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1. Introduction

The last decade has witnessed a great surge of academic interest

in the dynamic behavior and stability of mechanical systems with fol-

lower (circulatory) forces, i.e. forces which are not derivable from a

potential, as evidenced by references [1] to [4]. It is a peculiar

common feature of much published analytical work on this subject that

the possible physical origin of such forces is not mentioned. The

follower forces are introduced into the analysis either through a

sketch, with forces being merely indicated by arrows, or through a

specified functional dependence of the forces on generalized coordi-

nates. Thus the purportedly physical problem is reduced immediately

to mathematical analysis and the relationship to mechanics becomes

most tenuous. The motivation for much of this type of work appears

to have been sheer curiosity in determining the sometimes unexpected

behavior of an imagined system, rather than a modeling and an explana-

tion of observed phenomena.

One of the possible ways to realize follower forces is by convey-

ing fluid through articulated or continuously flexible pipes. The

pioneering work in this class of mechanical systems with follower

forces was carried out by Benjamin [5]. He examined analytically and

experimentally a system with two degrees of freedom consisting of two

articulated pipe segments, constrained to motion in a plane like a

double pendulum, and conveying fluid. It was found that, depending

upon the values of relevant parameters, the system could lose stability

by static b..ckling (passage to an adjacent equilibrium position,
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divergence) or by dynamic ins-ability (oscillations with increafing

amplitude, flutter). Several other workers considered ve~rious aspects

of the dynamic behavior of continuous pipes conveying fluid, as men-

tioned in [4]. However, the transition fron one type of loss of stabil-

ity to another was not investigated systematically and quantitatively.

The purpose of the present investigation is to study the various

modes of instability of a mechanical system whose non-ýcunservatLve

character arises in a completely natural manner, and to verify that

the transitions between the instability modes (as predicted by the

linearized dynamic equations of motion) are indeed experimentally ob-

tainable. To this end, a spatial system of articulated pipes is con-

sidered. This system is a generalization of the plane one discussed

by Benjamin. Instability either by divergence or by flutter is pos-

siblebut due to the presence of an additional parameter which measures

the "out-of-planeness" of the system, a wider variety of types of be-

havior is possible.

The Ceature of the spatial system chosen is that one can experi-

mentally observe the various modes of instability by simply varying

the "out-of-planeness" of the system. By contrast, in Benjamin's work,

it was necessary to use sets of pipes of different mass densities to

observe different types of instability.

2. Th Sst--,

We consider here a generalization of Benjamin's system, allowing

the pipe segments to oscillate in two ditferent planes. The system

consists of two satraight pipe segments, with tho, upper segment pinned
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at its upper end 0 in such a manner that it is constrained to move in

a single vertical plane, the x-y plane as shown in Fig. 1. The lower

segment is pinned to the upper one at P such that an angle $ is

formed between the z-axis and the normal to the plane of motion of the

lower segment (i.e. the pin axis e2 ). Thus for B = 0 the motion of

the two segments occurs in the same plane, while for 9 = 90° the planes

of motion are normal to one another.

An incompressible fluid enters the upper segment at 0 and is dis-

charged at the free end of the lower s•.gment. It will be assumed that

the rate of discharge of the fluid is constant. i.e. that the fluid

veloc:•ty is constant. At the joints, linear restoring springs and lin-

ear viscous damping are introduced.

3. The Equations of Motion

Following Benjamin [5], the equations of motion of the system with

two degrees of freedom under consideration may be derived from the La-

grangian form

d /Z L BL + D ý--Td _i) ""-iL + .- - -P•D V A (V pt + R) " "-- ;•Rq 1=1,2

where qi are the angles shown in Fig. I and are the correspond-

ing angular velocities and

R = Position vector of free end (see Fig. 1)

= Unit vector tangent to the free end

V = Fluid flowrate relative to the pipes

L = T1 + T2 - VI - V2
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TI = Kinetic energy of the pipes alone

T2 = Kinetic energy of the fluid instantaneously within the pipes

V1 = Potential energy of the pipes alone

V2 = Potential energy of the fluid instantaneously within the pipes

A = Inside cross-sectional area of the pipes, assumed the same

for both segments

P = Mass density of the fluid

D = Rayleigh's Dissipation function.

In the following, the segments are assumed to be axisymmetric about the

center line of the flow channel. The derivation of the equations and

their linearization about the position of equilibrium ql = q2 = 0

is straightforward. The potential and kinetic energies are given by

V 1 = - MA g a cos ql - 0.5(KI q,2 + K2 q2 2)

- MB g[(LA + b cos q2 ) cos q" b CO sin ql sin q2]

V2 = - P A LA g(O.5 LA cos ql)

- p A LB g[(LA + 0.5 LB cos q2) cos ql - 0. 5 LB CO sia q, sin q2 ]

2T zz q12 + MB([So 41(LA + b cos q2 )]2

+ [b 42 + CO q1(b + LA cos q2 )]2 + [LA 41 CO sin q212}

-B, 2 2B--B

+ I1B(1 q So cos q2 ) + (q 2 + ci q1 )12B + (Cil SO sin q2) 133112 +(2+C 1) 22 q2 33
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2 3 22

2T2  pAjV LA + LA3 ql2/3 + (42 + Co 41)2 LB/3

+ L 2 ( 12 +C8 i (C$ LA l cos q2)

2 2
+ LB(41 LA CO Cos q2) + LB(LA q, SO)

+ fA LB2 cos q2(01 SO)
2 + LB3(41 So cos q2)2/3

+ LB V2 + 2V LA LB 4 l Co sin q2 + LB(LA 41 C8 sin q2 )2

where

zz = Moment of inertia of upper segment with respect to z axis

through point 0 (see Fig. 1)
-B -B -
i 122 , 33 Principal moments of inertia for the mass center

of the lower segment with respect to e1 ,e 2  and e axes

MA , MB Masses of upper and lower segments

LA, B = Lengths of upper and lower segments

a = Distance from mass center of upper segment to point 0

b = Distance from mass center of lower segment to point P

g = Acceleration of gravity

CO = cos($)

SO = sin(ý3

K. ,K 2 = Linear spring constants at upper and lower joints,

respectively

RI , R2 = Linear viscous damping constants at upper &nd lower

joints ,respectively

T•he equations of motion are then obtained as
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A4-B2 2L11 + MB LA + 2 b LA

+ p A(LA )/3LB3 + p A LA LB(LA + 1B)]

+ 42[CO(IIB + MB b2 + 1' LA b + p AL L 2B/2)1
2 11 BA AB 1 3 P AB

2 2
+ 41 (p A V(LA + LB) + R1 ] + q2 [CO p A V( 2 LA LB + LB2>1

2
+ qI[M A g a + MB g(LA + b) + 0.5 p A g(LA + L B) + KI]

2 2K

+ q2 [C(0.5 p A g 2  B g b + AV2 L)]=0 ()

and

COC•IB ++ MB MB b LA + p A L 3/3 + P A LA LB2 /2)]-B bB

MB b + p A LR3/ 3 ]

2 2
+ i[C P A V LB2] + 4 2 [p A V LB + R21

+ qI(CO(0.5 p A g LB2 + MB g b)]

+ q 2 [0.5 P A g L B 2 + gb+K 2] = C (2)

In the first part of the paper attention is restricted to the

idealized case in which the upper and lower segments are straight pipes

of uniform cross-&ection and no spring or damping forces act at the

joints. For this case:

K1  = 2 0

R= 1 R2 =0
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2
i =MA L / 3

zz

n MB LB 2/12

a = LA/ 2

b -L /2
B

Following Benjamin [rl,we assume the pipes to have the same mass density

per unit length, r, Then,introducing the following non-dimensional

parameters

= LA/L

Y 3 p A/!(? + pA)
(3)

U Y V/ /1.5 g LB9 jB
t = -1.5 i/B t

the equations of motion are transformed to the non-dimensional form

[ (er + 1) 3 0.5 Cd(2 + 3d .

0.5 CO(2 + .3) 1 L

+ (I + 1) 2U CO(l +2a _Il

co U U L

(a + 1) 2 CO(l +a U ~ (4)) q

where ( ' denotes d/dt
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4. Stability Analysis

We shall examine the nature of the solutions of the form

Q Xt i=1,2 (5)

which, upon substitution into the equations of motion, leads to the

characteris tic equation

A4 X4 + A3 XI + A2 X2 + A 1 X + A0 = 0 (6)

where

A4 = a 3 + (3- 2.25C2) + (1 + 3o) S2

A. =U[3 +C2(4- 3C2 )5a So + 2SO 2

A2 = (a + 1)3 + (c + 1)2 (1 + U2 )

- C 2$ ( + 1.5 ) (2 + U2 /y) + (1 + 2 i)U2 ]

A1 = 2(CI + 1)2 U - CO2 [2 ( + 1) U + cU 3/Y]

A0 = (a + 1)2 _ C02[j + a?2/Y]

The position of equilibrium ql = q2 = 0 is said to be stable provided

all the characteristic exponents have negative real parts. The well-

known Routh-Hurwitz [3] criterion, applied to the fourth order poly-

nomial at hand, assures stability if

A Ai > 0 i=0,1,...,4

S(8)

X a A1 A2 A3 - A0 A32 1 Al24> ) 0
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If any of the above conditions are violated, the system will be un-

stable.

A simplification is possible since both A and A are always
43

positive. For small U , all A1  are positive. Suppose as U in-

creases A vanishes, while the remaining A are positive. Then

X must be negative, and hence X vanishes before A The same

applies to A Thus the six requirements for stability (8) may be

replaced by just two conditions

Ao > 0 
(9)

X > 0

Loss of stability can thus occur in two different ways. If A0 = 0

there will be a root X = 0 which corresponds to an adjacent equilibrium

position, i.e. to static Euler buckling (divergence). By contrast when

X < 0 , the characteristic exponents X will be complex with positive

real parts, and stability will be lost by oscillations with increasing

amplitude (flutter). Written out we have

X U6[-(a'ly)(cY + 1) 2(3 + @2 + 5u + 2)] C02

+ CO(I y)(0 + 1)2 (5a2 + IOu + 4)

+ (0/y)2 ( + 1)2(_ \ 2 , +1)]

+ 0O6F-(q/Y)(63 + 'c 9u + 2)

-(01/y) 
2 (1 (18a 3 + Ma 2 + 2r\-' + 4)}(1+ { +) +

+ U 4f2[((y + 1)7 + (a + 1)6]
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+ CO (a + 1) -2(6C2 + l3• + 6)- (a/Y)(3c2 + 4a)1

4 2 3 2 3 2
+ CO (a + l) [22a + 56 + +2 46a+1+ (afy)(9a + 1a + 4a)]

+ CO6 ( + 1) 2 [- 2 ( 2a + 1)(2 + 301

"+ U2{[c2(@ + 1)6] + Cp2[(( + 1)4(2a2 . 2Y3)j

CO4[- (0 + 1)3(,, 2 + 3I3 (10)

If the flowrate U is very small, the position of equilibrium qz =

q2 = 0 is clearly stable. As the flowrate is slowly increased, Benja-

min [5] has shown that in his plane case (0 = 0) instability occurs

first by buckling if y > 0.5 and by flutter if y < 0.5 . It is found

that in the present spatial case (P # 0) the value Y = 0.5 still

separates the two different modes of loss of stability.

The Case y > 0,5

It is proposed to show that if y > 0.5 , loss of stability can

occur only by buckling, as the flowrate is increased, no matter what

the value of . To accomplish this it must be shown that A0  be-

comes zero before X does, as the flowrate is increased.

The flowrate for vanishing A0 , denoted UB , is obtained from (7)

as

UB = (y/2)[(o + 1) 2/CO -2 ] (11)

As 0 increases, UB ir,-reases and at • = 900, no finite value of U

can cause inst&bflity.

On substitution of UB into the expression for X given by (10),
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a polynomial in powers of a is obtained of the form

9

where the Bij are polynomials in CO The coefficient of a is

given by

y - 0.5 CO

and thus it is seen that a necessary condition for X to be positive

for all a and 0 is that y > 0.5. Further, it is readily shown that

the Bnl terms are all non-negative in the remaining coefficients.

Hence the value of X for a > 0.5 must be larger than the value of

X for a 0.5. Evaluating the latter one obtains

(x . 5 * [uz2 /(a C 2)J { 82. 5 (1 + S02) Sol)
UUB+ 7 [(4/3 - C2)(16.5 - 18.75 CO2 + 3CO 4

+ 6 [S 2(56 - 67.5 CO2 + 18 CO ]

+ a 5 [S2 (91 - 135.5 CO2 + 47 CO )4

+ 4 [S 2(98 - 74.5 CO2 + 1.5 CO4)]

+ a [S 2(70 - 72.5 CO2 + 7.75 C 4)]

+ a02 [So 2 (32 - 42.5 Co2 + 10.5 CO4]

+ [s18o } (13)

It is observed that the coefficient of each power of a above is non-

negative. Hence at U = UB , X is positive for y > 1/2 .



-12-

2 2
From (10) it is seen that X/U is a quadratic in U , i.e.

2 4 2
X/U = A U + BU +C

and also that C is always positive. For small U , clearly X > 0

for all y . Further, for 0.5 < y < 3 it is found that X > 0 in

the whole interval 0 < U < UB . It is thus concluded that if y > 0.5

loss of stability occurs only by ouckling as the flowrate is increased

from a value of zero.

It might be of interest to examine whether, at flow velocities

higher than UB , a transition to stability or flutter could occur.

A numerical investigation was carried out for the following range of

parameters

0.1 < < 10

0.5 <Y 3

0 Z U 7 10 UB

For numerous values of a , 8 and y the roots of (6) were computed

as U increased from zero. A typical root locus plot is shown in Fig. 2

corresponding to 0 =0°. Since any complex roots must occur as con-

jugate pairs, only the upper half of the plane is shown. When U = 0

the characteristic roots are all purely imaginary, and as U is in-

creased, the roots trace out the curves shown. When U = 1.56 a pair

of roots coalesces on the negative real axis, and as U is further in-

creased, they split, one moving in the positive and one in the negative

real directions. Buckling first occurs with the vanishing of one root

j j• when U = 1.732 and for all greater U , at least one root is positive
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real. As seen in the figure, all roots are purely real after U = 3.12

and aj U is increased, they monotonically increase in magnitude. Thus

divergence is the only mode of loss of stability possible for y > 0.5

even for U greater than UB•

The Case y < 0.5

This case is more complex in that either buckling or flutter may

occur first as the flowrate is increased, depending on the value of •

For B 0 , Benjamin [5) has shown that stability will be lost

first by flutter. For B = 900 on the other hand,

X = U4[2(a + 1)7 + 2(a + 1)6] + U2[2(o + 1) 6

which is always positive, and thus is positive also in some neighborhood

of 0 = 90* . Since A0 can vanish for all a except a = 900, it is

seen that near 0 = 900 only buckling can occur. Thus as 9 increases

from zero, a transition in the mode of loss of stability from flutter to

buckling has to occur at some value of the angle, .

To determine this transition angle 0 , and to obtain quantitative

data of the critical value of U for the whole range 0V P<96, a param-

etric computer study was carried out. A typical plot of U as a func-

tion of 0 for a given system (a = 1.0 , y = 0.25) is shown in Fig. 3.

In this case * = 260. In region I there are two pairs of complex con-

jugate roots, one of which has positive real parts. Hence in this region,

loss of stability occurs by flutter. In region II there are a pair of

flutter roots and two real roots, one of which is positive. Hence in

this regiun the system experiences loss of stability by osci.lation
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with increasing amplitude superimposed upon a monotonic motion away from

the equilibrium position. In region III the characteristic roots are

all real, with at least one being positive. Hence this is a region of

divergence.

A typical root locus plot for = 0* is presented in Fig. 4. As

before only the upper half of the plane is shown. As in the case y >

0.5 , once all the roots become real, they monotonically increase in

magnitude. Hence there are no new instability regions above the buckling

region in Fig. 3. For all > , the typical root locuz is the same

as that shown in Fig. 2 for the case y > 0.5

A composite plot of the dependence of 8 on y and a is pre-

sented in Fig. 5. For any given physical configuration (i.e. specified

values of a , 0 and Y),one can determine first the mode of loss of

stability. Next, the corresponding critical flowrate can be calculated

from either (10) or (11). It is noted that as y -> 0.5 , 8 -> 0

independent of a , which is consistent wfth the Yesults of the case

Y > 0.5

5. Experiments

An overall view of the experimental set-up Is given in Fig. 6. The

tube segments were of thin metal (copper and brass) in commercially

available standard gauges, and were of equal lengths.

The joints consisted of ball bearings and light brackets made of

plexiglas. The pipes were connected across the joints by short segments

of latex surgical tubing (Kent Latex Products, 0.25 inch ID, Thin Wall).
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Water was used as the fluid, and its velocity was measured by means of

a precision flowmeter of the rotameter type.

The additional masses of the hinges, while small, were not negli-

gible. Further, it was found that the surgical tubing gave rise to

small restoring and damping forces. A schematic of the apparatus is

shown in Fig. 7. The quantities needed in the governing equations can

be identified as

M A m + _' nH

MB m+mH

LA=A+ 2c

LB ++c

MA a = (m + 2 m--)(0.51 + c)

MB b = m(O.51 + c) + mH. d

iA =m.'•, 2d-22
zz 12A = +m(0.51 + c)2 + 2- +mH + lH(A + 2c+- d)

-B b2 m22  2 - d2
il1 + M 2= mY-2 + m(O. A + c) +• + I d 2

where

m = mass of each metal tube

I = length of each metal tube

mH = mass of each hinge

IH = '11 of each hinge with respect to its centroid.
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It was suspected that the restoring and damping forces would be

t sensitive to the water pressure in the surgical tuling at the joints.

The values of the restoring and damping constantz were obtained by

conducting a separate test with just the upper tube and upper hinge.

The tube was closed at its lower end and pressurized with air. It

was then photographed with a motion picture camera as it oscillated

freely and damped out. This was rp~dated for several different pres-

sures. From the observations the restoring and damping consrMts

could be obtained in a standard fashion.

To utilize this information it was necessary to know the fluid

pressui'e in the surgical tubing as a function of flowrate. This was

obtained by assembling the pipes and hinges in the test configuration

(as in Fig. 6) and replacing one joint at a time by a short tube

tapped to place a pressure gauge. Then water was forced through and

pressure readings could be taken. This procedure neglects the effects

of expansion of the surgical tubing and of motion of the joints with

increase in pressure. For small motions, however, the latter should

have little effect, and the final tests were discontinued when the ex-

pansion of surgical tubing became excessive.

The results of the above preliminary tests indicated that the lower

spring constant, K2 , was nearly independent of the flowrate over the

range involved, while the upper spring constant, KI , was fairly sen-

sitive to the flowrate, as shown in Fig. 8. This could have been ex-

pected, since most of the pressure drop involved would take place at the

upper joint where the flow channel was constricted down to the inside

diameter of the pipe. It was also found that the damping coefficients
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were nearly independent of pressure, and thus the damping is primarily

due to the friction in the ball bearings.

The actual experiments to determine the instability mode behavior

were performed on two different pairs of tubes, one with y = 0.328 and

one with Y = 1.09 . The dimensions of the two sets of pipes and of

the hinges are shown in the table below. The same hinges were used with

each set of tubes.

Set I y = 0. 3 28 Set II y = 1.09

Type Copper 1/4"ODx .035 wall Brass 5/16"ODx .015 wall

m (slugs) 0.000198 0.000123

mH(slugs) 0.000059 0.000059

. (inch) 12.0 12.0

A (Eq.inch) 0.0254 0.0625

K2 (in-lb) 0.206 0.206

R1 ,R,(in-lb-sec) 0.030 0.030

c (inch) 0.750 0.750

d (inch) 1.295 1.295

'H (in 2- slug) 0.000135 0.000135

With these values, the coefficients in the governing equations were

evaluated and the critLcal flowrates obtained as described in the first

part of the paper. The results are shown in Figs. 9 and 10. The solid

curves denote the theoretical predictions.

The tests were performed quasi-statically. Thus the flowrate was

increased in small increments, and at each step the two pipes were

manually displaced two degrees from the vertical and released with no

441
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initial velocity. This was repeated until a flowrate was reached at

which the resulting motion die not subside. The onset of flutter was

marked by steady periodic oscillations. Upon slightly increasing the

flowrate, there resulted osc:llations with increasing amplitude.

In certain cases, the onset of buckling was somewhat difficult to

determine precisely. This was due to unavoidable small eccentricities

in the system which caused the position of equilibrium to change

slightly with an increase in flowrate. As a result,the onset of buck-

ling was evidenced by large deflections corresponding to a finite (but

,arrow) range of flowrates. In the majori•y of cases, however, as the

flowrate was increased in small steps, the transition to the buckled

state occurred quite suddenly. The associated deflections were so

large as to require stcps to prevent the system from being damaged.

Thus in most cases an unambiguous bucklIng load could be determined.

The above procedure was repeated for eavh increasing value of B .

The range of the data taken was limited • the expansion of the surgical

tubing at large flowrates.

The tubing gave rise to another pye-hlm. As it is manufactured

and packed, it has a slight permanent catvature. When the pipes and

joints were assembled, the surgical tubing wai arranged such that the

plane of motion of the joi.nt was normal tr ýU p]ane of curvature of

the tubing. Without this precaution the two mietal tubes could not be

aligned even in the absence of flow. Thus, , S was changed, it

was also necessary to rearrange the surgicaL ttbi. . And in doing this

great care had to be taken to ascertain that tl.e tubing was not

stretched. It was found early in the exper.iri.ntation that even a small

amount of stretch.nh .rosulted in considerable changes in the buckling loads.
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The surgical cubing also gave rise to a notable non-linear ef-

fect. When stability was lost by flutter it was found that an in-

crease of the initial displacement resulted in a lower critical flow-

rate. This implies the existence of either non-linear restoring or

damping forces of the "softening" type and,in fact, it was found from

the dynamic amplitude-time data (used to determine the spring con-

stants) that non-linear damping was the predominant factor. In the

case of such "softening" type forces one cannot invoke the theorem due

to Lyapunov as in [3], which asserts that the instability threshold

for a non-linear systm.n is the same as that for the corresponding

linearized system. Work is underway to evaluate this effect in a

quantitative way, but until then this does serve to emphasize the need

for employing uniform, small initial conditIons in tests of this type.

The results of the tests are summarized in Figs. 9 and 10. For

y = 0.328, the transition angle 8 at which the initial instability

changed from flutter to buckling was predicted analytically to lie

between 210 and 220. In the test, the pin angle 0 was increased

in 50 increments and as seen in Fig. 10 the changeover occurred be-

tween 8 = 200 and • = 250. No closer determination was attempted,

since the inaccuracies in the values of the spriig and damping con-

stants renderedany further refinement meaningless. The transition

angle provides a measure of the correlation between the experimental

system and the idealized one considered in the first portion of the

paper. For the latter, with y = 0.328 , Fig. 5 predicts a transition

angle of 200 and this agrees well with the transition angle for the

experimental system, which was predicted as 210 < B < 220 and

measured as 20* < < 25*K<q5
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In each of the cases, the measured uackling loads were lower than

those predicted, as would be expected due to the unavoidable presenci

of small eccentricities. The agre-ment in each case tends to fall off

as B is increased. For the flutter case (y = 0.328) the discre-

pancy varied from 4% at 0 = *0 to 10% at = 400. T-. .he buckling

case (y = 1.09) the discrepancy varied from 8% at b = 0 to 18% at

0 = 400. The increasing discrepancy as 0 is ircreased is probably

attributable to the normal forces applied to the bearing which are

present in increasing magnitude as 0 is increased. This would tend

to accentuate any eccentricities in the joir4t and further cause beam-

type bending in the tubes themselves, giving rise to further misalign-

ment. In view of the unavoidable imperfections present in any mechani-

cal system used to study buckling behavior, the agreement between the

theory and the experiment ol-"ained herein is considered to be acceptable.

6. Concluding Remarks

:ýv considering .ý sparcla system of articulated pipes, it has been

shown that the v,,rious cypes of loss of stability, characteristic of

idealized non--onservative systems, can in fact be obtained in a phys-

ically realizable Dodel. It has also been verified that the assumption

of one-dhmensional flow and the use of linearized equations of motion

are adequate to determine the boundaries of the various regions of

instability.

However, an important aspect of such systems has been observed,

-A
which must undoubtedly be considered in applying the above-mentioned
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assumptions to stability problems in pipes conveying fluid. As found

in the experimentation, the softening-type non-linear behavior of

the flexible joints will significantly change the 3tabi.lity charac-

teristics of the system. Thus a careful characteri-ation of the non-

linear behavior of coupling tubes is a necessary pzi .2eaiisite to the

"practical stability analysis of such devices as fluid-ýIr`-_ev control

systems.
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