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ABSTRACT

The interaction of internal waves and surface waves in
water is explored in the regions where the effects of the
interaction are small. Explicit solutions for an arbitrary
internal wave are given for various kinds of boundary con-
ditions, with a detailed discussion of the conditions under
which they are valid. The connection of the solutions with
the conservation equations is made explicit, and the modifi-
cations produced by viscous damping are outlined.
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I. INTRODUCTION

This paper is to be viewed as a sequel to an earlier work
on the internal wave-surface wave interaction in water, which
appeared in IDA/JASON Study S-334.* We wish to enlarge on the
previous analysis in the following ways:

Clarify the assumptions involved in the calculation.

Correct the result in (I) by including a term which
was unjustifiably neglected.

3. Extend the solution to ranges of the parameters not
treated in (I).

4. Establish the connection with the approach to the
problem based on the conservation equations, and

5. Include the effect of viscous damping of the surface
waves.

: Let us begin with a brief recapitulation of the problem
.i, : which we wish to discuss. We assume the existence originally
of a surface wave, that is, of a displacement of the surface
of an infinite ocean, given by ho(x,t) = Ao
with o = /EE;.** An internal wave with velocity U--which is

exp i(kox - wot)

X
The complete reference is IDA/JASON Study S-334, Generation
and Airborne Detection of Internal Waves from an Object Moving
Through a Stratifies Ocean, JASON 1968 summer study, Vol. II,
April 1969, p. 69. We shall refer to this as (I) in what
xfollows.
We shall, for simplicity, assume there is only one horizontal
dimension (denoted x). The depth variable is called z, and
is measured positive up. We are also going to confine our-
selves to gravity waves--hence (since the water is assumed
to be infinitely de?p) we take w_ = /gEo. This limits us to

values of k < 3 cm’ °
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assumed to be a given, but arbitrary, function of space and
time--is turned on, and this produces, for later times, a

AL S 6 0y SRS T g

change 6h(x,t) in the surface displacement. The problem is to
calculace 6h,
We .hs.1 carry out the calculation under the following
assump«iuny
1. ~.mall amplitude surface waves:
kA << 1 (1.1)
2. Small internal wave velocities:
U/cg << 1 (1.2)
where g = % vg7k is the group velocity of the
surface wave.
3. Long wavelength ana long period internal waves:
K<< k and @ << w (1.3)
where

are the wave number anu frequency of the internal wave.

4, The internal wave effects on the surface wave are

small:
821, sk/k << 1, el (1

Thus a perturbation treatment of the effect is

apprcpriate.

.4)

5. In (I), we also made the assumption that the time of

interaction between the surface wave and internal
wave was short:

(X/k) (wt) << 1 (1.5)

If viscosity damps the surface wave in a time 1l/o,
this condition is satisfied if (K/k)(w/o) << 1.
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Assumption (5) was made for convenience in (I), but was
not essential to the t.>at:ient., We shall therefore, here,
X also obtain the solution without imposing this constraint. We
shall, however, s:ill find it useful in practice to keep a
weaker limit on the °ime, namely (K/k)*(wt)? << 1; to relax
this requirement tvo is possible, but prevents us from exhibit-

P S = L

e TR

ing the solution in a very explicit form.

A typical set of numbers with which we may be concerned
is as follows:

k=1cm?
A=20.1c¢m

U =1 cm/sec
K=10"" em™?
C = 15 cm/sec

1

For k = 1 em™ !, we have 6 = 3x10 °/sec, cg = 15 cm/sec and

w = 30 sec '.

S ——.

With these parameters all of our conditions would appear

to be met: we have

e ———r oA

kA = 0.1
U = 0.07
/cg
K/k = 107" i
Q/w = 5x10°° i
(K/k) * w/o = 0.1

The question of how well this idealized problem imitates
the real ocean is of course a serious one. Probably the most
important physical effect that has been ignored entirely is
wind. We have pretended that the wind enters only indirectly,
in that it is responsible for the generation of the surface
waves, but that once generated, the surface wave is no longer
seriously influenced by the wind and is merely eroded by

N - ._..,___.._.,._.i
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viscosity in some finite distance--or time--depending on its
wavelength, This is evidently a great idealization.

The next most serious difficulty would appear to be in
the validity of the kA << 1 assumption. Nonlinear effects iu
the surface wave amplitude mav well become important as SA/A

increases from zero, and invalidate the treatment given here
even when SA/A is still quite small.
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II. BASIC EQUATIONS
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To obtain our basic equations we first write the equations
for a free surface:

TR e gy

aal

both evaluated at z = h. The notation is obvious: h is the
surface displacement and § is the velocity potential. We have,
in addition

V¥ = 0

and the boundary condition that 9 + ¢, where Vo = ﬁ, as

z > -2, ¢ is assumed to be a given function, and represents
the velocity potential of the internal wave.

The next step is to expand the surface equations to second
order in h. Then we write

h=h+H
(-b-=¢+¢

and keep all first-order terms in either h or ¢. We choose H
and ¢ (which are of course to be identified with the internal
wave) to satisfy the free surface equations by themselves (to
first order in H--and we furthermore assume that the z-depend-

ence in the internal wave is weak.) We then obtain equations
for h and ¢, viz:

3h 3h U _ 3¢ . 123¢ 23U (2.1)
5t *U3sx *Mhax T3z tgoax ot
5
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e+ U %% -gh (2.2)
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evaluated at z 0, together with

V2 = 0

and the boundary condition ¢ -~ 0 as z + - », The symbol U
stands for the x component of the internal wave velocity U.

We have thus far made use of assumption 1.1, the small
amplitude assumptio:.

Equations 2.1 and 2.2 are our starting point; comparing
with (I) we note the presence in Eq. 2.1 of the term h 3U/dx.
In (I) this was neglected in accord with assumption 1.3 with
the argument that it was small compared to U 3h/3x. In mag-
nitude, this is true; but the two terms are of different phase,
and hence it is not legitimate to ignore h 3U/9x. This fact
will become more transparent later.

The next convenient thing to do is to eliminate ¢ between
Eqs. 2.1 and 2.2 to obtain an equation for h alone, which is,
after all, the quantity of primary interest. This is made
feasible through V?¢ = 0 and the fact that ¢ + 0 as z + - «,
which permits us to write

o(x,2,0) = 7 K o(, 1) M elklz

Hence (we take k positive) we have
3¢/3z = -1 3¢/3x (2.3)

We can now get rid of ¢. Equations 2.1 and 2.2, together with
assumptions 1.2 and 1.3, yield

32 _ . ) _ _on d%h _ o 3U 3h _ , 3U 3h (2.4)
(;;; ig 5?) h=-20 g - Z3tax - 2o

We have neglected all quadratic terms in U, and all second and
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higher derivatives of U, in obtaining this result. The
boundary condition which we associate with Eq. 2.4 is that for
t>0, h-= ho(x,t), some specified surface wave present before
the internal wave was turned on. Normally, we shall take ho
to be simply

h, = A, el (kox-w,t) (2.5)
where
mo = g 0
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iII. PERTURBATION SOLUTION

; - We assume that the gffect of the internal wave on the
surface wave which was present initially will be small (As-
sumption 1.4). We may then write

h = hO + 6&h, ho >> 6h (3.1)

where, to first order in the perturbation,

2
. 22 .9 9 ho ou aho 3h

9° 9 - . - . U o .
g 5x) oh = ~Womgt - 235 " 2ox AT

for the simple choice (2.5), this simplifies to

3 g,
at? X

. U .
-Zkowo U+ 2iw_ == - 2ik_ =—1]1 h

§h 0 9X 0 ot 0

2(x,t) hy (x,t) (3.2)

.. This will be recognized as the same equation as that used in
{I) except that the coefficient of 3U/3x in (I) was imo rather
than Ziwo. The factor of 2 reflects the existence of the
h 3U/3x term in Eq. 2.1.

It may be objected that the derivation of Eq. 3.2 is in-
valid, since it relied on the assumption that ho >> 6h, and
for certain values of x and t (for which hO vanishes) this in-
equality is false. However, these values constitute a very
small range of x and t, and do not, in fact, affect the cor-
rectness of Eq. 3.2. This will be made explicit in Section IV,
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where we will obtain the same result without use of the as-
sumption that ho >> 6h,

In any event, our problem is now a straightforward one,
namely to solve Eq. 3.2 with the boundary condition that
6h = 0 for t < 0. This can be done directly by the method used
in (I). Let A be the retarded Green's function, so that

22 . 2 . s 5 =
5-{-; - 1w % A = (X) (t) (3-3)

with A = 0 for t < 0.
Then

h(x,t) = [[ dx'dt' A(x-x',t-t') Z(x',t') h (x',t')

and using the (obvious) solution to Eq. 3.3 together with
Eq. 2.5, we find

-9 © o) -1 -t+!
) dx 0y oikx (7 dy e Relt-t)
I dt' [ 2T Z(k,t') e [m 2 gk-2uww -w? (5.4}

where

(=] _.k
Z(k,t) = [ dx e ¥ z2(x,t)
“ oo
The integral over dw in Eq. 3.4 is to he taken above the poles
of the denominator in the complex w plane because A is the re-
tarded Green's function.

Up to this point we have invoked assumptions 1.1, 1.2,
1.3 and 1.4 but have made no use of 1.5. Equation 3.4 con-
stitutes a complete solution to the problem; however for a
given (arbitrary) U some numerical integrations will be re-
quired to obtain a solution. It is therefore of some interest
to try to simplify 3.4.

P
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To do this we note that from assumption 1.3, U, and hence
Z, may be expected to have only small frequency components

present. Hence we may expect w to be small, so we may expand
3! the denominator in Eq. 3.4:

1 1 w?

= = + +

gk-wao-w2 gk- 2uw | (gk-meo)z

N (3.5)

L

The first term in this expansion, after evaluation of the con-
3 tour integral over dw, yields directly

LR

T R T TE N e T

O

I ). NS B -
: H;"'Zw_of t Z(x-cg(t-t),t] (3.6)

LLet us assess the error involved in stopping at this point.

To do this it is important to note that, from Eq. 3.2, Re Z is
bigger than Im Z by a factor ~ k/K. Since the next term in

the expansion is out of phase by 90° with this term, the first
term alone will be an excellent approximation to Im Gh/ho but

a less good one for Re Gh/ho. In fact the errors are evidently
of order (w_t) (K/ko)3 and (w t) (K/k)) for the imaginary and
real parts, respectively. )

The first term is thus a good approximation for the real
part of 6h/ho; that is, for GA/AO, if the "short time assump-
tion," 1.5, is valid. It is a good approximation for the
imaginary part, that is for éw and dék, in any event.

In the case of short wavelength internal waves, or long
wavelength surface waves, where assumption 1.5 may not be
satisfied, we may keep the next term in the expansion 3.5.
This leads to the result

10
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ﬁ% = 2%,-;{& Z(x - cg (t-t'), t'] dt’
1 b 32
-t! ——e ] [] '
+ 4%2 {w (t-t") oy Z(x',t )lx,=x-cg(t_t,) dt (3.7)

We may again estimate the error involved in stopping here,
and because of the alteration in phase by 90° of successive
terms in the expansion, it is clear that this is now an ex-
cellent approximation for both real and imaginary parts.

The successive terms are of the fcllowing magnitudes:

5 2 2\2
Imaginary part: |1 + (%g—)(é-) + (ﬁ? ) + ...}
i o/\"o )
~K tQ? t2? V(K
Real part: ( ) + ( ) + (———) T Jr ..
..T(; wC‘ wO kO

Thus the neglected terms are of order (mot)2 (Q/wo)“ in both
cases.

Finally, we may extract from Eq. .7 expressions for
GA/A0 and Gk/ko, the quantities of real interest. We find,
using the definition of Z,

k.. Ita u(x - (t-t'), t') dt' (3.8)
E:). ) -ooH (x Cg ¥ ! ) v
and
AU . ft 2 U(x - c_ (t-t'), t') dt’
A, 4cg o OX g
C t 32
- g% [ (t-t') = U(x - ¢, (t-t'), t') dt’ (3.9)
- axz g
11




The last term in 3.9 may be dropped‘if the short time assump-
tion is valid; we have neglected the corresponding term in
cSk/ko in any event,

Comparing 3.8 and 3.9 with the results given in (I), we
note that the expression for 6k is the same, but that for
6A differs by factors of 2 (apart from the 32U/3x? term); these
changes are caused by the h 3U/9x term in the original equation
with which we began.

12



IV. CONSERVATION EQUATIONS

We now return to our starting point, Eq. 2.4. Instead of
making a perturbation expansion of this immediately, as we did
in Section III, let us use it to derive equations for the ampli-
tude, wave number and frequency directly. This is easily
done with the following definitions:

h = Aeix (4.1)
k = 3X/ax (4.2)
w = -3X/3t (4.3)

The definitions 4.2 and 4.3 lead immediately to the so-called
"conservation of waves'':

ok W
3k, . (4.4)

We substitute 4.1 to 4.3 into 2.4, and separate 2.4 into
real and imaginary parts, and find after a small amount of
algebraic juggling that

1 327

13



and
1 (3A , g 3A), 1 3w
K \3t W 99X Zw 9t
_KUL13A  ,13A U3
w A Jt A 9x " w ¥x
k 3U U (4.6)
M T T3

The first of these is the real part of 2.4, the second the
imaginary part.

These two equations are recognizable as the dispersion
relation and the conservation of energy, respectively. (One
should multiply the second through by A? to make this obvious.)

Let us now introduce the perturbation expansion in U.
Thus we write A = Ao + 8A, k = ko + 8k, w = w, * dw and assume
SA << Aj, etc. The zero-order equations obviously tell us
that A = const, w_ = /EF; and k= const. The first-order
equations are

Sw =k, U+ c, ok (4.7)
3 3 _ U

(-a—E + Cg ﬁ)dk = 'ko X (4.8)
) 3 Y6A _ Sg 2 _ 38U, 1 au (4.9)

(ﬁ*cgﬁ)ro' I%;:rx“‘zs'f*zc—gﬁ

where we define cg = g/Zmo = (1/2)»’g7§o .

We have used 4.4 to eliminate 8w in deriving these, and
have also neglected higher derivatives of §A.

First of all, these equations are immediately seen to
coincide with Eq. 3.2, thereby confirming the use of ho >> 6h,
in spite of the small range of x and t over which this may

14
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not be true. Second, these coincide with the usual results

obtained from the conservation equations.*

Finally, the solutions may be written down by inspection,
(incorporating the boundary conditions that 8A and 8k vanish

it it

- when t < 0) and are seen to coincide exactly with Eqs. 3.8 and
§§ o 3.9. The fact that the soclutions to 4.8 and 4.9 agree exactly
f with 3.8 and 3.9, which are only the first two terms in the
expansion of the solution Eq. 3.4 to 3.2, stems from the
neglect of higher derivatives of 6A in deriving 4.8 and 4.9.

1 This observation should help to clarify what is being dropped

CEPRIRE.

when higher terms in the expansion 3.5 are neglected.

W I

e —
.- 0. M. Phiiips, Dynamics of the Upper Ocean, Cambridge, 1966,

, p. 50. Noce that we have an additional term in 3U/9t not

3 B given by Phillips. Presumably he omits this because of the

time averaging he uses to obtain the conservation equations.

15
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V. PROPERTIES OF THE SOLUTIONS

Let us discuss some special cases. First, suppose the
internal wave has a constant phase speed C, and is turned
on at some time tys SO that U(x,t) = U(x - Ct) 9(t - to).
Then

-Ct
5§k 1 fx U (y)
—— = = dy
k c -C 7 _ y
o g X cgt+(cg C)to
_ U(x - Ct) - U((:x - eyt *+ (e, - C) t.)
“g
Furthermore,
Sw = ko U + cg Sk
~cg -cg 0
Hence
c ko
6w - C 6k = -C%E; u(x - Cgt * (cg - C) to)

Thus if t, -2, Sw - C 8k - 0. Hence infinitely long after

the turn-on time, the quantity w - Ck is a constant. This, of

course, is just the frequency in a system moving with the in-
ternal wave phase speed, and the statement that this is con-
stant is part of the "steady-state solution'" to the internal
wave-surface wave interaction problem.

16
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The fact that at finite times after turn on, the steady-
state solution is not reached is because the presence of
8(t - to) in the form chosen for U violates the assumption of

o the steady-state theory, that U is only a function of x - Ct.
1t would thus not szem to be possible to reconcile the steady-

‘e state case with an initial value problem,

Next suppose we go to resonance, that is, we take C = cg.
Then (choosing to = 0 for convenience)

t
Koy 2 u(x - c(e-t) - ct) ar
o o)

= -t 32 (5.1)
and similarly,
t?c 2
A _ U 23U _ g 3°U
A 4c t X 8 4.2 (5.2)
0 g X

where we've kept the last term in GA/Ao in case the 'short time"

’ approximation is invalid.

These results constitute the expression of resonant en-
hancement--they depend only on the form U = U(x - Ct) 6(t) and
- the choice C = ¢_. The linear (or quadratic) growth with t
obviously means that the expressions break down eventually,
in that the requirements 6k/ko and GA/A0 << 1 fail.

17
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VI. OTHER BOUNDARY

TR T

CONPITIONS

Experiments on internal wave-surface wave interactions
tend to replace the initial value problems we have dealt with

up to now with a boundary condition
wave at a point in space, the point
generated. If it is generated with
conditions would say that at x = 0,

conditions, solutions can easily be

specifying the surface
where the surface wave 1is
constant frequency, these
dw = 6A = 0, Under these
obtained by exactly the

same methods used before, and they are:

8k _ U, 1 fx axr 2 X-X'
= oo+ = x u(x', t - ) (6.1)
E; g ch A ot ’ <
and
s
2= U, - U, t - x/c)]
(o] g g
X oy !
R 232 [lax v, t- X
Cg o g
X 2 ~x!
- exy ae v, v - BE (6.2)
4cg3 o ot g

These are very similar to the solutions obtained before, for

the initial value problem.

For the special case of U = U(x - Ct), and at resonance,

where C = cg, the solutions reduce to

18
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sk U o au
T = o + -—-; X 3t (6.3)
o g c
g
and
SA 3 U 1 2 92U
= X - X (6.4)
K; ch2 3t 8c 3 at?

A special case of interest is evidently that of a sinus-
oidal internal wave

us= U, sin K(x-Ct)6(t) (6.5)

In this situation, (6.4), for example, simplifies to

§ 2K .
K% = --%% Uo cos K(x-Ct)
(kx in K(x-C
-—S—C—-—' o sin (X‘ t) (6'6)

"The amplitude enhancement thus oscillates with the in-
ternal wave, with an envelope given by

u 2
SA _ 3 0 Kx)
o = - Kxq/1 + LTZ?" (6.7)
( o)Max Z <.C> -

where x is the distance from the point at which the surface
wave is generated. The growth is thus linear in distance for
small x (i.e. where Kx << 12) and becomes quadratic in x for
larger x (when Kx >> 12)., The region of linear behavior
corresponds to the '"'short-time" situation in the initial value
prob.em; for larger Kx the situation is the same as that in
which the correction term derived in Eq. (3.7) 1is requireq.
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The resuit (6.7) is compared, in Fig. 1, with an ex-
perimental measurement.* The agreement is evidéntly excellent,
and remarkable in that our perturbation theory result holds even
up to very large enhancements.
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FIGURE 1. Comparison of Equation 6.7 with Measurements

*John E. Lewis, "Experimental Investigation of the Interaction
of Internal Waves and Surface Gravity Waves,' TRW Systems
Group Report No. 18202-6001-R0O-00, October 31, 1971.
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VII. VISCOUS DAMPING

Viscosity is most easily introduced into the energy con-
servation equation, and it will appear as an additional constant
term ¢ on the right-hand side of Eq. 4.6, where 1/¢ is the
viscous damping time.* Defining a new amplitude A' by
A=Ae ot
removes the term o, so that A' satisfies Eq. 4.6 as written,

without the o. Hence the solution for 6A' is given in 3.9, and
the solution for A, including viscosity, 1s simply

. t c t 2
sa_[u . (au) ) (t-t') (3.2) e 9t (7.1)
K; [1?; [m ox/retarded _§ {m ax? retarded]

In particular, for U = U(x - Ct) and at resonance, we have

2
6A _ (_U U Lg% ot
K;-(EE' trx'- —gg';,—(-;)e (7.2)

in conformity with Eq. (5.2).

*Phillips, p. 39, gives numerical values for o.
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