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I. INTRODUCTION

Exploration of the ocean floor has received increased interest in the
past several decades, particularly the area of the continental shelf. A
significant amount of attention has been devoted to offsnore oil explo-
ration, to the recovery of petroleum and to deployment of undersea
habitats. Often petroleum is located in remote areas of the world and
0il production involves use of very large sukmerged oil storage t.inks and
associated pipelines. In other locations petroleum has been piped ashore,
through the surf zone, tn shore facilities. Recently, interest has been
demonstrated [1] in the deployment of large submerged nuclear power
plants. In the reference cited it is proposed that a nuclear plant be
placed on the ocean floor in two hundred and fifty feet of water,

As ane might expsct, this activity has generated considerable interest
in the interaction of gravity waves with submerged objects. For example,
the wave farce exerted on vertical piling has been a topic of many investi-
gations during the past twenty years [2], [3], [4]. In these studies the
well known Morrison Equation [4] appears to be the most practical approach
to the calculation of wave frirces. This equation cowbines both a drag and
inertia term, the values of which nust be detesmined experimentally. At
best, these two experimental ~c2fficients are dependent upon the geaccry
of the pile w.d amplitude of the fluid motion, and it would appear that
twenty years of research has only partially delineated this interdepender.:ze.

In the case of large, deeply submerged objects the Morrison Equation
is also appl.cadle and generally yields valid results for the horizontal
wave farces provided diffric.ion effects do not become apprecziable. 1In

this instance, the drag term ~ar he disrarded since the hydrodynamic force
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is primarily inertial in nature. However, it is still necessary to know
the added mass coefficient as it depends on the body configuration and
the etfect of the rigid bottom surface. Moreover, if the object is
bottom mounted the vertical fluid acceleration is zero, and accordingly,

the Morrison Equation yields zero vertical force, a result that is
adbviously invalid.

A diffraction theory, valid for the calculation of forces exerted on
large submerged or semi-submerged bodies of arbitrary shape, which accounts
for both *he effe;:t of the free surface and bottom, has been develcped by
CGarrison and Chow [5]. Theoretical results were compared with corres-
ponding experimental results for two different practical submerged tank
oonfigurations and good agreement was found. However, the method is valid
for linear incident waves only; the nonlinear effects of large amplitude
waves can not be determined.

In the case of large dbjects, which are not so deeply submerged that
the. free surface has a sizable effect, no theory is available which is
valid for large values of wave »ight and few experimental results have
been published. However, one study has been carried cut by Johnson [6]

for horizontal wave forces acting on a bottcar-mounted, horizontal

. circular cylinder in long waves. Inasmuch as only long waves were con-

sidered, the results were dependent on the wave height and water depth
only arnd no consideration was given to intermediate wave lengths. More-
over, rather than correlate the forces with appropriate dimensionless
parameters, Johnson used a regression analysis to correlate the forces.

Consequently, little light was shed on ti:» hasic mechanism involved.

0
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&hiller [7] measured wave forces acting on a submerged horizantal
circular cylinder due to rather small amplitude waves. Over the range of
wave heights considered in his tests, he found the amplitude of the hori-
zontal force to vary linearly with the wave height. At small wave heights
the vertical force was found to vary harmonically with the wave motion,

the maximus amplitude of which increased linearly with the wave height.

Sop o iy
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e

At larger values of wave heisht, the vertical force amplitude tended to

Y

T

increase in proportion to the wave neight squared. This latter variation

2

)

of the wave force is caused by the velocity squared texmm occuring in

v

Barnoulli's Equation.

T A

The present investigation was an extension of Schiller's work to
include large wave heights. However, the present investigation was limi-
ted to the single configuration where the horizontal circular cylinder

was placed on the bottom. A transition section was placed in the wave

. channel used by Schiller, at a location twenty feet from the wave
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generator for purposes of providing a natural transition from intermediate
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or deep water waves to shallow water waves of finite amplitude. The beach

slope was adjusted for negligikle reflection as discussed i the section
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IT. THEORETICAL ANALYSIS

The problem under consideration is depicted in Figure 1. A train of
regular waves of height H is considered to progress in the positive x
direction in water of dewth h. It is the present interest to determine
the horizontal and vertical camponents of wave force acting on the
horizontal circular cylinder in contact with the rigid bottam.

The exact analytical solution to this problem is extremely difficult
and, therefore, only an approximate analysis is attempted. However, it
is first instructive to carry out a dimensional analysis of all of the
pertinent parameters. It is known 4 paioil that the maximum horizontal
or vertical force per unit length of a cylinder is dependent upon the
following variables:

F

or Yy max
2 L

F
_X max

= f£(h,a,L,H,p,9,u) (1)

in which

wave height

cylinder length

water depth

= cylinder radius

wave length

fluid density
gravitational acceleration
fluid viscosity.

H
')
h
a
L
P
g
u

It may be noted at this point that a relationship exists between the
parameters associated with the incident wave (i.e., H, T, L and h, where
T denotes the period). Consequently, only three of the incident wave
parameters are needed in the dimensional analysis, i.e., either H, h and

Lor H, h and T, Moreover, either of these tiivee sets of parameters

11 .
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canpletely describes the incident wave regardless of vhether or not it
is of small amplitude. For small amplitude waves the well-known
relationship

gT? L L
exists between the parameters which describe the incident wave. For waves
of finite amplitude the relationship is more camplicated but nevertheless
exists.,
A dimensional analysis of the physical paramaters indicated in

Equation (1) gives the following dimensionless parameters.

F F
Xmax ooy max oo 22a’ ll’ }_I_’ U (3)
pga2s pga?s L a 2a pvgha?

As pointed out by Garrison and Chow [5] the last texm on the right hand
side of Equation (3) represents the ratio of the Froude number to

Reynolds number and, accordingly, is an indicator of the ratio of the
viscous to gravity forces. If this mumber is small, corresponding to

large scale flows with small viscosity, it may be ascumed that this
parameter may not be important since the flow would be controlled primarily

by gravitational forces. In this case Equation (3) may be written as

F F .
Xxmex . _ymax _ . 2na'b_'§: 4)
pga2y pgazy L a 2a




.?-5§‘ S e By e S A B P T S R T T TS TR 7K Sk e < i S0 S PSS T o et TR QI AR f 40T TR ST
=

T T LR T e TN PARR Y N TR TR 4 SRR TS W

o v - ——

— - e e e

~
SRR

.
¥
¥
‘ Et . ) .
- % Bowever, as noted previcusly, the wave period may be used in place of the
] wave length, in which case Equation (4) would appear in alternate fomm as
* F F__. . 2
,. xmaxor ymd‘":f g_T_'}_l.!E (5)
3 pga2s pga?s h a 2a ]
; Equation (5) may also be written in a third form as
F F oma / 2 T2
X MO op YMEX _ g [T gl B (6)

pga2s pga?s \ h H a

In the experimental program an attempt is made at determining the corre-
lation of the dimensionless parameters, on the right hand side of
Equations (4), (5) and {6), with the force ccefficients.

The complete analytical solution to the wave interaction problem is

quite complex. However, by use of Morrison's Equation [4], an approxi-

b ) mate representation may be carried out. For this purpose, the velocity
; potential associated with the incident wave is written as

3 , p=H gCshk () ogpe - ot (7)

2 o Cosh kh

where k = 21/L denotes the wave number and ¢ = 2n/T denotes the frequency.
Fram Fquation (7) the horizontal camponent of velocity and acceleration

is obtained, respectively, by differentiation as,

u= - HgkCosh kyth) oo ne = o) (8)

2 ¢ Cosh kh
a=Hg ShkWM)  qoony - o) (9)
2 Cosh kh

14
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The horizontal force acting cn the cylinder is written, according to
Morrison's Bouation, as
Ca :

Fx = -2—- p2asu?+ (1 + Cm) a2 (10)
where Cd denotes the drag coefficient and Cm cdenotes the added mass
coefficient. However, for cases where the particle motion is small in
camparison to the cylinder diameter separation effects are small and it
is possible to disregard the drag contribution to the total force and

write Equation (10) as

F
X _=(1+c) ak i Cn (o8

pga2s 2 Cosh kh

(11)

Using the définition of k and ¢, Equation (11} may be written in tems

of the dimensionless parameters indicated in Equation {4) as

F
X max = (1+ Cm) 2ra 7w T (12)
pga2y (H/2a) L Cosh (_L_E

The vertical component of the force could be expressed in a fomm
similar to Equation (10), but the vertical component of acceleraticn on
the bottam is zero. It is supposed, therefore, that the vertical
camponient of force is associated with the lift force only. Accordingly

the vertical fcrce may be written as

F =

v u? C, 2a? (13)

v o
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in which C Genotes the: lift ocoefficient and u the wave induced particle
velocity on the bottom. ZSubstituting for the velocity f£rom Equation (8),
Equation (13) may be written as

2 gin2
Fy =20 Zra) [H | “ Sintot (14)

pgazs L 2a| Sinh 2kh

Equations (12) and (14) contain two coefficients, namely the added mass
coefficient, Cm' and the 1lift coefficient, CL. Values for those coeffi-~
cients which account for both the bottam and free surface are rot
available in the literature. However, if thec water is relatively deep
the free surface effect should be small. In this case the exact potential
flow value for a circular cylinder in contact with the rigid bottcm has

been calculated by Garrison [8] as
Cm = 2.29,

For the same gecmetry, Daltman and Helfinstein [9] have calculated the

lift coefficient by an approximate method. Their valuve is

CL = 4.48.

These vaives of the two coefficients may be used irn Equations (12) and
(14) to obtain approximate expressions for the horizontal and vertical
force coefficients. Tt should be noted, however, that the assumptions
underlying these approximate relationships are met only when the scale
of the waves, i.e., the wave laength and water depth are large in compari-
son to the cylinder diameter. Moreover, since linear wave theory has been
used to determine the velocity and acceleration, the validity is also

restricted to small amplitude waves.

16




ITI. DESCRIPTION OF APPARATUS AND EXPERTFENTAL PRCCEDURE

A. APPARATUS

In oxrder to measure the wave forces acting on the horizontal cylinder,
exgeriments were carried out in a small wave channel. The basic wvave
channel, as shown in Figure 2, consisted of three sections; a deep water
section, a shallow water section and a transition section, each fifteen
inches wide with a rectangular cross section. The overall chamnel length
wa.s sixty~-four feet.

Three quarter inch exterior plywood sheets were used for the channel
sides. Vertical rigidity was provided by bracing the piywocd sheets with
2 x 4's at various intervals, every four feet in the shalli w7 water section,
every foot in the deep water section and every two feet in transition
section. Two 2 x 4's were attached to the top of the vertical studs and
extended the length of the channel.

Since the bottom of the deep water section was resting on a concrete
foundation, only a single section of plywood was used for the channel
floor. A double floor was used in the shallow and transition sections.
This was done to provide extra strength. The double floor was constructed
fram two plywood sheets and two and a half inch separators. The sides of
these sections were bolted together, through the spacing of the double
bottom, with three-eighths threaded rod. Steel angle spacers were placed
across the channel top to maintain the width dimension.

Prior to assembly all wooden sections exposed to water were water-
proofed. The channel interior was then given two coats of Morewear
Vitri-Glaz 1320A. Dow Corning Sealant 780 was applied to all seams and

joints.,

17 ' .
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1. Deep Vater Secticn

Several methods of increzsing wave height and stecpress are
available. One of the mcst cormmon methods is the generation of waves in
a deep water vegime and allow them to transition, by shoaling, to a
shallos water regime. By the proper choice of depthe and shoal slcpe, the
frensition car be such that there is ne reflection from the sheal,; and the
resultant shallow water waves are ir a near breaking condition. It was
this methced of increasing weve height that was chosen. As shown in
Fiqure 2, the deep water section was sixteen feet long and four feet deep.
A wave generator was locatad two and three-quarters feet from the closed
erd of the channel. In ordor to generate regular waves in the channel a
paddie type wave generator was used. An aluminum plate, adecquately
reinforced. was hinged at the wave chamel ficor and attachad by a pin
cannecticn at the top to a driving rod, Figure 3. (ne-eighth inch teflon
shecting, four inches py fifty-one inches was located along the vertical
gides cf the plate to prevent leakage from one side to the other. In the
space behind the wave paddie the wave motion was damped by use of baffle
piates. A two horsepower variable speed drive, with an output speed
range of twenty tc one hundred and eighty revolutions per minute, was
mounted on the top of the wave chanmnel and fitted with a six and three-
cuarter incn radius face plate. The face plate was provided with ways
co that. the wave generator driving rod could be adjusted to any
eccentricity between zexo and eight inches, Figure 4.

2. Transition Section

As previously noted, the wave height was increased by shoaling
deep wacer waves. To accomp!ish this a 14,14 foot long ramp was

constructed and installed between the deep and shallow sections. This

19 >
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provided for the transiticn from deep water to shallow water. In order
to reduce the amoumt of reflection from the transition ramyg, ihe slope
was set at 1:5. The change in depth due to the shoal was two feet.

3. Shallow Water Sectiu..

Tire shallow water section had a depth of two feet and a length
of foxty-two fect. The test module was located twenty four feet from the
trangition; thus, aliowing encugh length for the waves to reach a fully
developed state follawing the transition, before reaching the test section.
At +he end of the channel was located a variable slope beach for purposes
«f dissipating the wave motion. The beach consisted of metal shavings
held between two sheets of perforated metal. These were separated by
two inch wooden spacers. A solid sheet of one-eight inch aluminum was
attached to the bottom of tne beach by three and five-eighths inch
separators. On the exposed surface of the beach was attached, parallel

to the wave fronts, one by one inch aluminum angles. The maximum slope

of the beach was 1:7.
a. Test Module

In oxder to provide a means of locating the test cylinder and
measuring the wave forces acting on it, a separate test module was
designed. The test module, consisting of the circ:lar cylinder along with
its own walls and floor, was constructed as an integral sysiem in order
that it may be removed fram the channel. This concept allowed for the
maintenance of close tolerances during manufacture and provided for easy

access. To accept the test module, the wave channel sides and floor were

recessed axd made of plexiglass.

22 >
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The four inch diameter plexiglass cylinder was suspended
betvieen the walls of tr¢ lest module by use of cantilever beams and
adjusted to approximately one-sixteenth inch abowe the floor, Figure 5.
It was knovn a prionl that this sixteenth of an inch clearance would
cause a high velocity jet under the cylinder due to wave action. To
prevant this, a flexible plastic bairier was installed in the gap. The
barrier was held in place by '0O' ring material pressed into 0.007 inch
slot in the cyhnder and the tsst module floor.

In order to suspend the cylinder a small distance off the
wave channel floor and at the same time measure forces exerted on it by
g 0 surface waves, cantilever beam mounts were used as supgorts as shown in
' Figqures 6 and 7. Bulkheads were fixed in the cylinder at approximately
two inches from sach end, and the fixed ends of the cantilever beams
bolted on these buikheads. The free ends of the two beams were allowed
to protrude slightly beyond the end of the cylinder and into the plexi-
glass test module walls. The free ends were sipported by small self-
aligring ball bearings pressed into the plexiglass. Both beams were
ficted with strain gages and waterproofed using BIH Barrxier 'C',

Figure 8. One of the beams with its largest cross sectional dimension
horizontal was used to measure the vertical force and the other with its

largest cross .ectional dimension vertical was used to measure the

=
s |
5 b
SR

¢
t 1

hocizontal force. Calibration tests showed the cross coupling to be
negligible.

This design presented same unique problems. The cantilever
beams had to be flexible enough to allow measurement of the fcrces and

stiff enough so that the natural frequency was large in comparison o
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the excitation frequency. The characteristics of the strain gage bridge
and amplifier determined the minimm strain necessafy to produce a
measurable output. The strain resulting on a cantilever from a given

load is

_ 6P2b
= Ebhé

(15)

€

where

strain

load

cantilever beam length

modulus of elasticity
cantilever beam base dimension
cantilever beam height dimension

]

N

:
a®
E
b
By

The relationship for the spring constant of a cantilever beam is

3
K= = (16)

4zb3

By substituting Equawacn (15) into (16) a relationship for the spring
constant, in tems of the strain and cantilever dimension is determined

3
koS4

3p212h13 (17)
&:Ebhb

It is apparent that the maximum stiffness and, consequently, the maxirum
natural frequency is cbtained by making b, h and ¢ as small as possible.

The minimum value of b was set by the width necessary to mount the strain
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gages. The minimun value of ¢ was determined by the maximm sensitivity

of the amplifier/recorder. The maximum stiffness was then achieved by

making h as small as possible. However, Equation (15) shows that the
beam length decreases with b and h as expressed by

6P

Thus, the lower limit on h was finally determined by setting a reasonable
minimm value for the beam length.

In oxder to prevent the cylinder from rotating, an offset arm
j was connected from the horizontal force cantilever to the test module.

3

A Farber bearing, AMS 1X7, was used as a wheel at the test module end of
the arm to reduce friction.

4. Wave Height Probe

-Z‘
A

There are two types of probes in comon usage for measuring wave

height; these are commonly known as a capacitance and a resistance type
k. probe. The resistance type utilizes two vertical wires placed a small

distance apart; the amount of wetting of the wires varies the resistance

between them. This active element or "variable resistance" is wired
2 into one leg of a Wheatstone bridge and the signal read out on an
; amplifier/recorder. Experience has shown, however, that the resistance
type probe is extremely sensitive and well suited to measuring small
amplitude waves but is rather nonlinear at larger amplitudes.

The capacitance type wave height probe, although less sensitive,
tends to be linear over large wave amplitudes and was, therefore, used

as the primary method of sensing wave height in the present study. The

29 >




ke

AR S S XY e G g N oS ) AR A O N e B s AR RIS | B Roa Y e i

o

probe consists essentially of a single insulated wire which acts as a
varidble capacitor; the wire acts as one plate and the water the second
plate. As the vater surface rises and fails, the capacitance varies
accordingly.

The probe used in the present study is shown in Figure 9. Iocated
at the bottam of the foil-like support member was a three-eighths inch
diameter acrylic rod. The sensing wire was terminated at the bottcm in
the acrylic rod and at the top at a nylon block. The tip of the acrylic
rod was made removable in order to facilitate changing the sensing wire.

A number of wire types were considered and tested prior to
selecting number 30 A.W.G. wire with polythermaleze insulation. This
wire provided the capability of measuring wave heights to less than one
thirty-second of an inch with good accuracy.

The electronic circuit utilized with this probe was cbtained
in sdheamatic form from Hewlett Packard and is shown in Figure 10. A

Hewlett Packard carrier amplifier 350 was used with the probe circuit.

B. TEST PROCEDURE

With the channel filled to the desired level, the test section and
wave height probe were set in place. In each instance the probe was
immersed to a depth of nine inches. The amplifiers were then adjusted
to balance the bridge.

With the use of a transverse mechanism the calibration of the wave
probe was accamplished. The probe inmersion was varied over a seven
inch range in half-inch increments. The gage output was measured both
on the Hewlett Packard recorder and one channel of a Brush recorder.
This provided the initial calibration information. Prior to and after

each set of runs the calibration was checked at several points.
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The force cantilevers were calibrated by exerting a load an the
cylinder by means of a series of weights and a wire puily arrangement as
shown in Figure 11. The force was txansmitted to the cylinder through a
series of tapped holes located around the circumference at three, nine
and twelve o'clock. Calibration information was obtained from the Bush
recorder output by lcading the cylinder in half-pound increments. As
with the wave height prcbe, calibration was checked prior to and after
each series of rums.

With the calibration completed, th= wave generator speed was adjusted
for the desired wave length. The wave height probe was located an integer
nunber of wave lengths fram the cylinder. Its output was connected to
the horizontal grid of an oscilloscope. A second probe was then located
directly over the cylinder and its output connected to the vertical
oscilloscope grid. By observing the scope pattern the first probe could
be adjusted to be in phase with the waves at the cylinder. The second
probe was then removed and a data run commenced. During each run the
wave generator drive eccentricity was varied from a half-inch to eight

inches, or to a point where the waves broke in the channel.
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FIGURE 11,CANTTIEVER CALIBRATION ARRANGEMENT
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IV. PRESENTATION OF R=SULTS ZND CONCLUSICNS

A. EIPERINENIAL RESULTZS
As discussed in Thecretical Analysis, non-dimensional wave forces can
be represented as functicns cf relative water depth (h/a), relative wave

length (27a/L} or period parameter (h/gT?) and relative height parameter

R S R

{H/2a) . In order to ascertain the effect of varying these parameters on
the horizontal and vertical ccaponents of wave force a test program was
established which, for a given run, held water depth and period constant

while varying the wave height. Four series of runs were conducted at

éé
-
?E

different water depths corresponding to the relative water depths (h/a)
of 9.0, 7.0, 5.5 and 4.0. For each of these water depths, the relative

wave length (2na/L) was varied over a range fram 0.06 to 0.48.

Due to the difficulty in presenting all the wave force traces, a
series of representative traces is shown in Figures 12, 13, 14 and 15.
These traces represent three wave lengths from the three deeper water

depths (h/a = 9.0, 7.0 and 5.5) and two wave lengths for the shallowest

water depth (h/a = 4.0). For each of the eleven runs, four wave heights

arranged in increasing order are shown. The uppexrmost trace represents

wave height, the middle vertical force and the bottom trace is horizontal

force,
The wave height traces show that the waves were generally sinusoidal

in nature. This was especially true at the shorter wave lengths. At the

greater wave lengths the wave trace departed from the sinusoidal form as

the wave height was increased. As can k= seen in Figure 12, for the

greater lengths, as the height was increased the wave was characterized by
sharp peaks amd long flat troughs.
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Before discussing the wave force traces a brief discussion of the
mechanism jnvolved in the wave forces is in order. In Bernoulli's
equation two contributions to the pressure acting on the surface of the
cylinder are recogni:ed, an unsteady contribution associated with the time
derivative of the potential to the first power (vertical forces) and a
term associated witt the fluid velocity squared. The velocity squared
term tends to be symmetric about the y axis and, consequently; contributes
little to the horizontal force. The inertia temm is therefore dominant,
in the horizontal forces, and increases linearly with wave height H/2a.
Examination of the representative traces shows that the horizontal force
varied nearly sinusoidally with wave height for all cases except when the
wave length became very large. In the case of very long waves, the hori-
zontal force peaks are separated by a null region which corresponded to
the wave crough. The maximum value of the horizontal force coincided with
the maximum water particle acceleration associated with the incident wave,
Bouation (9).

For the vertical forces, there are two regimes, one in which the
inertial forces dominate and a second in which the velocity squared temm
daminates. The inertial contribution to the pressure produces both posi-
tive and negative values of vertical forre. This term tends to be linear
in wave height H/2a and have a maximum value of uplift when the cylinder
is under the wave trough. The velocity squared temm produces only upward
forces due to the non-symmetrical flow about the cyiinder. This component
of vertical force is a function of the wave heicht squared (H/2a)? and
peaks occur at the poiuts of maximum wave induced velocity occurring at
both crest and trough of the wave. Examination of the vertical force

traces shows that for the longer waves the force was regular and had a
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frequency twice that of the incident wave. The doﬁble frequency was
caused by the velocity maximums at the crests and troughs. The maxirum
occurring under the wave crest in the longest waves was apparently
attributable to the fact that the velocity under the crest of a shallow
water wave is greater than at thr':z trough. Here the upward force was lift
dominated. At intermediate wave lengths the reverse occurred. As the
wave length wa: shortened the inertial effects gradually took effect and
the maximum occurred at the trough where the two camponents were additive.
Finally, at very short wave lengths the inertial force became daminant
and the traces showed a sinusoidal behavior; the lift force associated with
the velocity squared temm in Bernoulli's equation became negligible.

1. Horizontal Forces

As noted previously, the horizontal force was nearly sinuscidal for
the entire series of data runs. It is therefore possible to characterize
the force by the maximum value. In oxder to examine the variation in the
horizontal force with varying wave height, plots were constructed of the
non-dimensional force coefficient fx (fx = F, maJ/pgazsL) versus the
relative wave height H/2a. These wave force versus wave height plots are
presented in Appendix B. It is apparent from the plots that horizontal
force coefficient is characterized by a linear variation with wave height.
Inasmuch as the variation of the force coefficient was linear with H/2a,
for a given wave length, it is possible to characterize the horizontal
farce by the dimensionless parameter fx/(h/2a), the slope of the wave
force-height plots.

The paraneter, F, ./ [pga?(H/2a)] is presented as a function of the
relative wave length (2ma/L) in Figure 16, This figure also presents the

result predicted by Morrison's analysis, Equation (12). For the larger
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values of relative wave length (27a/L) the experimental results and
theory are in good agreement. This is generally as expected because for
the larger values of 2na/L the waves are well represented by linear theory
and the effect of the free surface is reduced due to the greater water
depth. It mav be recalled that these were the assumptions upon which the
Morrison equation is based. However, for smaller values of 2na/L, the
experimental results are consistently high. This is not unexpected as the
waves have become shallow water waves and are not well represented by the
linear wave theory. Also, in the case of the smaller depths the effect of
the free surface becames important.

2. Vertical Forces

As previously discussed, the vertical force may display two regimes,
one inertia dominated and one dominated by the force associated with the
velocity squared temm in Bernoulli's equation. The assumption having been
made in Equation (13) that the inertia forces would be negligible, the
vertical forces would be a function of the velocity squared only and hence
a function of (H/2a)2. It is difficult to characterize the force vari-
ations with wave height by a single temm as two types of flow exist.
However, having made the assvtption that the force was a function of
velocity squared, it was decided to use fy/(H/2a)? as the characteristic
quantity.

Values of Fy nm(/pga%(H/Za) 2 were plotted against the relative wave
length (2na/L) and presented in Figure 17. The values of this coefficient
predicted by a 1lift force only are also shown in this figure. The agree-
ment between the theory and experimental results appears to be gocd for
the greater water depth (h/a = 9.0). However, as the water depth was

decreased the agreement became poorer and the experimental data displayed
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higher force values than predicted by Equation (14); apparently owing to
the effect of the free surface and the non-linear effects of the incident
wave. Also, as the wave length decreased, or the parameter 2na/L increased,
it may be noted that the agreement is poor. This is apparently due to the
fact that the inertia component becomes daminant and this contribution to
the force was neglected in Equation (13).

As waves are often characterized by period rather than wave length,
Figure 18 presents the force coefficient as functions of a relative period
(h/gT2) .

B. CONCLUSIONS

From the experimental results the following conclusions are considered

warranted:

R VT T P S I U R e R T T, Zreie i s IS IS (o Qi SRR D et R Ay AR Wit R Py L D iy

1. The horizontal forces on the cylinder, resulting from the incident
gravity waves, increased linearly with wave height.

2. The vertical force showed two regimes, one inertial dominated and
one velocity squared dominated. The inertial force regime occurred at
shorter wave lengths, while the velocity squared term predominated at the
longer wave lengths.

3. The maximm vertical force was always smaller than the maximum
horizontal force and the downward vertical force was nearly zero.

4. For greater water depths the theoretical predictions appeared to
give valid results for both horizontal and vertical forces in the short
wave length range. ~

5. Horizeontal forces became independent of the parameter, 2wna/L, for

greater wave lengths.
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NUMBER OF RUNS IS 24.

TOTAL

8.
0.829 SECONDS.

DATA FOR RUN NUMBER

WAVE PERICD IS

WATER DEPTH IS 18.0 INCHES.

3449 FEET.

WAVE LENGTH IS

DIMENSIONLESS PARAMETERS ARE Z2PIA
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TOTAL NUMBER OF RUNS IS 24%.

S.

DATA FOR RUN NUMBER

WAVE PERIOD IS

WATER DEPTH IS 18.0 INCHES.

WAVE LENGTH IS 2.61 FEET.

2P1A

0.714 SECONDS.
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TOTAL NUMBER OF RUNS IS 24.

DATA FOR RUN NUMBER 11l.

WAVE PERIOD IS

WATER DEPTH IS 18.0 INCHES.

1S 12.54 FEET.

WAVE LENGTH

1.961 SECONDS.
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NUMBER OF RUNS IS 24.

TOTAL

18.
1.757 SECONDS.
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WATER DEPTH IS 14.0 INCHES.

9.94 FEET.
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HATER DEPTH IS 14.0 INCHES.
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TOTAL NUMBER OF RUNS IS 24.

DATA FOR RUN NUMBER 20.

WAVE PERIOD IS

WATER DEPTH IS 14.0 INCHES.

534 FEET.

WAVE LENGTH IS

1.089 SECONDS.
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NUMBER OF RUNS IS 24.

TOTAL

DATA FOR RUN NUMBER 21.

WAVE PERIOD IS

WATER DEPTH IS 14.0 INCHES.

WAVE LENGTH I35 3.55 FEET.

0.846 SECONDS.

~OMp~
nnmoo
I glealaViTol
nNNAO
¢ o 0 o

(elalele)
W nn

DIMENSICNLESS PARAMETERS ARE 2PIA

(A
Ot
[ L

\Dad
| § BN

wo
> -t
<ty
=X

OO~~~
OO MmO
* 0 % 9 e 0

[elelololale]

OVAN~O0M
=l NN NO
e e e 0 e

(ololelolele]

NN DOt
IO O

OO~OOO

O =N~
O~
¢ ¢ 0o & o

QOO ~0O

O ONMLE
ONNNO
6 00 0 0

[elelslolele]

—~3 OO
NEOF OO

[e]eleleolole]

[Va X\ X5 i TaYoe XN
PO O
? % 8 & 9 0
QOriN~~O

NI
[TTa RN e RC I oXos)
® G o0 5 0

~NG GO

—ONOF NN
[elelelslale)
—~{ o=t e et
NANNNNN

57

D R R e SR R GV S

ey B
- -

o

N\




4 .
E; (7, .
E w
1. :
- < =
L - =
: © &
E [ ] Liome
< Ot Ot F NSO
: . Ll Onr OrferirtO OO0
- ¢ & € ¢ 8 2 o O
v e~ [wlololelelelole)
—t 1L~
) b o4
b~
a. W
L W
D O+ N4 O—= MO~
' O ~ONONNROO
! [« 4 -~ ® 0 00 e o0
. us (> [olelelolalelele]
¢ | ot L~
< -
=
- w
= . w 0DV OO~
E: o =) FINON I~ I
3. w O 2 6 38 ¢ o ¢ @
e - w o~ olelololelolole]
i H w o<
% 4 U~
2 4 e O
; 4 ©
N e o
[\ << OO
) (@] o] pde) o Voo OoOOooNMN -
) NAO O ~ e e 00 0 g 00 -
: v Fon T OO 000 P
VI o~ OMNO Rl
z e o 0 o -
D I o000
< ~
. GO Hunn wiy DFO~0 0O
w Z O~ NN ADOO~
0O w NJJIN oL~ EEEEERE
-t NN o> [elolalolololole]
o $# < L3 W~
W W e
n > O0oa O
= < NN\
2z D T X -
b= " wt NN ONNN
Q. O~ MOFOFT IO~
| ¢« N [v ] e 06 9006 08 00
< v ) [e]lelelelololals)
- 0O w .~
O Z «
- 0O <
% (&)
w v [35) NN O Lo
° U (& 1o (62 QVAS s Vs [os IN oS V0]
o~ 48] o> A 3 90 ¢ 00 0 0
N O - fm g Oriri OO0
W w W
3 o > =
> w ¢ o
0 O o
. = < -
] Q. s NOOMPM~NIND
Z v wo N0 O
- - 1] 00 0 ¢ 0 s 0
prs [%] < NOT T O~N
3 D O w =z
3 @ O
- Z
o < O
i O W -
e U a v zZ ~OFN D00
< wi [olelololalololy
2 < W ow =D NN NNCIN NN
% - > O NN NN
g g <L e 5 b }
% o =z 0 nl
&
58 *

Fo e e e e P U oy S O T Tt T e P e AT LS AT IARTZIAN Y,




F AL PRt o) R H
ERARAK R

WATER DEPTH IS 14.0 INCHES.
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2.35 FEET.
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WAVE LENGTH IS

TOTAL NUMBER OF RUNS IS 24.

DATA FOR RUN NUMBER 23,
0.678 SECONDS.
DIMENSICNLESS PARAMETERS ARE 2P1A

WAVE PERIOOD IS
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TOTAL NUMBER OF RUNS 1S 24.

DATA FOR RUN NUMBER 10.

WATER DEPTH IS 18.0 INCHES.

IS 2.20 FEET.

\WAVE LENGTH

0.655 SECONDS.
DIMENSIONLESS PARAMETERS ARE 2PIA

WAVE PERIOD IS
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TOTAL NUMBER OF RUNS 1S 24.

DATA FOR RUN NUMBER 25.

WAVE PERIOD IS

WATER DEPTH IS 11.0 INCHES.

WAVE LENGTH IS 13.46 FEET.

2+.549 SECONDS.
DIMENSICNLESS PARAMETERS ARE 2PIA
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TCTAL NUMBER OF RUNS IS 24,

DATA FOR RUN NUMBER 27e.

WAVE PERIOD IS

7.09 FEET. WATER DEPTH IS 110 INCHES.

WAVE LENGTH IS

1l.436 SECONDS.
DIMENSIONLESS PARAMETERS ARE 2PIA
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TOTAL NUMBER OF RUNS IS 24.

DATA FOR RUN NUMBER 30.

WAVE PERIOD IS

g T R T e R R S i LA L LR P

2.64 FEET. WATER DEPTH IS 11.0 INCHES.

WAVE LENGTH IS

0.727 SECONDS.
DIMENSICNLESS PARAMETERS ARE 2PIA

o0
MO ~m
g n
~e 0
o o o 0

(elelale]
nnnn

H/2A

ol
[ 1]
o~

Ll ~

W+
D~
[en)
O>
-

LI~
[s 9
O~

wien
-
<
b e o

A S A NI I R S S .

fa Yol ind e
OO rtrird
e o & 0 o

00000

OO oun
OrdmitIN
eo e e

O0000

00O M~
r~ OO
2 & o o @

(olololole)

NN oo
NI OOP
o 6 o ¢ o

(olelelele]

00N
ONOIG
o & o 0 0

[olelalele]

Moo
~Jin

QOO0

—_OUN 00 ¢
o~
o ¢ g o @
QO

Pty
[sa] M TatTaY0e}
¢ o ¢ & o

QNN

~ONO N
o]lolelele]
[olelslele]
aeaamMmmn

65

e #
- ‘o

SN

e LR

o e e e a W R




*
[72]
w
x
O
<
]
(=] w
. -~
-t Ot o N
. (ol (810 OOt
- ¢ & 00
(74} [y [e]elele]
-~ L~
i e of
H -
3 o. u
K [ 11] e~
. o O+ NN
7 (814 O rdrdrd
% o -~ s e e 0
3 w > 0000
| d U~
<t
5 =
s T8
. i ooy
s [ o N
EL (11} (&) ¢ o 0 @
£ V3] -~ [ele]ole]
f u o<
= W~
¢« &
NI e
o < AN
[72] ~Fino N NN OO .
-t ~NNOO ~ [ %~
[V 20 altee SN o oo d I [e]elole o
. v = NGO R
2 [N Y .
D X 0000
o o~ .
- O wuin wt N0 M~
w O~ O N
0O W NoOJN e~ * e e
R NN Q> [olelaln)
[« 4 T U
W U et
b o > va O
. = < NNON
5 D « T -~
] z — w4 otom
s i a O ~ONE
bt -t * N fe o] o 0o 0 0
4. < un 0> 0000
4 - O w U~
b 0 2
T ~ O <«
; (8]
[T Vs w OGN
s U O (SN MnNYOO~
-t w o X ¢« o 0 0
N 3 - Qe QOO
W w
« O =
w ¢ I
N O
= < -
D a T NN
Pz V) we QO M~1NN
. - ) - o0 o 0
Z V) < O~
D O w =T
o O J
- Z
« o« O
O u - -
w a uv Z o —~O M
=z Wity [efelale]
< W ow =m et 1ok o+
- > ¥ ox el TaaIal
< < wo
O T O nz

66 .




TOTAL NUMBER OF RUNS IS 24,

DATA FOR RUN NUMBER 35,

WAVE PERICD IS

ES.

IS 8.0 INCH

WATER DEPTH

WAVE LENGTH IS 7.30 FEET.

l1.658 SECONDS.
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1S 24.

NUMBER OF RUNS

TOTAL

1.259 SECCNDS.
PARAMETERS ARE 2P

DATA FOR RLIN NUMBER 36.

WAVE PERIOD IS
DIMENSICNLESS

8.0 INCHES,

WATER DEPTH IS

5.33 FEET.

S

WAVE LENGTH

SN
VoM
ooy~
Nt O
9 0 0 o

Oo0O0o
o
N

3 NN
# <3

H/ 2A

u g
L)
o~

LL

Ox
wnZ

=) 0
CCO000
IR BRI Y

[elolelalels]

NN O F
Ot
o o 0 * o 0

QOO0000

-0V on
NI~
*® o6 0 00

QOO mirm

NI O~
~AIMND Oy
® e 0 o0 e

[elaleslelole]

MO
OO~ODO
* v 0 0 s e

eleloivlelel

Oo~NO0Y
~ONMNO~ O
o ¢ ¢ 0 0 0

[olelelelele]

NN
WNONO M —
o * % 9o & @

O 0NN

VOM~OO
F et O
® 0 a3 9 0 0

QDN M

—ANOITNO
(elelelelelw)
OO0
AaMmaMmam

68

LR oAl
. .

Rt

XN




THIS
PAGE
IS
MISSING
IN
ORIGINAL
DOCUMENT



SRRV

OIS

(S PNTNTN
e © o e
[ololele]

(19
Lo~
O
[& 12
~
>~
| T

*S3HONI 0°8

ISR ai gt Sy S

Ot
o0 00
loJolele]

o

SI H1d3Q Y31iVM

1/
AN
Y
:-
88°0 8L°0
18°0 6S°0
25°0 8e°0
92°0 81°0
(x)

34300 °d VZ/H
66£0°0
®992°0
s81+%°0
16%L°0

*l334 06°Z2 S

26°0 S0°1 16°1
8%°0 26°0 211
Ll2°0 9¢°0 21°T1
90°0 80°0 LS*0
=)} (A} (+)(A) {(X)
32404 32404 3240
= 2=%%19/H

= 1/H

= /v

= k%

I HION3T 3AVM
%2 SI1 SNNY d0 Y38WNAN TIVLIOL

v 4 e e e e e aae

°SANO23S %2L°0
*8€ Y3BWAN NNY ¥0d Viva

B TN

€1°¢e 08¢
9¢°2 £038¢
€6 °1 c08¢
¢L*0 108¢
H3I3H d3gWNN
3AVHM IN3WS3SS

SI A0Id¥3d 3AVM

T L g

70




1.50
g 1.25
P
§ 1.00
9 ’
U4
§ 0.75
g
2 0.50

0.25

Relative Wave Height (H/2a)
h/a= 9.0 o
§  ygsl. 2m@/L=0.153 ©
4J {
g 0]
T 1.00
:3:} A
8  o.75p @/ a
8
o 0.50}-
0] A
0.25 A/A/
,_-—M"AI///T ! | ( i I |

Relative Wave Height (H/2a)

71 >




.ﬁmFW@WEWMW?W%W@WWW&”MWimwi APRES

TRy

W‘M’!‘“

B e Tt e
H .

“

Force Coefficient (f)

Force Coefficient (f)

1.50 I~ Run 7
h/a= 9.0
2ma/L = 0.250
1.25
1.00 |-
0.75 + 0]
/
0.50 - ~
/O/O /A
A

1.50

1.25

1.00

0.75

0.50

0.25

g © /ﬁ/m—lm

A= B—T— 71 t !

B—0
1

6.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

- Run 8
h/a= 9.0
2na/L = 0.300
=
—0 —_— g——80
et B Y i o 1 i !

6.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

72 :




1.50 |~ Rm 9
h/a= 9.0
2na/L: = 0.402
a 1025 -
33
8 1.00k
0
o
Pt
|§ 0.75
U L]
8 i
g 0.50
0.25 |- Q’G
/
A& 1 i ] ] }
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Relative Wave Height (H/2a)
1.50 Run 10
h/a= 9.0
2na/L = 0.477
G 1025 -
.§ 1000 [~
3
[T
g 0.75 -
§ 0.50
g .
0.25 -
ol A:——I—NM‘I | 1 i | {

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative “Jave Height (H/2a)

73 >




Force Coefficient (f)

Force Coefficient (f)

1.00

0.75

0.50

0.25

1.50

1.25

1.00

0.75

0.50

0.25

_ R 11
h/a= 9.0
27a/L = 0.084
= O]
| {
0.2 0.4 o0.6 0.8 1i.0 1.2 1.4 1.6 1.8
Relative Wave Height (H/2a)
—~ Run 17
h/a= 7.0
2ma/L = 0.086
| | | | |
1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

74




£
21
i.50 b Run 18
h/a= 7.0
N 27a/L = 0.105
H 1.5} G
- -
g
B 1.00 -
& o)
§ 0.75 | .4 0
8
O - : A
A 0.50 _ A/
O @ A/A
0.25 |- s
0 —
(o
M/f 1 ! i 1 i i 1

0.2 J.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

1.50 Run 19
h/a= 7.0
~ 2ra/L = 0.145
hat 1.25 -
P
g L
;::-)' . e
)
3)‘ 0.75 |-
g
2 0.50 |-
0.25 / /AA
)
,%—,/g 1 ! ! ! ! 1 ! !

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

75 *




T T

Force Coefficients (f)

Force Coefficients (f)

1.50

1.25

1.60

0.75

0.50

0.25

1.50

1.25

1.00

0.75

0.50

0.25

Rm 20
h/a = 7.0 (0]
2%a/L = 0.196
o
0]
0]
o
A
A /

Bf———-7=] 1 { 1 { i i

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

Run 21
h/a= 7.0
2ma/L = 0.295

Cf////(b

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

76 '

yaAb AR T 1

LAY




Force Coefficient (£)

Force Coefficient (f)

1.50

1.25

1.00

0.75

0.50

0.25

1.50

1.25

1.00

0.75

0.50

0.25

Run

h/a =
2ma/L = 0.447

Relative Wave Height (H/2a)

23
7.9

/O/CSD

//O‘ég//é An 1 ]

0.2

0.4

0.6 0.8 1.0 1.2 1.4

Relative Wave Height (H/2a)

77

1.6

1.8




et o AT T 43 e VT AR T M cirt e m -

1.8

1.6

1.4
l.4

0.8

Relative Wave Height (H/2a)
0
Relative Wave Height (H/2a)
78

27
5.5

2ma/L = 0.148

Run
h/a

1.25 ¢+
1.00 {-
0.75 -
1.50 |~
1.25 -
1.00
0.75 -
0.50
0.25 -

(3) IUSTOTFFSOD SOI0T (3) IUSTOTIFSOD 010

X210 a 5,

T KA L T o S L Sy
Bt L ﬁ%&%bﬁ%ﬁ%ﬁ#gﬁﬁ?ﬁﬁ«%ﬁ%v&% R



(®)
1.50 |- Rm 28
) h/a= 5.5 ©
27a/L = 0.195
& 1.25p
. B 0)
g
ol 1.00 =
O
o ()
L 21
§ 0.75 |
g
[2 0.50 -
0.25
1 i 1 i | i i | }

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

1.50F Run 29
h/a= 5.5
_ 2na/L = 0.302 /
8 1.5k
¥e)
ol
4 .00}
.“,j
g 0.75}
B sl
O .
0.25¢
A L
_— 00—
b—p—1 1 I ; 1 ! !

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

79 :




T

SIS N SR RSN C Rt

R

e R A

S LT

DT gy T R AT A R,
TN o L AR

S

’ TR Rt e ] T A R L ey
TP i EE e il sk & s i
!‘;\ b bl pe s St e A S s v

o Ay R

HS

Force Coefficient (f)

Force Coefficient (£f)

1.50

1.25

1.00

0.75

0.50

0.25

1.50

1.25

1.00 =

0.75

0.50

0025 »

Run 30
h/a= 5.5
2na/L = 0.397

Relative Wave Height (H/2a)

Run 31
h/a = .5
27a,/L = V.512

! § i { {

/
o/ﬁ/@

e t !
0.2 0.4 0.6 0.8

. 1.6 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)

80 .




35
4.0

Run
h/a

0.8 1.0 1.2 1.4 11l.6 1.8
Relative Wave Height (H/2a)

OI6

0.2

b h Avr AR @ At AT AC TIDATL ST RTINS WO s R WS T 6T BT oy ATeA N e

36
4.0

2ma/L = 0 1974

Run
h/a

1.6

1.0

0.8

AT brele e o ke

1.50

1.25F
1.00
0.75 |~
0.50

(3) IUSTOTFFROD B0

1.50 ¢
1.25 =

(F) IUSTOTIFOOD 30I0I

Relative Wave Height (H/2a)

81

e e "
S S S

R
s oo st IS ERGNNG



Force Coefficient (£f)

Force Coefficient (f)

1.25

1.00

0.75

0.50

0.25

1.50

1.25

1.00

0.75

0’50 3

0.25

- Ran 37
h/a= 4.0
21a/L = 0.294 (S{/

WA=
/ A AN
;/ [\{;ﬁ—m —’E"
= Ty ] ] ] ] l 1 {

Relative Wave IHeight (H/2a)

[~ Ran 38
h/a = 4.0
27a/L = 0.419

s

- 5
/// ;:::g;”’ll’/”

/
M L | ] ] i | 1 ]

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Relative Wave Height (H/2a)
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