EFFECT OF COOKING AND FAT LEVEL ON THE OXYGEN UPTAKE OF FREEZE-DRIED COOKED GROUND BEEF

by

R. L. Helmer
and
J. M. Tuomy

Approved for public release; distribution unlimited.

December 1971

UNITED STATES ARMY
NATICK LABORATORIES
Natick, Massachusetts 01760

Food Laboratory
FL-150
Approved for public release; distribution unlimited.

Citation of trade names in this report does not constitute an official indorsement or approval of the use of such items.

Destroy this report when no longer needed. Do not return it to the originator.
EFFECT OF COOKING AND FAT LEVEL ON THE OXYGEN UPTAKE
OF FREEZE-DRIED COOKED GROUND BEEF

By
R. L. Helmer and J. M. Tuomy

December 1971

Food Laboratory
US Army Natick Laboratories
Natick, Massachusetts 01760
Oxygen has been recognized to have an adverse effect on the quality of freeze-dried foods. It has been found in previous studies that the freeze-dried combination foods such as used in the Food Packet, Long Range Patrol vary widely for their affinity to oxygen. At least one product can be stored in atmosphere for six months at 100°F. and still be edible while most of the others become inedible in a few weeks under the same conditions.

There was some evidence that the cooking of the beef component in combination foods affected oxygen uptake. Therefore, this study was conducted to further isolate the effect of cooking.

The work was performed under project LJ662713AD34, Military Food Service and Subsistence Technology.
TABLE OF CONTENTS

Abstract
Introduction
Experimental Methods
Results and Discussion
References
List of Tables

Table No.
1. Fat percentages as determined analytically in the four levels 5
2. Headspace gas analyses in percent of gas composition 6
3. Analysis of variance results showing significance of the factors and
 the percent of variance attributable to them for O₂ uptake.
4. Analysis of variance results showing significance of the factor and
 percent of variance attributable to them for CO₂ production.
ABSTRACT

Ground beef with fat levels of 10, 15, 20 and 25 percent which was cooked in water to 180°F and cooked with boiling for 20 minutes was freeze-dried and stored at 100°F. Products were withdrawn at 2, 4, 8 and 12 weeks and the head space gas analyzed.

It was found that the more severe cooking resulted in higher oxygen uptakes statistically significant at the 1 percent level. The higher fat levels caused significantly higher uptakes, but they were a small part of the total variance observed.
INTRODUCTION

The adverse effect of oxygen on freeze-dried foods is well known and dictates that these products be packaged and maintained in low oxygen atmospheres. This is expensive and sometimes rather difficult to do through processing and handling in the field. However, investigations concerned with oxygen uptake of freeze-dried foods have shown that they vary widely in their susceptibility to oxygen uptake (Tuomy et al, 1970). Reasons for this are not well understood, but the differences are substantial enough so that while one freeze-dried combination item, such as beef with rice, will still be quite edible after 6 months storage at 100°F canned atmosphere, another, such as spaghetti with meat sauce, will be practically inedible after 4-6 weeks under the same conditions. Both of these products contain ground beef.

In a further study attempting to determine the effect of ingredients on oxygen uptake (Tuomy and Fitzmaurice, 1971) it was found that ingredients determined the uptake and that the meat component plays the biggest part. As an offshoot of this study, indications were found that the method of cooking the beef had a bearing on the oxygen uptake of four of the combination meat items studied.

Fat content in the raw meat specified for freeze-dried products used by the Armed Services is held to less than 25 percent due to rehydration problems encountered with higher levels. Although oxidation of freeze-dried meats does not take place with the fat in the way that it does with fresh meats, the level of fat may have some effect on the oxygen uptake of freeze-dried meats.

Zipser and Watts (1961) stated that antioxidants are produced in meat by prolonged cooking above 100°C. However, these investigators did not attempt to identify the compounds formed nor was the meat freeze-dried.

Ground beef is used in four of the eight freeze-dried main components of the Food Packet, Long Range Patrol. In addition, diced beef is used in a fifth item. Furthermore, additional items containing beef are under consideration for other rations and for compressed bars. If it can be shown that the method of cooking the beef has a significant effect on the oxygen susceptibility of the final product, the products can be designed or redesigned to take advantage of this. Therefore, this study was designed to obtain more information as to the effects of the beef cooking on oxygen uptake over a period of storage. Fat level was included in the design.
EXPERIMENTAL METHODS

U. S. choice boneless top rounds were used in the study. The beef was trimmed and the trimmed fat used to make up the fat to the desired levels. The lean and fat were ground through a 1-inch plate separately, analyzed for fat, and then made up to obtain roughly 10, 15, 20 and 25 percent fat on the basis of the analyses. Actual fats obtained after the products were freeze-dried are shown in Table 1. After the fat and lean were mixed, the products were ground through a 3/8 inch plate.

Cooking was accomplished in a steam jacketed kettle in much the same way it would be done if combination products were being made. Half of the products at each fat level were mixed with an equal weight of cold water and heated to 180°F. The meat and water mixtures were then spread thinly on dehydrator trays and frozen in a blast freezer for freeze-drying. The other half of the products were mixed with equal weights of cold water, heated to a boil, and boiled for 20 minutes. The meat and water mixtures were also spread thinly on dehydrator trays and frozen. The frozen products were freeze-dried with a platen temperature of 125°F (radiant heat) and a dehydrator pressure of 100-300 microns to a moisture of approximately 1 percent. The dried products were canned at atmospheric pressure, 125 grams to a No. 2½ can and stored at 100°F. Withdrawals were at 2, 3, 8 and 12 weeks.

Headspace gas analysis was performed by chromatographic means in accordance with the procedure outlined by Bishov and Henick (1966). Sample size was 250 to 500 μl. Experience indicates an anticipated error for the method of approximately ± 0.25 percent. Cans were equilibrated to ambient temperature overnight before the analyses were run.

Total headspace volume in the cans was determined by compressing 125 gms of product in a laboratory press at 5000 pounds per square inch for 10 seconds and subtracting this volume from the volume of the can. This method is not completely accurate, but since the volume of headspace is very large in comparison with the absolute volumes of the products any error is considered to be of little consequence.
RESULTS AND DISCUSSION

Headspace gas analysis for the various products are shown in Table 2. Analysis of variance with percent of variance on the oxygen uptake is shown in Table 3. All of the factors and two factor interactions are shown to be statistically significant at the 1 percent level. However, percent of variance indicates that storage time, method of cooking, and their interaction comprise most of the observed variance with the method of cooking x fat content interaction comprising 2.6 percent of the variance.

The time in storage comprises a large part of the variance, (54.2 percent) which is to be expected. The method of cooking has a large effect (28.6 percent) on the oxygen uptake with the more severe cooking resulting in the largest oxygen uptake. The interaction of these two variables made up 13.0 percent of the observed variance with the direction of the largest uptake in the direction of greater storage time and the most severe cook. These results are in line with the results of Tuomy and Fitzmaurice (1971).

While the fat content was statistically significant it made up only 0.4 percent of the variance and is not particularly important. When the means are tested by Duncan's multiple range test, the lowest fat is shown to produce the smallest oxygen content and to be the only mean significantly different from the other three at the five percent level.

Analysis of variance for CO₂ production is shown in Table 4. The production of CO₂ follows the oxygen uptake results quite closely except that the storage time x fat content interaction was not significant. In addition, Duncan's multiple range test shows that all of the fat means are significantly different.
References

Table 1. Fat percentages as determined analytically in the four levels.

<table>
<thead>
<tr>
<th>Fat as calculated % (new product)</th>
<th>Fat as determined % (freeze-dried product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>33.6</td>
</tr>
<tr>
<td>15</td>
<td>38.2</td>
</tr>
<tr>
<td>20</td>
<td>49.1</td>
</tr>
<tr>
<td>25</td>
<td>55.7</td>
</tr>
<tr>
<td>Cooking Method</td>
<td>Fat Content %</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>O₂</td>
</tr>
<tr>
<td>Cooked</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiled</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Analysis of variance results showing significance of the factors and the percent of variance attributable to them for O$_2$ uptake.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Degrees of Freedom</th>
<th>Significance</th>
<th>Percent of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (storage time)</td>
<td>4</td>
<td>xx</td>
<td>54.2</td>
</tr>
<tr>
<td>B (cooking method)</td>
<td>1</td>
<td>xx</td>
<td>28.6</td>
</tr>
<tr>
<td>C (fat content)</td>
<td>3</td>
<td>xx</td>
<td>0.4</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>xx</td>
<td>13.0</td>
</tr>
<tr>
<td>AC</td>
<td>12</td>
<td>xx</td>
<td>0.4</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>xx</td>
<td>2.6</td>
</tr>
<tr>
<td>Remainder</td>
<td>92</td>
<td>-</td>
<td>0.8</td>
</tr>
</tbody>
</table>

xx Significant at the 1 percent level.
Table 4. Analysis of variance results showing significance of the factor and percent of variance attributable to them for CO₂ production.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Degrees of Freedom</th>
<th>Significance</th>
<th>Percent of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (storage time)</td>
<td>4</td>
<td>xx</td>
<td>26.3</td>
</tr>
<tr>
<td>B (cooking method)</td>
<td>1</td>
<td>xx</td>
<td>40.8</td>
</tr>
<tr>
<td>C (fat content)</td>
<td>3</td>
<td>xx</td>
<td>13.0</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>x</td>
<td>3.7</td>
</tr>
<tr>
<td>AC</td>
<td>12</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>xx</td>
<td>7.5</td>
</tr>
<tr>
<td>Remainder</td>
<td>9</td>
<td>-</td>
<td>8.7</td>
</tr>
</tbody>
</table>

n.s. not significant
x significant at the 5 percent level
xx significant at the 1 percent level.
Copies

1 - Technical Service Branch
 Technical Operation Division
 Directorate Subsistence
 Defense Personnel Support Center
 ATTN: Director of Subsistence
 DPSC-STS
 2800 South 20th Street
 Philadelphia, Pennsylvania 19101

1 - Director
 Biology Sciences Division
 Office of Naval Research
 Department of the Navy
 Washington, D.C. 20360

1 - U.S. Department of Agriculture
 Consumer & Marketing Service
 ATTN: Ch, Product Standards Branch
 Standards & Services Division
 Washington, D.C. 20250

1 - Headquarters, Defense Supply Agency
 ATTN: Mr. Jobe, DSAH-OP
 Cameron Station
 Alexandria, Virginia 22314

1 - Dr. William H. Brown
 Chairman, Committee on Radiation
 Preservation of Food, NAS/NRC
 President, American Bacteriology
 & Chemical Research Corp.
 P.O. Box 1557
 Gainesville, Florida 32601

1 - Stimson Library
 ATTN: Documents Librarian
 US Army Medical Field Service School
 Brooke Army Medical Center
 Ft Sam Houston, Texas 78234

1 - Arctic Medical Research
 Laboratory (USARIEM) Alaska
 APO, Seattle, Washington 98731

Copies

1 - Colonel James L. Fowler, VC
 Ch, Food Hygiene Division
 U.S. Army Medical Research & Nutrition Laboratory
 Fitzsimons General Hospital
 Denver, Colorado 80240

1 - Consumer Products Division, 730
 Bureau of Domestic Commerce
 U.S. Department of Commerce
 Washington, D.C. 20230

1 - R. J. Reynolds Tobacco Company
 ATTN: J. E. Roberts
 Winston-Salem, North Carolina 27102

1 - HQDA (DARD-ARL)
 WASH DC 20310

1 - Subsistence Management Policy
 Director
 ATTN: OASD (I&L)
 Pentagon 2B323
 Washington, D.C. 20301

3 - Office of the Coordinator of
 Research
 University of Rhode Island
 Kingston, Rhode Island 02881

3 - Exchange & Gift Division
 Library of Congress
 Washington, D.C. 20540

1 - Headquarters, USAF (AF/RDPS)
 DCS/Research & Development
 Washington, D.C. 20330

1 - Subsistence & Culinary Arts
 Department
 U.S. Army QM School
 Ft Lee, Virginia 23801

1 - Logistics Library
 Bunker Hall
 Ft Lee, Virginia 23801
<table>
<thead>
<tr>
<th>Copies</th>
</tr>
</thead>
</table>
| 1 - Library
USDA, Southern Marketing & Nutrition Research Division
P.O. Box 19687
New Orleans, Louisiana 70119 |
| 5 - U.S. Department of Agriculture
Animal & Plant Health & Inspection Service
ATTN: Director, Standards & Services Division
Washington, D.C. 20250 |
| 1 - USDA, National Agricultural Library
Current Serial Record
Beltsville, Maryland 20705 |
| 1 - Administrator
Agricultural Research Service
U.S. Department of Agriculture
ATTN: Dr. Sam R. Hoover
Washington, D.C. 20250 |
| 1 - Dr. I. A. Wolff, Director
Eastern Marketing & Nutrition Research Division
Agricultural Research Service
U.S. Department of Agriculture
Wyndmoor, Pennsylvania 19118 |
| 1 - Dr. C. H. Fisher, Director
Southern Marketing & Nutrition Research Division
Agricultural Research Service
U.S. Department of Agriculture
1100 Robert E. Lee Blvd
New Orleans, Louisiana 70119 |
| 1 - Dr. C. H. Harry Newfeld, Director
Southeastern Marketing & Nutrition Research Division
Agricultural Research Service
P.O. Box 5677
Athens, Georgia 30604 |
| 1 - Mr. Dean F. Davis, Acting Director
Market Quality Research Division
Agricultural Research Service
U.S. Department of Agriculture
Federal Center Building
Hyattsville, Maryland 20782 |
| 2 - Headquarters 12th Support Brigade
ACofS Services
ATTN: Food Advisor
Fort Bragg, North Carolina 28307 |
| 1 - Chief, U.S. Army Food Service Center
ATTN: Dir/Commissary Operations
Fort Lee, Virginia 23801 |
| 2 - Dr. Frank R. Fisher
Executive Director, ABMPS
National Academy of Sciences
National Research Council
2101 Constitution Avenue
Washington, D.C. 20418 |
| 1 - Dr. K. C. Emerson
Assistant for Research
Office of Assistant Secretary of the Army (R&D)
Department of the Army
Washington, D.C. 20310 |
| 1 - CDR Harold J. Janson, MSC, USN
Head, Food Service Branch
Bureau of Medicine & Surgery
Navy Department
Washington, D.C. 20390 |
| 1 - Dr. Louis J. Ronsivalli
Fishery Products Technology Laboratory
U.S. Department of Commerce
National Oceanic & Atmospheric Administration
National Marine Fisheries Service
Northern Region
Emerson Avenue
Gloucester, Massachusetts 01930 |
FOOD LABORATORY DISTRIBUTION LIST

Animal Products

<table>
<thead>
<tr>
<th>Copies</th>
</tr>
</thead>
</table>
| 1 - Commanding General
US Army Combat Development
Command
ATTN: CDCMS-0
Fort Belvoir, Virginia 22060 |
| 2 - Commanding General
US Army Materiel Command
ATTN: AMCRD-JT
Department of the Army
Washington, D.C. 20315 |
| 2 - Commanding Officer
U.S. Army Combat Development
Command
Supply Agency
ATTN: CDCSA-R
Fort Lee, Virginia 23801 |
| 1 - Commanding Officer
U.S. Army Medical Nutrition Laboratory
Pitzsimons General Hospital
Denver, Colorado 80240 |
| 1 - Commanding Officer
U.S. Navy Subsistence Office
ATTN: Mrs. Marjorie Kehoe
Washington, D.C. 20390 |
| 1 - Commanding Officer
U.S. Air Force Service Office (AFSC)
ATTN: Mrs. Germaine Gotshall
2800 South 20th Street
Philadelphia, Pennsylvania 19101 |
| 1 - Commanding Officer
U.S. Army Foreign Science & Technical Center
ATTN: AMXST-GR (Victoria Dibbern)
220 7th Street, N.E.
Charlottesville, Virginia 22901 |

<table>
<thead>
<tr>
<th>Copies</th>
</tr>
</thead>
</table>
| 1 - Commanding General
U.S. Army Medical Research & Development Command
ATTN: SGRD-MDI-N
Washington, D.C. 20314 |
| 2 - Commandant of the Marine Corps
Headquarters U.S. Marine Corps
ATTN: Code AX-44
Washington, D.C. 20380 |
| 2 - Commandant of the Marine Corps
Headquarters U.S. Marine Corps
ATTN: Code COB-2
Washington, D.C. 20380 |
| 1 - Commandant of the Marine Corps
Headquarters U.S. Marine Corps
ATTN: Code A04G
Washington, D.C. 20380 |
| 1 - Commandant of the Marine Corps
Headquarters U.S. Marine Corps
ATTN: CSY-4
Washington, D.C. 20380 |
| 1 - Commanding General
Marine Corps Supply Activity
ATTN: Code 826
1100 South Broad Street
Philadelphia, Pennsylvania 19146 |
| 1 - Director AF Hospital Food Service
ATTN: Lt Col Chaska
Headquarters USAF/SGR-1
6B153 James Forrestal Building
Washington, D.C. 20314 |
| 1 - Director
Division of Biology & Medicine
U.S. Atomic Energy Commission
Washington, D.C. 20545 |
2 - HQDA (DALO-TSS)
 WASH DC 20310

2 - Chief, US Army Food Service Center
 ATTN: Dir/Food Service Operations
 Fort Lee, Virginia 23801

1 - Chief, U.S. Army Food Service Center
 ATTN: Chief, Menu Planning Division
 Fort Lee, Virginia 23801

16 - NRC Committee Members
Copies

22 - Program Coordination Office, Food Laboratory, NLABS
 (12 for transmittal to Defense Documentation Center)

2 - Technical Library, NLABS

7 - Division Chiefs, Food Laboratory, NLABS

2 - Marine Liaison Officer, NLABS

3 - Air Force Liaison Officer, NLABS

1 - Special Assistant for DOD Food Program, ATTN: Dr. E.E. Anderson, NLABS

1 - US Army Representative for DOD Food Program, NLABS

1 - US Air Force Representative for DOD Food Program, NLABS

1 - US Navy Representative for DOD Food Program, NLABS

2 - Chief, Quality Assurance and Engineering Office, ATTN: Standardization Management and Quality Assurance Branch (Mr. Richman), NLABS

3 - Director, General Equipment and Packaging Laboratory, NLABS

3 - Director, Pioneering Research Laboratory, NLABS

25 - Project Officer, Food Laboratory, NLABS

10 - Alternate Project Officer, Food Laboratory, NLABS
Effect of Cooking and Fat Level on the Oxygen Uptake of Freeze-Dried Cooked Ground Beef

Ground beef with fat levels of 10, 15, 20 and 25 percent was cooked in water to 180°F and cooked with boiling for 20 minutes was freeze-dried and stored at 100°F. Products were withdrawn at 2, 4, 8 and 12 weeks and the head space gas analyzed.

It was found that the more severe cooking resulted in higher oxygen uptakes statistically significant at the 1 percent level. The higher fat levels caused significantly higher uptakes, but they were a small part of the total variance observed.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
<td>WT</td>
</tr>
<tr>
<td>Cooking</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fats</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>7</td>
<td></td>
<td>9,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freeze-Dried Foods</td>
<td>9</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>9</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headspace Oxygen</td>
<td></td>
<td>9,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptability</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rehydration</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>