+t?d b+td
R
2] 0 b+td d
V.
1l - -

[P G PR s PR N LR STV S

AT T

!
i
2 2 '
s = %FE + %T (a+2bt+t2d) + d - 28 (p+td)
t 1 t
, g _ .{bxtd) . ’
Now T " asdptetder (as shown earlier)

2 = (b+td)2 [rras2btet?d-2(as2btet?den)] | :
(a+2bt+t2d+r)? '

d(a+2bt+12d+r)2 - (b+td)?(a+2bt+t2d+r) ;
(a+2bt+t2d+r)2 :

e %

e an

2 = ad+dr-b?
a+2bt+tid+r

bl o=

PR A

&2 - _d(a+r)-b?

a+2bt+téd+r

PP L]

33




NP ST TE

G A )

b Moo

o

Summarx

The best estimate of position has be2n shown to be given by:

rx' + a'x
2 2

*® >
]

a'sr

and its variance is:

]
o2 = I8l -
T+a

where a' = a+2bt+t?d

The best estimate of velocity is given by:

(b+td)(x2- xz')

vV =V +
! a+2bt+tider

and its variance is

2
2 _ d(a*r)-bs
5T T Zebtetlder
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APPENDIX D

APPLICATION OF RESULTS IN APPENDIX B IN POLAR TO CARTESIAN TRANSFORMATION

Consider the following polar to Cartesian traasformation (ie from r, 6 to x, y)
X =r sin 8

y = rcos d

(Note that 6 is interpreted in the nautical sense ie 8 is a bearing which increases

in a clockwise direction from the positive y axis.)

The covariance matrix associated with r and 6 is assumed to be:

i i ier and 6 are independently variable
0 o246 ;

(as wo§ld be the case when r and 8 are determined from a radar auto-detection
system).

We may relate the problem to the argument in Appendix B by considering:

i x
Xasi
Ay,
.
Y as
0

The transformation of covariances given by (B.3) involved a condition of
linearity, this holds if sin opg = ogg which is valid for all radars the author
is aware of.

We will denote the covariance matrix applicable to X as:

2 2
0% x oy

2 2
xy Tyy

L e TR IR

Hence, by substitution into (B.3)
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/ 2
2 CRS 2 e 02 = a2 =
o + (3_6- g0 (since o = 0%gp = 0)

rr 6

‘
——T

/.
z ox
%xx = \3r

= 925 5in%0 + 12 02, cos?Q

=02 _ = X3 2 . X

9 %2'_02
6 ~ 06

<
~
Q)
3
@
2]
-
e}
Q
D

n

(0% pp-120%g¢) sind cos8

Q
QL

2 - ; ; 2
yy = {5k | Prrt{ 35! ee
\

. \ ]

Fao )\ [, 2
]
i

i

2 2 242 1.2
0“pp COS 6 + reo gg Sin 9

Tt

a2y sin?e+x202p4c0s20 (02yp-r20%gg)sinbcos
Hence Rx = y
(02 p-120% o) sinbeos® 02, cos%6 + rzozeesin‘eé
L |

This is the covariance matrix for the transformed vector X which we set out to

find.

It is interesting to ncte that in general, the co-ordinates after the trans-

formation (x and y)} are notoindegendeq}. The singular cases where they are

independent occur for 6 = 07, 907, 180", ...or for T = 0pp/0pg. These special cases

" , are easily explained as follows: the equal probability contours for bivariate
Gaussian distributions are ellipses: if the axes lie in the directions of the axes
of the frame of reference, then the covariance terms are zero: hence the independence

; of X and y crrors for 6 = 0°, 90° etc. When r = crr/cee, these ellipses reduce to
circles which may be considered as limiting ellipses whose major and minor axes
iic along the axes of the reference frame.

TETITRITR R

it is worth pointing out tiat the covariance matrix R_ could have been derived by
considering the geometry Jf the ellipse and the rotatlon required after trans-
formation. However, this is complicated, particularly for a transformation from one
3-D frame to another, when it is not just a simple translation or rotation of axes.
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(PAGE 1)

«IJNUNT TI0/PRINT

«[JDUWIT120/READ

«XEQ

«STURAGEZ 24000/ 15000

*CHAINI]

* AL GJL.

/BEGIN INTEGEF” I, JLoMEASURE, STATEsMI»Vo:lsJLDX®

JARRAY 7 C18 4 12 1), RC12251282)524C01282513 1)
PO134>124)5MC0122,12)>M1C1345182)»
PHIC1S 4 134)5 KC12 40 182)s PITC12 40 122)5JUTXC18 40121
JUTLC132,131) %
/REAL 7 T» TIMEs DELTAT, PHANGEs FINTSHy FXs XDITs CHANGE JF XDIT»
WYs YD1 Ts CHANGFE 3F YMITs X0s YNs VARRs VARTHETA, RN SFs THE TANDT SFy
Uls 1J2» VAPTANGFE, 1] T SF» RANGEs> REARTN (s SINTHETA, C)STHETA®

ICIMMENTZ X, Z ANG 13JPYZ ARE CULWMY VECTIRS.

R QNN OIPYR ARE 2%2 MEASUREMENT CJVARIANCE MATRICES.

K IS 6 4«2 MATRIX, AND IS ESSENTIALLY THE DAMPING FACTIR.
M IS THE MEASUREMENT MATRIX AND IS 2% 4

wmT IS THE TRANSPISE 2IF o,

TRACK IV X»Ys GENERATED IV X, Y WITH CINSTANT DATA PATR.
1AVIEUVRE AT TIME FHONGE. FINISH AT TIME FINISH.

KALMAY FILTFR TRACKFR wITHIUT PLANT NIISE TERMS ¢

/PRIGCEDURF 7/ TRANSPISECPHI, PHIToMILN) €

ZENTEGERZ MIsN ¢

/ARRAY » PHI»PHIT <

/REGIN INTEGFR”Z [».1 =
/ORRAY ¢ CIPYPHIC1:MI» 12N) ¢
/FIR/IZ1 /STEP /1 Z/INTIL MT /D] /
/FIR2ZJ=1 /STEP /1 ZINTIL N /D17
CIPYPHICI»J)=PHICL, )Y T
ICIMMENT PY4T CIPIRD &) THAT TRANSIVISE CAV RE ASSIGNER
T JRIGINAL MATRIXC(INLY PISSIALF FUP SOUARE YATRICES) ¢
IFJR/T=1 /STFP 71 /INTIL M1 /D35 ¢/
IFIR IS /RTEP 271 /INTIL /N /D] /
PHITCT» D3 =CIPYRIICT Y)Y ¢

/END/TRANSPRISE ¢

/ERPICEDURE # MATRIXINUCA, RyMI) @
/ARpAY 4 8,8 @
FNTFGED/ A €
Ry SEAL / DET ©
/M vAENT 2 P IVUVERT 4 2«2 MATRIX ©
FLF 741 INF 72 ¢ THEN PFCIN Y
WRITETCIN, 2€C 20 7Y 2% NE 27y 7y €
/G1T)s STIP ©
IEND ©
NPET=AC T, 1D EAL2,2)=-0C 1, 2)%A(25 1) ¢
OC1s 1)=AC2»2X/DET T
RCL 2)=(=AC1, 2)/DFTY ¢
RC2» 1)=(=-ACP» 1)/DFT) T
R( 2, 2)=A(1,1)/DET <
TIPS /FND 7/ AaTRIXINV ¢

- \
iai
abils, sk
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(POGE 2)

LR RPN Ve 2,

AARICFPHEE 2 AATRIXADPDCAS H, CoM s N § :
FARWRY 7 Apyv, 0

FINTFLERZ ME,N <

CJAMENT /7 THF S JF THF @ATRICKES IS STIRED IN T4E ARMAY

CeAs R, T ARE V&N <

/AEGIN INTRGERZ 1o )P ¢

oS S AT Jos o bt

; /FIR 1= /STFP 41 /UNTIL T #D] /
3 (PR 4J=] /STEP 71 /N TIL 724 /D) 7
3 CCI,II=ACTL,dI+BCI,J) @
/END ¢ MATRIXADD
¢ ’PRICEDURE # MATPIXSHIRCA, Ry NyMI+N) @
3 ‘ARRAY / 8, R, C ¢
3 /INTRGERZ MT,¥ ¢
: /CIMMENTZ THE DIFFERFNCF -JF T4F TW) MATRICFS 1S XTIRED IV THE
4 ARRAY Cs AR, ARE MIkN ©
: /REGIN INTEGER/ [,.) &
3 /FIR /=1 /STEP /1 2INTIL /™1 /D1 4
: JPARZIZY /STRP /1 «INTIL /N /D) 7
¢ CCI»d)=ACT . JI-RCI,J) ¢

/END/ MATRIXSIIB ¢

/PRICEDURF # MATRIXMIL TCA» Ry CoMI»i, Py <
/ARRAYt /7 AR, C &
ZINTEGERZ MIsN, &+
CIMMENT 2 THE PRIDUCT JF THE Twl ARRAYS S8 STIPED IN THF
ARRAY o ™' MILTIPLY RY A SCALAR THF SFEOIND
MATRIX ML, HAVE THF VALUF JF THE QCALAR AR TS NIAGIVAL
vITH IHE PFST JF THE ELFMENTS A NJHHTS. A T8 Mxd,R 1S NkP,
C IS %xpPe CIPLES JF INFUT ARRAYS ARE MADE IV JRQER
THAT AN ARPAY MAY RE (I8ED BITH{ AS AN INPUT ANT
JHTPUT PARAMETER ¢
/BEGIN INTFGERZ T,.Jo% 7

JARRAY 4 (WIPYAC1SMI» 12N CIPYR( 1N, 2Py ©

/FIR/ISY/STEF 71 ANTIL /M1 /0] 7

R IRZIST /RIFEP /L INTIL 2N /DY)

cIPYACI,»J)=ACT,J) <

/FRIRZI=ZY /ETEP /1 /INTIL 2N /) /

/FIRZI=1 /STEP /Y Z/INTIL /F /D) /

CIPYRCIL.II=R{I,J) ©

/pIRZI=VISTEP 78 ZINTIL 74T /D1 /

‘FIR2)=Y /RTEP /Y Z/INTIL 7P 7D 7

/REGIN Y fCIs )= ©

BIP/X= Y /RTEP 71 Z/INTIL /N 7] ¢
CCI» 1ISCIPYACE, VIXCIPYRIX . J)+0(CI>J) ©

IRQDI Q

/END s MATRIXMILT €

.
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(PAGF 3)

‘PRICEBURE 7 DUMPCA,MI,N)Y <
ARRAY 7 o ©
/INTEGER 7 mlI,N <
‘BEGIN INTEGER/I»J -~
/FIR/I=1/S1EP /1 /INTIL /M1 #DJ
7REGIN /
FIRZJ=1 /87EP /1 ZINTIL /N /D] /
GRITFC10,LAYJUTC 7¢C /S=NDPDDDe PPN /) 7Y 5 ACT5.JY) ©
/END’ ©
NEVLINC10, 4) &
/END/ DUMP ¢

/REAL PRICEDURE/ RANDIM ¢

/REGIN INTFGER~’/ CALC <

CFIMENT 2 JLDX MUST RE DFECLARED GLIJBALLY ¢
JLOX=255%3JLDX &
CALC=ENTIERCJLDX/7131071) <
JLDX=ULDX=-§31071%NALC &
RAIDA=JLDX/ 131071 ¢

/END/ RANDUM ¢

/PRICEDURE # GAUSSIAN(NIISEs» VARIANCE)Y ¢
/REAL ~NJISE, VARIANCE®
/BEGIN REAL 7/ TWIPL <

TWIPI=6 248318 <

U1=RANDIM <

U2=RANDIM =

NJISE=SORTC -2« VARIANCE* LNCUD I CISCTWIPIxU2) ©
7END/ GAUSSIAN =

‘PRICEDURE /SET P MATRIX =
/REGIN / .
R(1, 1)=SINTHETA* SINTHF TAR VARR+Z(P» 1)%4£( 25 1)X VARTHETA ©
R(122)=R(2» 1)=SINTHETA*CISTHETA*( VARR-
RANGE* RANGEX* VARTHETA) ¢
F(2s 2)=CI1STHETA® ) STHE TA% VARR
+201, 1%L 15 1) VARTHETA ¢
/END/ SET P MATRIX <

/PRICEDLIPF 7 NJISEPLIT *

/RBEGIN CIMAENTZ TJ SET £ MATRIX vHEN VJISE ADppED &
THETANJI SE=RNII SE=0 <
GAUSSIANC RNIJTSE» VARR) ¢
GAYSSIANC THETAVII SE» VARTHFTAY ¢
RAVCGE=SPRT(EX*EX+ WY* WY)+RVIISE ©
REARING=ARCTANCEX/ «¥)+ THETAV JISE &
SINTHETA=SINCREARING) ¢ CIJSTHETA=CISCREARING)Y ¢
LC1s 1)=PANGEX SINTHETA © Z(?P» 1)Y=RANGEXCIST™METAO ¢
SET R MATRIX ¢

/ENDZ NJISFPLIT ¢
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5 e

/PRUCEDURE 4 CLFANPLIT ©
/REGIN ¢
RAN GES SORTCEX*EX+ WY Y) @
BEARING=ARCTANC(EX/ YY) ¢
SINTHETA=SINCREARING) ¢ CISTHETA=CUSCREARING) ¢
LCly 1)=EX ¢ 2¢2,1)=LY ©
SET R MATRIX <
7END/ CLEANPLIT ©

/PRUCEDURE 4 TRACKCYMEASUREs STATEs PHI»MsMTs Ps X» 25 R) ¢
‘ARRAY 7 PHI» PsXsZs RsMTom @
/INTEGER 7 ¥EASUREs» STATE =
/REGIN ARFAY # MPC1:MEASUREs 13 STATE)» PHITC1: STATE> 12 STATE)
MPITC13MEASURES 1 $MEASURE) » PREDZC1:MEASUREs 12 1)
ERRIPCIVC1:MEASIIREs 1:MEASIIRE) » CIRRFCTIINCI2 STATE» 12 1)
KAPC13 STATF, 15 STATE) ¢

TRANSPISECPHI> PHI Ty 40 &) <

MATRIXML TCPAL» Xs X &9 45 1) &

MATRIXMILTCPs PRI Ts Ps 4 4y 4) @

MATRIXMUL TCPHTL, Py Py 45 4y 4) &

VMATCPIXMIUL TCs PsiMPs 25 4, 4) ¢

MATRIXMI. TCPs M Ty PUTs & 4 2y

MATRIXMIL TCMy PMToMPYTy 25 40 2) =

MATRIXADDCMPMT, RsMPMT, 2,92) ¢

MATRIXINVCMPMT, ERRIRNIV, 2) @

MATRIXALL TCPAT) ERRIRCIVIK, 4,2, 2) «

MATRIXMIL TCMs X» PRENZ5> 25 45 1) ©

MATRIXSIIRCPREDZ, 4, PREDLS 25 1) ©

VIATPIXM'L T(K» PPENZ, MJRRECTIIN» 4,2, 1) ©

L RLEER 200

AT VAN AT

AT b EUpe Tt ke e e 2

aer

COMMENTZ PREDZ 1S V)W (M¥X=Z)kK ©

G gy S e S e ]

MATRIX SHRCX, CIRPECTI NS Xy 29 1) ©
MOATRIXMIL TCK s MP,KIPs 45 Py &Y ¢
MATRIXSURC P, KAPy Py 45 4) ¢

CIMAENTZ FIR A 4 VARIABLE STATE VECTIRC STATF= 43,

AND A Ti2] VARIARLE MFASUREMENT VECTIR(MFEASIPR=2)Y,

X IS ok1,2 1S 2k1s P IS 4kds M IS 2% PHI IS a%and 1S 4kD @
SEND /s TRACK ©

¢ AC1 1)=102, 3)=MATC s 19=MTC32 2321 ©
ME1,2)= 00153300 15 L) ZM( Py 1)=MC D5 2)SMCO> AIZMTC 1, P2I=MTC O P)I=TCPs 1) =
ATCRs 1I=MTC 8, 1)=MTC L 2)=0 €
/FJR/1=1 /STEP /1 /INTIL 74/n1 7
FIw /=) 7STERP /1 /INTIL 747/D) /
/REGIY «
PHICL, )= 21777 7EN 21 /THEN 7] /ELSE /N ©
Pl Jd=0 =
/t’\le -4
STATR=4 ¢ WMEASURE=D ©
CIAFNT 2 STATE VECTIR IS 4- VARLARLF,MFASURFMENT VECTIR
[] P=-yARTARLE ¢




CrAGE 8)

XO0=REANC20) ¢ YA=READ(?2{0) <=
XDIT=READC20Y < YDIT=READC2NY <
CHANGE JF XND)T=REANC2NY & CHANGE JF YDIT=READC2M)

VARR=READ(2N) ¢ VAPTHETASREADN(20) & JLNX=RFEADC2()
NJI SE=READC?0) ¢

WRITETC10s 7€C 7C7) /X 7% 7Y 2% /KALMAN 7% /TRACKER/C /C 7)) 7)
INITIATE TRACKSEX=XA ¢ Wy=yY(Q <
/IF/NJISE “ENn7/ 1 /THEN/ NIISEPLIT =
ZIF/NJEISE “EQR7 0N /THRN /7 CLEANPLIT *
TXC151)=2C151) X3, 1)=4C25 1) €
X¢2» 1)=XC4 1)=0 <
DUMPCXs 45 1) ¢ DUMP(Z, 25 1) ®
PC1,1)0=R(151) ®© P(3»3)=R(P»2} ©
PC1,)=P(Rs1)=R(1,2) ¢
P(2, PY=P( 4 4)=1 <
OIMMENT/ TRACK [S NJWw PRIMED ©
/FJR7 T=DELTAT ‘STFP~/ DELTAT “INTIL/ CHANGF DI~/
/REGIN 7
TOEX=X0¢XDITRT ¢ WYSYOD+YDIT¢T ¢
ZIF 7 NISE “EQ7 1 /THEN 7 NWJISEPLIT ¢
/ITF 7/ WIISE “ER7 0 /THEN 7 CLEANPLIT ¢
7CIMMENT Z NJJESE ADDEN TV NJISEPLT @
PHIC1, 2)=PHI( 3> A)=DELTAT <
TRANK( 2y 4 PRI>MIMTs Py Xs Zo RY) &
DIKIPC(X> 45 1) & DUMP(Zs2,1) ¢
TIME=T ©
ZEND/ ¥
X0=XN+XDIT* TIME ¢ YN=YQ+YDIT* TIME ¢
XDIT=XDIT+CHANGE JF XDIT *
YDIT=YDIT+CHANGE :JF YDIT ¢
FINISH=FINISH-TIME ®
/FIR/T=DELTAT/STEP/DEL TAT “WNTIL # FINISH /D]~
/BEGIN /
EX=X0+XDITkT F WY=YN+YDIT*T ¢
ZIF7 NJISE “EQ~ 1 /THEN 7 NJISEPLAT &
/1F 7 NJISE “E€/ 0 “THEN / CLEANPLOT ¢
PHIC1,2)=PHI(3» H=NEL TAT ¢
TRACKC( 2y 4 PHI»MsMTr PeXsolsR) &
DUIP(Xs 45 1) € DIMP(Z,2,1) &
/E'QD/ <
/END

42
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*IDUNTTIU/PRINT
[ IDINTT20/READ
*XEQ
¥STIRAGEZ 4N Q715600
«CHAINT
* AL GIL
/BEGIN INTEGER”Z 1+JsMEASURFy STATE»MI»N» I JLDX®
7ARRAY 7 XCl1t 4 121)s RCIE25122)s ZC12251281)5 CIPYR(1:22,122),
COPYZC12251281)s PC18 4 1248), MC1829184)sMTC12 45122,
PHIC12 45 124)s KC1S 4 132)s PMTC12 45 1282)5JUTXC1S 40121
Juilc1ees 121y o
/REAL / Tr TIME, DELTAT, CHAVGEs FINISH, FXo XDJT» CHANGF JF XPIT»
WY, YD Ts CHANGE JF YDIT» X0s YN VARRs VARTHETA, RVIIT SE» THETANIT SF»
U1, U2, VARTIAVCE,NJISES

/COMMENTZ X»Z AND CIPYZ ARE CJLUvN VECTIRS.

R AND (WJPYR ARE 2«2 MEASUREMENT CJVARIANCE MATRICES.

K IS A 4«2 MATRIX, AND [S ESSENTIALLY THE DAMPING FACT}P.
Mm I& THE MEASUREMENT MATRIX AND IS 2+ 4.

MT IS THE TRANSPISE JF e

TRACK IN F» THETA, GFNERATEN IV X»Y WITH CINSTANT DATA RATF.
MANUFRDVRE AT TIME CHANGE. FINISH AT TIME FINTSY.

KALMAYN FILTER TRACKFR @I THJUT PLANT VIISE TRERMS ¢

/PRICEDURPE / TRANSPISECPHIPHIT,MI>N) ¢
/INTEGERZ M,V ¢
/ARPRAY / PHI»PHIT ¢
/8FGIN INTEGERZ I»J ¢
7/aRRAY 4 CIPYPHIC1:MI»13N) ©
/F)R/I=1 /STEP 71 /INTIL /M1 /D] /
7FIR7J=1 /STEP 71 ZINTIL /N /D] /
COFYPHICIS JI=PHICT,)) ©
CIMMENTZ PHI CIPIED S) THAT TRANSPISE CAV RE ASSIGVED
T) JRIGINAL MATRIXCINLY PISRIRLF FJR SQUAPE MATRICES) ©
/MIR/I=1 /STEP /Y 2ANTIL D /D] ¢/
/IR 2= /STEP /L /INTIL /N /D) 7
PAIT(I» D)=CIPYPHICI I ¢
/END/TRANSPISE ¢

/PRICEDUPE « MATRIXINV(ASR,MI) <
/QRRAY 7 O,RB ¢
ZINTEGFEF /7 M1 ¢
/REGIN REALZ DET ¢
CIMIENTZ T) INVERT A 2«2 MATRIX ¢
Te Ml 2NE/2/THEN REGIV/
WRITETC10s 7€CC/C/Y M NE 27y 7y ¢
/G)TYs S$TIP <
JENG/ ¢
NET=AC1» 1)XAC2, 2)-AC 1 2)kACD, 1) €
R(1:1)=A(2,2)/NET ¢
RC1,2)Y=(-06(1,2)Y/DET) ¢
R(2,»1)=(-A(2,1)/DETY *
R(2,2)Y=A(1» 1)/DET ¢
STIP: 7END/ MATRIXINY ¢
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/PRICEDURE # MATRIXAND( A, Ry Co>MI>N) ¢

ARRAY 7 0,R, (0 ¢

ZINTEGER Z MI,N ¢

/CUMMENT 7 THE St JF THE MATRICES IS STIREN IV THE ARRAY

CeA, Ry T APF MI%xN ©

/REGIN INTEGERZ I,.JoP @
/FJR/I=1 /STEP 71 /INTIL ¥ /D] ~
7FJR2J=1 /STEP 71 ZAINTIL /N /f¥] ¢
CCIsJ)=aCT» J)+RCI,J) o

ZEND/ MATRIXADD ¢«

/PRICEDUPE + MATRIXSUR(A, Ry CoMIsN) <
JARRAY 7 AsRs(C ¢
ZINTEGEP 72 M1,N <
/CIMMENT/ TME DIFFERFNCE JF THE TWwl MATRICES IS STIPED TN THFE
ARRAY Ce As Ry ARE M[xN @
/REGIN INTEGFR’ I,J <
/FIR/I=1/STEP 71 /UNTIL /M1 /(v) /
/iR 2= 7/STFP 71 /INTIL 2N /D] 7
CCls.J)=0CI,J)-R(I,.J) ¢
/END/ MATRIXSUR <

/PRICEDIRE 7 MATRIXMULTCA» Bs CaiMIsN»F) ¢
/ARRAY 7 0, R <
ZINTEGRERZ MIsNs P ©
CIMMENT 2 ™ME PRIDICT F THE Tk} ARRAYS IS STIRED IN THF
ARRAY Co T MILTIPLY /Y A SCOLAR THE SECIND
MATRIX MI!ST 4AVE THE VALUE 'JF THE SCALAR 468 I TS DIAGINAL
WITH THE REST JF THE ELEMENTS AS NJUMMHTSe A IS M¥NsR [S NxP,
C IS MkPe NJPIES JF INPUT ARRAYS ARE MADE [V IRDFR
THAT AN APRAY MAY RE IJSED BJTH AS AN INPLUT ANVD
JUTFUT PARAMFTER ¢
/REGIN INTEGEFZ I,.0Jo X @

/ARRAY 7/ CIPYACT1:MI- 12N> CIPYRCISNS ISP @

/FIR4T=1 #STFP 71 ZINTIL /4L 713) /

‘FIR/JI=1/STEP /1 7/iINTIL /N /D]~

giryact, y=ACt,. 1y ¢

FIR/I=Y1/STFP 71 INTIL 7N /D) 7

/FIRZ)S1 /STEP 71 ANTIL /P /D] /

CIPYRCTL.J)=RCE, 1) ¢

/FjP/1=1 /STEP /1 /INTIL /M1 /D]

/FIPAI=Y /STFP 7Y INTIL /P /D] ~

/REGINZ CCT,.)=0 «

/FIR/X=Y /&TFP /1 /INTIL /N /D]
CCTo . )=CUPYACT» X)Xk CIPYRIX, JIHO(Ts.0) <

IEND @

/END/ MATRIXMULT ©
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/PRICEDURE 4 DUMPCAs M, NY <
/ARRAYZ A ¢
/INTEGFR” MI,N T
/REGIN INTEGEP‘/1s.J <
/FIR/7I=1 /STEP /1 /UNTIL M “D)
‘REGIN 4
FIRZI=1 /STFP /1 /INTIL /N /D] /
WRTTEC10, LAY JUTC /¢ /S-NDDDDD DDD /) 735 ACT». 1)) ¢
/END e
NFW.INC1D, 4) #
ZEND/ DUMP =

o

/PRICEDURE /7 CARTCINY ©
/REGIN /
JUTXC 1 10=XCls 1) ESINCXC(3 1)) ¢
JUTXC2, 1)=XC2, 11&SINCEXC3 1) ¢XC 1o 16X 4 1D)XCIS(XC3 1)) 7
JUTXC3s 13=XC 15 1)%CISCXC3> 1)) &
- JUTXC 2 1)=XC2 1I¥CISCXC3 1)) =XC1» 134X 4 1) %
; SINCXC3» 1)) ¢
JUTLC1,1)=2C1 1% SINCZC251)) ¢
JUTLC2» 1)=2C0 15 1)*CUSCLC25 1)) ¢
/RND’ CARTCONY &

i /REAL PRICEDURE/ RANDIM &

/BEGIN INTEGER~/ CALC ©

/CIMMENT/ JLDX MUST BE DECLARED GLIJIRALLY ¢
JLDX=255k]JLDX ¢
CALC=ENTIERCILDX/131071) ¢
JLDX=ULDX=131071xCALC *
RANDIM=dLDPX7131071 <«

3 /END/ RANDIM ¢

: /PRICEDURE » GAUSSIAN(NIISE, VARIANCEY <
/REAL NI SEs, VAPTANCE®
/REGIN REAL 7 TWiPL ¢

TwIPI=6. 29318 ©

UlI=RANDIM ¢
; U2=RANDIM ¢

NIJTSF=SORTC-2* VARTANCE* LNCUI I «CUSCTWIPI*UP) ¢

/END/ GALISSIAY ¢

/PRICEDURE 7 SURST ¢

/REGIN CJMMENTZ T) SFT £ MATRIX wiEN NIISF APREDR ©
THFTAN JISE=RENISR=" @
LANIRRTANC RN )T SE, VAFR) ¢
GANSSIANC THETAN ][ SEs VARTHETA)Y ¢
L1y 1IZRARPTCRXARL+ WY&k FY )+ RYJISF ©
O 1I=ARCTANCEX/Z Y)Y + THETANIISF ¢

!
3
g /€ND/ SURST <
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/PRICFDIPE + TRACKCAFEASURE, STATE PHI»MsMTr PrXs 2o RY ©
: ARRAY 7 PHI»PsXsZyRsMToM ¢
- ¥ ¥, ZINTEGER # MEASURE, STATE <
/REGIN ARPAY /7 MPC1:MFAS(IRF, 12 STATEY, PHTTC1: STATE, 18 STATE) »
MPMTC1¢MEASHRE, 12 MEASURE) » PREDZC 12 MEASURES 1215
FRRIRCIVC 1t MEASURF, 1S EASUREY» CIRRECTIINC 12 STATES 12 1)
KMPC1sSTATE, 13 STATEY €
TRAMESPISECPHTI, PHTI Ty 24y 4) ¢
MATRIXMUL TCFHT o Xo Xe a5 29 1)
MATRIXMILTCPs PHTI T Py 4s 45 4) <
AATRIXMILTCPHI, Ps Py 4y 45 4) ¢
. MATRIXALLTCM, PoMP» 25 45 4) ¢
k. MATRIKALTCPsMTs PMTs 45 4,2) ©
n MATRIXMUL TCMs PMTs MPMTy 25 40 2) ©
g AATRIXANNCMPMTs RaMPMT, 2, 2) &
' y MATRIXIVVCMPMTs FRRIRCIV, 2) @
MATRIXMIL TCPMTs ERPIRCIVIK, 45 P»2) ©
AATRIXMUIL TCMs Xo PREDZ s P9 4 1) €
MATRIXSURCPFREDZZy FREDZ» 25 1) ¢
MATRIXAIL TCK, PRFDZs CORRECTIING 4» 25 1)

o
SR

et

38
TR

e , ,
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/CIMMENTZ PRENDZ TS dJW (vkX-Z)kK ©

. . MATRIXSIIRC Xy CIRRFOTIINS X5 4 1) €
MATRIXMIUL TCKsMPsXMPs 4,2y 4) &
o MATRIXSIIBC P, KMP, Py 4 4) &

- 3 /CIMMENTZ FIR A 4 VARTARLE STATE UFCTIRCSTATF=4),

) AND A TW] VARIARLF MFASUREMENT VECTIR(MFASURE=2),

E X [S ok1,Z IS 2¢1, P IS 4kd4, M IS 9%sy PHI IS 4xspK IS 4x2 @
: /END/ TRACK @

MCTs 1D)=MC2, 3)I=SMTCI» 1Y=MT( 3,201 €
MC152)=MC 10330015 4)=C 2 1ISM( P 2)SM( 2 8)=MTC 1, 2)I=MT( 2, 2Y2MT( 2y 1) =
MTC3: 1)=4TC A 1)Y= TCa 2¥=0 ¢
. ] /FIRZ[=1 7/STEP 71 /INTIL 72/D]3 7
FJRP2)=1 /RTEP /1 AAINTIL 7470 7/
/REGIN /
FHECE, D= 71F 21 /F0 2 /THEN 71 /ELSE/Q ©
PCLs.])=Q ©
/E\jn/ ko
STATE=4 * JEASURE=2 ¢

" /CIJMIENT/ STATF VFRTIR [ S 4-VARIARLFE, MEASIIREMENT VFOTIR
[S 2-VARIARLE ©

- : X[i=kEANC2N) © YN=READ(PA) ©
i XDI(=FEARC2N) ©  YDIT=READC20) ©
4 CHANGE JF XDJT=READC20) © CAANGE JF YDIT=READCPN)Y <
CHAANGF=REANCONY ¢  FIVISH=READC(PN) ¢ PELTAT=RFANC2N) <
3 : VARRZRFANCONY ¢ VLARTAFRTASREADC20N) ¢  JLDPX=RFANC2NY ©
: 3 W[ SF=pPFADC2N) ©

- o
R o . - s
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WRETETC 105 7CC 7€ 4> 7§ ST /% #)RDFR 7% /KALMBN 7¢ /G 7)) 7) ¢
INETIATE TRACK: “/[F/ NJISF /EQ/ | /THEN ~
/BEGIN /
GAUSSTANCRY:}T SE, VARR) ¢
GAUSSIAVC THETAVIISF, VARTHETAY ¢
/END/ /ELSE/ RNJISE=THETANIL SE=Q ®
CIPYZC151)=SORTCX kX N+YNxY D)+ Rv:IISE ¢
CIPYZ{ 2, 1)=ARCTANCX0/Y0) + THETAV [ SF
CARTGINY ©
DUMPCIUTLr 2s 1) @
CIPYRC151)=RC1, 1)= VARR @
CIPYRC152)=2C1, 2)=CUPYRC 2, 1)=R(2, 1)=0
CIFYR(2s 21=RC 2, 2)=VARTHETA ©
T=DELTAT ¢
EX=X0+XDJIT¥ DELTAT ©
: wY=Y0+YDI T« DEL TAT ©
t /IF NUISE/EQ 71 #THEN / SURST
/TF NITSE /EN 70 #THEN 7
JREGIN
ZC1» 1)=SORTCEX®EX+ kY LY) ©
£€2, 1)=ARCTAVCEX 7 WwY) «©
IEND s
TIME=T 2
XC1,1)=4C1, 1) ©
XCP» 1)=CLEE» 1) =CIPYLC T, 1)) /DELTAT ©
Y(3,1)=4C251)
KC4s 1)=€2C25 1) =CUPYLC2, 133 /DELTAT ©
PC1,1)=R(1,1) ¢
PC1,2)=P(2, 1)=R(1+ 1)/DELTAT ©
PC2, 2)=CRC1, 1)+ CIPYRCT, 1)) /CREL TATENFL TAT) ¢
P(3,3)=R(2,2) ¢
PC3s 4)=PC 4, 3)=R(2, 2)/DELTAT ©
PC4s 4)=CR(2, 2) +CIPYRC2, 2) ) /{ DFLTAT«DEL TAT) ¢

T R Y A T R TS TS U T TS

/CUMMENT 2 TRACK IS NJW INITIATED ¢

: CARTCINY =
b DIMPCIUTXs 40 1) ¢
DIMPCIUTZ,221) ©
; P IR/T=2¥DELTAT/STRP /REL TATZIN TIL /CHAN GF /D) #
. QEGIN
: EX=XN+ANJT«T ¢
AYSYN+eYDITKT < .
ZLF/NIISF/FN /7] THEN # SURST ©
TF74JISEZEQ -0 /THEN )
FAFGTN 2
ZC1 1N=SORTCFAX®EX+ kYR LY) ¢
LC2y 1)=ARCTAVCEXZ70Y) ¢
IE\jn /7 ¢

/CIMMENT 2 NJISE ADDED> WI T VARTANCE YARR AND “aRTHRTA ;
IN THE TW) PRECEDING STATEMFNTS ¢ !
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PHIC1,2)=PHIC( 3> Q)SDEL TAT ¢
TRACK( P9 Qs PHI s MsMTs Pa X2 Zs RY ¢
CARTCINV €«

DIMPCIUTXs 45 1) ©

%
3
i
3
i
'
?
N

X DUMPCIUTZs 20 1) € ‘
3 TIME=T < . .
o IE\)DI [ 4 ,
3 X0=X0eXDIT*TIME © :
i YO=YN+YDIT*TIME ¢ y
3 XP)T=<DIT+CHAVGE JF XPIT ¢ 3
E YPJT=YDIT+CHANGE JF YDIT ¢ (
FINISH=FINISH-TIME ¢ :
3 /FIR/T=DELTAT /STEP /DEL TAT /INTIL /FINIS{ /D] / :
] /REGIN / :
; FX=XN+XDIT&T ¢ :
) wY=YQ+YDIT*T ¢ -
; /FF 2NIISE 7EQ 71 /THEN /SURST ¢
: TFNIISEZEQ /0 /THFN /
4 /REGIN 7 ;
LC1s 1)=SORTCFX¥EX+ WYkbWY) © ‘
1 £C2» 1)=ARCTANCEX/ WY) €
'Ff /IENP €
E
3 IMMENTZ VIISF ADDEDs WITH VAPR AVD VARTHFTA [N TME
q Tw) PRFCENING STATFMENTS €
T PATC 1, 2)=PHIC 3 4)=NEL TAT ¢
TRACK (P> 4 PHIsMsM T, Py Xs£sR) ¢
' : CARTCINY ©
% P DIMPCIUTXs 45 1)
4 DUMPC JUTLsPs 1) ¢
" Y /END’ ©
§ 8 FEND/
E Ok
b
; 5
E 3
.'. b
E B
".)

i 4
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* IODINIT10/PRINT

*IJDUNI T20/READ

*XEQ

* STORAGEZ 4000715000

*CHAIN

*AL GIL

/BEGIN INTEGERZ I,JsMEASUREs STATEs 3L DXs F§

/ARRAY 7 XC126512135Z2C¢1:2,121),0LD2C12251231)>
BLDESTZC122,181), PHIC1265126)5PC1365186)>
RC1225132),ILDRC1:2,1:2),ULDESTRC122:122),
MC128251362,MTC1865132)JUTXCE2 A 131)>,0UTZ¢1225121) ¢
/REAL. 7 T» TIME> DEL TAT> CHANGE» FINI SH» EX> XD3 T» CHANGE JF XDIT»
WY, YDIT CHANGE JF YDJIT» X0>YD» VARR, VARTHETA» DEL TATSO,
RNJISEs THETANOISE« Ul» U2» VARIQNCESNJISE ©

/CUMMENTZ X»Z AND ULDZ ARE COLUMN VECTURS.

R AND JLDR ARE 2%¥2 MEASUREMENT CJVARIANCE MATRICES.

K IS A 6k2 MATRIX> AND IS ESSENTIALLY THE DAMPING FACTIR.
M IS T™HE MEASUREMENT MATRIX AND IS 2%é6.

MT IS THE TRANSRISE JF M.

TRACK IN R, THETA,» RDO T, THETADI T» RDOUBLEDI T, THETADIURLEDI T»
GENERATED IN X»Y WITH CONSTANT DATA RATE.

MANJEUVRE AT TIME CHANGE. FINISH AT TIME FINISH.

KALMAN FILTER TRACKER WITHJIUT PLANT NJISE TERMS ©

/PROCEDURFE. # TRANSPUSEC(PHI» PHIToMIsN) &
ZINTEGER 7 MI»N
ARRAY 7 PHI>FHIT &
/REGIN INTEGER”Z I»J ¢
/ARRAY 7 COPYPHICI:MI»12N) &
/FIR/I=1 /STEP 71 2INTIL /M1 /D] /
7F3IR7J=17STEP 71 /INTIL /N <D0
CUPYPHICI» JI)=PHICIJ)Y ¢~ )
/COMMENTZ PHI COPIED SJ THAT TRANSPISE CAN RE ASSIGNED
T1 JRIGINAL MATRIXCINLY PISSIBLE FJP SOUARE MATRICES) ©
/FIR/I=1 /STEP 71 YN TIL “MI #D] /
s/WJR7J=1 /STEP 7 /INTIL /N /D] /
PHITCT > D) =PHI{T,T) * i
/END/TRANSPISE ¢

‘PROCEDURE # MATRIXINVCA, By MI) &
‘ARRAY  AsB ¢
ZINTEGER” Ml &
7BEGIN REAL 7 DET =
/COMMENTZ TJ INVERT A 2«2 MATRIX ¥
/IF /ML /NE /2 /THEN REGIN /
WRITETC10, /€€ /C7) /M NE 27)7) ¢
/AT 7 STAP ¢ )
/ZEND s @
NET=AC1, 12%AC2,2)-AC1, 23 EA(251) €
B(1:1)=AC2,2)/DET «
RC1,2)=(-A(1,2)/DET) =
B2 1)=(-A(2, 1)/DET) ®
B(2,2)=AC1,1)/DET <
STIP: 7/ENDZ/ MATRIXINV ¢
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PRICEDURE » MATRIXADDCA» B> CoMI»N) &
ARRAY 7 A»B»C ¢
/INTEGERZ MI»N ¢
JCOMMENTZ T™ME SUM OF T™E MATRICES IS STIRED IN THE ARRAY —
CeA> B> C ARE MI%N &
/BEGIN INTEGER”Z I,J>P ¢
/FOR/I=1 /STEP 7§ /UNTIL +MI /DA /
/FIR*J=1 /STEP /1 7UINTIL AN /D] /
CCI»Jd=ACL,J)+R(IsJ) & °
7END/ MATRIXADD ¢

‘PRUCEDURE # MATRIXSURCA,» B» Co»MI»N) ¢
/ARRAY 4 ARsC &
/INTEGERZ MI.N <
/CIJMMENT THE DIFFERENE JF T™E TWJ MATRICES IS STIRED IN TME
ARRAY e AsRsC ARE MI%N =
/BEGIN INTEGER’ I»J €
T /FIR/I=1 /STEP /1 /UINTIL /M1 /D] /
/FIR7J=1 7STEP?1 “UNTIL N /D] /
CCI»Jr=ACT,J)=-B(1,J) ¢
/END~/ MATRIXSUB &

PROCEDURE # MATRIXMULTCA» By CoMIsnN,P) &
“ARRAY 7 AsB,C ¢
“INTEGERZ MIsN» P &%
COMMENTZ T™ME PRIDUCT UF THE -TWJ ARRAYS 1S STIRED IN THE
ARRAY Ce "TU MILTIPLY BY A SCALAR THE SECOND
MATRIX MUST HAVE THE VALUE OF THE SCALAR AS ITS DIAGINAL
WIlTH THE REST OF THE ELEMENTS AS NJUGHTSe A IS MENH,R 1S N%P»
C IS Mk¥Pe CUPIES UF INPUT ARRAYS SRE MADRE IN 'JRDER
T™AT AV ARRAY MAY BE USED #3 T AS AV INPUT AND
JUTPUT PARAMETER ¢
/REGIN INTEGERZ I»J:X =

/ARRAY 4 COPYAC18HT, 1EN),COPYBC 12N, 12 P) %

?FIR/I=1 /STEP 71 7UNTIL 41 /D3 ¢

sFIRZJ=1 /STEP 71 LN TIL 7N 7D /

COPYACT, J¥=ACI-JdY ¢ '

sFIRZIS1/STER 7T /INTIL &N DO/

PRIR2J=1 /STEP /T ?INTIL P 7D} /

CAPYRCI,JI=801sJ) = ’

FIR/I=Y /STERP /1 /INTIL /%1 <DJ

sEBIR2)=Y /RTEP /Y AN TIL /P 78D /

/REGTN ¢ CCY, 0= ¢ ’

/FIR K= /8 TEP 41 FINTIL N /I -
CCTeJ)=CIPYACT» Xt CURYBIR, Y+ UK Tsd) &

7eND’ R

/END /s MATRIXMILT &
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/PRICEDURE # DUMPCA,MILN) ¢

ARRAY/ A ¢

ZINTEGER/ MI»N &

7BEGIN INTEGER‘I»J ¢

" sFJR“I=1/STEP /1 /INTIL /41 /D3 /
7BEGIN 7 ’

/FIR2J=1 /STEP /1 ZINTIL AN /D] 7

WRITEC10,LAYIUTC /¢ /S-NDDDDDe DDD /) /)5 ACL»J)) ¢
/ENDZ’ © .
NEWLINCIO, 4) ¢
7END/ DUMP *

/PRICEDURE # CONVERT ¢

/BEGIN/

QUTXC1s 1)SXC12 1)XSIN(XC A 1)) F
DUTXC2s 1I3XC25 1% SINCXC A 1))+XC1s 1)¥X(Ss 1)
*CJSCXCA 1)) ®
QUTXC35 1)I=XC1s 1IXCIS(XCAH 1)) * !
JUTXC 4 1)=XC2, 12%CISCXC 4 1))=X{151):X(Ss 1)
*xSINC(XCa 1)) ¢
SUTZC1, 10=2C15 1)%SINCZ(2s1)) ¢
QUTZC2, 19=2C151)%CIS(Z(2s1)) ¥

/END/ CUNVERT =

/REAL PRIICEDURE/ RANDIM ¢

“BEGIN INTEGER/ CALC <

7COMAEN T/ JLDX MUST BE DECLARED GLUBALLY %
JLDX=255%JLDX ¢

CALC=FNTIERCOLDX/131071) =
JLDX=1JLDX-131071%CALC %

RANDIM=JLDX7131071 <«

/END/ RANDUM &

/PRICEDURE # GAUSSIAN(N:]I SE, VARTIANCE) ¥
/REAL 7 NJISE, VARIANCE §
/REGIN REAL - TWIPL ¢
© TWIPI=6.28318 ¢
U1=RANDIM ¢
U2=RANDIM €
NUISE= SORT(-2% VARIANCEXLNC U1))*CISC TWIPI*U2) ¢
ZEND/ GAUSSIAN ¢

/PRICEDURE # SURSTITUTE %
/BEGIN CIMMENT~Z TJ SET Z MATRIX WHEN NJISE ADDED ¢
" THETANOISE=RVMIISE=0 §
GAUSSIAVCRNJISEs VARRY ¢
GAUSSIANC ™ETANOI SEs VARTHETA)
ZC 15 1)=SORTCEXKEX+ WYt WY)+ RVJISE®
‘2¢2s 1)=ARCTANCEX./ WY)+ THETANIJISE ¢
/END/ SUBSTITUTE ¢
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PRICENDURE /7 TRACK(MFASIIREs STATEs PHI»MoMTs Py X Zs P) ¢

/ARRAY 7 PHI» PsXsZsRsMT>M <

ZINTEGERZ MEASURE, STATE €

/BEGIN ARRAY / MP{1:MEASUREs 12 STATE)Y» PHITC( 13 STATE, 1$ STATFE)»
/ MPMTCISMEASURES 1:MEASURE)» PREDZC 1SMEASURE, 13 1)

: ERRIRCIVC1tMEASURES 1 tMEASURE)» CIJRRECTIINC 12 STATE, 121),

f : KMPCISSTATES 1 STATE)» PMTC1: STATES 1t MEASUREY > K (12 STATEs 13 MEASURED
] TRANSPUSECPHI» PHIT, STATE> STATE)Y S

MATRIXMUIL TCPHI» X> X> STATE> STATE» 1) ¢

MATRIXMUWL TCPs PHI T» P» STATE> STATE, STATE) ¢

MATREXMUL TCPHIs P» P> STATE>» STATE» STATE) ¢

MATRIXMIL T(M», P»MP,MEASURE, STATE> STATE) €

MATRIXMUL TCP>»M Ty PMTs STATE>» STATE-MEASURE) ¢

MATRIXMUL T¢M» PMToMPMTsMEASUREs STATEsMEASURE) ¢
MATRIXADDCMPMT, RaMPM Ty MEASURE>MEASUREY €
MATRIXINV(MPMTs ERRIRCIV>MEASURE) ©

MATRIXMUL TCPMT> ERRIJRCI Vo Ks STATEsMEASURE, MEASURE)Y ¢
MATRIXMUL T<{M, X5 PREDZ)MEASURE, STATE-1) ¢

MATRIXSURC PREPZ,»Z, PREDZ>MEASURE, 1) *

MATRIXML T(K» PREDZ» CARRECTION, STATE>MEASURE» 1) %

I A e R e B P

Y

¢

1Y
o R A T N AR

i A

egSIEC s Oy s
R i T

L o2

/COMMENT 7 PREDZ IS NIW (MkX=Z)*K §

MATRIXSUB(X> CORRECTIIN» X5 STATE,» 1) €
MATRIXMUL T(K» MP> KMP» STATE» MEASURE, STATE) €
! MATRIXSUBC P»KMP» P» STATE, STATEY §

/CUMMENTZ FAR A 6 VARIABLE STATE VECTURCSTATE=6€)»
AND A TW] VARIABLE MEASUREMENT VECTIR(MEASURE=2),
X IS 6%¥15Z IS 2k1s P IS 665 M IS 2%¥6» PHI IS 6%k6sK IS 62 ¢

/END“/ TRACK ®

CUMMEN T~ SETTING JF MEASUREMENT MATRIX &
FIR/I=1,2/D1~/
7FIR7J=1/STEPZ1 /INTIL 76/D] /
MCE». J)=MTCJ» D=0 <
i MCls 1)=MTCL, 1)=MCPs A)=MT( 4 231 &
SCOMMENT SETTING TRANSI TIONAL MATRIX AND STATE CINVARIANCE
MATRIX ¢
/FIR/I=1/STEP/1 /NTIL 76 /D] /
7FIJR7J=1 /STEP /1 /INTIL /6/D] #
/BEGIN / '
T O PHICISsJ)=/IF /1 /EQ 7 /THEN 71 /ELSEY0 ¢
PtI,J)=0 <
JEND’ ©
STATE=6 & WMEASURE=Z <

CEm aw rkmmr W aw

= m e omrp

- m—va \roey

/CIMMENT/ STATE VECTUR IS 6-VARIABLE,MEASUREMENT VECTIR
IS 2-VARIABLE ¢

X0=READC20) Tt YO=READ(20) ¢

XDIT=READ 20) ¢ YDIT=READC20) ¢ )
FHANGF. JF XDIT=RFADC20) < CHANGE JF YDIT=REARCPQY © '
CHANGE=READC20) <« FINISH=READC20) ® DELTAT=READ(20) S i
VARR=READM 20) = VARTHETA=READ(20) < 1JLDX=REANC20) =

NEL TATSA=DEL TAT*DEL TAT < Wil SE=READ(C20) ¢
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WRITETC10, 7¢C 7/C7) 72ND 7% 7}RDER 7% /KALMAN “C 7C ¢)) ') e
IN TIATE TRACK: 'IF' NJI SE ‘EQ/ 1 "IHE\J ’
/BEGIN
GALISSIANCRNUI SE» VARR) ®
GAUSSIANC THETANII SE, VARTHETA) ¢
/END/ /ELSE/ RNIJISE=THETANJISE=(0 ¢
OJLDESTZC1, 1)=SORT(XNkXD+YDkYDI+RNIJISE ¢
JLDESTZ( 25 1)=ARCTANCX0/Y0)+ THETANJISE ¢
C:iNVERT ¢
DUMPCIUTZ, 2,1) =
F=LAYJUTC 7¢ /S=-NDDDD. DDDOD 7)) 7) &
WRITEC 10>LAYOUTC /¢ /S=-NDD. DDDI) )y X0) %
NEWLINCI10,1) & ° °
WRI TEC 1B, LAYJUTC /¢ /S-NDD. DDD % '):YD) %
1 MEWL[N(IU:M < )
X=X0+XDUT*DELTAT ¢

; 4 WY=Y0*YDDT*DELTAT ®
. /IF/NJISE “EQ/ 1 /THEN /
7BEGIN / : :

GAIJSSIANCRNUISE, VARRY @
d GAUISSIANC THETANOISE» VARTHETAY ¢
3 3 7ENDZ/ ‘ELSE/ RNOISE=THETANJI SE=Q ¢
E $ JLDZC1, 1)=SORTCEX®EX+ WYk WY)+ RNOJISE @
¢ JLDZC2, 1)=ARCTANCEX/ WY )+ THETANJISE ®
1 EX=EX+XDJT*DELTAT ¢
: wY=WwY+YDI T« DEL TAT ¢
SUBSTITUTE ¢
RC1s 1)=JLDRC15> 1)=UJLDESTRC 15, 1)=VARR ¢
RC 2, 2)=0LDR( 2, 2)=0LDESTR( 2, 2)=VARTHETA =
RC152)=R(25 1)=0LDR( 15 2)=ULDR( 2, 1)=0LDESTRC 1, 2Y=0LDESTR( 25 1)=0 ¢
INITIATION:X( 15 1)=4(C15 1) ¢ ¢
XC251)=(3%ZC1, 1)~ 4)LDZC 15 1)+OLDESTZC 1, 1I)/7C2%DELTAT) &
XC3>1)=CILDESTZC 15 1)~-2%3LNZC1s 12+ZC1»1))/DELTATSO ¢
XCa4 1)=4C251) &
; XCS»13=C3%Z(2s 1)~ 4ki)LDZC 25 1)+ILDESTZ(251))/C2%DELTAT) &
XC6:1)CULDESTZC2, 1)-2%]JLDLZC2, 1)+ZC 25, 1))/DELTATSO <
/RIR‘I= 1314’0.]’
’BEGIN / ’
J=/IF/1/ED 7} "NEN’I’ELQE'Q ®
PCI,1)=R(J»J) &
PCI->I+1)=PCI+1,1)9=3kRCJ>JI/CDELTAT:2) ¢
PCI»I+2)=P(I+2,1)=R(J>»JI/DELTATSO ¢
PCI+15{+1)=CILDESTRCJ>»J)+16%xILDRCIsJ)+9%R(C.I>J))/
CHDELTATSQ) <
PCI+2, I+ 1)=PCI+1, 1 +2)=(CIJLDESTRCJI>J)+83%JLDRCJ»J)
+3kRCI»JI)/ (2 DFEL TATSOXDEL TAT) <
PCI+2, [1+2)=CILDESTRCI» J )+ 4kOLDRCJIs JI+RCI»J) )/
(DEL TATSO*DELTATSO) <
IB\JD/ <
© CIONVERT &
DUMPCIUTX» 40 1) &
DUMPCIUTZ,»2s 1) ¢
/COMMENTZ TRACK IS NJW INITIATED: TAKES 3 PLATS
TJ INITIATE WITH A 28D JRDER TRACKER ®
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GENERATIING /FIR/T=3%DEL TAT/STEP/DEL TAT/INTIL /CHANGE /D]
/BEGIN / ) ’
T EX=X0+XDIT*T ¢
WY=YO+YDJT*T &
SUBSTITUTE ¢
PHIC1s2)=PHIC2,3)=PHIC 4 S)=PHI(Ss 6)=DEL TAT ¢
PHIC1,3)=PHIC 4 6)=DELTATSO/2 %
TRACK( 2, 65 PHI»MsMTsPsXsZ>R) &
CUNVERT &
DUMPCIUTXs 45 1) &
DUMPCUIUTZ>2>1) &
TIME=T ¢
/END/ ®
X0=X0+XDIT TIME ¢
YO=YO+YDIT* TIME €
XD T=XDUT+CHANGE OJF XpIT @
YDOT=YDI T+CHANGE JF YDIT ¢
FINISH=FINISH-TIME &
/FJR/T=DELTAT/STEP/DEL TAT /UNTIL /FINI SH /D3 /
’BEGIN # B .
T OEX=X0+XDITkT @
WY=SYO+YDUT*T ¢
SUBSTITUTE ¢
PHIC1,2)=PHIC2» 3)=PHI(C 4 S)=PHI(S, 6)=DELTAT =
PHIC1,3)=PHI( 4 6)=DEL TATSO/2 ¢
TRACK( 2, 65 PHIMsMTr PsX»Z5,R) &
4 CONVERT @
3 DUMPCIAUTXs 45 1) ¢
DUMPCIUTZ»251) ¢
JEND’ ©
/END /

SEnl e v




RESPONSE TO A TURN WITH NOISE FREE DATA

TRUE POSITION, VELOCITY

POSITION QR VELOCITY FROM |st ORDER R-6 TRACKER
POSITION OR VELOCITY FROM 2no ORDER R-8 TRACKER
POSITION QR VELOCITY FROM X-Y TRACKER

DATA INTERVALS 5 TIME UNITS

x O 4+ o

2-01
Y
80 ~ /YQM
T 0 1°S - ) ¥ +=t+-%
\ a
\ + &
70 - » T 7 ¥
-':‘ ' / -*,X/ .
' {-0- T T T
I‘ M 1 234567 8910
\ , PLOT NUMBER
{ X9
\ ]
60 - “‘ ’
! X 1-0 =
Y [ ] ' I
+
Vo
\
504 ‘.‘ I
4" ' 0.5-4
I
': /
. !
40 +1
\
|
(. 0 -
i/
!
50" n’ﬁ
¢y
=0-5
20 4
-"ollllllllll
| 23 45678910
PLOT NUMBER
10 NOTE X AND Y ARE DISTANCE
START UNITS [ TIME UNIT
0 Y
ASWE. DATE

il AT gy
R ke ST o




5y

ORDER  KALMAN (R,6,R8)X=0, Ya0'l d.u/t.u.

——e—— = |NPUT DATA DATA INTERVAL =5 TIME UNITS
mom-X--~ = SMOOTHED OUTPUT SPEED = 0-1 dbu/TU
CROSSING  DISTAWNCE =10
N
X
\o
START
g -
__ _TRUE VALUE
oF X
3 -
" 4] =03~ \/
X
N {
- !
= i
= ¥
f
|
w o 4 =020+
t)
7 /
1
e ~0'18
o
>" g =Dl
Y -0-144
oy - =012 '
o0 TRUE VALUE |
. OF Y
{ -0-08-
l -0 -Ob-
‘_ ' \ =0 04 fmp—y—r—y—rT"TT
9 i 2 34 % 6978910
X, DISTANCE  UNITS PLOT NUMBER 58
J ASWE. . DATE204.72. TR,CHW e A PR DRG.. No.




DISTANCE  UNITS
a
l

Y,

SECOND ORDER POLAR KALMAN

——— INPUT POSITIONS

X SMOOTHED POSITIONS

X

START

 ASWE.

I I

9 10
X, DISTANCE UNITS

DATE,9472. TR CHMAMACH,

CROMING

DATA INTERVAL = 5 TIME UNITS

.02 -

- 02

-+04

_.Ob-

-8 -

=410

FILTER

DISTANCE =10

.

-2 L I A SRR MR B

3 4

-2217

-+20 1

LI
S 6789101
PLOT NUMBER

=08 T
3 4

APR

LIS B RN S B
S 61T 89 100
PLOT NUMBER

DRG, No,

__TRUE VALUE
OF X

_TRUE VALUE

OF Y

T



AT KA_MAN

TRACKEZR (\HRST ORDEF})

-—— = INPUT DATS X
X = lLTRUT 96
CROSSING DISTANCE =10
DATA INTERVAL = § TIME LNTS 04~
03
02
X
")
1 \ (TRUE VALVE
10 0 ¥— ~y— — — — = —— oF X)
Ol = "\v/”\x/x
5—4 “'01
X
LI 1 ] T } 1
| 23456789100l
PLOT No. >
84
Y
Ak 3
7—4 ‘ .| —,1
; .'a_.
[l ‘e
| 84 T x//x
‘ e \l\x,x—x
Y (TRUE VALUE
WP ——— ———— -\")
54 09
OB
4~ -0
'%1
T 1 Bt T T T T T T T
=) 10 234567189101
PLOT No.
K
, 60
ASWE  DATE/S#71  TREAMen . gy, DRG N




T e

ALl i )

B a3 75 e e

CROSSING DISTANCE = 30
DATA INTERVAL =3 TIME UNITS

— ——— INPUT
e x—— SMOOTHED
TRUE x .
* %
START
80 X
/ *mcam—sme TIME
N
70- >
#,
/7
(\
60+ / )
>3
4\
60 "X \‘j
- ad
Y| -
~
-~
40+ </<
~
Ve
P
30" " \\)
- ”
o« "
N
k\L
20-4 X ’
|
x{
\\
X\
[N
X A\
10+ AVEERN
R
-
- ’i
O L 1
29 a0 3

<

"=0-90

[y

-+04-

-+0§]

--08

PLOT No-»—

-‘006.—‘

~1-04 h

-1-02 }\x)‘"‘

-0-98

«0-06- X

-0-94

=0-92+

-0.88 -

> 3

2 4 © 5 © 2 th 16 18 20 22 % 2 2%

XK g

00 A —[— — — =%~ o .
\WX‘" TRUE Y

PLOT No-e~

2 4 ¢ 8 1012 14 613 2022 % 26 28

61

]

N
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80-

704

60+

30-

20
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FIRST ORDER POLAR KALMAN

CROSSING DISTANCE = 30
DATA INTERVAL =3 TIME UNITS

—e—— INPUT
= =% - SMOOTHED

\- -4

R
/7 \
l N
/
!
)
k. Aoothion vl AU Red, BEnl st Wi w4 e Wt BN PO N AR, a0 AS Ak St -~
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Lo
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FIRST ORDER RO KALMAN

~sn—TRUE VALUE OF Y

[ =\1-
o - —a—TRUE VALUE OF X 10O -
- -o-s -
-2 -0-8-
X Y
- 3- -Q] -
-] ~06-
-85 -0-5-
...6_
LANL R 2 RO ANRE AR AAURNE RN SN R RN S BN | TTT Y
2345678 1012 14 J6 18 20 22 24 26 234 8¢
PLOT NUMBER

SAME CONDITIONS A8 FOR FIGURE &

A.S.WE. DATE wm-a.91  TR..ewy

| AL IO, AL L AL B B
8 1012 4 1618 202224 '

PLOT NUMBER

DRG No. 63




ZND ORDER RO KALMAN TRACKER

N @
- CROSSING DISTANCE = 30
DATA INTERVAL = 3 TIME UNITS

~ — e~ INPUT ~ TRUE
-
X SMOOTHED 0 f J\/ VALUE OF X
: X
! START .
; 80 LN X~
s DY
! -

S ’\
| S
70 »

\

\ \

- > 3

Y 'Eléiskoa%lagc-ltuuu

L 50 -\-3.-1H

40 -1-24

30_J 4\ \\ . -l.'_q

X > Y k
| \ A
| oS -1.04d Ix TRUE VALUE
&0+ /{ z -o y ,\h\ * F Y
/

1
lO I \\ o s-
. »
- o
-7 234 ¢ & 10 12 14 16 18 20 22 24 3¢
PLoT WNo.
X

A




30+

19—

80

S0

40

30

207

- CROSSING DISTANCE =15
DATA INTERVAL = 3 TIME UNITS

XY KALMAN TRACKER Q_) ‘

- —&= — INPUT
—X—= 3MOOTHEN
'067 b
04
START
‘}> oz_
: TRUE VALUE
7 " ol Lo X _ X/x_\ — — f*sx_x_x‘xr*;*‘_" s
Q:* K .v
X X
,/\ - 02 \/
/7
( -.04 -
\
» e
A
X
LI)'
\\ = ~9 06 X
4 \
< :/ 104
> \
P -)-02 \ X/x\ x)
< Y X \ﬂx TRUE VALUE
><\7 -0~ — 4 - — L_.__.——-\x——_i——;n—_M/bX-XM
K ~
; e
o~ -098
F- :
-7
< | -09%—
»
lT’ .
\ -Q- 92
T\
N
. ~090—
AN
A e
I_ ),
¥ | 1 T 1 ] 4
“ 15 b 2 3456 78 9101112131415 16 1718 19 20 21 22 23 2495 26
X PLoT No.

DO

PRGN~




16

o1
!
i
!
.

X CRROR

KEY

X = SMOOTHED ERROR
e = PLOT ERROR

3 x STANDARD DEV™
FOR SMOOTHED ERRORS,

STANDARD DEVN.
FOR SMOOTHED

STANDARD DEVM FQR PLOTS,

3 x STANDARD DEVMN- FOR PLOTS.

| ASWE. DATE 1472 TR. C.Ged

-2
...'-3,
~1-4
-1+ 64
-6
"'"9IllllliIlIllll*llllvllulll
) 234567 891011213141516171819202) 22232425 24
PLOT NUMBER

DRG. No.

N

A TEASUAS FANM FI6.9 AND THEIR A PRIORI STANDARD DEVNS. Q)//




,‘T,v_,,,wv_,j,_,;,, e e SAR Sl - shi b & & SRR - oot au kAL Lk R LA A 2t ) Al e S R A A kot Eioites
Y-ERRORS FROM FIG.9 AND THEIR A PRIORI STANDARD DEVIATIONS ] !

1-0 \
1

94 \

KEY

SMOOTHED ERROR
PLOT ERROR

STANDARD DEVIATION
FOR PLOTS

STANDARD DEVIATION
FOR SMOOTHED ERRORS

Y ERROR

LI | ¥ | { L 1 | 1 1 | L ] 1) ¥ 71 & ] 1 |
2.3456'18SIQIIl&lBlQ!S\GWIBISZQU 5
“ PLOT NUMBER o¢
> A s WE. DATE i§- 4-70 TR.MMamns. DRG, Ne.
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RSN St S Db S e i N i b Wl e AN S A b gl ionit LTl At

- ==o== |INPUT CROSSING DISTANCE = 5
X === SMOOTHED DATA INTERVAL = 3 TIME UNITS
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