
FINDING THE TRICONNECTED

COMPONENTS OF A GRAPH

J.E. Hopcroft and R.E. Tarjan

TR 72 - 140

August 1972

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
SpringfieId VA 22151

Computer Science Department
Cornell University
Ithaca, New York 14850

C'0

DOCUMENT CONTROL DATA - R & D
Sectfuitev Nlots vitieamtio,: of title. h.dtl of h,#htr?,,C r aiJ inde iq.,' ,. rt.oti,* n v.t l ie untft eed ahC'. I, ' t .vrJI re.,,rt , * I.i ''lii dl

ORIGINATING ACTIViTY (ourjproutu' ususthor) 20. RLPORT SFCUr41TY CLA5SICAI, "4•Unclassified
Cornell University 2b GR OUP

3. REPORT TITLE

FINDING THE TRICONNECTED
COMPONENTS OF A GRAPH

4. DESCRIPTIVE NOTES (Typ• of report avd.incluusive. datcs)

Technical Report
5. AUTHOR(S) (First name, middle initial, last nume)

John E. Hopcroft and Robert E. Tarjan

6. REPORT DATE 70. TOTAL NO. OF PAGES ?b, NO. OF REFS

August 1972* 61
$a. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBERIS)

Hertz Foundation 72-140
b. PROJECT NO.

N00014-67-A-0077-0021
C. 8b. OTH.R RLPORT NO(S) (Any other tnub•brs that may be assigned

this report)

None

tO. DISTRIOUTION STATEMENT

4 IApproved for public release, distribution unlimited

It. SUPPLEMENTARY NOTES 12. SPONSORING MILITARv ACTIVITY

Office of Naval Research,

Rochester
"13. APSM.ACT

An algorithm for decomposing a graph into triconnected components
is presented. The algorithm requires 0(tV(+fE() time and space
when implemented on a random access computer, where I'VI is the
number of vertices and fEJ' is the number of edges n the graph.
The algorithm is both theoretically optimal (to within a constant
factor) and efficient in practice.

:"DD,'°"NoVoJ.473 ,
S,/N 0101-807-6811 •

Security Ch__ssif_ __tion

K4. O LINK A LINK 0 LINK C

ROLE WT ROLE WY ROLL WT

articulation point

backtracking

connectivity

depth-first search

graph

separability

separation

triconnectivity

DD I N~OV,1473 i BACK)

FINDING THE TRICONNEC: B11

COMPONENTS OF A C•AP

J.E. Hopcroft and R.E,. "ariant

Abstract:

An algorithm for decomposing a c,.-aph into triconnected

components is presented. The algor.A.cm requires O(IVI+IEI)

time and space when implemented on - random access computer,

where jlv is the number of vert]:es and IEI is the number

of edges in the graph. The algori hm is both theoretically

optimal (to within a constant factor) and efficient in practice.

Keywords: articulation point, backtracking, connectivity,

Y, depth-first search, graph, separability, separation,

triconnectivity

- This research was supported in part by the Hertz Foundation
and the office of Naval Research under grant N00014-67-A-0077-
0021.

:; III

Introduction

The connectivity properties of graphs form an impoitant

part of graph theory. Efficient algorithms for determining

the connectivity structure of graphs are both theoretically

interesting and useful in a variety of applications. One

technique which may be used to solve connectivity problems

_s that of backtracking, or depth-f.rst search. In [i0]

depth-first search is applied to give efficent algorithms

for determining the biconnected components of an undirected

graph and for determining the strongly connected components

of a directed graph. This paper extends the application

of depth-first search to the problem of finding the tricon-

nected components of a graph.

An algorithm for determining the triconnected components

of a graph is needed by procedures for determin ing whether a

graph is planar [2) and for determining whether two planar

graphs are isomorphic [8]. Standard methods ior determining

the triconnected components of a graph require u(1V1 3) steps or

%.more, if the graph has IVI vertices. The algorithm described

here requires substantially less time, and -y be shown*to be

optimal to within a constant factor assul.,.' z iitable tao-j• del of computation.

Thiis paper is divided into four sections. The first

section pres.entc the nec.errary definitions and lemwnas froli

graph theory. The theory of the triconnected components of

a graph was developed by Tutte [11], "A'modified'exposition more

2

suitable for computer applications is given here. The

theory is also a special case of the more general theory

of decomposing "clutters" into chunks due to Edmonds and

Cunningham [5]. The second section describes depth-first

search and the data structures needed to implement it

efficiently on a computer. The third section describes

preliminary calculations and a simple'test to find the

separation pairs of a graph. The last section describes

the heart of the triconnected components algorithm, inclu-

ding proofs of its correctness and time and space bounds.

In deriving time bounds on algorithms we assume a

random access model. A formal definition of such a model

may be found in [4 .]. We use the following notation for

4+
specifying bounds of algorithms: if n is a vector, f

is a real-valued function, and there exist constants kl,

Sk2 such that It(4n)l < klif())I+ k 2 , then we write

"t(n) is 0(f(4))".

I'

)L

3

Graphs Trees and Connectivity

A _rgBa_ G = (V,E) consists of a set of vertices V

and a set of edes E If the edges are ordered pairs

(v,w) of vertices, the graph is directed; v is called the

tail and w the head vf the edge. If the edges are un-

ordered pairs of vertices, also denoted by (v,w), the

graph is undirected. If E is a multiset; that is, any edge

may occur several times, then G is a niutjgraph. If (v,w)

is an edge of a multigraph G, vertices v and w are

-adjacent Edge (v,w) Is incident to vertices v and w;

v and w are incident to (v,w). If E' is a set of edges

in G, V(E') is the set of vertices incident to one or more of

the edges in E' If S is a set of vertices in G, E(S) is

the set of edges incident to at least onc ';ertex in S.

If i is a multigraph, a pjth p : v =>w in G is a

sequence of vertices and edges leading from v to w. A

path is EgJnle if all its vertices are distinct. A patl

p : v =>v is a cyle if all its edges are distinct and the

only vertex to occur twice in p is v, which occurs

exactly twice. Two cycles which are cyclic permutations of

each other are considered to be the same cycle. The undi-

rected version of a directed multigraph is the multigraph

formed by converting each edg,_ of the directed isultigraph

into an undirected edge. A multigraph 3 connectc• "f eve~y

pair of vertices v and w n G, is conuected by a path.I-

4

If G = (V,E) and G' = (V',E') are two multigraphs such

that V' C V and E' C E, then G' is a subgraph of G.

A multigraph having exactly two vertices v,w and one or

more edges (v,w) is called a brcd.

A (directed, rooted) tree T is a directed graph whose

undirected version is connected, hbvine one vertex which is

the head of no edges (called the root), and such that all

vertices except the root are the head of exactly one edge.

The relation " (v,w) is an edge of T " is denoted by

v 4 w. The relation "there is a path from v to w in T "

is denoted by v w. If v - w, v is the father of w and

w is a son of v. If v W w. v is an ancestor of w and

w is a descendant of v. The set of descendants of a vertex

v is denoted by D(v). Every 7ertex is an ancestor and a

descendant of itself. If G is a directed multigraph, a

tree T is a spanning tree of G if T is a subgraph (

G and T contains all the verticos of G.

Let P be a directed multigraph, consisting of two

disjoint sets of edges, denoted by v 4 w and v -4 w. Suppose

P satisfies the following properties:

(i) The subgraph T containing the edges v ÷ w is

a spanning tree of P.

(in) If v -4 w, then w v. ThaL is, eahli edge not

in the spanning tree T of P connects a vertex

with one of its ancestors in T.

5

Then P is called a palm tree. The edges v -÷ w are called

the fronds of P.

A connected multigraph G is biconnected if for each triple

of distinct vertices v,w and a in V there is a' path p : v => w

such that a is not on the path p. If there is a distinct

triple v,w,a such that a is on every path p : v => w,

then a is called a separation point (or an articulation

point) of G. We may partition the edges of G so that

two edges are in the same block of the partition if and

only if they belong to a common cycle. Let Gi=(Vi,Ei)

where E. is the set of edges in the ith block of the
1

partition and Vi=V(Ei). Then:

Wi) Each Gi is biconnected.
5

(ii) No GI is a proper subgraph of a biconnected

subgraph of G.

(iii) Each vertex of G which is not an articulation

point of 0 occurs exactly once among the Vi

and each articulation point occurs at least twice.

(iv) For each ij,i~j,V.i V. contains at most one vertex;

furtnermore, this vertex (if any) is an articulation

point.

The subgraphs Gi of G are called the biconnected components

of G. The biconnected components of G are unique.

Let {a,b} be a pair of vertices in a biconnectsd multi-

graph G. Suppose the edges of G are divided into equiva-

lence classes EIE 2 ,...,E such that two edges which lie in a
• n

6

common path not containing any vertex of {f,b} are in the same

class. The classes Ei are called the separation cla~bus

of G with respect to {a,b}.If there are at least two separa-

tion classes, then {a,b} is a separation pair of G unless (1) there

are exactly two separation classes and one class consists of a

single edge or (2) thereare exactly three classes each consist-

ing of a single edge.

If G is a multigraph such that no pair {a,b} is a

separationpair of G, then G is triconnected. Let {a,bl

be a separation pair of a biconnected multigraph G. Let

the separation classes of G with respect to {a,b} be
k n

EV,E2 ,...,En. Let E' = U E. and E" = U Ei be such
i=l i=k+l

that !F'[> 2, IE"I > 2. Let G]. = (V(E'), E'U{(ab)},

G2 = (V(E"), E"U{(a,b)}). The graphs G1 and G2 are

called the split graphs of G with respect to {a,b). Re-

placing a mu' tigraph G by two split graphs is called

splitting G. There may be many possible vays to split a

graph, even with respect to o f~xed separation pair {a,b}.

A splitting operation is deneted by s (a,b,i); i is a label

distinguishing this split operation from other splits. The

ncw edges (a,b) added to ",] and 02 are called virtual

ee~s; they are labelled to identify th,":. with the split.

A virtual edge (a,b) assnciated wit'h b ,' s(r.,,i) will

:e denoted by (a,b,i). If C is biconnected, then any split

grapb of C, is also biconnceted,

q 7

h

Suppose a multigraph G is split, the split graphs

are split, and so on, until no more splits are possible

(each graph remaining is triconnected). The graphs con-

structed in thi- way are called the split components of

CG. The split components of a multigraph are not neces-

sariiy unique.

Lemma 1: Let G = (VE) be a multigraph with 1i.l > 3. Let

VG ,2... ,G be the split components of C. Then the

total number of edges in Gi ' is bounded by

31E1-6.

Proof: By induction on the number of edges of C. If G

has 3 edges the lemma 'is immediate, because G cannot

be split. Suppose the lemma is true for graphs with

n-I edges and suppose G has n edges. If G

cannot be split the lemma is true for C. Suppose on

the other hand that G can be split into G' and
I II I,

C , where G' has k+l edges and (; has n-l.+l

edges for some 2<k<n-2. By induction, the totaJ

number of edges in C 1 ,G 2 must be bouiuded by

3(k+l) - 6+3(n-k+l) - 6 = 3n - 6. Thus by induction

the lemma is true.

triconnected
In order to get uniquc/components we must partially re-

assemble the split components. Suppose G1 = (VI,E) and

--- (V 2 ,E) are two split components both containing a

virtual edge (a,bi). Let

G = (OFV 2 a, b ,i)}) U (r 2 -{(abi)}))

8

Then C is called a -nerge _raph of G1 and 02; the merge

operation will be denoted by m(a,b,i). Merging is the

inverse of splitting; if we perform a sufficient number of

merges on the split component:s of a multigraph we recreate

the original multigraph.

The split components of a multigraph are of three types:

triple bonds, of the form ({a,b),{(a,b) ,(a,b) ,(a,b)});

triangles, of the form ({a,b,cj),(a,b),(a,c),(b,c))); and

triconnected graphs. Let G be a multigraph whose split

components are a set of triple bonds 63 3 , a set of triangles

V and a set of triconnected graphs). Suppose the triple

bonds 3 are merged as much as possible to give a set of

bonds , and that the triangles V are merged as much as

possible to Live a set of polygons & . Then the set of graphs

WU 0MUJ is the set of triconnected components. of G. If G

is an arbitrary multigraph, the triconnecte.3 components of the

biconnected components of C are called the triconnnected

components of G. This set of components is unique, as we

shall see below.

Let G be a multigraph and let • be a set of graphF;

obtained from C by a sequence of sp1 itis and merges. Consider

the auxiliary graph SQf) whose vertices are the graphs in

.Graphs GI and G2 are joined by an edge if and only

if they shart! a common virtual edge.

9

Lemma 2: If is a set of graphs obtained from a connec-

ted mjltigraih G by a sequence of silits and merges, then

the auxiliary graph S(•) is a tree.

Proof: The proof is by induct-on on the le!ngth of the sequence

of splits and .rges. For a sequence of length zero,

S(D) is a single vertex and hence a tree. Assume SVy)

is a tree for all sequences of length less than i,

i > 1, and let x be a sequence of length i. Let

S be the auxiliary graph after the first i-l splits

and merges in the sequence x. By the induction hypo-

thesis S(U) is a tree. Assume x ends with a split.

Then S(11) is obtained from S'(PJ) by replacing a vertex

v by two vertices v' and v" connected by an edge

(v' ,v"). Each edge (u,v) in S'(,&) is replaced by an

edge (u,v') or by an edge (u,v") depending on whether

the virtual edge comimmon to u and v is in the split

component v or vi . SV1) minus the edge (v',v") con-

sists of two trees, one containing v and one containing

v . Hence S is a tree. Assume x ends with a mer'ge.

Then two vertices v and v in S' f.) which are
connected by an edge are replaced by a single vertex

v, the edge (v ,v") is deleted and each edgce (u,v')

or (u,v') is replaced by an edge (u,v). Since S(')

"is a tree, S (P') with edge (v',v') deleted consists

of two trees, one containing v' and one containing v".

Thus S(CJ) is a tree.

10

Lemma 3: Let G be a biconnected multigraph. Suppose a

sequence of intermixed splits and merges is carried

out on G. Then there is a sequence of splits which

produces the same set of graphs.

Proof: Consider any intermixed sequence of splits and merges

Let m(a,b,i) be the first merge. A split s(a,b,i)

must have been previously performed. Then deleting

s(a,b,i) and m(a,b,i) does not affect the set of

graphs produced, because all splits performed before

m(a,b,i) may still be performed. This gives an equiva-

lent sequence with one less merge. The lemma follows

by induction.

Lemma 4: Let a,b,c,d be distinct vertices in a biconnected

multigraph G. Suppose {a,b) and {c,d) are separation

pairs, and that: some split s(a,b,i) of G puts c

into one split graph and d into the other. The.n every

split s(c,d,j) of G puts a into one split graph ard b

into the other.

Proof Suppose that cor,•oýa'y t(, the lemma, some split s(c,d,-)

with split graphs G Ian. C2 has both a and b in

the same split graph, say C There must exist: a path

between c and] d in G2 whicl, does not contain the

virtual edge (c,d,j). "fiis pa hii contains neither it

nor b since both are in G1. Thus there is a path in
2I*

G containing neither a nor b, but connecting c

and d. This is impossible since split s(a,b,i) puts

? 11

c into one split graph and d into the other. Thus

S* the lemma must be true.

Lemma 5: Let a,b,c,d be distinct vertices in a biconnected

multigraph G. Suppose {a,b} and {c,d} are separation

pairs and that some split s(a,b,i) puts c in one

split graph Cl and d in the other split graph 02.

Then either {a,c) is a separation pair in Cl, or

there are exactly two edges incident to a in Gl;

namely, (a,c) and the virtual edge (a,b,i).

Proof: As a consequence of Lemma 4, each path from a to

b in C contains either c or d. hence, each path

from a to 1) i n G either contains c or is, the1

virtual edge (a,b,i). (In particular, there is only

one edge between a and b.) Suppose G1 contains a

vertex v J- b,c with v adjacent to a. Since C1

is biconnected there is a simple path from v to b

not containing a. Any such path must contain the vertex

c and hence {a,c) must be a separation pair. If b

and c are the only vertices adjaccnt a, then either

the edge (a,c) is a multiple edge in which case {a,c}

is a separation i,-ir, or there are exactly two edges

incident to a, namely (a,c) and the virtual edge

(a,b ,i).

Theorem 6: The triconnected components of mt t! graph C

are unique.

12

Proof: Lemma 3 shows that given any sequence of splits and

merges there is an equivalent sequence consisting solely

of splits which yield the same set of triconnected corn-.

ponenrts. Thus we need -only show that any two sequences

of splits which yield sets of triconnected components,

yield the same set.

The proof is by induction on the number of edges

in the multigraph G. If G has fewer than four edges,

the theorem is certainly true. Assume the theorem is

true for graphs with less than k edges. Let 0 have

k edges. If G has no separation pairs, the theorem

is true for G. Thus suppose G has at least one separa-

tion pair.

if the first split is the same for each sequence,

then the split graphs after the first split. are the s;ame

for each sequencc. Since each split graph has fewer

edges than the origina) graph, the theorem is true on

the split graphs by the induction hypothesis. Thus the

theorem is true for the entire graph.

Suppose t:,e first split in one sequence is s(aZh,i),

giving split graphs C] and G2, and the first sp]it

in the other sequence is s(c,d,j), giving split graphs

C3 and C4' We perform a case analysis.

Case 1: {a,b} = {c,d}. Since neither sequence contains a

merge the triconnectecl components, resulting from the

first sequence must be the union oL tue. triconnecteu coin-

ponents of C and C2 and the triconnreted components
12

13

resulting from the second sequence must be the union

of the triconnected components of G3 and G4.

Suppose {a,b) is a separation pair in both G and C
1 2

By the induction hypothesis we may split and merge G1 and

G in an arbitrary order to get their triconnected com-
2

ponents. If we split G1 first on {a,b}, we produce a

split component which contains a double edge (a,b). Split-

ting again on {a,b} produces a triple bond (a,b). Similar-

ly, splitting G2 twice on {a,b} produces a triple bond

(a,b). These bonds must be merged to give the triconnec-

ted r-omponents of G. But this is a contradiction, since

the original sequence of splits had no merge m(a,b,i).

Thus the set {a,b) cannot be a separation pair for

both G1 and C 2 Similarly {a,b} cannot he a separation

pair for both G3 and C Without loss of generality as-

sume {a,b} is not a separation pair for G1 or G . Let E.i,

1 < i < 4, be the edge set of C.. There exist disjoint

sets of edges E', ' and E which are unions of the separ-

ation classes of C with respect to {a,b} such that

E1 = E' U {(a,b,i)) E = F ;J E U a,b,i)}

1~~ 1 U2~3 {(a,b,j)1
E3 = E3 U {(a,b,j)} E 1 U E U {(a,b,J),

By the induction hypothesis we may apply any sequence of

splits to G n2 ad C4 to give their triconnected comnponents.

Split G2 using a split s(a,b,k) putting E'3 into one split

graph and r U {(a,b,i)} into the other. Sp]it G4

14

using a split s(a,b,9) putting E1 into one split

graph and E U"{(a,b,j)} into the other. The two result-

ing sets of graphs are isomorphic and all components have

fewer than k edges. It then follows from the induction

hypothesis that in this case the triconnected components

are unique.

Case 2: "{a,bl # {c,d}. Without loss of generality assume

G1 contains c and d or that neither G1 nor G2

contains both c and d. In the latter case assume

that c is in G and that d is in G2. We consider

each assumption separately.

a) Assume GI contains c and d. Without loss of

generality assume G3 contains a and b, since

if neither G3 nor C4 contains a and b, a,b,c

and d must all be distinct and Lemma 4 implies

that GI cannot contain both c and d. Pair {c,d)

must be a separation pair in Gl and {a,b} must be

a separation pair in G3. Apply split s(c,d,k) to

Gl and s(a,b, k) to G. . The two resulting sets of

graphs are isomorphic and all components have fewer

than k edges. It then follows from the induction

hypothesis that in this case the triconnected compo-

nents are unique.

b) Assume neither GI nor C2 contains both c and

d and that c is in G1 and d is in G2. Clearly

abc and d must be distinct. Since the first

sequence does not contain a merge the triconnected

components of G must be the union of the tricon-

nected components of G 1 and G 2' Since G I and

G 2 each contain fewer than k edges we can obtain

their triconnected components by any sequence of

splits and merges. By Lemma 5 either (ac) is a

separation pair of G or there are exactly two1

edges incident at a, namely (ac) and (abi).

A similar statement holds for the pair (bc).

Thus if G is not already a triangle with a vir-

tual edge (ab), a triangle can be obtained by

splits with respect to (a, c)' or (b , 6) or both.

Thus, G 1 must have a triconnected component which

is a polygon containing the virtual edge (ab).

A similar argument implies that G 2 also has a

triconnected component which is a polygon containing

the virtual edge (ab). This contradicts the claim

that the triconnected components of G are the

union of the triconnected components of G and G2$

since these polygons may be merged. We conclude that

this case cannot arise.

All cases are covered by the above arguments. Thus

by induction the theorem is true.

The triconnected componeiits of multigraph C = ME) are

unique. By Lemma 3, it is possible to construct the triconnected

4 16

components of a graph G using only split operations and no

merge operations. -Tutte [11] has formulated a particular type

of split which is suitable for this purpose. Let {a,b) be a

$ separation pair of G. Let C be one separation class of a

biconnected multigraph G with respect to {a,b}, and let

C = E - C. Suppose ICI > 2, ICI > 2, and either (V(C),C)

is biconnected or (V(C),C) is biconnected. Then we may apply

a Tutte split s(a,b,i) to G, producing split graphs

=)CU{(a,b i)}) 2 = (V() , CU {(a,b i))) The

Tutte components of a biconnected multigraph G are the graphs

found by applying a Tutte split to G, applying Tutte splits

to the split graphs, and repeating the process until no Tutte

splits are possible. The Tutte components of an arbitrary

multigraph G are the Tutte components of the biconnected

components of G.

Lemma 7: Let G be a biconnected multigraph and let a = (a,b)

be a fixed edge of G. Assume G0 contains the edge a

and arises from G by a sequence of splits. If c is

an articulation point of G1 minus the edge a, then

c is an articulation point of G minus the edge a.

Proof: The proof is by induction on the length of the sequence

of splits. Consider a sequence of length one. Let G

give rise to 0' and G" by the split s(d.e,i) and

let c be an articulation point of G minus the edge a.

There exist f and g in G' such that every path from

17

f to g in G1, not containing c, contains the

vertex c. If a path from f to g in G did not

contain c, the path must consist of three segments,

two in G' and one a path from d to e in .

The segment from d to e can be replaced by the

virtual edge (d,e,i) to give a path from f to g

in G not containing c. This is a contradiction and

we conclude that c is an articulation point of C.

The induction step folJows immediately by dividing each

sequence of length k into two sequences, one of length

one and the other of length k-l.

Lemma 8: The Tutte components of a multigraph G are iden-

tical to the triconnected components of G and are thus

unique.

Proof: By Tutte [11], a multigraph has no Tutte split if

and only if it is either a triconnected graph, a bond,

or a polygon. Thus the triconnected components of a

graph are the Tutte components, with possibly a few

merges carried out among bonds and among polygons.

Suppose a Tutte split s(a,b,i) produces split graphs

G1 and G2. Without loss of generality we can assume that

4 minus the virtual edge (a,b,i) is biconnected. Assune

G1 gives rise to a polygon P1 containing the virtual edge

(a,b,i) By Lemma 7 every articulation poirt of P - milu

the edge (a,b,i) is an articulation point of G 1 m. nu4 tihlt

the edge (a,b,i). Since P minus the edge (a,b,i) is not
I

biconnected, neither is GC1 minus the edge (a,b,i). Simi-

18

larly, if G2 also gives rise to a polygon containing

(a,b,i) then G2 minus (a,b,i) is not biconnected. But

this is impossible by the definition of a Tutte split.

Thus no two polygons which are Tutte components can

share a virtual edge.

Suppose a Tutte split s(a,b,i) produces split

graphs G1 and G2 . By the definition of a Tutte split

one of G6 or G2, say GI, must correspond to a single

separation class with respect to {a,b} containing at

least two edges. Thus G0 cannot be a bond, nor can

{a,b} be a separation pair of GI. From this it fol-

lows that G 1cannot give rise to a bond containing
(a,b,i). Thus no two bonds which are Tutte components

are possible, and the Tutte components of a graph are

the same as the triconnected components of a graph.

Figure 1 illustrates a biconnected graph G with

several separation pairs. The triconnected components

of C are illustrated in Figure 2.

V

19

Depth-First Search

Backtrackin'g, or deptli-first search, is a technique which

is extremely useful in determining certain properties of

graphs. Suppose G is a multigraph which we wish to explore.

Initially all the vertices of G are unexplored. Start

from some vertex of G and choose an edge to follow. Tra-

versing the edge leads to a new vertex. Continue in this

way; at each step, select an unexplored edge leading from

vertex already reached and traverse this edge. The edge

leads to some vertex, either new or already reached. When-

ever there are no edges leading Erom old vertices, choose

some unreached vertex, if any exists, and begin a new explora-

tion from this vertex. Eventually all the edges of G will

be traversed. Such a process is villed a search of G.

There are many ways of exploring a graph, depending upon

the way in which edges to search are selected. Consider the

following choice rule: when selecting an edge to traverse,

always choose an edge emanating foiom the vertex most recently

reached which still has unexplored: sgez. A search which uses

this rule is called a depth-first search. The set of old ver-

tices with possibly unexplored edg(s way be stored on a stack.

Thus a depth-first search is very easy te program either itera-

tively or recursively, given a suitable computer representa-

tion of a graph.

For eace• vv','•ex v of G we may construct a list A con-
v

tamning all vt..tices u such that (v,u) is an edge of G. Such

a list is called an adjaenýc lis;t for vertex v.

20

A set A of such lists, one for each vertex in G, is

called an adjacency structure for G. If G is undirected,

each edge (v,u) is represented twice in an adjacency struc-

ture; once for v and once for u. If G is directed, each

edge (v,u) is represented once: vertex u appears in the

adjacency list of vertex: v. A single graph may have many

adjacency structures; in fact, each ordering of the edges at

the vertices of C gives a unique adjacency structure, and

each adjacency structure corresponds to a unique ordering of

the edges at each vertex. If G is connected, each adjacency

structure and starting vertex for G determines a unique

depth-first search of G, given by using the following choice

rule in the search: if an edge in A is to be explored,v

choose the first unexplored edge in Av. A simple recursive

procedure implementing this technique is presented in [10],

along with proofs of the properties of depth-first search.

Such a search requires O(IVJ + IF I) time, if the graph has

lvi vertices and tEl edges. Properties necessary to this

paper are described below.

Suppose G is a connected, undirected mliltigraph. A

search of G imposes a direction on each edge of G given

by the direction in which the edge is traversed when the

search is performed. Thus C is converted into a directed

graph G' . If the search is depth-first, then G has

special properties, given by the following lemma:

Lemma 9: Let P be the directed multigraph generated by a

depth-first search of a connected multigraph G. Then P

21

is a palm tree. That is, P contains two disjoint sets

of edges, one set denoted by -÷ and the other aet denoted

by. -÷, such that the edges + determine ý spanning tree

of P and if v.-+ u then u * v (u is an ancestor of

v in the spanning tree).

A proof of Lemma 9 appears in [10]. Since a palm tree

has no edges interconnecting the paths In its spanning tree,

depth-first search is useful in solving connectivity problems.

Figure 3 illustrates the palm tree obtained by a depth-first

search of the graph G illustlated in Figure 1. Algorithms based

on depth-first search for determining the biconnected components

of an undirected graph aid for determining the strongly connec-

ted components of a directe" graph are given in [i0]. In the

next sections we extend the ideas in [10] to give an algorithm

for determining ,:he triconuected components of an undirected

graph.

22

Finding Separation Pairs

Let G = (V,E) be a biconnected multigr.ph with lVI

vertices and IEI edges. The main problem SL dividing G

into its triconnected components is firding its separation

pairs. This section gives a simple criterion, based upon

depth-first search, for identifying the separation pai:,s of

a multigraph. Two depth-first searches and some auxiliary

calculations must be carried out. These calculations form

the first part of the triconnected components algorithm and

are outlined below. The definitions for the quantities

LOWPT1, ND, etc., used in the outline will be given subse-

quently.

1. Perform a depth-first search on the multigraph G,

converting G into a palm tree P. Nutmber the

vertices of G in the order they are reached during

the search. Calculate LOWPTl(v), LOWPT2(v), and

ND(v) for each vertex v in P.

2. Construct an acceptable adjacency structure A for

P by ordering the edges in an adjacency structure

according to the LOWPT1 and LOWPT2 values.

3. Perform a depth-first search of P using the adja-

cency structure A. Renumbry the vertices of A

from v to 1 in the order they are last examined

during the search. Recalculate LOWPTl(v) and LOWPT2(v)

using the new vertex numbers. Calculate SONI(v),

DEGREE(v), and HIGIIPT(v) for each vertex v.

23

The details of these calculations appear below. From

Steps 1, 2, and 3 we get enough information to rapidly

determine the separation pairs of G. Lemma 17 gives a

condition for this purpose.

Suppose G is explored in a depth-first manner, giving

a palm cree P. Let the vertices of P be numbered from 1

to IVi so that v + w in P implies v < w, if we iden-

tify vertices by their number. For any vertex v in P,

let ND(v) be the number of proper descendants of v. Let

LOWPTl(v) = min {v} U'{wlv I - w). That is, LOWPTI(v)

is the lowest vertex reachable from v by traversing zero

or more tree arcs in P followed by at most one frond.

Let LOWPT2(v) = min[{v} U Z{wlv 4 -- w> -w{LOWPTI(v)}].

That is, LOWPT2(v) is the second lowest vertex reachable

from v by traversing zero or more tree arcs followed by

at most one frond of P, if such a vertex exists. Otherwise,

(i.e. if LOWPTI(v) = v), LOWPT2(v) = v also,

Lemma 10: LOWPTI(v) 3 v and LOWPT2(v) 4 v in P.

Proof: LOWPTl(v) < v by definition. If LOWPTI(v) = v the

result is immediate. If LOWPTl(v) < v there is a frond

u -4 LOWPTl(v) such that v ÷ u. Since u -+ LOWPTl(v)

is a frond, LOWPTl(v) S u. Since P is a tree, v + u

and LOWPTI(v) >. u, eithtr v + LOWPTl(v) or LOWPTl(v) 4 v.

But LOWPTl(v) < v. Thus it must be the case that

LOWPTl(v) 4 v 4 u, and the lemma holds for LOWPTl(v).

The proof is the same for LOWPT2(v).

24

Lemma 11: Suppose LOWPTI(v) and LOWPT2(v) are defined

relative to some numbering which satisfies v - w in

P Implies NU.MBER(v) < NUMBER(w). Then LOWPTl(v) and

LOWPT2(v) identify unique vertices independent of the

numbering used.

Proof: LOWPTl(v) always identifies an ancestor of vertex

v. Furthermore LOWPTl(v) is the lowest numbered aaices-

tor of v with a certain property relating to the palm

tree P. Since the order of the ancestors of v corres-

ponds to the order of their numbers, LOWPTI(v) identifies

a unique vertex independent of the numbering; namely, the

first ancestor of v along the path 1 .• v which has the

desired property. (Any satisfactory numbering assigns I

to the root of P.) The proof is the same for LOWPT2(v).

Step 1 of the calculations may be carried out in O(IVI + IEI)

time using an adjacency structure for the depth-first search.

A program for this purpose appears below. Numbering the vertices

in the order they are reached during the search clearly guaran-

tees that v - w implies v < w.

STEPI: begin

integer i;

procedure SEARCH1 (v,u); comment vertex u is the

father of vertex v in the spanning tree

being constructed;

begin

ND(v):= 0;

25

A: LOWPT2(v):= N4UMBER(v):= i:= i+1

for w in the adjacency list of v do

begin

if w is not yet numbered then

begin

construct tree arc v -* w in P;

FATHER M) := v

B: SEARCHI- (w,v);

ND(v) = ND(v) + ND(w);

C: if LOWPTl(w) < LOWPTl(v) then

begin

D: LOWPT2(v) := min(LOWPTl(v),LOWPT2(w));

LOWP'rl(v) :=LOWPTl(w);

end

else if LOWPTl(w) = LOWPTl(v) then

E: LOWPT2(v):= min(LOWPT2(v),LOWPT2(w))

F: else LOWPT2(v):= min(LOWPT2(v),LOWPTl(w));

end

else if (NIJMBERMw < NUMBER(v)) and (w-l=u)

-or (FLAG(v)+FALSE)) then

begin

construct frond v --+w in P;

if NUMBERMw < LOWPTl(v) then

begin

bO WT T2 (v) :- II

LOWPTl(v) := NUMBER(w);

end

~26

else if NUMBER(w) > LOWPTI(v) then

H: LOWPT2(v):= min(LOWPT2(v), NUMBER(w));

end

else if (w=a)and(FLAG(v)=TRUE) 'then FLAG(.v):=FALSE;

end;

end;.

I: i:=O;

for v:=l until V do FLAG(v):=TRUE; comment FLAG(v) becomes

false when edge u-v is traversed backwards for the first time;

J: SEARCH1 (s,0); comments is an arbitrary starting vertex;

end;

Intuitively, STEPI works as follows: Initially variable

i is set equal to O(statement I). The depth-first search

begins at the root of the palm tree P to be constructed

(statement J). Each time a new vertex is reached, recursive

procedure SEARCH1 is called, to continue the search startiL 6

at the new vertex. A vertex is numbered the first timie it

is reached (statement A). The value af LOWPTI(v) is set to

NUMBER(v) the first time v is reached (statement A). If

.v + w, then on completion of the search of the subtree Tw

containing the descendants of w, LOWPTI(v) is set to LOWPTI(w)

if LOWPTI(w) is less than the current value of LOWPTI(v)

(statement C). If a frond v -+ w is encountered and

NUMBER(w) is less than the current value of LOWPTI(v), then

LOWPTI(v) is set to NUMBER(w) (statement G). Thus, after w

is examined for the last time,

LOWPTl(v) = min~fv) U{jLOWPTl(w)Iv-.-w) U'{wlv -- W})

It is easy to show by induction on the order in which vertices

V•

27

are last examined that, for each v,

LOWPTl(v) = min({v} U {wlv 4 -+ wi)

The computation of LOWPT2 is similar to that of LOWPTl.

The value of LOWPT2(v) is set to NUMBER(v) the first time v

is reached (statement A). If v -) w, then on completion of

the search of the subtree T containing the descendants of

w, LOWPT2(v) is modified as follows:

Since T is completely explored, LOWPTl(w) and LOWPT2(w)w

are completely calculated. We must update the value of

LOWPT2(v) knowing the current values of LOWPTI(v) and LOWPT2(v).

If LOWPT l(w)< LOWPTl(v), then min(LOWPT2(w),LOWPTI(v)) is

the value of LOWPT2(v) (statement D). if LOWPTl(w) = LOWPT2(v),

then min(LOWPT2(w),LOWPT2(v)) is the new value of LOWPT2(v)

(statement E). If LOWPTI(w) > LOWPT2(v), then min(LOWPTl(w),

LOWPT2(v)) is the new value of LOWPT2(v) (statement F). If

a frond v -+ w is encountered, we must update the value of

LOWPT2(v) similarly. If NUMBER(w) < LOWPTl(v), the current

value of LOWPTI(v) is the new value of LOWPT2(v) (statement G).

If NUMBER(w) = LOWPTI(v), LOWPT2(v) is unchanged. If

NUMBER(w) > LOWPTI(v), min(NUMBER(w),LOWPT2(v)) is the new

value of LOWPT2(v) (statement H). We may show by induction

that LOWPT2 is calculated correctly.

Let ý be the mapping from the edges of P into

{1,2,...,21Vl+ll defined by:

(i) If e = v -+ w, ý(e) = 2w + 1.

28

(ii) If e v ÷ w and LOWPT2(w) < v, *(e) = 2LOWPTI(w).

(iii) If e = v ÷ w and LOWPT2(w) > v, O(e) = 2LOWPTI(w)+l.

Let A be an adjacency structure for P. A is called

acceptable if the edges e in each adjacency list of A

are ordered according to increasing value of 4(e).

Lemma 12: Let P be a palm tree of a biconnected graph G whose

vertices are numbered so that v * w in P implies v < w.

Then the acceptable adjacency structures of P are inde-

pendent of the exact numbering scheme.

Pkoof: If v 4 w in P, then by Lemma 10, LOWPT2(w) is an ances-

*tor of w. By Lemma 11, LOWPT2(w) is a fixed vertex inde-

pendent of the numbering. Since the order of the ancestors

is independent of the numbering, the question as to whether

LOWPT2(w) is less than v is independent of the numbering.

Since G is biconnected if v + w in P, then LOWPTI(w) < v

by Lemma 5 of [10]. By Lemma 10, LOWPTI(w) is an ancestor

of w. Since LOWPTI(w) < v, LOWPTI(w) must be an ancestor

of v. By Lemma 11, the vertex corresponding to LOWPTI(w)

is independent of the numbering scheme. Similarly if

.v-4-w, then by.Lemma'9 w is an ancestor of v. But the or-

der of the ancestors of v is identical to the order of

their numbers, and this order is independent of the num-

bering. Thus the acceptable adjacency structures A for P

depend only on P and not on the exact numbering.

In general, a palm tree P has many acceptable adjacency

structures. Given a satisfactory numbering of the vertices

29

of P, we may easily construct an acceptable adjacency struc-

ture A by using a radix sort with 21V1 + 1 buckets. The

following procedure gives the sorting algorithm, which is

Step 2 of the calculations. All vertices axe identified by

number. It is obvious that the sorting procedure requires

o(IVl + IEI) time.

procedure SORT;

begin

for each arc (v,w) of P do

if v -÷ w then place (v,w) in BUCKET(2*w+l)

else if LOWPT2(w) < v then place (v,w) in

BUCKET(2 *LOWPTI(w))

else place (v,w) in BUCKET(2*LOWPTI(w)+l);

for i:= 1 until v do construct empty adjacency list

for vertex v;

2-,r i:= I until 2*v+l do

for each arc (v,w) in BUCKET(i) do

place w at end of adjacency list of vertex v;

end;

3

In Step 3 of the calculations we perform a depth-first

search of P using the acceptable adjacency structure A

given by Step 2. During Step 3 we calculate certain values

necessary to determine the separation pairs of G. Let the

vertices of P be numbered so that v * w implies v < w.

lf u + v in P, let HIGHPT(v) = max({vl U {wlv 4 w -) u)).

30

HIGHPT(v) is the highest numbered vertex which is the tail

uf a frond whose head is the father of v, if such a vertex

exists. (Otherwise HIGHPT(v) = v). SONl(v) is the first

son of v reached during the search. DEGREE(v) is the

number of edges incident to vertex v.

During Step 3 we number the vertices from v to I in

the order they are last examined during the search. It is

clear that this numbering scheme 3uarantees that v - w

impl.ies v < w. We also calculate LOWPTl(v), LOWPT2(v),

SONl(v), and HIGHPT(v) with respect to the new numbering

scheme. A program to implement Step 3 appears below. It is

easy to verify that the numbering and calculations are carried

out correctly.

STEP3: begin

integer i;

procedure SEARCH2(v);

begin

A: NUMBER(v) := i-ND(v);

LOWPTl(v):= LOWPT2(v):= HIGHPT(v):= NUMBER(v);

for w in the adjacency list A of v doS~V

if w is not yet numbered then

begin

SEARCH2(w);

B: if SONI(v) = 0 then SONl(v)l NUMBER(w);

i:= i-l;

31

if LOWPT1(w) < LOW±'TIAv) then

begin

LOWPT2(v):= min (LOWP"Al(v), LCIWPT2(w));

LOWPTl(v) := LOWPTl(w);

end

else if LOWPTl(w) = LOWPTl(v) then

LOWPT2(v):= min (LOWPT2(v), LOWPT2(w))

else LORIPT2Mv): min (LOWPT2(v), LOWPTl(w));

N end

else

begin

HIGHPT (FATHERMw) =max (HIIIHPT(FATHER(w)),

NUMB ER(CV))

if: NUMBER(w) < LOWPTl(v) then

begin

LOWPT'4(v) := LOWPTl(v);

LOWPTl(v) := NUMBER(w);

end

else if NUMBER~w) > LOWPTl(v) then

LOW4PT2(v) := min (LOWPT2(v) , NUMBER(w));

end

end;

for i= 1 to (V) do SONl(v):= 0;

SEARC112(r); comment r is the root of P;

end

32

Step 3 numbers the vertices from IVI to 1 in the order

they are last reached during the search. However, each vertex

must actually be assigned a number the first time it is reached,

in order for the calculations of LOWPT1, LOWPT2, and HIGHPT

to proceed correctly. In ordet to accomplish this, variable

1i is set equal to IVI when the search begins (statement C).

The value of i is decreased by one each time a new vertex

is discovered (statement B). Thus when a vertex v is first

reached, i is equal to the number we want to assign to v

minus the number of vertices to be examined before v is

examined for the last time. But the vertices to be reached

between the time v is first examined and the time v is

last examined are just the proper descendants of v. Thus if

we assign the number i- ND(v) to v when v is first

examined (statement A), the numbering will be correct. The

other calculations performed in Step 3 are straightforward.

Step 3 also requires O(IVI + tEl) time. The palm tree for

the graph G of Figure]. is illustrated in Figure 4 along with

LOWPT1 and LOWPT2 values.

Let G be a biconnected multigraph on which Steps 1, 2,

and 3 have been performed, giving a palm tree P and the sets

of values defined above. Let A with adjacency lists Av

be the acceptable adjacency structure constructed in Step 2.

Let the vertices of G be idertified by the numbers assigned

in Step 3, We need one more definition. If u -) v and v

is the first entry in Au, then v is called a first son

of Au. (For each vertex v, SONI(v), the first son of

v, is calculated in Step 3.) If u0 -- u1 ÷''÷ un and ui

33

is a first son of til for 1 < i < n, then u is

called a first descendant of v3. The lemmas below give

the properties we need to determine the separation pairs of

G.
_Lemma 13: Let A be the adjacency list of vertex u. Let

S~U•

u 4 v and u ÷ w be tree arcs with v occurring before

w in Au, Then u < w < v.

Proof: Step 3 numbers the vertices from v to I in the

order they are last examined in the search. If u + v is

explored before u + w, v will be.examihea¶'lagt'hefore w

"is examined last, and v will receive a higher number.

Clearly u will be last examined after both v and w are

last examined, so u receives the smallest number of the
three vertices.

Lemma 14: A is acceptable with respect to the numbering given

by Step 3.

Proof: The sort in Step 2 creates an acceptable adjacency

structure for the original numbering. By Lemma 13,

u -÷ v implies u < v and hence by Lemma 12, A is

acceptable for the new numbering.

Lemma 15: If v is a vertex and D(v) is the set of descen-

dants of v, then D(v) - {xlv < x < v + ND(v)}. If w

is a first descendant of v, then D(v) - D(w) = {xlv < x < w}'

Proof: 'Consider 'searching 'P -In .Tever-s. ýof 4tbe ordiar used Aim,

Step 3. Vertices will be examined for tho'"first time in

ascending order from 1 to IV I. Consequently descendants

34

of v must be assigned consecutive numbers from v

to v + ND(v). If w is a first descendant of v,

vertices in D(w) will be assigned numbers after all

vertices in D(v) - D(w). Thus D(v) - D(w) -'{xlv < x < w).

Lemma 16: Let {a,b} be a separation pair in C with a < b.

Then a I b in the spanning tree T of P.

Proof: Since a < b, a cannot be a descendant of b. Suppose
in T. Then there are no edges connecting

that b is not a descendant of a A and b in P. Let

Ei, 1 < i < k, be the separation classes with respect

to '(a,b}. Let S = V -{vja • v) -{wlb . w). The

vertices S define a subtree in T, not containing a

or b, so E(S) must be contained in some separation

class, say E1 . Let c be any son of a. E(D(c)) must

be contained in some separation class, say E2 . But since

G is biconnected, LOWPTI(c) < a, by Lemma 5 of [10 1.

Thus some edge is incident both to a vertex in S and

to a vertex in D(c), and E1 . E2 . A similar argument

shows that edges incident to any descendant of b are in

E V But this means that E1 = E, and {a,b} cannot be
a separation pair.

Lemma 17: Suppose a < b. Then {a,b} is a separation pair

of G If and only if either (1), (2), or (3) below holds.

(1) There are distinct vertices r 4 a,b and s 0 a,b

such that b -+ r, LOWPTI(r) = a, LOWPT2(r) > b,

and s is not a descendant of r. (Pair {a,b}

35

is called a type 1 separation pair. The type 1 pairs

for the graph in Figure 4 are (l,4),(l,5),(4,5) and (1,8).),

(2) There is a vertex r 0 b such that a -) r 4. b;

b is a first descendant of r; a 0 1; every frond

x -) y with r < x < b has a < y; and every frond

x--+y with a<y <b and b-÷ w)_x has

LOWPT1(w) > a. (Pair {a,b} is called a type 2

separation pair. The type 2 pairs for the graph in

Figure 4 are (4,5) and (8,12)).
(3) (a,b) is a multiple edge of G and G contaius

at least four edges.

Proof: The converse part of the lemma is easiest to prove.

Suppose pair Ta,b} satisfies (1), (2), or (3). Let

Ei, 1< i < k, be the separation classes of G with

respect to {a,b). Suppose {a,b} satisfies (1). Then

the edge (b,r) is contained in some separation class,

say E1 . Every tree arc with an endpoint in D(r) has

s other endpoint in D(r) U {a,b}. Also, since LOWPT1(r) a

and LOWPT2(r) > b, every frond with an endpoint in D(r)

has the other endpoint in D(r) U'[a,b}. Thus E1 consists

of all edges with an endpoint in Dr' No other edges are

in E1 and the edges incident to vertex s itust be in

some other class, say E2. Since E 1 and E 2 each con-

tain two or more edges, {a,b} is a separation pair.

Suppose {a,b} satisfies (2). Let S = D(r) - D(b).

All edges incident to a vertex in S are in the same

separation class, say E1 . Since b is a first descenda.ir

36

of r, S - {xIr < x < b), by Lemma 15. Let bl,b 2 , .. ,bn

be the sons of b in the order they occur in Ab* Let io=

min {iJLOWPT.L(b) > a). Since A is acceptable, i < I0 im--

plies LOWPTI(bi) < a, and i > 10 implies LOWPTI(b) > a.

By (2), every frond with tail in S has its head in S U {a).

Also by (2), every frond with head in S has its tail in

S.U {b) U (U D(bi)). Every edge with an endpoint in D(b,i>i-
±>_ i0, has ts other endpoint in S U {a,b} U D(bi). Thus

"the class E contains at least all edges with an endpoint

in S, and at most all edges with an endpoint in S U U D(b±).
i._io

Since a 0 1, the edges incident to the root of : P cannot be in

El, and therefore {a,b} is a separation pair.

37

Suppose {a,bl satisfies (3). Then it is clear that

{a,b} is a separation pair.

We now must prove the direct part of the lemma. Thus

suppose that {a,b} is a separation pair with a < b. If

(a,b) is a multiple edge of G then it is clear that {a,b}

satisfies (3). Thus suppose that (a,b) is not a multiple

edge of G. By Lemma 16, a * b. Let Ei, 1 < i < k, be

the separation classes of G- with respect to {a,bl. Let

a ÷ v * b. Let S - D(v) - D(b). Let X - V - D(a). (Either

S or X or both may be empty.) E(S) and E(X) are each
Scontained in a separation class, say E(S) C Eg1 and E(X) C E2

Let ai # v be a son of a. If a has such a son,

LOWPTl(a) < a. This means that E(D(ai)) C E Let

Y = XUaiUD(ai). Let blb 2 '...tb be the sons of b in the

order they occur on the adjacency list of b. Let E(D(bi))

be the set of edges with an endpoint in D(bi)., The

separation classes must be unions of the sets E(S), E(Y),

{(a,b)}, E(D(bi)), E(D(b 2)), ... , E(D(bn)).

If E(D(bi)) = Eg for some i and J, then LOWPTl(bi)= a,

since- G is biconnected and this means LOWPTl(bi) < b by

Lemma 5 of 1 10]. Also, LOWPT2(bi) > b. Since {a,b} is

E and {(a,b)}. Thus there is a vertex s such that s # a,

s # b, and s • D(bi). This means that {a,b} satisfies (1)

where r is b[I

38

Suppose now that no E(D(bi)) is by itself a

separation class. Let i 0 - min {ilLOWPTI(bi) > a).

If i > £0 then since G is bic6nnected it mubt. be.the

case -that LOWPT2(bi) < b,'and the separation classes are

E1 E(S)u U E(D(bi)), E2 - E(Y)u U E(D(bi)),
i>l0 i<i 0

E3 ={(a,b)1. (E 3 may be empty.) We have v # b since

"{a,b) is not a type 1 pair and a # 1 since E 2 is

non-empty. If x -÷ y is a frond with v < x < b, then

xeS, (x,y)sEE, and a < y. If x--÷y is a frond with

a <_y < b and b-b ii x, then YES (x,y)5El, and i 1•0,

which means that LOWPTl(b) > a. We must verify one more

condition to show that (2) holds; namely, that b is a

first descendant of v. Since G is biconnected, LOWPTI(v)

< a. Thus some frond with tail in D(v) has head less than

a. By the construction of A and the definition of a first

descendant, there exists some frond x-÷y with xeD(v) and

y < a such that x Is a first descendant of v. If b were

not a zii-qt descendant of v then x would be in S, and E1

and B- could not be distinct separation classes. Thus b is
?z

a first descendant of v, and (2) holds-with r = v. This

completes the proof of the direct part of the lemma.

Lemma 17 and its proof are worth pondering carefully.

The lemma gives three easy-to-apply conditions for separation

pairs. Conditions (1) and (2) identify the non-trivial separa-

tion pairs of the multigraph. Condition (3) handles multiple

edges. Condition (1) requires that a simple test be performed

39

on each tree arc of P. 'Thus testing for -type 1 pairs

requires- O(IVJ)time. Testing for type (2) pairs is some-

what harder but may be done in(IVI+IEI) time using another
depth-first search. If "{a. is a type 2 pair, a ÷ v b,

and i 0 = min*{iLOWPTI(bi) > a), where bl,b 2,...,bn are

the sons of b in the order they occur on the adjacency list

of b, then one separation class with respect to {a,b} is

Eý{xlv < x < bio + ND(bi)1 W fbi). This follows from Lemma
15 and the proof of Lemma 17. The numbering given by Step 3

thus makes it easy to determine the separation classes and to

divide the graph once a separation pair is found. The complete

triconnectivity algorithm is given in the next section.

40

L- Triconnectivity Algorithm

By using the simple criterion for separation pairs given

in the last section, we may divide a graph into its triconnected

components in O(jVj + lEt) time. This is accomplished by

carrying out another depth-first search of G, again using

the acceptable adjacency structure A constructed for G.

We use Lemma 17 to find separation pairs. Each time an edge

is backed over during the search it is added to a &tack of

edges. Each time a separation pair is found a set of edges

corresponding to a split component is removed from the stack.

A virtual edge is added to the component and a corresponding

virtual edge is added to the stack. The complete search gives

a set of split components for G. Assembling the split com-

ponents to give the triconnected components of G is then

a simple matter.

Suppose {a,b} is a separation pair with a ÷ b. If

"{a,bl is a pair of type 1, Lemma 17 enables us to detect'this

fact when vertex b is examined during the search. The cor-

responding split component may be deleted and replaced with a

virtual edge (a,b,i). If "{a,bl is a multiple edge, this

fact is 'easy to detect and calculation of the corresponding

split component is easy. Similarly, if, a ÷ v - b and v

is a vertex of degree 2, detection of this fact is easy.

Finding separation points of type 2 is a little more difficultI? than the other cases, however. The procedure for finding type

2 pairs will be outlined; then the entire algorithm will be

41

presented, follcwed by a proof of its correctness and time

bound.

We keep a stack which contains triples of vertices.

If (h,a,b) is a triple on the stack, {a,b} is a possible

type 2 separation pair and h iF the highest numbered vertex

in the corresponding split component. The stack containing

these triples is updated in the following manner during the

depth-first search. Initially the stack is empty. The stack

is modified whenever we back over an edge.

Whenever we back over a frond v -+ w, we delete all

triples (h,a,b) on top of the stack with' w < a. If

(hla,b 1) is the last triple deleted, we add a new triple

(hlw,bI) to the stack. If no triples are deleted we add

(v,wv) to the stack.

Whenever we return to a vertex v # 1 along a tree are

v 4. w, we test the top triple (h,a,b) on the stack to see

if v = a. If so, {a,bl is a type 2 pair. We delete all

triples (h,a,b) on top of the stack with HIGHPT(w) > h.

If w is not the first son of v, we carry out the fol-

lowing steps. Let w + ND(w) be the highest descendant of

w. Delete all triples (h,a,b) on top of the stack with w

+ ND(w) > b. Then we delete all triples with LOWPTI(w) < a.

If no triples are deleted during the latter step and,(LOWPTl(w)

S÷ v), then we add the triple (w + ND(w), LOWPT1(w),v) to the

stack. Otherwise, if (h,a,b) was the last triple deleted such

that LOWPTI(w) < a, we add (max{w + ND(w), h}, LOWPTl(w),b) to

the stack.

42

The reason for constructing tbl acceptable adjacency

structure A using LOWPT2 as well as LOWPT1 is to make

sure that fronds are handled correctly. Suppose v is a

vertex in G, v 4 wi for 1 < i < k, with LOWPTI(i) = u,

and v -) u. Further suppose that the wi are ordered as

they appear in Av, the adjacency list of v. Then there is

some i 0 such that i < i 0 .> LOWPT2(i) < v and i > i0 =

LOWPT2(i) > v. In A u will appear after all the w1 ,

1 < i < i Each vertex vi, i > i0 , is part of a split

component for the separation pair {a,b}. When such a com-

ponent is deleted from G, it will be replaced by a virtual

edge (a,b,i) which is a frond. It is important that all

tho. wi, i > io, appear together in Av, so that these

virtual fronds may be located and combined to give split

components which are bonds.

An Algol-like procedure to find the split components of

a biconnected multigraph appears below. Steps 1, 2, and 3

described in the previots section must be carried out before

the triconnectivity algorithm is applied.

begin

integer J;

procedure TRICON(v);

for w in the adjacency list of v do

if v -+ w then

TRICON(w);

43

Comment program has just returned along

tree arc v w;

add v -÷ w to EDGESTACK;

Comment test for type 1 component;

iff((LOWPT2(w) > v) & ((LOWPT1(w) 0 1)1

(DEGREE(v) > 2)1(FATHER(v) # LOWPTl(v)))

then

begin

J:= J+l

while (xy) on top of EDGESTACK

has x > w do

begin

delete (x,y) from EDGESTACK;

add (x,y) to new component;

decrement DEGREE(x) ,DEGREE(y);

end;

add(v,LOWPT1(w) ,J) to new component;

output new component;

comment test for multiple edge;

".� -** - *-if (x,y) on top of EDGESTACK satisfies

(x,y) = (v,LOWPTl(w)) then

begin

add (x,y),(v,LOWPTl(w),j-1),

(',,LOWPTI(w),J) to new

component;

44

output new component;

decrement DEGREE(v),

DEGREE(LOWPT1(v));

end;

add(v,LOWPTl(w),J) to EDGESTACK;

increment DEGREE(v) ,DEGREE(LOWPTl(w))

end;

comment test for degree 2 vertex (component

will be of type 2);

if (DEGREE(w) = 2) & ((v # 1)I(second edge

(w,x) on EDGESTACK has DEGREE(x) > 2)) thei

begin

J := j+1

add top two edges (v,w) and (w,x) on

EDCESTACK to new component;

if (y,z) on top of EDGESTACK has

(y,z) = (x,v) then

begin

J := j+l

add(y,z),(x,v,j-l),(x,v,J) to

new component;

output new component;

decrement -DEGRVEIEý-v) -,IEGR1UIE (x. "'A

en. d;

add (x,v,j) to EDGESTACK;

FATHER(x):= V;

if sonl(v) = w then sonl(v):= x;

45

comment test for type 2 pair;

while (h,ab) on top of TRIPLESTACK has

a - FATHER(b) do delete (h,a,b) from

TRIPLESTACK;P.

while (h,a,b) on top of TRIPLESTACK has

(v-= a) & (a • 1) do

J:= J+l;

delete (h,a,b) from TRIPLESTACK;

while (x,y) on top of EDGESTACK has

(a < x < h)'& (a < y S h) do

if (xy) = (a,b) then

begin

SFLAG:= tru-e;-

save edge (xy);

end

else

begin

delete (x,y) from EDGESTACK

and add to new component;

decrement DEGREE(x),DEGREE(y)

end;

add (a,b,j) to new component;

if FLAG - true then

begin

FLAG:- false;

4 oJ: j+l c

add (x,y),(a,b,j-l),(a,b,j)

to new component;

46

output new component;

end;

end;

add (a,b,j) to EDGESTACK;

increment DEGREE(a) ,DEGREE(b);

comment fix up TRIPLESTACK;

while (h,ab) on TRIPLESTACK has

HIGHPT(w) > h do

delete (h,a,b) from TRIPLESTACK;

if w 0 SONl(v) then

begin

while (h,a,b) on TRIPLESTACK has

* w + ND(w)> b do

delete (h,a,b) from TRIPLESTACK

while (h,a,b) on TRIPLESTACK has

LOWPTl(w) < a do

begin

FLAG:= true;

delete (h,a,b) from

TRIPLESTACK;

end;

if -nFLAG & -i(LOWPTI(w) = FATHER(v)) then

add (w + ND(w),LOWPTI(w),v) to

T•I•IPLESTACK

else if FLAG then

begin

FLAG:= false;

47

if (h,a,b) last triple deleted

from TRIPLESTACK and

FATHER(b) , LOWPTI(w)

then add (max{w+ND(w),h),

LOWFTI(w) ,b) to

TRIPLESTACK;

end;

end;

end

else

begin

comment v -4 w;

comment test for multiple edge;

if w = FATHER(v) then

*begin ;

j := j+l;

add v -÷ w, v -- w, (v,w,j) to

new component;

mark tree arc v -÷ w as virtual edge J;

decrement DEGREE(v) ,DEGREE(w);

end

else if (x,y) on EDGESTACK has (x,y) (v,w)

then

J:= j+i;

add (x,y),(v,w),(v,w,J) to new

component;

48

o9

add (v,w,j) to EDGESTACK;

decrement bEGREE(v),DEGREE(w);

end

else add (v,w) to EDGESTACK;

comment fix up TRIPLESTACK;

while (h,a,b) on TRIPLESTACK has

begin

FLAG:- true

delete (hsa,b) from TRIPLESTACi;

end;

if FLAG = true then

begin

FLAG:= false

if (ha,b) Is last triple deleted

from TRIPLESTACK then add

(h,w,b) to triplestack;

end•

else add (,;,w,v) to TRIPLESTACK;

end;

J:= 0;

TRICON(l); comment vertex 1 is starting vertex for search;

end;

Theorem 18: The algorithm above correctly divides a biconnected

multigraph into split components.

49F

Proof: Unfortunately, the algorithm looks much more complicated

than it is. The ideas in it are a direct application of

Lemma 17. We must prove two. things: (1) if the graph is

triconnected, the algorithm will not split it; (2) if the

graph is not triconnected, the algorithm will split it.

Once we have these two facts, we may prove the Theorem by

induction on the number of edges in the graph.

The tests for multiple edges, for type 1 separation

pairs, and for degree 2 vertices are straightforward. These

tests will discover a separation pair of the correct type

if one exists, and they will not report a separation pair

if one does not exist. Thus we must only show that the

type 2 test works correctly on multigraphs with no degree

2 vertices, and we will have verified (1) and (2).

Suppose G is a multigraph with no degree 2 vertices,

no multiple edges, and no type I pairs. Consider the

type 2 test and the changing contents of TRIPLESTACK as

the search of G progresses.

If (hl1 al , b l) occurs above (h 2 ,a 2 ,b 2) on the stack,

a2 _S a, and if a2 = a, then b2 < b,. Further, if

(h,a,b) is deleted from the stack because a frond v --* w

is found with w < a, then v < b. These facts may be

nroved by induction on the search step using the ordering

,gLvev •y ,thQ.djacency .strActure -A. Tha cEvxc!a fzct

to notice is that if (h,a,b) is deleted from the stack

because frond v -- ', w with w < a is found, then v > b

implies b * v by the numbering scheme. The triple (h,a,b)

50

corresponds to some frond x -+ y with a < x < b

and a_< y _< b. But if b v and w < a, the frond

v - v should have been traversed before the frond

x -. y, because of the ordering in A. This contra-

diction establishes that v < b. The first statement

above follows by examining each step during which the

algorithm adds or deletes a triple from the stack.

Every triple (ha,b) on the stack also satisfies

a ÷ b and a I v; v # a, where v is the vertex cur-

rently being examined during the search. This follows

again by examination of the steps which add and delete

triples.

If triple (h,a,b) on the stack is tested and it is

found that v = a # 1 when returning along a tree arc

v + w, it is straightforward to prove by induction on

the search step that {a,b} is a type 2 separation pair.

We merely verify that if any of the conditions in Lemma 17

are false, (h,a,b) must previously have been deleted

from the stack. Conversely, suppose G has a type 2

pair (a,b). Let bl,...,bn be the sons of b in

the order they occur in Ab. Let i0 mrin {iILOWPTI(bi) >a}.

Let :h bi0 + ND(bi0). Finally, suppose a 4v v b and

that i -j J is the first frond traversed during the search

with v < i .< h. Then we may prove by induction on the

search step that (i,j,i) is placed on the stack, pos-

sibly modified, and eventually is selected as a type 2

pair. Thus the type 2 test works correctly, and the

I

51

algorithm splits a multigraph if and only if a separa-

tion pair exists.

The theorem follows by induction on the number of

edges in G. Suppose the theorem is true for graphs

with fewer than k edges. Let G have k edges.

If G cannot be split, the algorithm works correctly

on G '1y the discussion above. If G can be split,

it vil! be split. Consider the first split performed

by the algorithm, producing split graphs C, and G2 .

The behavior of the algorithm on G is a composite

of its behavior on GI and G2 . Since the algorithm

splits G1 and G2 correctly by the induction hypo-

thesis, it must split G correctly. The Theorem

follows by induction.
Figure 5 gives the contents of EDGESTACK and TRIPLESTACK

-we fteqirsi% bi arti (aat:o n nair IVl s)is. detected.
Thhe•emnL9 * e a orgm•a o Lr digs or sepu at PMp,

nents for a biconnected multigraph G with IV! vertices

and IEJ edges requires O(ivi + lEt) time and space.

The space required by the algorithm is obviously O(IV1+lEt).

The preliminary calculations requre O(IVI+IEI) time

as disct.ssed in the previous section.

Proof: The number of edges in a set of split components of

+ G is bounded by 31EI - 6 by Lemma 1. Each such edge

is placed on the edge stack once and deleted once daring

the searcn. The search itself requires O(1V1+.EI) time,

including the various tests. The number of triples added

to TRIPLESTACK is bounded by IVL+IEI. Each triple may

52

7I

only be modified if it is on top of the sEack. Thus

the time for maintaining the stack of triples is also

O(IVI + I El), and the entire algorithm requires

O(JVj + IEI) time.

Thus we have an O(IVI + IEI) algorithm for determining

the split components of a biconnected multigraph. Use of an

O(jVj + JlE) algorithm for finding the oiconnected components

of 9 multigraph [7,10] enables us to extend the algorithm

above to arbitrary multigraphs. It is easy to devise an

O(IVI + lEt) algorithm to merge the triangles and bonds.

If P i is the set of triangles and ý&2 is the set of bonds

among the split components, we merely construct the auxillary

graphs S2i) and S(02) and look at their connected components.

Thus we have an O(IVI + IEI) algorithu, ror determining the

triconnected components of an arbitrary multigraph. Such an

algorithm may be used in the construction of an O(IVllogIVD)

algorithm for determining isomorphism of planar graphs [8]. The

algorithm described here is not only theoretically optimal

(to within a constant factor), but is practically useful. The

algorithm has been implemented in Algol W and run on an IBM 360

model 65 computer. Experiments show that the algorithm can

handle graphs with around 1000 edges in less than 10 seconds.

53

13

Fig 1: A biconnected graph G with separation pairs
(1,4),(1,5), (4,5), (1,8), (4,8),(8,12).

54

S I0i

I;:A

* go

14V

SI -

/ 3 9

I- -v .

3/

Fig. 2: The triconnected components of the graph G illustrated

in Figure 1.

- I0

Fig. 3: Palm tree produced by a depth-first search of graph G
illustrated in Figure 1.

56

Fig 4: Ordered palm tree of graph G after second search withLOWPTI and LOWPT2 values in parenthesis.

Type I pairs: (1,4),(1,5),(4, 5),(1 , 8)
Type 2 pairs: (4,8),(8,12).

57

8, 9
9,10
10,11 First component.
9,11 Algorithm adds
8,11 virtual edge (8,12).

10,12
9,.12
8,12

(12,8,12) 1,12
(12,1,12) 3 ,13
(13,1, 3) 2,13
(13,1,13) 1,13

TRIPLESTACK EDGESTACK

Fig 5: Contents of EDGESTACK and TRIPLESTACK when first
biarticulation point pair (8,12) is detected.

58

References

1. A. Ariyoshi, I. Shirakawa, and 0. Hiroshi, "Decomposition
of a Graph into Compactly Connected Two-Terminal
Subgraphs", IEEE Trans on Circuit Theory Vol. CT-18,
(1971) pp 430-435.

2. J. Bruno, K, Steiglitz and L. Weinburg, "A Ni~w Planarity
Test Based on 3-Connectivity',' IEEE Tra.s on Circuit
Theory Vol. CT-17 (1970) pp 197-206.

3. G. Busacker and T. L. Saaty, Finite Graphs and Networks:
An Introduction with Applications, McGraw-Hill,
New York (1965).

4. S.A. Cook, "Linear Time Simulation of Deterministic Two-
Way Pushdown Automata", IFIP Congress 71: Foundations
of Information Processing. Ljubljana, Yugoslavia
(August 1971). Amsterdam: North Holland Publishing
Company., pp 174-179.

5. J. Edmonds and W. Cunningham, private communications.

6. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass.(1969).

7. J.E. Hopcroft and R.E. Tarjan, "Efficient Algorithms for
Graph Manipulation", CACM to appear.

8. J.E. Hopcroft and R.E. Tarjan, "Isomorphism of Planar Graphs
(Working Paper)", Proceedings IBM Symposium on Com-
plexity, to appear.

9. D.J. Kleitman, "Methods for Investigating Conne~ctivity of
Large Graphs" IEEE Trans on Circuit Theory Vol.
CT-16 (1969) pp 232-233.

10. R.E. Tarjan, "Depth-First Search and Linear Graph Algorithms",
SIAM Journal on Computing, to appear.

11. W.T. Tutte, Connectivity in Graphs, University of Toronto
Press, 1966.

Sa

I,

