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FINDING THE TRICONNEC. EI'

COMPONENTS OF A GrapH

J.E. Hopcroft and R.E. “arjan+

Abstract:

An algorithm for decomposing a «*aph into triconnected
components is presented. The algoriucm requires O(|V|+|E])
time and space when implemented on » random access computer,
where |V| is the number of verti-ess and |E| is the number
of edges in the graph. The algori hm is both theoretically

optimal (to within a constant factor) and efficient in practice.
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Introduction

The connectivity pvoperties of graphs form an impoxtant
part of graph theory. Efficient algorithms for determining
the connectivity structure of graphs are both theoretically
interesting and useful in a variety of applications. One
technique which may be used to solve connectivity problems
-8 that of backtracking, or depth-first search. 1In [10]
depth-first search is applied to give efficent algorithms
for determining the biconnected components of an undirected
graph and for determining the strongly connected components ’
of a directed graph. This paper extends the application
of depth-first search to the problem of finding the tricon-
nected components of a graph.

An algorithm for dertermining the triconnected components
of a graph is needed by procedures for determin ing whether a
graph is planar [2] and for determining whether two planar
araphs are isomorphic [8]. Standard methods for determining

the triconnected components of a graph require U(]V|3) steps or

.more, if the graph has IVI vertices. The algorithm described

here requires substantially less time, and sy be shown 'to be
optimal to within a constant factor assuws: . :iitable fo-
del of computation,

This paper is divided into four sections. The first
section presente the necercary definitions and lemmas from

graph theory. The theory of the triconnected components of

a graph was developed by Tutte [11]. .A-modificd'exposition more
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suitable for computer applications is given here, The
theory 1s also a special case of the more general theory
of decomposing "clutters" into chunks due to Edmonds and
Cunningham [ 5]. The second section describes depth-first
search and the data structures needed to implement it
efficiently on a computer. The third section describes
preliminafy calculations and a8 simplé test to find the
separation pairs of a graph. The last section describes
the heart of the triconnected components algorithm, inclu-
ding proofs of its correctness and time and épace bounds.
In deriving time bounds on algorithms we assume a
random access model. A formal definition of such a model
may be found in [ 4 .]. We use the following notation for
specifying bounds of algorithms: it % is a vector, f
is a real-valued function, and there exist constants kl’

k such that t(R)] < k.| £(R) + k,, then we write
- 1 2

2
"t(n) dis O(£(R))".
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Craphs, Trees and Connectivity

A graph G = (V,E) consists of a set of vertices V
and a set of edges E . 1If the edges are oxdered pairs
{v,w) of vertices, the graph is directed; v is called the
tail and w the head . f the edge. If the edges are un-

ordered paivs of vertices, zlso denoted by (v,w), the

A5 TPIA S B AR R i ot VT @

graph is undirected. If E dis a muitiset; that is, any edge
1

may occur several times, then G is a multigraph. If (v,w)

oSt

is an edge of a multigraph G, wvertices v and w are

&

adjacent, Edge (v,w) s incident to vertices v and w;

v and w are incident to {(v,w}. 1If E'

is 2 set of edges

in G, V(E') is the set of vertices incident to one or more of
the edges 1n E', If S is a set of vertices in G, E(S) is
the set of edges dncident to at least on2 vertex in 8§,

If & is a wultigraph, a path p @ v :>w in G 1is a
sequence of vertices and edges leading from v to w. A
path is gimple if all dts vertices are distinct. A pat!
p v SEV is a cycle if all its edges are distinct and the
only vertex to occuxr twice ia p is v, which occurs
exactly twice. Two gcycles which are cyclic permutations of

each other are considered to be the same cycle. The undi-

rected version of a directed multigraph is the multigreph

formed by converting each edge of the directed multigraph
into an undirected edge. A muitigraph s connectce? “f every

pair of vertices v and w in G is comnwected by a path,




If G = (V,E) and G' = (V' ,E')

that V'C V and E' C E, then

A multigraph having exactly two vertices

more edges (v,w)

A (directed, rooted) tree T
undirected version is connected,

the head of no edges (called the

vertices except the root are the

The relation " (v,w) is an edge of T " is denoted by

v > w. The relation "“there is a path from v to w din T "
is denoted by v ¥ w. If v > w, v is the father of w and
w is a son of wv. TIf v Fw., v is an ancestor of w and
w 1is a descendant of v. The set of descendants cf a vertex
v is denoted by D(v). Every rertex is an ancestor and a
descendant of itself. TIf G is a directed multigraph, a

tree T is a spanning tree of G 1f T is a subgraph (:

G and T contains all the vertices of G.

Let P be a directed multigraph, consistiang of two
disjoint sets of edges, denoted by v -+ w and v -+ w. Suppose
P satisfies the following properties:

(i) The subgraph T <containing the edges v > w is
a spanning tree of P.

(i1) If v -2 w, then w 3 v. Thauv is, each edge not

in the spanning tre: T of P connects a vertex
with one of its ancestors in T.

are two multigraphs such

G' is a subgraph of G.

v,w and one or

is called a bend.

is a directed graph whose
hroviny one vertex which is
root), and such that all

head of exactly one edge.
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4 Then P is called a palm tree. The edges v -»> w are called

E ¢ the fronds of P.

" H A connected multigraph

N triple v,w,a such that a

G 1s biconnected if for each triple

of distiact vertices v,w and & in V there is a path p : v N w

b such that a is not on the path p. If there is a distinct

*
is on every path p : v => w,

then a is called a separation point (or an articulation

LG e

At

S

point) of G. We may partition the edges of G so that

two edges are in the same block of the partition if and

K only 1if they belong to a common cycle. Let Gi=(V.,E.)
7, i*7i

'E where E, is the set of edges in the 1™ block of the

. partition and Vi=V(Ei)' Then:

s (i) Each G is biconnected.

i

;o (ii) No G is a proper subgraph of a biconnected

subgraph of G.

§ (iii) Each vertex of G
§

. Bl
% 42
g2

X point of G occurs exactly once among the V

which is not an articulation

i

¢ and each articulation point occurs at least twice.

LA .
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point.
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lence classes E_,E

1 z’oou’4n

‘,} (iv) For each i,j,i#j,viﬂ Vj contains at most one vertex;

furtnermore, this vertex (if any) is an articulation

The subgraphs Gi of G are called the biconnected components
of G. The biconnected components of ¢ are unique.

B Let {a,b} be a pair of vertices in a biconnected multi-
graph G. Suppose the edges of G are divided into equiva-

E such that two edges which lie in a

o




common path not containing any vertex of {d,b} are in the same

class. The classes Ei are called the separation classes

of G with respect to {a,b}aIf there are at least two separa-

tion classes, then {a,bT is a separation pair of G unless (d) there

are exactly two separation classes and one class consists of a
single edge or (2) thereare exactly three classes each consist-
ing of a single edgec.

If G is a multigraph such that no pair {a,b} is a

separationpair of G, then G is tricounected. Let {a,b}

be a separation pair of a biconnected multigraph G. Let

the separation classes of G with respect to {a,b} be

k n
| "
E ,E,,...,E.. Let E = UE and E = U E be such
L2 " =1 ! i=k+1 1
that Je'| > 2, [E"| > 2. Let G, = (vee')y, E'U{(a,b))),
G, = (v(z"y, E"U{(a,b))). The graphs G, and G, are

called the spiit graphs of G with respect to {a,b}. Re-
piaring a muitigraph G by two split graphs is called
splitting G. There may be many possible vways to split a
graph, even with respect to o fixed separation pair {a,b}.

A splitting operation is dercted by s (a,b,i); 1 is a label

distinguisning this split operation from other splits. The

ncew edges (a,b) added to 1\ and G? are called virtual
edges; they are labelled to identify trhem with the split.
A virtusl edge (a,b) assnciated with sp*i- s(a,h,i) will

~e Jdenoted by (a,b,i). Tf & is biconnected, then any split

graph of G is also biconnccted.
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Suppose a multigraph G is split, the split graphs

are split, and so on, until no more splits are possible

(each graph remaining is triconnected)., The graohs con-

, structed in thj - way are called the split components of

,"’-‘"1
G. The split components of a multigraph are not neces- _4#9

sariiy unique,

Lemma 1: Let G = (V,E) be a multigraph with |E| > 3. Let
Gl’GZ""’Gm be the split components of G. Then the
"total number of edges in Gl’nzﬁ""c is bounded by
3|E|-6.
Proof: By induction on the number of edges of G. I1f G
has 3 edges the lemma is immediate, because G cannot

be split. Suppose the lemma is true for grapns with

n~-1 edges and suppose G has n edges. If G

cannot be split the lemma is true for G. Suppose on

the other hand that G can be split into ¢' aund

CEE i S At St e

: G , where G' has k+1 edpes and ¢" hes n-t+l
edges for some 2<k<n-2. By induction, the total

number of edges in Gl’GZ""’
3(k+1) - 6+3(n-k+1) - 6 = 3n - 6. Thus by induction

Gm must be bounded by

the lemma is true.

triconnected
In erder to get uniqqucomponents we must partially re-

assemble the split components. Suppose Gl = (Vl’E1) and
G, = (VZ’EZ) are two split components both containing a

virtual edge (a,b.i). Llet

G = (\'1Uv2, (lil—((a,b,i)})U (122—{(21,1),1)})) .

R ol L WKWMWAMWWmmWMiWMWWM%mmm
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Then G 1is called a merge graph of Gl and G2; the merge

operation will be densted by m(a,b,i). Merging is the
inverse of splitting; if we perform a sufficient number of
merges on the split compomnents of a multigraph we recreate
the original multigraph.

The split components of & multigraph are of three types:
triple bonds, of the form ({a,b},{(a,b),(a,b),(a,b)});
triangles, of the form ({a,b,c},{(a,b),(a,c),(b,c)}); and
triconnected graphs. Let G be a multigraph whose split
components are a set of triple bonds 433, a set of triangles
J, and a set of triconnected graphs xy. Suppose the triple

. bonds B are merged as much a2s possible to give a set of

3
—

bonds &, and that the triangles J~ are merged as much as
poscible to give a set of polygons ® . Then the set of graphs

‘ BUFPUF is the set of triconnected componcnts of G. If G

is an arbitrary multigraph, the triconneccted components of the
biconnected components of G are called the triconnccted
components of G. This sel of components is unique, as we
shall see below.

Let G be a multigraph and let )V be a set of graphs
obtained from G by a scguence of splits and merges. Consider
the auxiliary graph S$(Y) whose vertices arc the graphs in

)9_ Graphs G and G

1 g 3re joired by an edge i{ and only

1f they share a common virtual edge.
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Lemma 2: If X& is a set of graphs obtained from a connec-
ted miltigrapzh G by a sequenc: of sylits and merges, then

the auxiliary graph S(/f) is a tree.

Proof: The proof is by induction on the length of the sequence
of splites and - .rges. For a sequence of length zero,
S(¥) is a single vertex and hence a tree. Assume S(¥)
is a tree for all sequences of length less than i,
i > 1, and let x be a sequence of length i. Let
5'99) be the auxiliary graph after the first i-1 _splits _
and merges in the sequence x. By the induction hypo-
thesis §'(#) is a tree. Assume x ends with a split.

' Then §(//) is obtained from $'()) by replacing a vertex
v by two vertices v' and v"' connected by an edge
(v',v'). Each edge (u,v) in s'(f) 1is replaced by an
edge (u,v') or by an edge (u,v") depending on whether
the virtual edge common to u and v dis in the split
component v' or v . Sgﬁ) minus the edge (v’,v") con-
sists of two trees, one¢ containing v' and one containing

1 . .
v . Hencec Skﬁ) is a tree. Assume x ends with a mecsge,

Then two vertices v and v' in s'gy) which are

connected by an edge are replaced by a single vertex

v, the edge (v',v") is delected and ecach edgc (u,v')

or (u,v") is replaced by an edge (u,v). Since S'(ﬁ)

is a tree, S‘(b) with edge (v',vh) deleted consists
"

. . t . .
of two trees, one coutaining v and one containing v .,

Thus S(¥) 1is a tree.
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Lemma 3: Let G bec a biconnected multigraph. Suppose a
sequence of intermixed splits and merges is carried
out on G. Then there is a sequence of splits which

produces the same set of graphs.

Proof: Consider any intermixed sequence of splits and merges
Let m(a,b,i) be the first merge. A split s(a,b,i)
must have been previously performed. Then deleting
s{a,b,i) and m(a,b,i) does not affect the set of
graphs produced, because all splits performed before
m(a,b,i) may still be performed. This gives an equiva-

. lent sequence with one less merge. The lemma follows

by induction.

Lemma 4: Let a,b,c,d be distinct vertices in a biconnected
multigraph G. Suppose f{a,b} and {c,d} are separation
pairs, and that some split s(a,b,i) of G puts ¢
into one split graph and d into the other. Thun every

split s(c,d,j) of G puts a into one split graph ard b

into the other,.

Proof: Suppose that corirary te the Jemma, some split s(c,d,3
with split graphs G1 acAd G, has both a and b in

the same split graph, say G There must exist a path

1
between ¢ and d in G2 whicl doecs not contain the
virtual edage (c¢,d,3). Tihis pain contains neither «

, nor b since both are in Gl' Thus there is a path in

G containing neither a mnor b, but ceonnecting ¢

and d. This is dimpossible since split s(a,b,i) puts
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¢ into one split graph and d into the other. Thus

the lemma must be true.

Lemma 5: Let a,b,c,d be distinct vertices in a biconnected
nultigraph G. Suppose "{a,b} and {c,d} are separation
pairs and that some split s(a,b,i) puts ¢ in one

split graph G1 and d in the other split graph G

2
Then either {a,c} 1is a separation pair in Gl’ or
- there are exactly two edges incident to a in Gl;

namely, (a,c) and the virtual edge (a,b,i).

Proof: As a consequence of Lemma 4, each path from a to
b in G containg either ¢ or d. Hence, each path
from a to b in G1 cither contains ¢ or is *he
virtual edge (a,b,i). (In particular, there is only
one edge between a and Db.) Suppose Gl contains a
vertex v # b,e with v adjacent to a. Since Gy

is biconnected there is a simple path from v to b

not containing a. Any such path must contain the vertex

¢ and hence {a,c} must bc a separation pair. If b

and ¢ are the only vertices adjacent a, then either

the edge (a,c) idis a multiplc edge in which case {a,c}

is a separation pcir, or therce are exactly two cdges

incident to a, aamely (a,c) and the virtual edge

(a,b,i).

Theorem 6: The triconnected componcents of = multigraph G

are unique.
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Prcof: Lemma 3 shows that given any sequence of spliﬁs and
merges there is an equivalent sequence consisting solely
of splits. which yield the same set of triconnected com-.
ponents. Thus we need -only show that any two sequences
of splits which yield sets of triconnected components,
vield the same set,

The proof is by induction on the number ot edées
in the multigraph 6. If G has fewer than four edges,
the theorem is certainly true. Assume the theorem is
true for graphs with less than k edges. Let G have
k edges. If G has no separation pairs, the theorem
is true for G. Thus suppose G has at least one separa-
tion pair.

lf the first split is the same for each sequence,
then the split graphs after the first split are the same
for each sequencec., Since each split graph has fewer
edges than the original graph, the thcecorem is truc on
the split graphs by the induction hypothesis. Thus the
theorem is truec for the entire graph.

Supposc tire first split in onc sequence is s(a.b,i),

giving split graphs G and G

| 9 and the first split

in the other scquence is s(c,d,j), giving split graphs
G

and G We perform a case analysis.

3 4°
Case 1: {a,b} = {c,d}. Since neither scquence contains a
merge the triconnected components resulting from the

first sequence must be the union of the triconnecieu com-

nponents of Gl and G2 and the triconnected components
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resulting from the second sequence must be the union

of the triconnected componenis of G3 and G4.
Suppose {a,b} is a separation pair in both G, and G,.
By the induction hypothesis we may split and merge Gl and

G2 in an arbitrary order to get thelr triconnected com-~

ponents. If we split G, first on {a,b}, we produce a

1
split component which contains a doublc edge (a,b). Split-~
ting again on {a,b} produces a triple bond (a,b). Similar-
ly, splitting G, twice on {a,b} produces a triple bond
(a,b). These bonds must be merged to give the triconnec-
ted ~omponents of G. Bu:t this is a contradiction, since
the original sequence of splits had no merge m(a,b,i).
Thus the set {a,b} cannot be a secparation pair for
both Gl and G,. Similarly {a,b} cannot be a secparation
pair for both G, and G&' Without loss of generality as-

3

sume {a,b} is not a separation pair for Gl or G3. Let Ei’

1 < i < 4, be the edge set of G- Therce exist disjoint
sets of edges Ei, Eé and E which are unions of the separ-

ation classes of C with respect to {a,b} such that

' 3
E, = E; U {(a,b,i)) E,= EB‘U EU {(a,b,i)}
) 1
B, = By U {(a,b,1)] B, =k, UEU {(a,b,0)]

By the induction hypothesis we may apply any sequence of

splits to G2 Bnd Ga to give their triconnected components,
1

Split G2 using a split s(a,b,k) putting E3 into one split

graph and L U {(a,b,i)} into the other. Split GA

AR L et s L e o
i! g T T N A
‘
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1
graph and E U {(a,b,3)} dinto the other. The two result-

using a split s(a,b,?) putting E into one split

ing sets of graphs are isomorphic and all components have
fewer than k edges. It then follows from the induction
hypothesis that in this case the triconnected components

are unique.

‘Case 2: '{a,b} # {c,d}. Without loss of generality assume

Gl contains ¢ and d or that neither G1 nor G

contains both ¢ and d. In the latter case assume

2

that ¢ 4is in Gl and that d 4is in G2. We considerx

each assumption separately.

a) Assume G1 contains c¢ and d. Without loss of

generality assume G3 contains a and b, since

if neither G3 nor C4 contains a and b, a,b,c
and d must all be distinct and Lemma 4 implies

that G, cannot contain both ¢ and d. Pair {c,d]}
must be a separation pair in Gl and {a,b} must be
a separation pair in G3. Apply split s(c,d,k) to
Gl and s(a,b,8) to .GB' The two resulting sets of
graphs are isomorphic and all components have fewer
than k edges. It then follows from the induction

hypothesis that in this case the triconnected compo-

nents arec unique.

b) Assume neither G1 nor 02 contains both ¢ and

d and that ¢ 1is in G1 and d is in G2. Clearly

.
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a,b,c and d must be distinct. Since the first

sequence does not contain a merge the triconnected

Q components of G must be the union of the tricon-
:, .

% nected components of G1 and GZ' Since G1 and
; G, each contain fewer than k edges we can obtain

their triconnected components by any sequence of

splits and merges. By Lemma 5 either (a,c) is a

so:sscens

separation pair of G1 or there are exactly two
edges incident at a, namely (a,c) and (a,b,i).
i\ A similar statement holds for the pair (b,c).
b Thus if Gl is not already a triangle with a vir-
. tual edge (a,b), a triangle can be obtained by

a splits with respect to (a,c) or (b,c¢) or both.
; Thus, G1 must have a triconnected component which

is a polygon containing the virtual edge (a,b).

L ety

S
TN

A simjlar argument implies that G2 also has a
X triconnected component which is a polygon containing
the virtual edge (a,b). This contradicts the claim

that the triconnected components of G are the

union of the triconnected components of G1 and G2,
~ since these polygons may be merged. We conclude that
this case cannot arise.

All cases are covered by the above arguments. Thus

by induction the theorem is true.

-3
=2
[

triconnected components of multigraph G = (V,E) are

unique. By Lemma 3, it is possible to construct the tricounnected

e e e e e 4 4
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components of a graph G wusing only split operations and no
merge operations. -Tutte [L1 ] has formulated a particular type
of split which is suitable for this purpose. Let {a,b} be a
separation palr of G, Let C be one separation class of a
biconnected multigraph G with respect to {a,b}, and let
C=E - C. Suppose |C] >2, |C] > 2, and either (V(C),C)

is biconnected or (V(C),C) is biconnected. Then we may apply

a Tutte split s(a,b,i) to G, producing split graphs

G, = (V(C), cU{(a,b,1)}), 6, = (v(c), cU{(a,b,i)}) . The

Tutte components of a biconnected multigraph G are the graphs

found by applying a Tutte split to G, applying Tutte splits
to the split graphs, and repeating the process until no Tutte
splits are possible. The Tutte components of an arbitrary
multigraph G are the Tutte components of the biconnccted

components of G.

Lemma 7: Let G be a biconnected multigraph and let o = (a,b)
be a fixed edge of G. Assume G1 contains the edge «a
and arises from G by a sequence of splits. If ¢ is
an articulation point of G1 minus the edge 0o, then

¢ 1is an articulation point of G minus the edge «.

Proof: The proof is by induction on the length of the scquence
of splits, Consider a sequence of length one. Let G
give rise to ¢' and 6" by the split s(d,e,i) and
let ¢ be an articulation point of ¢' minus the edge a.

There exist £ and g in ¢' such that every path from
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£ to gz in G‘, not coutaining ¢, contains the

vertex ¢. If a path from £ to g in € did not
contain ¢, the path must consist of three segments,
two in G and one a path from d to e in G".

The segment from d to e can be replaced by the
virtual edge (d,e,i) to give a path from f to g

in ¢ not containing c¢. This is a contradiction and
we conclude that ¢ d4is an axticulation point of G.

The induction step follows immediately by dividing each
sequence of length k dinto two sequences, one of length

one and the other of length k-1,

Lemma 8: The Tutte components of a multigraph G are iden-

tical to the triconnected components of G and are thus

unique,

Proof: By Tutte [ 11 ], a multigraph has no Tutte split if

and only if it is either a triconnected graph, a bond,
or a polygon. Thus the triconnected components of a
graph are the Tutic components, with possibly a few
merges carried out among bonds and among polygons.
Suppose a Tutte split s(a,b,i) produces split graphs
G, and G,. Without loss of generality we can .assume that
G, minus the virtual edge (a,b.i) is biconnected. Assune
G, glves risc to a polypon Pl containing the virtual edge
(a,b,1i). By Lemma 7 every articulation point of ?1 minus
the edge (a,b,i, is an articulation point of G, minus the

1

the edge (a,b,i). Since Pl minus the edge (a,b,i) is not

biconnecected, neither is G1 minus the edge (a,b,i). Simi-
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larly, if 62 also gives rise to a polygon containing

(a,b,1i) then G, minus (a,b,i) is noF biconnected. But
this is impossible by the definition of a Tutte split.
Thus no two polygons which are Tutte cemponents can
share a virtual edge.

Suppose a Tutte split s(a,b,i) produces split
graphs G1 and G2. By the definition of a Tutte split
one of Gl or GZ’ say Gl’ must correspond to & single
separation class with respect to {a,b} containing at
least two edges. Thus G1 cannot be a bond, nor can
{a,b} be a separation pair of Gy . TFrom this it fol-
lows that Gl cannot give rise to a bond containing
(a,b,i). Thus no two bonds which are Tutte components
are possible, and the Tutte components of a graph are
the same as the triconnected components of a graph.

Figure 1 illustrates a biconnected graph G with
several separation pairs., The triconnected components

of G are illustrated in Figure 2.

PN
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Depth-First Search . ?
Backtracking, or deptu-first search, is a technique which |

is extremely useful in detcrmining certain properties of

graphs. Suppose G 1s a multigraph which we wish to explore.

Initially all the vertices of G are unexplored. Start

from some vertex of & and choose an edge to follow. Tra-

versing the edge leads to a new vertex. Continue in this

way; at each step, select an unexpiored edge leading from <

vertex already reached and traverse this edge. The edge

leads to somc vertex, either new or already reached. When-

ever there are no edges leading from old vertices, choose

e s At

some unreached vertex., if any exists, and begin a new explora- i

tion from this vertex. Eventually all the edges of G will

be traversed. Such a process is valled a search of G.
There are many ways of exploring a graph, depending upon

the way in which edges to search are selected. Consider the

following choice rule: when selecting an edge to traverse,

always choose an edge emanating from the vertex most recently

reached which still has unexplored euges. A search which uses

this rule is called a depth-first search. The set of old ver-

tices with possibly unexplored edges may be stored on a stack.

Thus a depth-~first search is very easy tv program either itera-

[P,

tively or r=cursively, given a suitable computer representa-
tion of a graph,

For eact veetex v of G we may construct a list Av con~

R

taining all vewvtices u such that (v,u) is an edge of G, Such

a list is called an adjacency list for vertex v.
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A set A of such lists, one for each vertex in G, is

called an adjacency structure for G. If G is undirected,

each edge (v,u) 1is repvesented twice in an adjacency struc~-
ture; once for v and once for u, If G 1is directed, each
edge (v,u) is represented once: vertex u appears in the
adjacency list of vertex v. A single graph may have many
adjacency structures; in fact, each ordering of the edges at
the vertices of € gives a unique adjacency structure, and
each adlacency structurecorresponds to a unique ordering of
the edges at each vertex. If G 1is connected, each adjacency
structure and starting vertex for G determines a unique
depth-first search of G, given by using the following choice
rule in the search: 1if an edge in AV is to be explcred,

choose the first unexplored edge in A A simple recursive

v
procedure implementing this technique is presented in [ 10 ],
along with proofs of the properties of depth-first search.
Such a search requires O(|V]| + |E|) time, if the graph has
iVl vertices and |E| edges. Properties necessary to this
paper are described below.

Suppose G 1is a connected, undirected multigraph. A
search of G dimposes a direction on each edge of G given
by the direction in which the edge is traversed when the
search is performed. Thus G is converted into a directed

graph ¢'. If the search is depth-first, then ¢' has

special properties, given by the following lemma:

Lemma 9: Let P be the directed multigraph generated by a

depth~first search of a connected multigraph G. Then P

-
PR  —
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is a palm tree., That is, P contains two disjoint sets
of edges, one set denoted by -+ and the other set denoted

by. -+, such that the edges <+ determine ; ¢panning tree

of P and if v -+ u then u i v (u d4s an ancestor of

v in the spanning tree).

A proof of Lemma 9 appears in [ 3¢ 1. Since a pa%m tree
has no edges interconnecting the paths in its spanning tree,
dépth;first search is useful in solving connectivity perlems.
Figure 3 illustrates the .palm tree obtained by a depth-first
search of the graph G i1llustrated in Figure 1. Algorithms based
on depth-first search for determining the biconnected components
of an undirected graph and for determining the strongly connec-
ted components of a directeu graph are given in [10]. 1In the
next sections we extend the ideas in [ 10 ] to give an algorithm

for determining rhe triconuected components of an undirected

graph.
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Finding Separation Pairs

Let G = (V,E) be a biconnected mﬁltigruph with | V]
vertices and IEI edges. The main problem iwn &ividing G
into its triconnected components is firding its sepearation
pairs. This section gives a simple critericn, based upon
depth-first search, for identifying the separation'pai:s of
a multigraph. Two depth-first searches and some auxiliary
calculations must be carried out. These calcuiations form
the first part of the triconnected components algorithm and
are outlined below. The definitions for the quantities
LOWPTY, ND, etc., used in the outline will be given subse-

quently.

1. Perform a depth-first search on the multigraph G,
converting G into a palm tree P, Number the
vertices of G in the order they are reached during
the search. Calculate LOWPT1l(v), LOWPT2(v), and

ND(v) for each vertex v in P,

2. Construct an acceptable adjacency structure A for
P by ordering the edges in an adjacency structure

according to the LOWPT1 and LOWPT2 values.

3. Perform a depth-first scecarch of P wusing the adja-
cency structure A. Renumbrr the vertices of A

from v to 1 in the order they are last examined

during the search. Recalculate LOWPT1(v) and LOWPT2(v)

using the new vertex numbers. Calculate SON1(v),

DEGREE(v), and HIGHP®T(v) for each vertex v.

AT i bR W AR A




23

The details of these calculations appear below. lFrom
Steps 1, 2, and 3 we get enough information to rapidly
determine the separation pairs of G. Lemma 17 gives a
condition for this purpose.

Suppose G 1is explored in a depth-first manner, giving
a palm cree P. Let the vertices of P be numbered from 1
to |Vl so that v ¥w in P implies v < w, if we iden-
tify vertices by their number. For any vertex v in P,
let ND(v) be the number of proper descendants of v. Let
LOWPT1(v) = min ({v} U {w|v ¥ -+ w}). That is, LOWPT1(v)
is the lowest vertex reachable from v by traversing zero
or more tree arcs in P followed by at most one frond.

Let LOWPT2(v) = min{{v} U ({w|v ¥ -» w} - {LOWPTI(V)})].

That is, LOWPT2(v) dis the second lowest vertex reachable

from v by traversing zero or more tree arcs followed by ;
at most one frond of P, if such a vertex exists. Otherwise,

(i.e. if LOWPTL(v) = v), LOWPT2(v) = v also.
Lemma 10: LOWPT1(v) ¥ v and LOWPT2(v) ¥ v in P.

Proof: LOWPT1(v) < v by definition. If LOWPTL(v) = v the
result is immediate. If LOWPT1(v) < v there is a trond
u -+ LOWPTLl(v) such that v ¥ u. Since u =+ LOWPTL(v) '
is a frond, LOWPT1(v) % u. Since P is a tree, v ¥ u
and LOWPT1(v) ¥ u, either v 3 LOWPTL(v) or LOWPTL(v) ¥ v. |,
But LOWPT1(v) < v. Thus it must be the case that |

LOWPT1(v) ¥ v ¥ u, and the lemma holds for LOWPT1(v).

The proof is the same for LOWPT2(v).
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Lemma 11: Suppose LOWPT1(v) and LOWPT2(v) are defined

relative to some nuibering which satisfies v 3w in

P implies NUMBER(v) < NUMBER(w). Then LOWPT1(v) and

LOWPT2(v) identify unique vertices independent of the

numbering used.

Proof: LOWPT1(v) always identifies an ancestor of vertex

v. Furthermore LOWPT1l(v) is the lowest numbered auces-~
tor of v with a certain property relating to the palm
tree P. Since the order of the ancestors of v corres-
ponds to the order of their numbers, LOWPTl(v) identifies
a unique vertex independent of the numbering; namely, the
first ancestor of v along the path 1 ¥ v which has the

desired property. (Any satisfactory numbering assigns 1

to the root of P.) The proof is the same for LOWPT2(v).

Step 1 of the calculations may be carried out in 0(|V| + |E])
time using an adjacency str;cture for the depth-first search.
A program for this purpose appears below. Numbering the vertices
in the order they are reached during the search clearly guaran-

tees that v ¥ v implies v < w.

STEPL: begin
integexr 1i;
procedure SEARCH1 (v,u); comment vertex u is the
father of vertex v in the spanning tree

being constructed;
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A: LOWPT2(v) := NUMBER(v) := i:= i+l
for w in the adjacency list of v ég
begin
if w is not yet numbered then
begin

construct tree arc v * w in Pj

FATHER(w) := v3
B: SEARCHL (w,v);

ND(v) = ND(v) + ND(w);

C: if LOWPT1(w) < LOWPT1l(v) then
begin
D: LOWPT2(vV) := min (LOWPTL(v) ,LOWPT2(w));

LOWPT1(v) :=LOWPT1(w);
end

else if LOWPT1(w) = LOWPT1L(v) then

E: LOWPT2(v) := min(LOWPT2(v) ,LOWPT2(w))
F: else LOWPT2(v):= min(LOWPT2(v),LOWPT1l(w));
end
else if (NUMBER(w) < NUMBER(v)) and (w— =u)
or (FLAG(v)+FALSE)) then

egi

d

construct frond v -»w in P;
e: if NUMBER(w) < LOWPT1(v) then
begin

LOWPT2 (v) 1= IOWRTL %) :

LOWPT1(v) := NUMBER(w) ;

end
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else if NUMBER(w) > LOWPT1(v) then
H: LOWPT2(v):= min(LOWPT2(v), NUMBER(w));
end
else if (w=a)and (FLAG(v)=TRUE) then FLAG(y):=FALSE;
end;
end;.
I: 1i:=0;
for v:=1 until V do FLAG(v):=TRUE; comment FLAG(v) becomes
false when edge u*v is traversed backwards for the first time;
J: SEARCH1 (s,0); commentis is an arbitrary starting vertex;
end;
Intuitively, STEP1 works as follows: Initially variable
i 1s set equal to O(statement I). The depth-first search
begins at the root of the palm tree P to be constructed
(statement J). Each time a new vertex is reached, recursive

procedure SEARCH1 is called, to continue the search startin,

at the new vertex. A vertex is numbered the first time it

is reached (statement A). The value af LOWPT1l(v) is set to

NUMBER(v) the first time v i1s reached (statement A). If

.v 2> w, then on completion of the search of the subtree T

containing the descendants of w, LOWPT1(v) 1s set to ﬂOWPTl(w)

if LOWPT1(w) is less than the current value of LOWPTI1(v)

(statement C), If a frond v -+ w 1is encountered and

NUMBER(w) is less than the current value of LOWPT1(v), then
LOWPT1(v) is set to NUMBER(w) (statement G). Thus, after w :

is examined for the last time,
LOWPT1(v) = nin({{v} U {LOWPT1(w)|v-+w} U {w|v -+ w}) .

It is easy to show by induction on the order in which vertices
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are last examined that, for each v,
LOWPT1(v) = min{{v} U {w]v ¥ -+ w}) .

The computation of LOWPT2 is similar to that of LOWPT1.
The value of LOWPT2(v) is set to NUMBER(v) the first time v
is reached (statement A)., If v + w, then on completion of
the search of the subtree Tw containing the descendants of

w , LOWPT2(v) is modified as follows:

Sin;e Tw is completely explored, LOWPT1(w) and LOWPT2(w)

are completely calculated. We must update the value of
LOWPT2(v) knowing the current values of LOWPT1l(v) and LOWPT2(v).
If LOWPT 1(wX LOWPT1(v), then min(LOWPT2(w),LOWPT1l(v)) is

the value of LOWPT2(v) (statement D), 1f LOWPT1l(w) = LOWPT2(v),
then min(LOWPT2(w),LOWPT2(v)) is the new value of LOWPT2(v)
(statement E). If LOWPT1(w) > LOWPT2(v), then min(LOWPT1l(w),
LOWPT2(v)) 1is the new value of LOWPT2(v) (statement F). If

a frond v -+ w 1is encountered, we must update the value of
LOWPT2(v) similarly. If NUMBER(w) < LOWPT1(v), the current
value of LOWPT1(v) is the new value of LOWPT2(v) (statement G).
If NUMBER(w) = LOWPT1(v), LOWPT2(v) is unchanged. 1If
NUMBER(w) > LOWPT1l(v), min(NUMBER(w),LOWPT2(v)) is the new
value of LOWPT2(v) (statement H). We may show by induction
that LOWPT2 is calculated correctly.

Let ¢ be the mapping from the edges of P dinto

"{1,2,...,2|V|+1} defined by:

(i) If e=v -+ w, ¢(e) = 2w + 1.
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(i1) If e =v +w and LOWPT2(w) < v, ¢(e) = 2LOWPT1(w).

LG o)

T

(iii) If e = v >+ w and LOWPT2(w) > v, ¢(e) = 2LOWPT1(w)+1.

Let A be an adjacency structure for P. A is called

OE P T IIAR

acceptable if the edges e in each adjacency list of A

oot

4 are ordered according to increasing value of ¢(e).

Lemma 12: Let P be a palm tree of a biconnected graph G whose

St L NN AN

; vertices are numbered so that v ¥ w in P implies v < w,
£
Then the acceptable adjacency structures of P are inde-~

pendent of the exact numbering scheme.

Pitoof: If v *+ w in P, then by Lemma 10, LOWPT2(w) is an ances=-

; v ‘tor of w, By Lemma 11, LOWPT2(w) is a fixed vertex inde-
pendent of the numbering. Since the order of the ancestors
is independent of the numbering, the question as to whether
LOWPT2(w) is less than v is independent of the numbering.
Since G is biconnected if v + w in P, then LOWPTl(w) < v

1 by Lemma 5 of [10]. By Lemma 10, LOWPT1l(w) is an ancestor
of w, Since LOWPT1(w) < v, LOWPTl(w) must be an ancestor

7 of v, By Lemma 11, the vertex correspording to LOWPT1l(w)
is independent of the numbering scheme, Similarly if
.v=>*w, then by.Lemma'9 w is an ancestor of v. But the or-

der of the ancestors of v is identical to the order of

e LA

their numbers, and this order is independent of the num-

k:
"‘

4 bering. Thus the acceptable adjacency structures A for P

4
R

depend only on P and not on the exact numbering,

In general, a palm tree P has many acceptable adjacency

structures, Given a satisfactory numbering of the vertices
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of P, we may easily construct an acceptable adjacency struc-
ture A by using a radix sort with 2|V| + 1 buckets. The
following procedure gives the sorting algorithm, which is

Step 2 of the calculations. All vertices are identified by

~

number. It is obvious that the sorting procedure fequires

oC(jvl + [E]) time.

procedure SORT;

begin

or each arc (v,w) of P do

f v -+ w then place (v,w) in BUCKET(2xw+1)

else if LOWPT2(w) < v then place (v,w) in

BUCKET (2 *LOWPT1(w))

else place (v,w) in BUCKET(2#LOWPT1l(w)+1);

for i:= 1 until v do construct empty adjacency list
for vertex v

fzr i:= 1 until 2xv+1l do
for each arc (v,w) in BUCKET(i) do

place w at end of adjacency list of vertex v;

end;

In Step 3 of the calculations we perform a depth-first
search of P wusing the acceptable adjacency structure A
given by Step 2. During Step 3 we calculate certain values
necessary to determine the separation pairs of G. Let the

vertices of P be numbered so that v 3 w implies v < w.

max({v} U {w|v ¥ w -+ u}).

I1f u-=+ v in P, 1let HIGHPT(v)
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HIG&E&(Y) is the highest numbered vertex which is the tail
vof a frond;whose head is the father of v, 1if such a vertex
exists. (Otherwise HIGHPT(v) = v). SON1l(v) 1is the first
son of v reached during the search. DEGREE(v) is the
number of edges incident to vertex wv.

During Step 3 we number the vertices from v to 1 in
the order they are last examined during the search. It is
clgar that this numbering scheme juarantees that v Iw
implies v < w. We also calculate LOWPT1l(v), LOWPT2(v),
SON1(v), and HIGHPT(v) with respect to the new numbering
scheme, A program to implement Step 3 appears below. It is

easy to verify that the numbering and calculations are carried

out correctly,

STEP3: begin

integer i;
procedure SEARCH2(v);

begin
A: NUMBER(v) := i-ND(v);
LOWPT1(v) := LOWPT2(v) := HIGHPT(v):= NUMBER(vV);
for w in the adjacency list A, of v do

f w is not yet numbered then

begin
SEARCH2(w) ;

B: £4f SON1(v) = 0 then SON1l(v)l = NUMBER(w);:

i:= 4i-13
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if LOWPT1(w) < LOWPT1(v) then
LOWPT2(v) := min (LOWPT1(v), LOWPT2(w));
LOWPT1(v) := LOWPT1(w);
end
else if LOWPT1(w) = LOWPT1(v) then
LOWPT2(v) := min (LOWPT2(v), LOWPT2(w))
else LOWPT2(v):= min (LOWPT2(v), LOWPT1(w));
end
else
begin
HIGHPT (FATHER(w)) = max (HIGHPT(FATHER(w)),
NUMBER(V));
if NUMBER(w) < LOWPT1(v) then
begin
LOWPT2(v) := LOWPT1(v);
LOWPT1(v) := NUMBER(w) ;
end
else if NUMBER(w) > LOWPT1(v) then
LOWPT2(v) := min (LOWPT2(v), NUMBER(w));
end
end;

for i= 1 to (V) do SONl(v):= 0;
Lo o= Vo
SEARCH2(r); comment r is the root of P;

end
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Step 3 numbers the vertices from |V| ‘to 1l 1in the order
they are last reached during the search. However, each vertex
must actually be assigned a number the first time it is reached,
in order for the calculations of LOWPT1l, LOWPT2, and HIGHPT
to proceed correctly. In order to accomplish this, variable
1 4is set equal to |V| when the search begins (statement C).
The value of 1 1s decreased by one each time a new vertex
is discovered (statement B). Thus when a vertex v is first
re;ched, i 1s equal to the number we want to assign to v
minus the number of vertices to be examined before v 1is
examined for the last time. But the vertices to be reached
between the time v {8 first examined and the time v is
last examined are just the proper descendants of v. Thus if
we assign the number i- ND(v) to v when v 1is first
examined (statement A), the numbering will be correct. The
other calculations performed in Step 3 are straightforward.
Step 3 also requires 0(|V]| + |E]) 'time. The palm tree for
the graph G of Figure 1 is illustrated in Figure 4 along with
LOWPT1 and LOWPT2 values,

Let G be a biconnected multigraph on which Steps 1, 2,
and 3 have been performed, giving a palm tree P and the sets
of values defined above. Let A with adjacency lists Av
be the acceptable adjacency structure congtructed in Step 2,
Let the vertices of G be identified by the numbers assigned
in Step 3. We need one more definition., If u + v and v
is the first entry in A,, then v is called a first son
of A,. (For each vertex v, SON1(v), the first son of

v, is calculated in Step 3.) 1If Uy Uy R 2 u and u,
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is a first son of U1 for 1 <1 < n, then u, is

called a first descendant of Uy The lemmas below give

the properties we need to determine the separation pairs of

G.

Lemma 13: Let Au be the adjacency list of vertex u. Le;
u+v and u+w be tree arcs with v occurring before

v 1in Au‘ Then u < w < v.

Proof: Step 3 numbers the vertices from v to 1 in the
order they are last examined in the search, 1f u+ v is
explored before u + w, v will be .examined last hefore w
is examined last, and v will receive a higher number.
Clearly u will be last examined after both v and w are

last examined, so u receives the smallest number of the
three vertices.

Lemma 14: A is acceptable with respect to the numbering given

by Sfep 3.

Proof: The sort in Step 2 ‘creates an acceptable adjacency
structure for the original numbering. By Lemma 13,
u +> v implies u < v and hence by Lemma 12, A is

acceptable for the new numbering.

Lemma 15: If v 1s a vertex and D(v) is the set of descen-
dants of v, then D(v) = {x|]v < x < v+ ND(v)}. If w

is a first descendant of v, then D(v) - D(w) = {x|v < x < w},

Proof: Tonsider 'searching ‘P - 9in - -reverse of «the order used 4in

Step 3. Vertices will be examined for the first time in

ascending order from 1 to Ivl. Consequently descendants
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of v must be assigned conszcutive numbers from v
to v + ND(v). If w 1s a first descendant of v,
vertices in D(w) will be assigned numbers after all

vertices in D(v) - D(w). Thus D(v) - D(w) ~'{x|v < x < w}.

Lemma 16: Let {a,b} be a separation pair in G with a < b.

Then a £ b in the spanning tree T of P.

Proof: Since a < b, a cannot be a descendant of b. Suppose

in T. Then there are no edges connecting
that b is not a descendant of aAand b in P, Let

Ei’ 1 <1<k, be the separation classes with respect

to {a,b}. Let § =V - {vla % v} - {w|pb $w}. The
vertjces § define a gubtree in T, not containing a

or b, so E(S) must be contained in scme separation
class, say El' Let ¢ be any son of a. E(D(c)) must
be contained in some separation class, say E2. But since
G 1is biconnected, LOWPT1l(e) < a, by Lemma 5 of [ 39 1.
Thus some edge is incident both to a vertex in § and

to a vertex in D(c), and El = E2. A similar argum;nt
shows that edges incident to any descendant of b are in

E;. But this means that E, = E, and {a,b} cannot be

1

a separation pair.

Lemma 17: Suppose a < b, Then {a,b} 1s a separation pair

of G 4if and only if either (1), (2}, or (3) below holds.

(1) There are distinct vertices r # a,b and s # a,b
such that b + r, LOWPT1(r) = a, LOWPT2(r) > b,

and s 1s not a descendant of r. (Pair {a,b}
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is called a type 1 separation pair. The type 1 pairs H

for the graph in Figure 4 are (1,4),(1,5),(4,5) and (1,8).).

(2) There is a vertex r $ b such that a + r ¥ b;

b 1s a first descendant of r; a # 1; every frond

x =>y with r < x<b has a <y; and every frond
x ->y with a <y <b and b +w 3 x has

LOWPT1(w) > a. (Pair {a,b} is called a type 2

separation pair. The type 2 pairs for the graph in

. Figure 4 are (4,5) and (8,12)).
"(3) (a,b) 1is a multiple edge of G and G contains

at least four edges.

Proof: The converse part of the lemma is easiest to prove.

Suppose pair {fa,b} satisfies (1), (2), or (3). Let

Ei’ 1< { £ k, be the separation classes of G with
respect to {a,b}. Suppose {a,b} satisfies (1). Then
the edge (b,r) is contained in some separation class,
say El' Every tree arc with an endpoint in D(r) has

e other endpoint in D(r) U{a,b}. Also, since LOWPT1(r)= a
and LOWPT2(r) > b, every frond with an endpoint in D(r)
has the other endpoint in D(xr) U (a,b}. Thus E, consists

1
of all edges with an endpoint in Dr' No other edges are

in El and the edges incident to vertex & wust be in

) some other class, say Ez. Since El and E2 each con-

tain two or more edges, f{a,b} is a separation pair.
Sfuppose {a,b} satisfies (2). Let § = D(r) - D(b).

All edges incident to a vertex in S are in the same

gseparativn class, say El. Since b 1s a first descendaar

KSR VLR e L T ) R o e e o
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of r, § = {x|r < x < b}, by Lemma 15. Let b ,b,,...,b

be the sons of b in the order they occur in A Let 1 =

b* 0
min {1|LOWPTl(bi) > al. Since A is acceptable, i < io im-
plies LOWPTl(bi) < a, and 1 > io implies LOWPTl(bi) 2 a.

By (2), every frond with tail in S has its head in S U {a}.
Also by (2), every frond with head in S has its tail in

s U {p} U (? D(bi))' Every edge with an endpoint in D(bi)’
1244, hzg‘gts other endpoint in S U {a,b} U D(by). Thus

the class E1 contains at least all edges with an endpoint

in S, and at _most al? edges with ar endpoint in S U U D(bi)'
) i>i
==0

Since a # 1, the edges incident to the root of 'P cannot be in

E,, and therefore {a,b} 1s a separation pair.
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Suppose {a,b} satisfies (3). Then it is clear that
{a,b} is a separation pair.

We now must prove the direct part of the lemma. Thus
suppose that {a,b} is a separation pair with a < b, 1If
(a,b) 1is a multiple edge of G then it is clear that {a,b}
satisfies (3). Thus suppose that (a,b) is not a multiple
edge of G. By Lemma 16, a i b. Let Ei’ 1 <1ic<k, be
the sepafation classes-of G~ with respéct to {a,b}. Let
a+v3ib. Let S :D(v) - D(b). Let X =V - D(a). (Either
S or X or both may be empty.) E{(S) and E(X) are each

contained in a separation class, say E(S) € E and E(X) € E

1

Let ay # v be a son of a. If a has such a son,

2.

LOWPTl(ai) < a. This means that E(D(ai)) CE Let

2.

Y = leyn(ai). Let b.,b bn be the sons of b in the

12Pgseces
order they occur on the adjacency list of b, Let E(D(b,))

be the set of edges with an endpoint in D(bi)" The
separatior classes must be unions of the sets E(S), E(Y),
{(a,b)}, E(D(b,)), E(D(b,)), ..., E(D(b D),

If E(D(bi)) = Ej for some i and j, then LOWPTl(bi)= a,
since- G 1is biconnected and this means LOWPTl(bi) <b by
Lemna 5 of [ 10 1. Also, LOWPT2(b,) > b. Since {a,b} is
a separalidon pair, there must be @ separetion cless other then
Ej and {(a,b)}. Thus there is a vertex s such that s # a,
s #b, and s § D(bi)' This means that {a,b} satisfies (1)

where 1T 1is bi'

e s A meacw wm
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Suppose now that no E(D(bi)) is by itself a

separation class. Let io = min'{iILOWPTl(bi) > a}l.

If 1> i, then since G is biconnected it must be.the

, case -that LOWPTZ(bi) < b, and the separation classes are

E, = E(S)y U E(D(b,)), E, = E(Yw U E(D(B,)),

1 121 1<1

E, = {(a,b)}. (E; may be empty.) We have v # b since
"{a,b} is not a type 1 pair and a # 1 since E 5 is

non-empty. If x -+ y 1is a frond with v < x < b, then
x€S, ‘(x,y)eEl, and a i y. If ¥-+y is a frond with

a <y <b and b+bi
which means that LOWPTl(bi) > a. We must verify one more

3 x, then¥Ye$§ (x,y)eE;, and 1 > i,,
y 1 = -a

condition to show that (2) holds; namely, that b is a

> first descendant of v. Since G is biconnected, LOWPT1(v)
< a., Thus some frond with tail in D(v) has head less than
a. By the construction of A and the definition of a first
descendant, there exists some frond x-+y with xeD(v) and
y < a such that x is a first descendant of v. If b were
not 2 first descendant of v then x would be in S, and E1
and EZ could not be distinct separation classes, Thus b is
a first descendant of v, and (2) holds.with r = v. This

completes the proof of the direct part of the lemma.

Lemma 17 and its proof are worth pondering carefully.
The lemma gives three easy-to-apply conditions for separation
pairs. Conditions (1) and (2) identify the non-trivial separa-
tion pairs of the multigraph. Condition (3) handles multiple

edges. Condition (1) requires that a simple test be performed

et w2 ern Yot B =
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on each tree arc of P. ‘Thus testing for Eype 1 pairs
requires- 0(}v')time. Testing for type (2) pairs is some-
what harder but may be done in(|v|+|E|) time using another
depth-first search. If {a .} 1is a type 2 pair, a =+ v ¥ p,
and i, = min'{ilLOWPTl(bi) > a}, where bl’bZ""’bn are
the sons of b in the order they occur on the adjicenéy list
of b, then one separation class with respect to {a,b} 1is

E({xlv <x<b + ND(bi Y} - {b}). This follows from Lemma
0

i
0
15 and the proof of Lemma 17. The numbering given by Step 3
thus makes it easy to determine the separation classes and to

divide the graph once a separation pair is found. The complete

triconnectivity algorithm is given in the next section.

Py
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A friconnectivity Algorithm ‘

By using the simple criterion for separation pairs given
in the last section, we may divide a graph into its tricomnnected
components in O0(|Vv| + [E|) time. This is accomplished by
carrying out another depth-first search of G, again using
the acceptable adjacency structure A constructed for G.

We use Lemma 17 to find separation pairs. Each time an edge
is backed over during the search it is added to a stack of
edges. Each time a separation pailr is found a set of edges
correspoﬁding to a split component 1s removed from the stack.
A virtual edge is added to the component and a corresponding
virtual edge is added to the stack. The complete search gives
a set of split components for G. Assembling the split com-
ponents to give the triconnected components of G 1is then

a simple matter.

Suppose {a,b} 1s a separation pair with a % b. 1If

"{a,b} 1is a pair of type 1, Lemma 17 enables us to detect this

fact when vertex b 1s examined during the search. The cor-
responding split component may be deleted and replaced with a
virtual edge (a,b,i). If {&,b} is a multiple edge, this
fact is easy to detect and calculation of the corresponding
split component is easy. Similarly, 1f. a + v =+ b and v

is a vertex of degree 2, detection of this fact is easy.
Finding separation points of type 2 is a little more difficult
than the other cases, however. The procedure for finding type

2 pairs will be outlined; then the entire algorithm will be
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presented, follcwed by a proof of its corfectness and time
bound.

We keep a stack which contains triples of vertices.

If (h,a,b) 41is a triple on the stack, f{a,b} 1is a possible
type 2 separation pair and h 1is the highest numbered vertex
in the corresponding split component., The stack containing
these triples is updated in the following manner during the
depth-first search. Initially the stack is empty. The stack
is modified whenever we back over an edge.

Whenever we back over a frond v ~* w, we delete all
triples (h,a,b) on top of the stack with' ' w < a. 1If
(hl’a’bl) is the last triple deleted, we add a new triple
(hl,w,bl) to the stack. If no triples are deleted we add
(v,w,v) to the stack.

Whenever we return to a vertex v # 1 along a tree are
v+ w, we test the top tripie (h,a,b) on the stack to see
if v = a. If so, {a,b} dis a type 2 pair. We delete all
triples (h,a,b) on top of the stack with HIGHPT(w) > h,

If w is not the first son of v, we carry out the fol-
lowing steps. Let w + ND(w) be the highest descendant of
w. Delete all triples (h,a,b) on top of the stack with w

+ ND(w) > b. Then we delete all triples with LOWPT1l(w) < a.

If no triples are deleted during the latter step and~(LOWPT1(w)

+ v), then we add the triple (w + ND(w), LOWPT1l(w),v) to the
stack. Otherwise, if (h,a,b) was the last triple deleted such
that LOWPT1(w) < a, we add (max{w + ND(w), h}, LOWPT1l(w),b) to

the stack.

3
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The reason for constructing th. acceptable adjacency
structure A using LOWPT2 as well as LOWPT1 1is to make
sure that fronds are handled correctly. Suppose v is a

vertex in G, v -+ LA for 1 <41 <k, with LOWPT1(i) = u,

and v -+ u. Further suppose that the w; are ordered as
they appear in Av’ the adjacency 1list of v. Then there is

some 1 such that {1 < i, => LOWPT2(i) < v and {1 > {1, =

0 0
u will appear after all the W

0
- LOWPT2(i) > v. In A

v'?
1 <1< io. Each vertex Vi i> 10’ is part of a split
component for the separation pair {a,b}. When such a com-
ponent is deleted from G, it will be replaced by a virtual
edge (a,b,i) which is a frond. It is important that all
the Wy i> io, appear together in Av’ so that these
virtual fronds may be located and combined to give split
components which are bonds.

An Algol-like procedure to find the split components of
a biconnected multigraph apbears below. Steps 1, 2, and 3

described in the previovs section must be carried out before

the triconnectivity algorithm is applied.

begin
integer j;
procedure TRICON(v);

for w in the adjacency list of v do
if v » w then

begin
TRICON(w) ;
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Comment program has just returned along
tree arc v * w;

add v - w to EDGESTACK;

Comment test for type 1 component;
if ((LOWPT2(w) > v) & ((LOWPT1(w) # 1)

(DEGREE(v) > 2)|(FATHER(v) # LOWPT1(v)))

then !

begin
ji= j+1
while (x,y) on top of EDGESTACK
has x > w do
. begin
delete (x,y) from EDGESTACK;
add (x,y) to new component;
decrement DEGREE(x),DEGREE(y);
end; '
add(v,LOWFT1(w) ,3j) to new component;
_output new component;
comment test for multiple edge;
if (x,y) on top of EDGESTACK satisfies
(x,y) = (v,LOWPT1(w)) then
begin
Jae= §+13
add (x,y),(v,LOWPT1(w),j-1),
{¢,LOWPT1(w,,j) to new

component;
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; output new component;

f decrement DEGREE(v),

3 ' DEGREE(LOWPT1(v));

? end;

add(v,LOWPT1(w),j) to EDGESTACK;

§ increment DEGREE(v) ,DEGREE(LOWPT1(w));
: end;

3 1 :
3 conment test for degree 2 vertex (component é
g will be of type 2);

f " if (DEGREE(w) = 2) & ((v # 1)|(second edge

. (w,x) on EDGESTACK has DEGREE(x) > 2)) the:
4 Ji= 3+

g' add top two edges (v,w) and (w,x) on

f EDGESTACK to new component;

3 if (y,z) on top of EDGESTACK has

(y,2) = (x,v) then

,-‘* begin

: Jei= 41

) add(y,z),(x,v,j=-1),(x,v,j) to

3

%; new component;

g output new component;

; decrement‘9EGREE(v);®EGREE(x§Q
end; |

4 add (x,v,3j) to EDGESTACK;

FATHER(X) := v;

if sonl(v) = w then sonl(v):= x;




45

comment test for type é pair;

while (h,a,b) on top of TRIPLESTACK has
a = FATHER(b) do delete (h,a,b) from
TRIPLESTACK; ~

while (h,a,b) on top of TRIPLESTACK has

(v-= a) & (a # 1) do

begin
ji= 3413

delete (h,a,b) from TRIPLESTACK;
while (x,y) on top of EDGESTACK has
(a <x<h)'& (a<y<h) do
if (x,y) = (a,b) then
begin
FLAG:= true;
save edge (x,y);
end
else

begin

delete (x,y) from EDGESTACK

and add to new component;

decrement DEGREE(x) ,DEGREE(y)

end;
add (a,b,j) to new component;

if FLAG = true then

——

begin

FLAG:= false;
Ji= 41
add (x,y),(a,b,j—l) ’(a’b:j)

to new component;

|3 IETPWOTOIVOR VAP
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-~

output new component;

end;

add (a,b,j) to EDGESTACK;
increment DEGREE(a) ,DEGREE(Db);
comment fix up TRIPLESTACK;
while (h,a,b) on TRIPLESTACK has
HIGHPT(w) > h do !
delete (h,a,b) from TRIPLESTACK;
if w # SON1(v) then
begin
while (h,a,b) on TRIPLESTACK has
w + ND(w)2 b do
delete (h,a,b) from TRIPLESTACK
while (h,a,b) on TRIPLESTACK has
, LOWPT1(w) < a do
begin
FLAG:= true;
delete (h,a,b) from
TRIPLESTACK;

end;

if -FLAG & —(LOWPT1(w) = FATHER(v)) then °

add (w -+ ND(w),LOWPT1l(w),v) to
TRIPLESTACK

else if FLAG then

begin
FLAG:= false;
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if (h,a,b) last triple deleted
from TRIPLESTACK and
FATHER(b) # LOWPT1(w)
then add (max{w+ND(w),h},
LOWFT1(w),b) to
TRIPLESTACK;

end;

end;

else
begin
comment v -2 w3
comment test for multiple edge;
if w = FATHER(v) then

begin
Ji= 3413
~.
add v > w, v -*> w, (v,w,j) to
new component;
mark tree arc v * w as virtual edge 3;
decrement DEGREE(v) ,DEGREE(w);

end

else if (x,y) on EDGESTACK has (x,y) = (v,w)

= 3415
add (x,y).(V..W),(v,w,j) to new

component;

M|
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PR

2dd (v,v,j) to EDGESTACK;

decrement LEGREE(v) ,DEGREE(w);

end
else add (v,w) to EDGESTACK;
comment fix wp TRIPLESTACK;
while (h,2,b) on TRIPLESTACK has

begin
FLAG:= true

delete (h;a,b) from TRIPLESTACK;

f FLAG = true then

begin
FLAG:= false
if (h,a2,b) is last triple deleted
from TRIPLESTACK then add
(h,w,b) to triplestack;
end

else add (v,y,v) to TRIPLESTACK;

end;

TRICON(1l); comment vertex 1 is starting vertex for search;

end;

Theorem 18:

The algorithm above correctly divides a biconnected

multigraph into split components.

-r_o o
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Proof: Unfortunately, the algorithm looks much more complicated

than it is. The ideas in it are &« direct application of
Lemma 17. We must prove two . things: (1) 1if the graph is
triconnected, the algorithm will not split 1it; (2) 1f the
grapbh is not triconnected, the algorithm will split it.

Once we have these two facts, we may prove the Theorem by
induction on the number of edges in the é;aph.

The tests for multiple edges, for typ; 1 separation
pairs, and for degree 2 vertices are straightforward. These
tests will discover a separation pair of the correct type
1f one exists, and they will not report a separation pair
if one does not exist. Thus we must only show that the
type 2 test works correctly on multigraphs with no degree
2 vertices, and we will have verified (1) and (2).

Suppose G 1is a multigraph with no degree 2 vertices,
no multiple edges, and no type 1 pairs. Consider the
type 2 test and the changing contents of TRIPLESTACK as
the search of G progresses.

If (h bl) occurs above (hz,az,bz) on the stack,

1’81’
32 < a; and if a, 1 then b2 <b

(h,a,b) 1s deleted from the stack because a frond v -+ w

= a Further, 1if

is found with w < a, then v < b. These facts may be
nroved by induction on the search step using the ordering
givea by .the 2djecency .stxaucture A. The crucial fect

to notice is that if (h,a,b) 1is deleted from the stack
because frond v -+ y with w < a is found, then v > b

implies b ¥ v by the numbering scheme. The triple (h,a,b)

1° .

PV v 7%,



50

corresponds to some frond x -+ y with a < x <b
and a £y <b. But if b 3v and w< a, the frond
v -+ w should have been traversed before the frond
X -+ y, because of the ordering in A. This contra-
diction establishes that v < b. The first statement
above follows by examining each step during which the
algorithm adds or deletes a triple from the stack.

Every triple (h,a,b) on the stack also satiafies
a i b and a ¥vs: v # a, where v 1is the vertex cur=-
rently being examined during the search. This follows
again by examination of the steps which add and delete
triples.

If triple (h,a,b) on the stack is tested and it is
Zound that v = a ¥ 1 when returning along a tree arc
v *w, it is straightforward to prove by induction on
the search step that {a,b} 1is a type 2 separation pair.
We merely verify that if'any of the conditions in Lemma 17
are false, (h,a,b) must previously have been deleted
from the stack. Conversely, suppose G has a type 2
pair (a,b). Let bl""’bn be the sons of b in
Let 1

the order they occur in A = min {iILOWPTl(bi)ELaL

b* 0
Let 'h = bio + ND(bio)° Finally, suppose a + v ¥ b and
that i -+ § 18 the first frond traversed during the search
with v <1 < h. Then we may prove by induction on the
search step that (1,j,i) 4is placed on the stack, pos-

sibly medified, and eventually is gelected as a type 2

pair. Thus the type 2 test works . correctly, and the

VU

At st s s i
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elgorithm splits a multigraph if and Jnly if a separa-
tion pair exists.

The theorem follows by Induction on the number of
edges in G. Suppose the theorem is true for graphs
with fewer than k edges. Let G have k edges.

If G cannot be split, the algorithm works correctly

on G uwy the discussion above. If G égn be split,

it vill be split. Consider the first split performed

by the algorithm, producing split graphs C1 and GZ'
ue behavior of the algorithm on G 1is a composite

of its behavior on G1 and GZ' Since the algorithm
splits Gl and G2 correctly by the induction hypo-

thesis, it must split G correctly. The Theorem

follows by induction.
Figure 5 gives the contents of EDGESTACK and TRIPLESTACK

I’L‘}a‘e“ & 9 9f ir $I'th rgtoir ]h dti rP 2 iar s(e&'t’ lo sipsl idte tceo%ntpeod
nents for a biconnected multigraph G with lVI vertices
and |E| edges requires 0(|V|] + |E|) time and space.
The space required by the algorithm is obviously O(IV[+|E|).
The preliminary calculations requ.re O(|V|+|E|) time

as discussed in the previous section.

Proof: The number of edges in a set of split components of
G 1is bounded by 3!E| - 6 by Lemma 1. Each such edge
is placed on the edge stack once and deleted once during
the sear¢h. The search itself requires O(]V]|+lE|) time,
;ncluding the various tests. [Ihe number of triples added

te TRIPLESTACK is bounded by |V(+|E|. Each triple may
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only be modified if it is on top of the s%tack. Thus
the time for maintaining the stack of triples is also
o(|v] + |E|]), and the entire algorithm requires

o(|v] + |E]) time.

Thus we have an O0(|V] + |E|) algorithm for determining
the split components of a biconnected multigraph. Use of an
o(]v] + |E|) alzorithm for finding the viconnected components
of &2 multigraph [ 7,1¢ ] enables us to extend the algorithm
abecve to arbitrary multigraphs. It is easy to devise an
o(Jv] + |E]) algorithm to merge the triangles and bonds.
1f ’ﬁl is the set of triangles and ﬁ% is the set of bonds

among the split components, we merely construct the auxillary

graphs Scﬁl) and sgﬁz) and look at their connected components.

Thus we have an 0(|V| + |E|) algorithu ror determining the
triconnected components of an arbitrary multigraph. Such an
algorithm may be used in the conscruction of an 0(|V|1log|V]}
algorithm for determining isomorphism of planar graphs [8]. The
algorithm described here is not only theoretically optimal

(to within a constant factor), but is practically useful. The
algorithm has been implemented in Algol W and run on an IBM 360
model 65 computer. Experiments show that the algorithm can

handle graphs with around 1000 edges in less than 10 seconds.

oY




Fig 1:

A biconnected graph G with separation pairs
(1,4),(1,5),(4,5),(1,8),(4,8),(8,12),
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Fig. 2: The triconnected components of the graph G illustrated
in Figure 1.




Fig, 3: Palm tree produced by a depth-first search of graph G
illustrated in Figure 1.
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1 (1 8) " (8, 7)

10(1,8)

s
9 (e 7¢4,5)

'(_!,3)

(%)

»

‘ e (',)3>

Ordered palm tree of graph G after second search with

Fig 4:
LOWPTY and LOWPT2 values in parenthesis,

Type 1 pa%rs: (1,4),(1,5),(4,5),(3,8)
Type 2 pairs: (4,8),(8,12).




Fig 5:

57

8, 9
9,10
10,11 First component.
9,11 Algorithm adds
8,11 virtual edge (8,12).
10,12
9,12
8,12
(12,8,12) 1,12
(12,1,12) 3,13
(13,1, 3) 2,13
(13,1,13) 1,13
TRIPLESTACK EDGESTACK

Contents of EDGESTACK and TRIPLESTACK when first
biarticulation point pair (8,12) is detected.

ama g pvers Dy,
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