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ESTIMATION FOR ROTATIONAL PROCESSES
WITH ONE DEGREE OF FREEDOM

By

James Ting-Ho Lo and Alan S. Willsky

Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts

ABSTRACT

A class of bilinear estimation problems involving single-degree-of-
freedom rotation is formulated and resolved. Both continuous and discrete
time estimation problems are considered. Error criteria, probability
distributions, and optimal estimates on the circle are studied. An
effective synthesis procedure for continuous time estimation is provided,
and a generalization to estimation on arbitrary abelian Lie groups is
included. An intrinsic difference between the discrete and continuous
problems is discussed, and the complexity of the equations in the discrete
time case is analyzed in this setting. Applications of these results to a
number of practical problems including FM demodulation and frequency

stability are examined.

“Fannie and John Hertz Foundation Fellow, Department of Aeronautics
and Astronautics, M.I. T.
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1. Introduction

In the past, most optimal estimation problems have been studied in
a vector space setting. While these results lend themselves to simple
solutions in linear systemsl’ 2, and in nonlinear systems with finite
dimensional sensor orbits3, no effective synthesis procedures for optimal
estimation have been determined for large classes of nonlinear systems.

It is the purpose of this report to introduce an alternative to the
vector space approach in analyzing the properties of nonlinear stochastic
processes. We will study random processes on a different type of space,
namely a differentiable manifold, which is the natural domain for certain
nonlinear problems of practical importance. This approach will be shown
to be useful both in afxalyzing the properties of certain stochastic processes
and in deriving recursive optimal estimation equations that are easily
implemented (for instance, see the block diagram in Figure 4 and the
associated discussion in subsection 3. 3).

More specifically, we will concern ourselves with the study of random
processes on the circle, Sl, and its extensions to higher dimensions.
Topics such as FM demodulation, frequency stability, and single-degree-
of-freedom gyroscopic analysis are well-known examples in this framework.

It is appropriate to remark that we will use severai distinct
representations of the circle interchangeably, depending upon which is
most convenient. A point on the unit circle can be represented by either

the angle 0 € {-m,7) it makes with a fixed reference point on the circle or

by the 2 x 2 orthogonai matrix

cos Y sin 8

-sin 0 cos 0 .
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Note that the addition of two angles 91 and 92 modulo 27 corresponds
to the multiplication of the two matrices representing the points.

Another representation of Sl is as the set of complex numbers of

length one. Any such number can be uniquely written as e16 with 0 € [-m,
7), and the relationship with the above representatiocns is obvious.

Finally, there exists a natural projection from R1 to Sl, identified

with [-m,7):

X F——> x mod 27

As Figure 1 indicates, two points x and x, are projected onto the same

point if and only if they differ by an integral multiple of 27 (thatis,
ele z el(e * Zmr)). Thus we divide the real numbers into equivalence classes,
{

| % 2n7|n € Z: , and to each element of S1 there corresponds a unique
equivalence class, with different points in S1 corresponding to different
equivalence classes. Thus we can represent S1 by this set of equivalence
classes, denoted Rl/ZnZ.

Throughout most of this report the first two representations will be

used. However, in Section 5 we will use the complex number representation,

and in Section 4 we will make use of the interpretation given by the last

representation above.

----1-39 -7 s 3

Figure 1. Illustrating the Projection Map
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B Consider the situation depicted in Figure 2. We have a unit circle

in R2 with a straight line of infinite length tangent to it.
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Figure 2

We allow the line to perform a or:.-dimensional Bro vnian motion, fix the

center of the circle, and require that there be no slipping at the point of

tangency. The line induces a rotation of the circle, and, if the line moves

a distance x, the circle rotates x radians, and is thus in a position which
is xmod 27 = @ radians away i.om its initial position.

The probability density function for 6 satisfies the classical heat

(liffusion, Fokker-Planck) equation on the circle:

ap, ap
__Q_ - -;— 4 = 0 (1)
at i1
with the periodicity condition
(2)

po(g ,t) = Pg(§ +z7’7t)

and initial condition
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pg(E,0) = 8(§ - n) (3)

NN

yolv g

where the initial orientation of the circle is n radians from some reference

position, The solution of (1), (2), and (3) is widely known, and is given by

vk

1

the two equivalent e - :ssions

2
=07

e

+o (& + 2ngy - n)’2
. 1 - 2t
, py(E,t) = e (4a)
'% 0 Vvant n;co
. o ,
= -21; + % z e t/2 cosn(€ -n . (4b)
n=1

The density in (4) will be called the folded normal density. We give it this

name for the following reason: if x is a normal random variable with

e bR T A . g AP
o O R R S SR ANl e Aty R T R

mean 7 and variance vy, and if we let 9 = x mod 27, then the density for

g, Py, is given by

3 +00 _ (§ + 2nm - QLZ
b 1 2 A

o pgld) = — = Z e Y = F(&;nY) .
o
:

Levy4, and Perrin5 have done extensive work with this density.

4

Sty N Vs ot N A A QAL

:
Using this concept of ''wrapping'' a random process around the E
-' circle, we formulate the mathematical model of ar observation process ;
that can be described by 2 bilinear matrix Ito stochastic equation. Letm

5

be a random process on Rl, and define 2z by

£

dz(t) - mit)dt + dw(t)

RTer S
7 et om e

3 where w 1is a Brownian motion process independent of m. Consider the

ki

z . 1
3 associated process
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B8(t) = z{t) mod 27 .

Since knowledge of sin ¢’ and cos 0 is equivalent to knowledge of 8, we wish

to find an equation for

cos 6(t) sin 8 (t)
2¢) - {
-sin 6(t) cos O(t)

’%
%
%
B
S
)
4
E

As will be shown

- % dt m(t)dt+dwi(t) %
dz(t) = Z(t) , (5) %
‘ -m(t)dt-dw(t) -1 at

where the - % dt terms are the second order correction terms given by
Ito stochastic calculusé’ 7. These terms are precisely what is needed to
insure (in the Ito sense) that Z(t) remains an orthogonal matrix.

If we assume 2z(0) = 0, we can write

t

z{t) = é m(s)ds + w(t) ,

and then
t t
cos wit) sin w(t) cos [ / m(s)ds] sin [ f m(s)ds]
Z(t) - : : :
-sin w(t) cos w(t) -sin| [ m(s)ds] cos| /m(s)ds]
(4 0
(o)

and, in this form, we see that the disturbance is multiplicative in nature.

¥
E
_f‘é
g
3
é
i
i
.
3

In this report we will examine multiplicative noise problems such as
s this and will derive estimation equations for them. In Section 2 we will

examine various error criteria for tne optimal estimation of random
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variables on the circle. Section 3 deals with continuous time estimation of
a class of stochastic processes on the circle, and Section 4 discusses the
discrete time problem. Applications of this theory to AM and FM
demodulation, optical communication, frequency stability, and estimation
of the orientation of a spinning body are discussed in Section 5. In addition,

) an appendix is included, in which the relationship between the discrete

and continuous time problems of Sections 3 and 4 is discussed.
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2. Error Criteria and Optimal Estimates

(EThCRD

In the following sections, we will study the properties of certain

. stochastic processes on the circle and will derive equations for probability

S S AT NI
H
~
'

IAEZER

distributions conditioned on observations. The question of optimal

s

aners,

estimation will be of ceatral importance in Sections 3 and 4. Thus it

T ¥,
-

(5404

became necessary to study how one uses the knowledge of the probability

E R I

distribution of the quantity to be estimated to choose an estimate that gives

STy Lot gt

R S SR

the '"best'' performance, as measured by some pre-detern:ined figure of

F A A S N SRR B AP S B RS SE BTN 22 NG A1 Sonarareininat

merit,

‘ In this section, we will present a number of results on the optimal
estimation of random variables taking values on the circle. We assume

that we are given a random variable 0 taking on values in [-71,7), with

FI vk wn e e

probability density p(f), which is assumed to be periodic with period 27.
Also, we assume that we have an error function ¢, also periodic with

A
period 2r, and we wish to choose § to minimize

7 A
&6E -8 = [ 40 - B)pioran :
-7

This is precisely the Sl analog of the vector space optimal estimation

problemb.

The motivation throughout this section is to provide simple methods

A
for computing the minimum of the cost criterion, &P - 0)), and the

R A T R e i e M g A T N

A
v.l e 0 that achieves this minimum. In this light, a number of special

RAa3

cases (i. e. particular families of densities and error functions) are

LS

-

considered in detail.

The first subsection presents a basic result, analogous to Sherman's

resultsm’ 11, on optimal estimates for a large class of error criteria, but

z -
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for the rather special case of unimodal probability density functions.

However, it is shown that the important folded normal density falls into

this class.
The second subsection deals with the more general estimation

problem, in which the density need not be unimodal and the error function

may have a more general shape. Fourier series is the basic tool of this

section. The third subsection contains detailed analysis for the special

cases of the folded normal density and a linear combination of folded

normal densities.

2.1 Symmetric Criteria and Unimodal Distributions

We define the standard distance function (Riemannian metric) on the
circle -- i. e. the distance, [, between two points on the circle is the arc
length of the shortest path (geodesic line) joining them. If we restrict 6 1

and 92 to take values in the range [-7,7), we have
pi6,,0,) = min(|91~02|,2‘n‘— 16,-6,1)
The class of error criteria we wish to consider is the class of

symmetric, nondecreasing cost functions -- i. e. functions x{):S1 — R

which satisfy -
0 < ¢8) = $(-0)
(7
0 < pt8,0) < pl0,,00=>4(0,) < &8, .

Some examples of cost criteria satisfying (7) are p (0) 5 p(6.0), (1 - cos 6), .

p (())Z, (1-cos 9)2. We also wish to consider the special class of unimodal,

mode-symmetric probability density functions -- i. e. density functions of
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? 1 . . .
{ . the form p:S° —> [0, ) with a unique maximum at 5, such that
; ; pin+8)=pn-8) . ¥0
‘ As the following theorem demonstrates, under these conditions the
: mode of the density is the optimal estimate.
* : Theorem 1: Given an error function ¢ that satisfies (7) and a unimodal,
: modf.;-symmetric probability density function p, then
&G0 -1)) < &40 -a)) ¥a
; : where p has its maximum at 7.
= Proof: The theorem follows immediately from results on similarly
; ordered functions and the rearrangement inequalities. The basic result X
‘ for real valued functions defined on R1 is contained in Hardy, Littlewood , 3
and Polya® (thm. 378) and Szego and Polya’ (p. 183). The result for S
\ is obtained by making only minor changes in these proofs. | ~
We remark that from the symmetry of the problem, ¢ has its global . ;,_
maximum at 7 and p has its global minimum at n + 1. Thus , §
g EW@B-ntm) > EO-a) Fa. §
‘ § It should be noted that Theorem 1 is the Sl analog of a result of s§s
E § Shermanm’ 11. Note thai the same result is true if a probability density 3
i doesn't exist, but the probability measure is unimodal at, and symmetric §
g about some point 5. Here we define these concepts as follovw's: let 6 be %
3 ;?E: a random variable on s! and define the distribution function F:A-m,n]>> j
% [0,1] by
g F(a) = Pr(@ € [-m,a]) . L‘
- o
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Then F is unimodal at, and symmetric about 0 if it is convex for

a € [-7,0j, and if
F(a) = 1 - F(-a)

at each continuity point of F (see ref. 10).

In the continuous time problem discussed in Section 3 and the discrcte
time problem of Section 4, the folded normal distribution will play an
important role, and for this density we have the following result which
shows that Theorem 1 holds for the folded normal density.

Theorem 2: The folded normal density

+e>  (6+2nm -7 !2
) 1 3 2y
F(6;n,vy) Z e

n=-oo
(8)
S /2
N N | & B v
= 27 - cos n{f - n)
n=1

is unimodal with mode at 6 - n and is symmetric about 7.

Proof: Since cos < 1, the second form of F in (8) yields

o©
+ 1 vz _ .
FO;n,Vez + 7 D © - Fln;n,v) .
n=1
Thus F has its global maximum at 8 =
Since F(f,n,y) = F(8 - n;0,y), we need only show that F{f;0,y) is
symmetric about 0 and monotone decreasing as pi8.0) increases.

Symmetry is obvious (cos nl cos n(-0)), and monotonicity will follow if

we can show

5 0. 0,y) < 0 8 ¢ (0,7) {9a)

) f . - e e e
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556, 0,9 > 0 6 € (-7, 0) (9b)

We now remark that the properﬁes of F(0;0,y) have been studied
extensively, since it is a theta function. See refs. 12 and 13 for dis-
cussions of some properties of theta functions. Using the notation of ref.

12, pp. 2, 42, we have

1 841 i
F{6;0,y) = ¥ 0, &5, %)
ao
= k n (1 + 29" Leos 6 + q¥7°2) | (10)
n=1
where
q = e V2
and

[00]
1 2n
k—Zﬂ I—[(l"q )

n=1

e Using the fact that F > 0 and the form of F given by (10), we

have

9F ©
0;0,v) 2n-1
A > 24 | sin6. (1
F@:0,v) nol (1 +2q cos 8 + q )

It is easily seen that the term in square brackets on the right hand side of
(11) is positive for all values of 0 and thus (9) is correct. [ ]
Some work along these lines has been done by Perrins. See ref. 15

for discussions of other relevant properties of theta functions, hypergeometric
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functions, Legendre polynomials, and Tchebycheff polynomials.

{
L. - L
:s.n‘.u«ﬂ'\‘:i\mw,\um\nms;m\tm 0

Note that the symmetry requirements of Theorem 1 are necessary.

For instance, if $ is not symmetric, the mode of the density neced not be

o m.\.hm&mwixwumxﬂmamm.um&ms\.«.@mﬁm\m«ms&rsmmi;m\m

the optimal estimate even if all the other assumptions of Theorem 1 do

hold. As an example, consider the function 4):51 — R

: 6 0<0 <

; 4)(9): 5

' %— -mr< 8 <o .
e

; Suppose our distribution is the folded normal centered at 0. Then it can be

f’s shown that the mode, 0, is not the optimal estimate. i
: i
3 2.2 Optimal Estimation Using Fourier Series :
E 1f we do not have a unimodal distribution or symmetric cost criteria :
X

RS

that increases away from 0, Theorem 1 doesn't apply, but, with the aid of

E: Fourier series, we can still do some useful analysis. We assume that our

3

3 probability density is giveua in Fourier series form

¢ o

£ 1 .

E pd) = 7t z a_ sin nf + b cos nf

n=1
-, as is our error fuaciion

3

3 o

3 @) = d_ + z c_sinnB + d_ cos nf .

1 o n n 3
& n=1 *
4 A i h

2 Our problem is to choose § to minimize E($(f -0)). A simple .

computation yields

o SEPALALS

¥tal

=
”‘L § . e ol e —~ -
£ < oA SR SR » v ot i Oy ed B A KA N T n KA T b btemran s
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E

5 oo R
X , A _ A .

- B &Y -0)) = d +m z {an(cn cos nf +d_ sin nt)
n=1

;

g A A

g | + b (d cosnV -c_ sin ne)} (12)
q | n n n

1

5. Thus, necessary conditions for a local ininimum are

N AL R OGN e s 1h k)

et

ki O T B A VO S A T P T s . Si T o NS ST T T Ly

EH6-8) = 0 =

4
g
)
A A . A A _
z {na.n[dn cos nf - ¢ sinnf] - nbn[dn sinnf + c cos nf] } =0

n=1

(13}

a® A
= &(B-6) > 0 =>
dé

©
z -n%a [d s1nn9+c cosn9]+n2b [c sin nb - a cosnB] >0

(14)

Solutions of (13) and (14) are candidates for the optimal estimate.
Fixplicit solution of (13) and (14) is possible only for certain error

functions. For example, suppose we consider the function
4)1(9) = 1 -cosé .

Then do =1, d, = -1, and all other Fourier coefficients are 0. Then

A A A
& (¢1(9 -0)) = 1- 1r(a.l sin 0 + bl cos @) (15)
and equations (13) and (14) become
A A
cos 8 -b, sin@ =0 {16)

21 1

t
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a, siné‘ + b1 cosé > 0 . {17)

A

If aj=b; =0, é”(d)l(() —5)) is independent of (. In any other case, there
are two inequivalent solutions to (16), where two solutions are considered

equivalent if they differ by a multiple of 27. The two solutions are

§ = tan"l@, /b)), tan"a /b)) 4

.g,
E
:

where tan l:[-c0, 0] — [-1/2,7/2]. Examination of (15) and (17) yields a

method for choosing the proper solution:

ot
NI UVVEOL R VT TENE SR R IO S R RO P YA P E Y mx\wnmhﬁmw.-mxwmwﬂ,@&ﬁ

4

12 0, bl >0 => choose solution in first quadrant
a2 0, b1 <0 = choose solution in second quadrant
1 < o, b1 <0 = choose solution in third quadrant

a; <0, b, >0 = choose solution in fourth quadrant.

Witn . 2 choices, it is easy to see that
in b %1
sin = e e—
0 . \/;17 + b?
- b
cos 60 I S—
2. .2
a, + b1
N
and

b . 2 2
EBE-95)) = 1-m [a]+b]

) (18)
A -
where 90 is the optimal value.
Thus, in this case, we can explicitly solve the estimation problem in

terms of the first mode Fourier coefficients. Note that the higher modes
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play no role in this particular case, but also note that «{)1 has some
motivation from standard vector space theory, in that for small values of

: 6,

#1(0) = 1-cosf %%9

Another possible error function, one that involves the first and

_.‘ second modes of the density, is
- b ) 2_3 1
{>2(6)- (1 - cos 8) -v2--2c059+2c0529 .
2 Using the same type of approach as before, one can reduce the problem of
‘ finding the optimal estimate to the solution of a auirtic polynomial equation
i and the calculation of several functions -- a prccedure that can be done
i easily by computer. However, the complexity, even when we just add in

the second mode, is such that no closed form for the optimal error in terms
of the Fourier coefficients is available.
As can be seen, the error analysis becomes increasingly more
3 difficult as the number of nonzero Fourier coefficients increases. For

example, direct application of these ideas if ¢ = p or P 2, where p is

LS 0

the Riemannian metric on Sl (actually p (0) & p(8,0)), yields extremely
complicated equations. However, the —l-i behavior of the Fourier
= n

coefficients for these two examples suggests truncating the series and

applying techniques such as those used in the analysis for (1 - cos ) and

ULy A2 AL ST QAN e el X B RO A N R M £ A er AR AT 2 ¥ s 10 VBTLATANF 5 s 20 110t N DS st e Py B AL L N DN Sty o $55225

-

E (1 - cos 9)2.
However, for these special functions we can use a different method
in trying to find the optimal estimate. Consider the function p 2. We

have the equation

humm HOOILL st KRR S D AR R A W et

K.
fl
4

g

-

¥
{
'




e om T Ry s R e 23 RIS ST NI A Fo e PR
5 ? O 53 frvEes ST TS R T T A IR /AL L ST AT NI LY . X
. N Loty Sy bt akad by e oz S aR Ll ) R S D A

L N PR A A O D A TR S X

-16-~

ple) = 0° b

-
4
2

7&:

Thus, if our probability density is p(0),

D>

2 A Tt a2
&6 -8) - 6 -8)° p(o) a8
_7;-{-

D
if\','m'o's«!wxﬁ.-‘:-\!?n)mmcafw.gm:‘.z‘#‘.'.lir';:’;x..\»k@s‘d:tsﬁ-ﬁ\.z!,;x‘_mmgwxx»-;.-wm Lnedantl,

Using Leibnitz's rule and the periodicit.y of p, we have the following

necessary conditions for optimality

= ———————nD e o g

WMWWWNWW#H” R

A A ”'A
L sp20-6n - -2 [ 6p6) =0 (19)
do “m+d
and
dz 2 A A
<5 Ep°0-6) = 2-4mp@+m) >0 . (20)
4o

Equations (15) and (20) offer an alternate method for solving for 90. Note that
equation (19) resembles the necessary condition for the least squares

estimate on Rl. In that case

" +00
Xy = &(x) = [oo x p(x)dy ,

jen i Lt SR $ SRS pr e i Sk LIS,
\-ﬁmxza,;mmssamMg;mm.-d«mm;ﬁwxamywmw‘zma).»mymms.ﬂ..&mmmmm.u ¢

where p(x) is the density function. However, in this case, essentially

fé

because of the topological difference between S1 and RI, the integral g

%

: 70 3

4 ~ U pd)asg 3
i 40

is not independent of é\, and thus cannot be called &i{f).
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The Folded Normal Density and Its Linear Combinations

; g As will be seen in the next two sections, two types of probability

3

£ densities are of great importance. The first of these is the folded normal
3 g density, ¥'(0; n,y), and the second is a linear combination of such

gt densities

2

e & PO) = D ¢ Fi6;n,v,) (21)
23 é‘i -1

- i

1 =

2 -

E b 2 b Yo 0

A n=1

It should be noted that it has been shown3 that the set of densities given by
(21) with only finitely many nonzero cn's is dense in Ll(-ﬂ,ﬂ), and this is

still true if all the yn‘s are equal tc some fixed y. In this section we do

not require that only finitely many cn's be unequal to zero. The reason for “g
this will be seen in Section 4. %

For the case where our density p(f) is a single folde« normal ?;;
density, F(0; n,y), we know that the optimal estimate for any function ) .,
satisfying (7) is the mode, n. However, for this special density, we can ;;z

G

say a great deal more. Let us consider a more general class of error

AT

functions. We remove the symmetry requirerent but still require that ¢

be increasing on [0,7] and decreasing on [-7,0]. For sucha ¢, the mode

n need not be the optimal estimate, however for this discussion we will :f
take it as our estimate. The following theorem reveals an important é
property of the error & ($(6 - ). , £
Theorem 3: For ¢ satisfying the above requirement, and p(8) = F(8;n,Y), : 3

|

oY, R T
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é’(tf:(@ -1n)) is an increasing function of the variance, y -- that is

% EGO-n)) » 0 (22)

Proof: Writing
00
) = d +z c_sinnf +d_ cos nf
o n n
n=1
and using the results on Fourier series analysis,

© 2
ERO-n) =+ Y a4 emVE (23)

n
n=1

but we get the same error if we compute &(Y(0 - n)), where Y is the

function satisfying (7) defined by

YO) = 7 ((6) + $(-8)

Thus, it is encugh to prove the theorem for & satisfying (7). In this

case 7n is the optimal estimate and

&6 - 1)) f<l>(9 -n)F(,n,v)i0

T
/| 6IF©;0,v)a0
=

T
2 / $(B)F(8; 0, y)db
0

Then, (22) will hold if

T )
/0 $(0) 3y F6;0,y)d0 > 0

L T L
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Suppose we can show that there exists 60 € [0,7] such that

C T s -
B0 Oy 2k g et
2 e O NP S e

9_ gp-
5 F;0,v) < o0 6 €[0,6,)

¥ 0
:: -a':; F(dO;O’Y) =0
3 ,
AA
i 37 FI6;0,9) > 0 0 €@, .
' Then, since
i §0) < $(6) 0 < 10,0,
. i
33 $0) > $6) 0 elbgn]
e
we have
24 T 7
& ) d
E [ O 5y F@:0,9190 2 400) Go [ F6;0, v
35
2 i d 1, _
3? = $(0,) Iy G =0 ,
< ‘ and we get a strict incquality if ¢ is not a ccastant.
: Now it is easy to see that

2
9 . -1 3 we.
oy FO;0,v) = 3 ”: F(6;0,v)

and the theorern will be proved once we prove the following lemma, which
yields more information about the shape of the folded normal density.

Lemma 1: For an arbitrary but fixed value of y > 0, there exists

0o € [0,7] such that

R I N
o e S o

A g =~ %t 18 843 Y § Y

arr————
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— F(0;0,y) < 0 6 6[0,90)

L= FO,0,v) = 0

2

) .
<5 F(6;0,y) > 0 8 €(6,,7]
56° ’ 0

E that is, F has a unique inflection point (at 6,) on {0,7].
, Proof: We use the form of F(6;0,y) given in equation (10). We compute

e

g3 ds

g 32 F
5 = -Acosf +Bsin” 6

133

©

:; A _ z 2q2n—1

- (l+2q2n-l cos 0 + q4n_2)

o n.l

3 5 . 432(r+m-1)

b = ) - -
4 (1+26%™ L eos 0 + @02 (1429°™ %cos 9 + 7M7)
* n*m

and then a simple computation yields

'3

35 a2

3 “~— F(0;0,y) < 0

Fhos
QO
D

<= F(6;0,y) > 0 ¥0 ¢ [5, 7]

o and

t A el = T r— B T e T et i e B T e p—— — e i
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32
——ZF
9 a0 T
' ‘a—e'< F > (9;0,y) >0 ¥0 € (0, —2')

>

These inequalities imply that, there is a 90 € (0, -1!2-) such that

NS S e e e A e b 3 S AN o e BB o
.

2
9
;07 F(0;0,Y) = 0. Thenfor 8, <8, <m/2
| 32 82
: —5 F(0,;0,y) 5 F(0,;0,v)
& bilo) > a8 -0
3 F(gl;O,Y) F(Fo; O,Y)
4 or
82
; -a—d—z- F(91;0,y).> 0
and the lemma and the theorem are proved. ]

-
¢
9
Z
g
5
@
;
3
3
rﬁ
ig
5
Fi
2
3
3
Z

Note that by symmetry we have that F has a unique inflection point at

- 60 on the interval [-7,0].
Theorem 3 tells us that the intuitive notion that we '"have more
accurate information'' for smaller values of y can be made precise.
Also, this theorem implies another result, which is the S analog of a
problem treated by J. L. Brownl4. The problem treated in ref. 14 is that
of finding the optimal linear filter minimizing an asymmetric error criteria
: q on R! that decreases on (-0,0] and increases on [0,®). The resultis
that the optimal linear filter is the minimum variance filter, and the proof
essentially consists of showing that the error is an increasing function of
the variance. Theorem 3 clearly implies an st analog of this result.
Some examples cf cost criteria satisfying (7) and the associated

optimal costs when the density is folded-normal will be given in Section 3.

3
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Y,

For the case in which p(f) is given by (21), the situation is
somewhat different and much more complicated, since we no longer have
a unimodal probability density. For this case, we will examine the

optimal estimation problem for two error functions, 1-cos § and p 2(9).

>

As discussed in subsection 2. 2, in trying to minimize E(1-cos (8 -é))
with respect to 3, we need only know the lowest mode Fourier coefficients,

ay and bl‘ In this case

anr WPy A n

m -
: a - 1 c eyn/zsin
1 "7 n LN
) n=1
00 Y/
LS e
bl—ﬂ’ c, € cos 0
n=1

and (assuming a; and bl are not both zero) the optimal estimate (’9\0 is

either tan'1 al/b1 or 1:an"1 al/b1 + 7, depending upon the signs of a,

R L ¢ UM S AGA 3R 1t AN LN AN ek Ly R ST
& 'imw{wwtﬂ)m.vfm;ymm;xxrz.zxaar-.e‘iﬁm‘.f:&ssmmummmms.:,m:zL..zu.m,mm..m.-mmme.w,m.\«m..‘u,.zm.m.-ux N, ERCT

and bl' In any case, the optimal cost is given by

8

A n/2 .
E(l-COS(G-Uo)) = 1- Z c e sin n_ +

(24)

In general, this optimal error is not an increasing function of each of the

variances Yy, individually. However, if all of the variances equal some

=}
1l
n\18
(q]
o]
o
]
o
=]
~
(o]
[*]
7]
>
=]
N
(="
~
[s%)
e A B A AN ORI A A SN AN 2 ST PR S o) v ¥

value vy, it is easy to see that the optimal error is an increasing function

of vy.
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In the case of p 2(9), we recall from subsection 2. 2 that it was

necessary to evaluate

Tta
6 p(@) d6
“T+a

as a function of a. For p a folded normal density, F(0;n, y), we have

2 oo (2kti)n
[ op6)8 = n- z 2Zr [ N(B3n-a,v)d (25)
k=-00 (2k-1)7
where N is the normal density. The second term on the right-hand side
of (25) involves various values of the error function, erf, and can be
tabulated as a function of n-a and y. Then, if we call this term
g(n-a,y), in the case where p(f) is given by (21), necessary conditions

for the optimal estimate are

@
90 - z cn[nn - g(r'n“eO’Yn)] (26)
n=1
oo}
-
1-27 z <, F(Go tmn,y) 20 (27)
n=1

There does not appear to be a simple formula for the optimal cost, nor
is it clear whether or not the optimal cost is a monotone increasing

functions of the Y, or of y, in the case where all of the Y, * Y

é
|
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3. Continuous Time Estimation

i
A signal process and an observation process, taking values on Sl, T}
will be formulated in terms of bilinear ito matrix differential equations.

The conditional probability distribution of the signal given observations

over a certain period of time,will be evaluated. Recursive computational

schemes for optimal estimation (filtering, smoothing, and prediction), with

3 respect to the error criteria defined in the previous section, will be

LA A S 1SR R A S I SLANG RS DR A e S

3
PR TTORRTPIL I SIVA T S s INNIEL A VAT A S P ST 0 S

L

derived. In fact it will be shown that optimal estimates on S1

97 A S

can be

7

obtained recursively by the use of an ordinary vector space estimator

T

together with a nonlinear preprocessor and a nonlinear postprocessor, as

Saerapd

illustrated in Fig. 4. Multichannel estimation on abelian Lie groups will

Xty

be cxamined. Examples illustrating the optimal estimation procedure are

alas i

given at the end of this section.

Y

2

The circle group, Sl, can be identified as the multiplication group

of 2 x 2 orthogonal matrices of determinant +1. Any element of this

group has the form

cos @ sin 6

-sin cos @

and, for 8 near zero, we have the first order approximation

»?

NI

cos U sin 6 1 o0 0 1

i
4
-+
[y’

-sin 6 cos 6 o 1 -1 0

ey

~

ey

The matrix

o
{axh
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is called the infinitesimal rotation, and we have

cos O sin 6
= exp RO
-sin 0 cos 0

For those familiar with the theory of Lie groups; Sl is a one
dimgnsional abelian Lie group, with the 2 x 2 orthogonal matrices a
representation of the group. The infinitesimal rotation R forms a basis
for the Lie algebra, L(Sl), of Sl. The Lie algebra and Lie group are

related by the exponential map
2 n
exp (A) = ) A A e L(s)
. 120

and the logarithm map

[0 0]
n
log ) = » (- 1EIL pegl mcn
=1

3.1 Signal Processes and Observation Processes

It has been shown [21, p. 269] that the circular Brownian motion on
S1 can be constructed by taking the projection modulo 27 of the standard
l1-dimensional Brownian motion onto the unit circle Sl. This method will
now be used to construct a contir-.ous signal process on S1 and to
formulate the mathematical model of a sensor (an observation process)
to be used in this report.

We will adopt the following notation
(8, A, P)

a probability space

s - a positive real number
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it

the family of real-valued continuous functions, a, on

[0, s] such that a(0) = 0

#; = the Borel o-field of C}

C; = the family of 2 x 2 orthogonal-matrix-valued continuous
functions, A, on [0, s] such that A(0) = I, the identity
matrix

%g = the Borel c-field of C3

2

Lower case letters denote elements in Ci and upper case letters denote

elements in C; .

Let J:C] - C be defined by

cos a(t) sin a(t)
(J(a))(t) = exp(a(t)R) =

(28)
-sin a(t) cos a(t)

for a € Ci and t €[0,s]. Itis easily seen that J is @f—measurable

and bijective. This bijective operator will play a key role in this section.

Intuitively, J can best be illustrated by Fig. 3. A point on the unit circle,
S°, can be represented by either the angle 8 € [-7,7) it makes with a

fixed radial axis or the 2 x 2 orthogonal matrix exp{(Rf). Therefore, in

the first representation, C; is the family of piecewise continuous functions
@(t). such that at any point of discontinuity the right hand limit cf

6 is + 7, while the left-hand limit is ¥+ 7 (see Fig. 3).

Each continuous curve a(t) on Rl gives rise to one and only one

piecewise continuous curve 0(t) lying between 7 and -7, of which the

continuous segments are obtained by translating the corresponding

segments of a(t) an integral number of multiples of 27 (see Fig. 3).
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' 9(t) | |_~6(t)
-
Figure 3

Conversely, each piecewise continuous curve in C2 gives rise to one and

only one continuous curve taking values on Rl which is obtained simy.y by
piecing the continuous segments together., This intuitive observation

illustrates the bijective property of the operatcr J. Thus a continuous

R ARE BAAY S AR AN T tAdia i om, e VGRS,

4
random signal process on S1 which is described by an «/-measurable
function X:Q-— C; corresponds to a continuous random signal process
on Rl which is described by an «#/-measurable function x:Q2—> Ci such §
: that 2
X(t) = (FxN(t) , telo,s] . (29) %
We now define a random process z:Q0—» Ci by the K. Ito random 3
differential equation, 3
é.
R 1/2 2
dz(t) = m(x(t),t) dt + q dw(t), 2z(0)=0, (30) 3
::fj
- 4
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where m:R, x R; —3 R, is Borel-measurable, qQ:R, —? R, is positive
and measurable and w is the standard Brownian motion on (§,./, P),in-

deper:lent of x. Let Z:Q —}C; be defined by

Z(t) = (J(z)(t) . . (31)

Applying the Ito differentiation rule, we obtain the following Ito matrix

differential eguation:

o) 0 dw(t)
dZ(t) = Z(t) dt + Z(t) (32)
-m@n %M ~dw(t) 0
Z() = 1,
where mit) 4 m(x(t), t) and the diagonal terms _9% are the second order

correction terms which keep Z on the circle. This equation is the
mathematical model of the sensor to be used. We note that the input,
x(t) to the sensor is not the dynamical state X(t) of the rotational signal
process on the circle, but rather the angle the rotational process has
swept.

The physical motivation for this sensor model comes from the fact
that in observing a rotational process (for instance a gyrescope recording
rotation about a fixed axis) our measurement contains information on the
total rotation, x(t), not just the orientation, X{(t). In some applications,
such as the gyro problem mentioned above, we wish to extract knowledge
of orientation from knowledge of rotation, so it is proper to regard X(t)
as the signal process. Utowever, in other applications, such as FM de-

modulation, our interest centers on the x process, and in these cases, we

3
E
<]
2
3
<
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may regard x as the signal,

3.2 Conditional Probability Distributions

In this subsection, we will derive equations for the conditional
probability distribution of the signal process given observations over some
time period. The approach of this section is measure-theoretic in nature,

and the major results are summarized in the statements of Lemma 2,

Theorem 4, and its two corollaries.
Let us denote {z(1), T ¢ [O,t]} and {Z(1), 7 ¢ [0,t]} by =

and Zt, respectively. We note that Zt = J(zt). Since J is bijective from

t

Cg to C;. the o-subfield of ./ generated by 2% is the same as that
generated by Zt. In other words, the information carried by 2z~ and Zt
is the sanmie. That o¢-subfield will be denoted by .ﬁli . The ¢-subfield of
A whic'. is generated by X, = X(\) (the subscripts \,s,t denote that the
prcc:sses are evaluated at these times. ) will be denoted by alx.
Let P__ be the conditional probability measure on (Q,JJX) given
t .
o, defined by P_ (A,0,) = PALL)w,). for A e, w, Q. Let P__
be the conditional protability measure on (Q,.,dtz) given dx, defined by
P, (B,u;) = P(Bl)w,), for B esss, u) € The restrictions of P to
t s
o, and "dx are denoted by Pz and Px’ respectively. Let B, and P
be the induced measures on (Ci,.@i) by 2z
‘s t t .
the conditional measure B, ON (Cl,ﬁl), given X)\, by ;sz(B,wl) =
-1 t
P(z (B)].,ulx)(wl), for Be®B, v, €

It is known (ref. 15) that Hoy =By A1, where =~ denotes

equivalence of measures, and

t and wt, respectively. Define

2SN LA AR SATTISN N «
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dp

zx

. ]
j
. 24
6 »»;&&&gmhmzmmmmwﬁ

4 AL a5 D22
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et JA) = é“x[Gt]X)\:A)\] (33)

W

z ot - t

. (£7) = é°x[e] (34)
w

L where é’x means taking the average over x and

Ot _ 1 ¢ m2 m
= exp (-3 é B mar + [ 2 n) ag @) (35)

where f denotes an Ito integral.

Hence

t
e dP,__ dp_ € (071X, =X () )
dP (WZ) 1) = ?ll—z— (Z (wz). }%\(wl)) = P (Gt) (- O)
x
Br

where

- ' ot - 1§ m2 4 m
: exp (-5 LT(T)d—r + f) 2 (1) dalr, ) (37)

NS

dP

A . We note that dP (w

Bayes rule from ref. 16, we obtain

w,) is udh,jl -measurable. Applying a general
Wy P 8

R, amﬂfgmﬂam..‘.m'&::ﬁr.mrl.z\é&lmwfu’mab;a\‘_ PRI L

e
N
SR

apP__ aP__
dP " pu,) = gp Wg0y) ' (38)
2,

IR DTSt ¥

Let us denote the family of 2 x 2 orthogonal matrices by MO‘
z be the conditional

3 measure on (M .‘ﬂ) given ,d defined by v, (A wz) = P(X\ (A)Idt)(w
Y

The

o BRI AR

set of induced Borel sets is denoted by J? . Let v
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for A € 30, w, € 2. Let Vo be the measure on (Mo,.%()) induced by X)\

Then it is easily seen that

dv ap & 0%1X, = X (u,))
TEE (X, ), Z0,)) = 22 y,0,) = E—2 e i LIPS
x x €.0°)

where 9t is defined by (37). Summarizing what has been shown, we have

the following lemma.

Lemma 2: Consider the observation process described by (32). The

conditional probability measure for the signal X)\ given the observation Zt,

Ve, 18 then absolutely continuous with respect to Vs the a priori measure

for X, ,and, for VAR cl and X e M,,

dv &_(0t[x, = X)
dvxz (X, Zt) - X ); (40)
x é"x(e )
where
ot - (itﬂ"‘—z-()d+t'-’ﬂ()z' az 41
-exp-'zéq'r'r%‘qT[('r) (M];5) (41)
0
[Z'('r)dz('r)]lz = [1,0] Z'{7)dZ(7) . (42)
i

If the density function of v, exists and is denoted by p£ (-), then it

follows from Lerna 1 that the density function p ('[Zt) of v, , eXists and

(e

and can be expressed as follows:

€, 0%, = X) pyg (X) -

pé)\(x [z =

t
é,.(6")

h
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where ot is defined by (41). Let x ¢ Rl be defined by exp Rx= X and

-1 < x<7. Then by simple calculations,

t
& (0"|x= x + 2k, k=1,2,...) p}\{)\(X)

"

t
p, (X|2Y)
X gx(et)

s & (0°|x0) = x+2kn) p__(x+ 2ler)
> (44)

it

- ot ’
k=-m é‘x(G )

where P, denotes the density function of x(\) . This completes the
X
proof of the following theorem.

Theorem 4: Consider the observation process described by (32). If the
density function p of X(\) exists, then the conditional density function
X

Py (-] Zt) exists and can be expressed as follows

~)

[0S} é'x(et [\ )=x+2km)p, (x+2ki)
X

[0 o]
p. (x|zh - p. (xt2kr|zh =
X X
N 1\
k=-00 k=-00

&.6"%

(45)
where 6% is defined by (41), P, denotes the density function of x(\) and
x is defined by exp Rx = X and )\—1r <x<m.

It is appropriate to remark that one can easily derive the stochastic
partial differential equation for the conditional density pgs)\(XI Zt) using
Theorem 4 and the well-known equation (refs. 19, 20) for px)\(x-.LanIZt),
-0 < k< . For economy of space, this equation will not be displayed.
However we remark that when m(x,t) is periodic in x with period 27, the

equation is in a form similar to the Stratonovich-Kushner equation with

r e h——————
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, p. replacedby p_ .
*\ X\
Using Theorem 4 and the well-known fact (refs. 17,18) that the
! smoothed and the predicted densities can be expressed explicitly in terms
of filtering, we can easily obtain the following two corollaries.
Corollary 1: The conditional smoothed density p, (X I'Zt), for t; <\ <t,
~\
may be expressed in terms of the conditional filtered density as follows:
£ @ 2
2 |zt (x+2kn| Z") s a1 s g
K p(XZ:pr exp ——dl -5 ——ds
X\ L Tx a(s) "s 2 4 a(s)
E =-® (46)
5 where x is defined by expRx=X and -1 <x<7 and
; aI_ = [2Z'(s)dZ(s)]}, - Ms)ds (47)
o, = fls]x = %) - A (48)
b £ M(s)= &m(s)|z%) (49)
A s
m(s |x, = x) = &(m(s)| 27, X =x) . (50)

Corollary 2: Let X be a Markov process with given transition density
p, (X|x(t)= £). The conditional predicted density Py (x| Zt), for ty < t< )
PO ~\

may be expressed in terms of the conditional filtered density as follows:

p, (X|25) = +fm p, (X[x(t) - £)p, (£]2z5ag (51)
Z\ fo  Ea x¢ '

v . s e 0
el r Aol e IR
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3.3 Optimal Estimation

In the previous subsection, the conditional probability distributions
were studied. A variety of estimation problems may be studied based on

those conditional distributions. However, some estimation problems on the

circle can be directly solved by using results in vector-space estimation

<
5

theory. In this subsection, the w.:ll-established linear optimal estimation

theory will be used to deduce recurcive equations for optimal estimation on

AR

S1 and thereby illustrate the approach. ,(

The estimation problem which we will mainly be concerned with in

TSRy

this subsection is that of constructing a 2 x 2 orthogonal random matrix

A t
X(\ It) as a .%'l-measurable functional of Zt such that for a symmetric

TR

B

cost function ¢ defined by eq. (7),the following inequality holds for all ;

5,
SRR

3 dﬁ{z -measurable 2 x 2 orthogonal random matrices M: :
; a t t !
E@XMN), X0 [t)][2Z27) < e@EMN), M2 . (52) ;
5 :
E in which ®(X,,X,) 2 $(0), 0 being defined by exp R = X]'X, and

-1 <0 <7 (i.e. 9 is the angle between Xl and XZ).

We have seen, at the beginning of this section, that a continuous

SRS P £t R B G S S AT AR 8. A S Oty Wi Vet ns

s

i . < g . .
random process X on S° can be identified with a continuous random process

4 x on,Rl via the bijective mapping X = J(x). We now construct a signal E
\ process X on Sl by injecting a linear diffusion x into Sl, x satisfying g
# dx(t) = a(t)x{(t)dt+ b" “(t) dv(t). x(C)=10 (53) ;

where b(t) >0, ¥t e¢ T, and vis a stondard Brownian motion, independent

of w, the observational noise. Applying the stochastic differentiation rule,
; we obtain the following stochastic differential equation for our signal

4

3

|

E

s .
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process X = J(x):
1 ¢ ¢ 1/2
dX(t) = - 3 bHX(E)at + XOR®[ f(exp [alr)dr)b/ “(s)dv(s)]dt
0 s
+ b 2avin) (54)

X0) =1

t t
where we note that x(t) = t(exp /a(’r)d'r)bl/z(s)dv(s).
s

The observation process to be used in this subsection is taken to be Z,

satisfying the stochastic differential equation:

- ﬂ%t—) c(t)x(t) 0 dvr(t)
dz(t) = Z(t) dt + Z(t)
—clt)x(t) - -‘1529 -dwl(t) 0
(55)

Z{o) = 1
As shown in subsection 3.2., Z can be identified with 2z = J-l(Z) satisfying

dz(t) = ct)xtyat + a1/ 2(t) dwit) (56)

z(0) = 0

Note that the equations for X and Z are both bilinrear in form. Moreover,
2t and zt generate the same o¢-subfield ,dz in (R, P). Hence
g(x(x)lﬂtz )} is both a.‘ﬂi-measurable functional fl of zt and a -%;-measurable

functional fz of Zt, and
t - t
529 = futEh . (57)

Let &, and 20.[t) denote £,(2") = &(x(A)|2%) and £,(2°) = &axn)|zh

respectively.

.
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We will first study the filtering problem, where o =t. Then the

Kalman-Bucy linear filtering theory yields immediately

d

ple = (0%, + Kit)e(t)g™ (t) (dz(t) - c(t)Ry |4t (58)
Rit) - 2a@K) - cA0q K> (® « b (59)
K(0) = 0

In view of (57), we obtain the following lemma, which not only leads to the
solution of the above stated filtering problem but also applies directly to
optimal frequency demodulation (see Section 5).

Lemma 3: Let the stochastic process (54) be the signal process and the

stochastic process (55) be the observation process. Then the filtering

equations are

dR(t|t) = a(t)x(t][t)dt + K(t)e(t)g "1 (¢) ([Z'(t)dZ(t)];, - c(t)x(t]t)dt)

(60)
X(0{0) = 0
- . 2, -1,..,2
K(t) = 2a(t)K(t) - c<“(t)q” (£)K"(t) + b(t) (61)
K(O) = G

and the conditional probability density is given by

pxt(XI A

1 ) . ,
V RN R 2
o exp | ®r (% R[N _ 62)

In view of Theorem 4, we see that Py (XiZt) is a folded normal
~t .
density. By Theorem 2, it follows that P, (XiZt) is unimodal with mode
~.t
at exp [X{t|t)R] and is symmetric about it. We may now conciude from

ﬁ
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Theorem 1 that for a cost function defined by (7),
i E@X(t), expixt|)R])[2Y) < @), M)|zh (63)

: for any le-measurable 2 x 2-dimensional orthogonal random matrix M.
Since exp|X(t[t)R] is easily seen to be a ‘ﬂtl-measurable functicnal of Zt,

it follows that the optimal estimate of our signal process is

Rit|t) = exp [X(t|t)R] (64)

Differentiating this with respect to t yields
e[t = -3 KW ma T ©Xe e[ oR(@® - Ko e w)

L 2, . -1 -1
i { @ - kmeEma ekl (S)[Z'(t)dz(t)}l?_]dt
S

+ Kiea™ [Z'04az1)],) - (65)

Summarizing what has been shown, we obtain the following theorem.
Theorem 5: If the signal process X and the observation process Z on

Sl satisfy the following stochastic differential equations:

t t 7
dX(t) = -3 b(t) X(t) dt + X(OR(a(t) “ (exp ][a('r)d'r)bl/z(s)dv(s)J at
S

+ b1/ 2(g)avity) (66)
X0} = I
t
- 9~f,_9- cti) [Tg X'(s)dX(s)le]
dz({t) = Z(t) at
t .
-c(t) [f) X'(s)dX(s)]lz - -‘L‘ZE)-
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2
3
dwi(t) ﬁ
(67) Z

0

Z) = 1

where w and v are independent standard Brownian motions on Rl, then
the optimal estimate )'E(t[t) in the sense of (52) satisfies the following

stochastic differential equations:

dﬁ(t[t) = - % Kz(t)cz(t)q'l(t)}?(t[t) dt +

A - t -
R tloruatn -~ kOC@a o) | flexp [@ir) - Knwa )
0

m'\ﬂ'

-K(s)c(s)q-l(s)[Z'(s)dZ(s)]lz] dt + K(t)c(t)q°1(t)[Z'(t)dZ(t)]lz)

o orarA YA R VIR Bt R A s VA K s N RSN T m MR A S S b le i s S 0t

(68)

. 2, -1, .2

3 K(t) = 2a(t)K(t) - =~ (t)g (t)X(t) + b(t) (69)

K{0) = O

The conditional probability density is given by :
© :
> t 1 1 A 2 b
& P (XIZ) 5 em———— z exp [- 55— (x + 2kn -x(t[t)) ] z
x4 Veake) & Z2K(t)
3
4 @

E 2.2

] 1 1 kKTK™(t

P + p Z exp [-——Z———l]cos k(x-;\c(t{t))

k=1

_ (70)

where x is defined by expRx~-X and -17< ‘7.

»7 The cxpected error ﬁ(Q(X(t)‘)’f(t[t))) of the optimal estimate ﬁ(tit)
.:. can be obtained by straightforward computation with the aid of (70). Some

. .
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examples are given in the following corollary.

P

Corollary: Let? be defined by exp RO =X and -7 <0 <7. Then

Eoq . (i) for ¢f)=1-cos B ,
; - 1
E@X(t), X(t[t) = 1 - exp (- 5 K(t) (71) :
E (ii) for $(0) = (1 - cos 6)°
u e@x (), Re:[o) = 3 - 2 exp (- B + 3 exp (-2K(1)) (72) ;
fs 3
E 2
: (iii) for §(0) = p(f), the Riemannian metric, g
3 i )
- 1 4 % 1 2k+1) 2Kt ~
£ A

3 s@x), Xelvy = 5-2 z —L exp- @RtDTRE) | (73

oo (2kt1) 2

: . . 2

E (iv) for $(9) - p 0),

: s@x®, Rl = Z- - [ > e ( k—‘—‘@)] (74)
3 k 2 3
7 k=1 b
, We recall that K(t) = &(x(t) - gt[t) . From this Corollary, it can be x
f seen that for the cases (i) ~ (iv), (?(@(X(t),}?(t[t))) is 2 monotone increasing

" function of &(x(t) - Qtlt)z' It has been shown in Section 2 that this property

3 holds for all ¢ defined by (7).

\ We note that the optimal filtering equations (68) and (69) are complex

in form. The concept of the filtering procedure, however, is quite simple,
and is best illustrated by the block diagram of Fig. 4.

The observation process dZ first goes through a nonlinear transformer.
The transformed process [Z'dZ]12 then goes through a Kalman-Bucy

linear filter. Then we inject the filtered process J'E(t[t) into Sl via the
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injection mapping J. The output f{(tlt) of the nonlinear injector is the

desired estimate.
The same approach can be used to solve the smoothing and

prediction problems. The solution to the predictior. problemn is {rivial and

hence omitted here. For the smoothing problem, vre first recall (ref. 22)

that for 0 <\ <¢,

&x}t = Axﬂ)\ + K(\) f(exp Z(a('r) - K('r)cz('r)q'1(7))d'r)c(s)q-l(s)(dz(s)

- c(s)ﬁslsds) (75)
By (57), it follows that
|t = XON) + KO ]E(exp JZ(a('r)-K(-r)cz(v)q'l('r))d'r

- c(e)a”He)([21(8)aZt8) ]y, - clsils|s)ds) (76)

We note that the conditional probability distribution of x(.) given
7! is Gaussian. From 'Theorem 4, it follows that Py x| Zt) is a
~\

folded-Gaussian density and hence unimodal. As in the filtering case,

b aiadt .
CANHON I o K N i A R b AN A SR B S N . 3
4 i f2id Bt S N AT S A RN 1 S A SRS ANt A s ST AN Pt s RIS e A T 4

R0[t) = exp GO[OR) . (77)

Substituting (76) into (77) thus yields

ﬁ(x[t) = ﬁ(x[x) exp ‘RK(X) {(eh Z(a('r) - K(T)cz('r)q-l('r)d'r)

S

- e(s)q " Ns) ([zv(s)dZ(s)]12 - o(s) f[ﬁ'(-r[vr)d)?(«r[ﬂ]lz ds)}
0

(78)
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A S 4
where we have used the identity X(s|s) = f [X'('r['r)dX('rI'r)]12 .
0

Summarizing what has been shown, we obtain the following theorem.

Theorem 6: If the signal process and the observation process are the

A
same as in Theorem 5, then the optimal estimate, X(\|t), 0<\ < t, in

the sense of (52), is given by

A A b 2 -1
X(\t) = X(\|\) exp{RK(M\) F (exp ((a(‘r) - K(t)c (T)q " (1))dT)

-c(s)q'l(s)<[z'(s)d2(s)]12 - c(s) Z[ﬁ'(’r[ﬂdi('r[v')]lz ds> { ,
(79)

where f((’rl’r), K(7) can be obtained from (68) and (69).

The conditional probability density of X(\) given Zt, the expected
errors ¢S°(<I>(X(\),§(()\|t)), the stochastic equations for f(()\|t) for fixed-
point smoothing, fixe;d-lag smoothing, and fixed interval smoothing can all
be easily obtained by straightforward computations., They are left to the

interested readers,

3.4 Random Initial State

In the previous subsections, the initial state of the signal process X
is assumed to be X(0) I, the identity matrix. This is obviously not a
practical assumption in some applications. In this subsection we will
consider the case in which the initial state is a random variable. We will
denote the signal process by Y in this subsection, and assume that

Y{0) - ¥, is a random variable independent of the observational noise w.

G

We observe that the input to the observation process (32) at time t

is not the dynamical state of the signal. It is the angle that the rotational

e
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process represented by the signal has swept over the time interval [0, t].

Taking this viewpoint, our present protiem can be solved with some

modification to the previous results.

Let y(t) denote the angle that the signal Y has swept over [0,t]. Itis

easily seen that

y(t) = [[:)Y'(s)dY(s)]12 (80)
Define a rotational process X by

X(t) = Y5'v() (81)
Then X(0) = I and, as before, we may define

xt) = GrEnw = [ [Z X'(s)dX(s)], - (82)

yit). In other words, the angles swept by X and by

We note that x(t)

Y over [0,t] are the same. Hence (32) can also be used as the

observation process for our present problem. The conditional distribution

of X(\) given observation Zt of the form given in (32) can be determined

by the application of thc previous results.
We note that YO and X(\) are conditionally independent given zt,

If the distribution of Y0 and the conditional distribution of X(\) given

zt are both folded nurmal, then the following lemma easily leads to the

conclusion that the optimal estimate ’/f\()\lt) of Y(\) given Zt is equal to

’/{\Oﬁ()\[t), where §0 is the mode of the distribution of Y0 and }?(x[t) is

the mode of the conditional distribution of X(\) given zt,

Lemma 4: lLet A and B be two independer. 2 x 2 orthogonal random
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K eEeman AR o St v O 8 ey AE

U, Ty . o
EETRA R A IR R 2 QY AP PY LY CH PP ) L VTR AR R\ o UOISTRoN ST w‘mi:m‘f.'&*ﬁ
SENSA PO "

CLARAR L b VA S A AL B et ed LN KA T

Iy

DAl & o

Lodd

3 'h»:e?m&mmwrmvmum;mx:;:h‘z?.w...m.svr.-.f;m#:ﬁ"’*t 3




i

VAP EINIITE

T ST e BB T T S I AT SIS ST AT E S PATA
e s e s e e L S e S S S C S G S

-44.

matrices which have folded normal distributions with modes A and B
respectively. Then AB is a 2 x 2 orthogonal random matrix which has a
folded normal distribution with mode egnual to AB

Proof. Itis easily seen that there exist unique real-valued normal random
variavles a and b such that &a, &b e[-7,7), A - exp Ra, and B - exp Rb.
Then AB = exp R(a+b). Obviously a+b is a normal random variable. Hence

AB is folded normal and the mode of AB is exp[R &(a+b)] = exp [R &a)]s
|
exp[R&(b)] = AB.

3.5 Multichannel Estimation

The results of the previous subsections can be extended to a large
class of problems -- those involving processes evolving on abelian Lie
groups. It is well known (ref. 23) that a given abelian Lie group G is
isomorphic to the direct product of a number of copies of the circle and a

number of copies of the real line, i. e.
G ~ R%(sH™

where (Sl)m is usually called a ''torus''. The diffusion processes on this
type of space have been used to model some interesting satellite and
pendulum systems in ref. 46. Analogous to (28), a bijective mapping

I HCh™ — (G x (C5)™ is defined by

T @ = 3,00, 2 (6, G, )0, .,E@, )] (83)

for a € (C:ls)n+m’ a; being the ith component of a. Thus a continuous random
signal process on G which is described by an .//-measurable function

X:Q— (Ci)n x (C;)m corresponds to a unique continuous random signal

process on R™™ hich is described by an /-measurable function

B MRS s

B
:y\wr.«v.ﬂiau.{fﬂ:mmhww%mmxam-.-.w,e\,tpmme:)m\x}’am‘;:uk;’ar.sz}%asﬁime:».‘&axm;m\‘e&nmu..m-m.-n‘,\;m!;mf‘f

AR LY AN prcht ¥ KRR N NI U s e e 255 2

Srilecude La et

E:mwf.mmmaﬁmmmwgizmﬂm,zmmmmwr~ :



T S P R R

AR RN S PR SR N G F IR réRr v

SRR P AR R IR SR T R 1 T R N R P T E TR L5 VS e s RS AT

-45-

m+n such that

x:Q—> (ci)
X(t) = (3__ ()8, tefo0,S] . {84©

The mathematical model for the sensor can be obtained by first using

Jnm to inject the following vector random differential equation into

R® x (Sl)m

dz (t) = m(x(t), t)dt + dv(t) (85)
z(0) = 0 ,

and then differentiating Z(t) = (J’nm(z))(t) by the stochastic differentiation

PR T Y TrTT

rule to obtain a set of stochastic differential equations of which the first n

equations are the same as the first n equations of (85) and the last m
equations are bilinear 2 x 2 matrix differential equations in the form of
(32). This calculation is straightforward and thus we will not display those
sensor equations. Because of the bijective property of Jnm’ it is clear
that the estimation analysis in the previous subsections can be easily
generalized tc this general abelian case with little modification. For the
special case in which x is a linear diffusion and m(x{t),t) is a linear
function of x(t), what has been shown simply asserts that the domain of the

celebrated Kalman-Bucy filter includes estimation on abelian Lie groups.

3.6 Examples

To illustrate the ideas of the preceding discussions, we present the
following examples.
Example 1: Consider a cylindrical shaft of unit radius being spun about its
longitudinal axis by an electric motor. We assume that the total rotation

of the shaft, Xy is related to the driving force u by the differential

TAde WA WLite ey [Ty . Sa by 3 T o 5 Lo o e T el ¢
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equation

with both x,(0) and 5:1(0) equal to zero. The last term on the
left-hand side of this equation can be thought of as a torsional spring
effect, which helps to stabilize the servo loop that drives the shaft.

The driving force u consists of 2 known driving force and a disturbance.
Th= known driving force adds neither difficulty to the analysis nor
complexity to the solution. Thus, for simplicity, we assume that the
known driving force is zero and that the disturbance is white Gaussian
noise -- i.e. u= Vv, where v is a standard one-dimensional Brownian

motion. Setting X, = :'cl we obtain the vector stochastic differential

equation
dx(t) = Ax(t)dt + Bdv(t) x(0)= 0 ,
where
xy ro l'\ 0
x = A - [ B =
X, S 1.

Suppose we wish to estimate the orientation of the shaft The
orientation is determmed by the quantitiecs sin x (t) = sin [ xz('r)d'r and
cos x, (t) = cos fx (7)d7. Suppose alsc that we have some means of
measuring these quantities, but that noise corrupts the measurements, so
that our actual measurements are zl(t) = cos( ‘é 2('T)d'r+w(t)) and

(t) = sin( /x (7)dT +w(t)) where w is a standard Brownian motion

BN LA o N AN i o o B S St ANPGRS e 6 o ey s




N S R S P T Do T IR e T AR e oo e e
SR R TR I SR DT Y A B SRR A RS ST B SR T ARSI SR A P Ao N S E T v R A R

3% R TR R T PO RIS B RS S A T

WS B R e ?‘w?ﬂ{.’f&'*%

-47-

process independent of v. Using the lto differential rule, we

obtain the sensor equations

dzl(t) = - % zl(t)dt - xz(t)zz(t)dt - zz(t)dw(t); zl(O) =1

dzy(t) : - 3 2,6t + x,(t)z (DAt + 7 (dw(t); z,(0) O

Using the results of this section, we have the following cptimal

filtering equations

dk(t]t) = AR(t]t)dt + K(t)e' [y, (£)dy,(t) - yp(t)dy,(t) - c(t[t)dt]

X(0}0) - ©
where
c = [0,1]

and K is the 2 x 2 solution of

K(t) = AK(t) + K(t)A' - K(t)c' cK(t)+ B B';K(0) = 0
Finally, the optimal estimate of the orientation -- i. e. the optimal estimate

of
cos xl(t) sin xl(t)

Xl(t) = exp(xl(t)R) -
-sin xl(t) cos xl(t)
is

X, (t]t) = exp &, (t|IR)

The steady state filter has the saine form as the time-varying filter,
but K(t) is replaced by the positive definite solution, Koo . of the algebraic

Riccati equation
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The solution to this is

J2 -1 0
0o J2-1

! If we formally divide dz; and dz, by dt and take él and iz
to be our measurements, we get the following block diagram (Figure 5)
for the signal process, observation process, nonlinear preprocessor,

optimal filter, and nonlinear postprocessor.

Example 2! In this example, the nonlinear signal process and the nonlinear
observation process of a certain system turn out to be processes taking
values on the abelian Lie groups S1 x R2 and S1 x Rl, respectively. The

signal process is four-dimensional, satisfying

1
dx1 = -3 xldt - x2x3dt - xzdv
dx, = -lxdt+xxdt+>'dv
2 272 173 "1
t
Xq 0% - 4x3(s)ds + v
x4 x3 -l-x4

xl(O) - 1, xZ(O) 2 x3(0) = x4(0) =0

The sensor equatious are

t
I § ) . . ,
dz1 = -5 zldt - (Zx4 + #g - .Z.\l(s)d:sz(s) + 4x2(g)dxi(s)) zzdt- zzdwl

RG-SR G 2 T,
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1 t t.
dz2 - -3 zzdt + (21(4 + X3 - 'éxl(s)dxz(s) + () xz(s)dxl(s))
. zldt + Zldwl

t t
dz;  ( _{) x, (s)dx, (s) - /oxz(s)dxl(s)) at + dw,

21(0) = 1, ZZ(O) : z3(0) = 0

where wy and w, are standard Brownian motions independent of each

other and of v. Our problem is to find the least-squares estimate % under

the constraint 52? + Q; = 1. Rearrangements of the first two signal

equations yield
dx dx2 % X x

- . % at + R{xdt + dv)
-dx2 dx1 —xz %y —xz x1

1

Comparing this equation with (54), we see that its solution describes a

rotational process with a single degrece of freedom. Let y(t) denote the

3

total rotation completed at t.Then xl(t) = cos y{t}, xz(t) = sin y(t),
dy = x3dt + dv - x]dx2 - xzdx1 , and tuhe first twn sensor equations become,
after some rearrangements,

dz1 d:-.2 2

- (--Z—I.dt‘.‘ R(2x4+x,.- y! dt + Rdw
dz -

)
) 1
2 51l %2 % g

-dz

]
P
8
j
3
%
:
3
}g
E
3
3
3
%
S
]
2
i
;-'i
3
:
_?.
E
¥
i
¥
%
3
%
Z
4
¥
ol
2
g
g
i
3
E
2
2
&
-
%
3
3
2
3
3

We rote that the system is not cbservabie with just the Sl

obsarvation pair {zl, zz} or with just the Rl vhservatior z,, but that

3'
the system is observable when both observation prccasses are present.
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Following the approach developed in this section, we first obtain the

g
|
;

following optimal filtering equations:

& & o - e
d Y “leZ zzdz1 Y
A _ A 1 A
dx3 = A X3 + KC dz3 -C X3 dt
A A A
dxy 4 x4
A A, A
[§(0), £(0), 2,(0] = 0
where

K= AK+KA'-KC'CK+ BB!

R ) NN LY ;‘ t, Iy
3 B RO KR R et 4 fiebor o WM KA RIS LED MMMdmmMmem&umm

RN N [ RV . VIRRS
mmmum;_mmwamamammm‘mxhmmmmmwm«ummamwamw oAl

K(0) = 0

0 1 101 2
A =1-1 0 ,B=O, C =

0 1 1 0 100

With help of previous results, we see that
&l -cos (y-P) < &1 -cos (y - £))
for all z-measurable £. Hence

% &l(cos y - cos 9)2 + (siny - sin ?)2]

1 - &lcos (y - §)] <1- &fcos (y - §)]

% &[(cos y - cos E)Z + (sin y - sin §)2}

t » - . A
for all z -measurable §. This shows that the least-squares estimates X

1
and 3?2 under the constraint ?:f + 3‘:; = 1 are given by
A A
%Xy = cosy

A - A
X, - siny

The block diagram of the optimal filter is given in Figure 6.
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4, Discrete Time Estimation

We ncw wish to examine the problem of estimating a random
1 . . .
process on S , given a series of discrete measurements. A natural
model for the measurement process is a discrete approximation to

the continuous measurement process discussed in the prcceding section.

We approximate the continuous measurement process
dz(t) = m(x(t),t)dt + Jq(t) dw(t)
Z(t) = (J(2))(t)
by the discrete eq.uations
Ayk T Ve " Y1 T mk(xk)At+‘/q_k A“k
Y, = exply R)

where At is the inter-measurement time, x, =x(kat), 9, q(kat) ,

k
mk( +)=m(- , kAat) , and AW =wlkat) - w( (k-1) at) .
We can rewrite the Yk equation as
Yk = Yk-l exp(AykR) , (86)
and we see that, given the measurements Yl' . e ey Yk-l . the new

information contained in Yk is equivalent to the new information in

-1
Yk-l Yk . This information is easily sezn to be equivalent to the

knowledge of

:. Zyk 4 ay, mod 27 , (87)

where we adopt the convention ka e [-m,7m).
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It is here that we see a marked differcnce between the discrete
and continuous problems. In the continuous time problem, the
continuity of the stochastic processes results in our knowing dy(t),
not just dy(t) mod 27 . However, in the discrete problem, the
ambiguity associated with our lack of knowledge of the number of
rotations that occur in the At between measurements, is reflected
in the fact that our information is just Ay, mod 217 .

With this discretization as motivation, in subsection 4, 1 we
will formulate a class of single stage estimation problems on Sl ,
and will derive conditional density equations that lend themselves to
a relatively simple physical interpretation when considered alongside
the preceding comments. In addition, extensions to the multistage
problem are discussed.

The results of this subsection provide a striking example of a
class of systems for which the continuous time problem is decidedly
less complex than the wiscrete time problem. Thus practical
suboptimal schemes are necessary in the discrete time case. To

this end, an appendix has been included, in which the relationship

between the discrete and continuous problems is discussed. Motivated

by this discussion, several suboptimal schemes for the discrete
problem are discussed at the end of subsection 4.1 ,

In subsection 4.2, we will use Fourier series analysis to study
a more general discrete time estimation prublem on the circle. The
form of the conditional density equations will suggest a simple nmiethod

for designing suboptimal filters for any cstimation problem on S1 .
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' 4.1 Conditional Distributions on Sl and Optimal Estimation

PN

Suppose we are given a random variable x, taking values in R~ ,

with a priori density px(o,) . We can "project' this variable onto the

RALIn (g ranh

circle by the equation

DY PO

6 = xmod2n

Thea priori density (with respect to the standard (Haar) measure on
S1 ) for 6 is given by the associated projection map
+ oo

pg('a) = 2 p, (T +20m) o e [-m,m)

n=-o

t
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We suppose that a measurement of the form

YV = (m(x)+v)mod2n 3 y e [-m,m)

is taken, where v is a random variable on Rl , independent of x

(and thus 8), with density pv(\)) , and m:R1 -oRl is a Borel measur-

able function. We also define the auxiliary, unobtainable ''measure-

ment"
y = m(x) +v

which has a density function given by
4o

p,(B) = f p, (8 - m(u) ) p_(a) du

AL M MY e o oo R e PN RO Y00 B ity o AN AU e S AU I A,
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Then we have the density for ¥ :
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We wish to compute the conditional density pglﬁ); (?ilg) , Or,
equivalently, the density pxln};(alfg) . Also, we wish to know if this
density has a particularly nice form if m is linear and x and v are
normally distrib-ted,

We will derive somewhat more general result.s, and will apply
them to this problem. The arguments in this section are measure-

theoretic in nature, and are summarized in the statements of
Theorem 7, Theorem 8, and their corollaries. The solution to
the specific problem stated above is given in the statements of the
g two corollaries to Theorem 8.

We consider the probability space (Rl..,nll, Py) where dl is
L the o-algebra of Borel measurable subsets of Rl , and Py is any
A probability measure on.<~1l . We define two random variables on
this space.

j©) = ©

; V(W) = wmod2n (v e [-m.7)

s

;} Then 'J'/y , the 7-field generated by vy , is -, and.n/.t\; (defined analo-
gously) consists of the following sets

X 2 "/"Vt = X‘“ [-7.7) A cw and

; -

E A= U (A +2nm)

. n=-o

e | ~

E i.e. A is "periodic" in form and thus is determined by A .

Qi 2ng
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We define a sequence of measures on the measurable space

([-n. 1) ,&), where & is the 5-field of Borel subsets of [-m,m) :

A
P?(S) £ P (S+2
y() y( )
= N s n
P (S) = P S S
y() 2, y() e &

clearly Py(S) = 0 P;(S) = 0, which means P;1 is absolutely
continuous with respeczt to Py (P;<< Py) , and thus, by the Radon-
Nikodym Theorem, {24], [25], for each n there exists an $~measurable

function dIP‘?/dPy , such that

ap® ~
P; (s = | —— () apP_ () ¥Seq

S dp
}'

We wish to compute the conditional probability measure PYI ¥
for y given ¥ . The following theorem shows that this conditional
measu-e can be expressed in a form that reflects our uncertainty as
to the ntmber of integral multiples of 211 that separate the values
of y and Y.

Theorem 7: The conditional probability measure

Pvl-;(qs) = P (yeCly=p) 5 Be[-n.m), Cew

can be expressed in the form

~ Vﬁ ~ dpn ~
~ {C = X 2 8
P13 Cl8) DI “"’—‘Ldg (8) (88)

where YC is the characteristic function for C .

5
SAKR A (2 P dh T (e P AR RN 30, m\!‘u‘mc‘.L\.'/.}\1,&.:(..,.-‘.'?;4_‘».,.»5:&& w::}ﬂ%ﬁﬁ
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Proof: From the definition of conditional expectation, [26], [27], [28],

~

we have that Pyﬁ;(Cl B) is the unique (up to with-probability~one

~

equivalence) .,d~y -measurable function, such that for any A ¢ d';

5 Yc(w)dPy(w) = J‘pyw(cl?(w) ) dP (@) (89)
A A

The left-hand side of (89) equals

4+ 4
n
Z s X (W) dPy(w) = E j X (€ +2nm) dPy (€)

NE=® A+2nm n==® A

~

where A = AN [-n,m) . This last equality follows from the definition

of P; and the obvious relationships among /- 2nd F-measurabiiity.

Now Pn << ; , SO
v o y
4+ n
nz;a S X (& + 2nm) dPy (g) =
A
+o ap” ~
- 3 ch (8 +2nm) —L (2) dP (&)
ne% dP y
4+ dpn ~
= S [Z Xc (& +2m) —X— (&) | aP_(e) , (90
A ns-o dP y

where we have used the Radon-Nikodym Theorem, the fact that

~

dP:/dPy > 0 a.e, (Py) ,» and the monotone convergence

theorem, [24].
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Similarly, the right-hand side of (89) is equal to
+ -
P 1~ (C|V(w)) P {w)
nz_:,, .’ yl'y l y

4+
~ n
= ) S Pyiy (CIY(8)) aPy(6)

n=-w

where we have used the periodicity of '}'(g) . Again using the Radon-

Nikodym and monotone convergence theorems, this last expression is

equal to
f N ap® ~
P~ (C )=~ {g) dP
2. s o7 |7 @ —l-dp (€) dP_ (2)
- +o dPn ~
= épyl;wh(g»l ;w -——Y-di; (g)] dP,_ (&)
A

Clearly Py is a probability measure on [-m,n) , since

4o

n

;Y ([-n,ﬂ') ) P;’Z ([‘TT.TT) )

n=-mo

+o
T

P, ([-w.7) + 2mm) = Pl(-=, ») )

n=-o

Also, on any F-measurable set S,

ARSI M T AR A i) R

ST R N

e s AL L DY W A 0wl
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’ - #2 n S ap * -
P (S) = 3, P(S) = —%- (§) dP (&)
f e v n=-® g dP ’
3 o dP] ~
b = S —— (8) | dP_(8) ,
A n=-o dP y
£ S y
iv
_‘ and, since Py is a finite measure, this implies that
3 +o  dP” ~
: Y =L@ =1 a.e. (P)
& - dPF Y
b' }'
q Thus, the right-hand side of {89) is
P~ (C|¥ dp 91
4 S Yly( Iy €)) y(§) (91)
: A
Comparing (90) and (9!) we see that the conditional measure is given by
A
.‘? - + dPn
Py (CIFE)) = Y, Yo Gtz =L (@)
g y n=-o dpP
v

But this is defined for & ¢ [-w,n) , and in this case V{€) = €. Thus

:: ~ 4+ ~ dpn ~

E: P ,~(C]g) = X. (B +2mm) —=2- (8)

: y|y l n;, C ap »
3 4
& We note that for ¢ xed g, Pvr‘; (C| B) is a sum of Dirac

measures concentiated atthe points B + 2nn , where

n

.’\‘v v L ® . s
IR G R L 2
onm—

dpP

P(y=6+2mly =) = —— (8)
dPY

a{;‘ dni N Y
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Thus, in terms of §-functions, we can write the conditional "'density"

n

~ +o dp ~ ~
~ {Z = - - -2 2
pylyus) n;w d,;Y— (8) 8(5 - B - 2nm) (92)

Corollary: Suppose Py is absolutely continuous with respect to

Lebesque measure )\ :

P (4) = spy(g) dh (g)
A

Then the conditional '"density" is given by

+o p (B +2nm)

Py &18) = ﬁ;., L 5(8 - B - 2nm) {93)
p (B +2km)
e 7
P, (8) ~
= Ym 5(B - (&2 mod 2rw) ) (94)
kz p(E +2k )

Proof: It is easy to see that P;_l is absolutely continuous with respect

to Lebesque measure ( also called A ) on [-m,m), and

dp "
T () = pn+2nn)

is a version of the Radon-Nikodym derivative. Clearly py_>_ 0

o~

a.e. (\), and thus, by monotone ccnvergence and the finiteness of Py .
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. pin+2km)

K==

is finite a.e. (\) and, in fact, is the Radon-Nikodym derivative

dPy/dX . It is then clear that

ap® dp */dx (n)

=L = —=t—— - Pptim

dpy dpy/d)‘ (n Z pln + 2km)
K==c

~

Finally, ccnsider the set where pyr).; (5‘ B) is undefined -~ i, e, where

) ~
Z p(B +2km) = 0
K=-»

~

But this set is a set of Pyomeasure zero. FEquation (94) follows

immediately from (93) and the properties of the §-function, |

~

We make the comment that Py is the probability measure for

the random variable y , and thus, a naive application of Bayes'

rule yields

~ p~;. (Big)p (E)
Py €19 = Py B Py
iy p;;'(B)

) 3 - 211) j
iB (€ mod 217) } EJ)_(!)

2kW
py (B + 2kW)

K=

s
Lﬂyﬁ.‘;ﬁ’&mm{mm&&;i‘gféﬁ:ﬁ“&&xf}b}&;‘({.
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e We now consider a more general version of the problem stated
at the beginning of this subsection. We assume that we have a probability
2 2
space (RZ, dz, ny) , WwhereZ 1is the Borel field of R . We

define three random variables

t
€

x(W,.0;) = W,

1
€

y(@,. ;)
Vlwy,0,) = w, mod2m

and the marginal distributions

_ 1 1

1 P (a) = ny(Ax R") Acu

. P(B) = P (RIXB) Bedl

E y Xy

: (.)all = Borel measurable subsets of Rl )

We let m’y = the minimum sub g-algebra of dz , With respect to which

y is measurable, and we define dx and df; analogously.

We wish to compute the conditional measure er).; . As before,

res 24 g

. we obtain a form for this measure that reflects our uncertainty as to
the number of multiples of 2n that are '"chopped off'" of y in the process

- 3 of observing v . To derive the desired result, we will need to consider

i3 two o “er ccnditional measures, P ~ and P . Since wf~ C of
x|y.y x|y v y

X (i. - * 2 deterministic function of y ), we have
| P = { ( ‘
' (AQSOE) pxl V‘A'B) . (95)

Lk
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As before, we defin= the following measures on ([-ir,7) ,& }:

n _ . -
Py(ﬁ'TPWS+LM)

P(S) = f‘c (s Se &
y(~ = 2 y( ) €

Theorem 8: The conditional distribution len‘f (C! B) is given by
‘ /4

1id SLRT QL

Py (Cl9) = Y = (B Py (Gl + 20m) (96)

n=-o dP
b4

AR S e IR AS IAN KR bat el A

AT

Proof: It is easy to see from the previous results that the conditional

A
i dtierdEICh

TR T YLt TCATR AL VATYL.

probability f‘
~ 1 ~ A
P~ (v =4 = P ~(x ¢ . = @
Y'Y(' 9'8) X,YIY( R y J'B)
j exists and is given by
~ — (8) © = B +2kn
Pty = 6l8) ={ 4P,

. 0 otherwise

Using the properties of iterated expectations, [28]. and

equation {95)

P,y (Cl8) &1 P SS9y =8}

R

L TAN A

J'Z le y(Cly(wl,wz) = @) dPx‘yw wl'“l'" = B)

i
T
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. - ..
Since le Y(CI y(wl.wz) ¢ ) is indepundent of wl , we perform the

integration with respect to W@y first

P,y Cl8} s Pyyy (Cl7) =6) dP = (0,] 5)

Rl
= .__X_~ Y P (Cly = B+ 2nm)
nz;m P (e x|y |

+® ~ ~ ~
= > P(Y=B+2nﬂ|'§;=3)Px!y(Cly=B+2nﬂ)..
n=-o

The following two coarollaries solve the problem posed at the

start of this subsection.
Corollary 1: Suppose x and v are independent real valued random

variables, and define

m(x) + v

y

v y mod 27

where m: Rlw r! s measurable. Also, suppose p_(a) and p (v)

are the probability densities for x and v respectively. Then a version

of the probability density pxw' (a| B) is given by

+ + 2nni
@ py(B ntw)

2

nSte py (8)

er)', (0.| 8)

+® (8 + 2nmja) p(a)

- Pylx

= = (98)

~

n=-w Py (8)

R s > s B LN R e S I3 Y 35 R P E AT SO R U Al AR it STy oo 2o

Py| y(ul B + 2nm) (97)
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3

; where

[

E ~ ~ 3

; B 2 = 2 -

: Pyix (B * nnfa) = p (B +2nw - m(a)) (99) g

3 - A

E py(B +2nm) = I pyl x(B + 2n1| v) px(u) du (100) g

: - é

~ = + 2nm 101 2

P (E) n;g p, (8 ) (101) :

E Proof: Equation (97) follows from Theorem 8, the corvollary to

PUPLTY

Theorem 7, and the observation that, if the measure Px]v(C| 8) has

v g,

a density with respect to Lebesque measure, then, from (96), so does

:
-

(C] B8} , and it is given by (97) . Equations (99), (100), and (101)

S ATTAVS

P Lo d
x|y
; are immediate consequences of the definitions and the independence

7

of x and v, Equation (98) tollows irom (97) and Bayes' rule. |

Y

A 2 M e MRS 01 A

Corollary 2: If x and v are normally distributed and m is linear

~

{m(x) = ax) . then pxr\;(c.l B8) is expressible as the linear combination (102)

of an infinite number of normal distributions, with weighting coefficients

LY NIV A o b 4

g that are functions of the measurement and are given by

~ ~o 2
: ~ A P (B + 2n1i) N(g +2nm; an, a y, +v,)
- a Y — 1 2
; cn(e) - T - +m ~
: Py (8 Z N(B + 2xm; an azy +v,)
3 y H ,
3 K=~ 1 2

where 2
; (a-1) .
3 l Yl
= e = N{a: n.vy)

A p_(2)
E > ey,

mmm G AL AU AL RN R AR STl S A A A A
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2
-V /2Y1

1 e = N(v: O.Y?_)

p (v) =
v {_—ZﬂYZ

Proof: We will use the form of p_,~ (a|B) given in (97). The additive
Zrool: x|y g

properties of independent normally distributed random variables, [29],
yields

2
p(F) = N(E; an, a'y) +v,)

~

and therefore the equation for cn(B) is correct. Then

~ +o ~ ~
pxw(alﬁ) =3 cnlB) By, (@] B +2n7) (102)

But pxl v is the solution of a lirear filtering problem, and therefore

is a normal distribution. In fact

Py| Jalg +2am) = Nas n.vs) ,

where
1Y,
Y3 - 2
a Yl +y2
ny, + yla(B 4+ 2nn)
N, -

A

That is, the nth term in the series in {(102) is evaluated by an

~

optimal linear estimator which takes as its measurement 8 + 2nm.

We also note that if the initial distribution p\t(o.) is an infinite sum of
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normal densities with means n, . then the density pxr);(a[ B) is a
doubly infinite sum of normal densities, with means computed by

optimal linear estimators, the (j, k) th of which takes as its initial

-~

mean 1, and as its measurement B + 2kw . Again. the coefficients

are nonlinear functions of the measurement.

~

Once having the solution pxl';(al B) . we can compute

TN AR A P SR IR AR A TR

pel?(€| B) . If the hypotheses of Corollary 2 are satisfied,

per);('al £) is an infinite sum of folded normal densities.
An interpretation of the form of the conditional density is readily

available. The infinite summation is a result of the "‘mod 2n"

s e th . . .
ambiguity in the measurement. The n term in the sum is the linear

o~

result if the measurement were y =8 + 2n7w , while, as derived in

~

Theorem 8 and its corollary, the coefficient cn(ﬁ) is just

P(y=¢+ Znﬂﬁ? = g8) --i.e. it is related to the difference between

v and v expressed in multiples of 27 ,

Thus, the terms corresponding to the more likely values of y -~
i the more likely number of multiples of 2m -~ are more heavily weighted.
Thus, one could consider approximating pxl«‘;(a‘ 8) {and thus

~

pe|~YG[ 8} ) by a finite sum of normai distributions, where we must

LT LD L AL N A G Y Drrn b forto G0N AR SR A48 g R mier B 2o e b OIS TSR R MRS T

devise a procedure for deciding which terms to keep. Some wory

i,

oL 20 §

4

involving this tvpe of approximation has been done by Buxbaum and

i,

Haddad, [30}. Such a procedure is certainly necessary if x is a

random process instead of a random variable and we take a sequence
of measurements, since, by a simple inductive argument, after M
measarements our conditional density consists of M infinite sums of

normal densities. Note that all the normal densities have the same

variance,

.
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In the particular case in which m is linear, we see that the

conditional density is of the form
©

p(6) = n;l C F(o:n .v) (103)
which is precisely the form studied in Section 2 (see equation (21) ) .
Thus, the estimation and error analysis results of that section apply
here. These results will also apply if we approximate (103) by a
finite sum, and, since the truncation procedures of Buxbaum and
Haddad and the estimation equations of Section 2 both lead to simple
algorithms, this approach leads to easily implemented filter equations.

We remark that the appendix to this report contains results
relating the discrete and continuous problems, by showing that as the
time between measurements, At, becomes small, the terms in the
conditional density corresponding to a nonzero number, n, of rotations

between measurements go to zero exponentially in 1/At and in n

Thus we see that if the inter-measurement{ me is small, a rather
crude truncation procedure -- one that keeps only a few terms,
corresponding to one or two rotations -- will provide adequate
accuracy.

3 In addition to the method of truncating the infinite series in some

systematic manner, another suboptimal estimation schemec is suggested

Lt AR

by the results of the a endix. Since for small At the difference between
the continuous and discrete time solutions is small, why can't we use
the continuous time results in designing a suboptimal discrete-time

filter? That is, we can desigr the continuous time filter and use as

e N [ P
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an input the discrete time measurements, which we hold constant
over the interval between measurements,

We have not attempted to describe in detail the design of these
various suboptimal estimatian schemes, nor to analyze their per-
formance, but ratker we have only meant to indicate possible alterna-
tives. Clearly further analysis and some simulation results ar-
necessary before we can decide on the validity of these different
approximations. The conceptual ideas behind these two basic methods
are depicted in Figures 7 and 8 .

Analogous to the discussion at the end of Section 3, we can
extend the results of the present section to problems on arbitrary
abelian Lie groups. Let x be a random variable on R" tm with

) , and consider the associated

probability density P, (0.1, cee el 4m
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random variable, X , on R" x (Sl)m defined by the map from

n +m

R into R" x (Sl)m given by

15 set M

PRIP LV

> ) veeus vee. X X 2n, ...,
(x X X xn+m) — (xl x mod

| R nt+l

X 4m mod 217 )

A4 i DXL MR U Sl D3P § LA 15 44 6201 RO 0 LaD DAL 28 8 11000 s Li P RS O Ed LT e

Then the density p;(al. ... .an.?i ve oo 'Em) is given by

1

~

p;(al'-..'an'al....'am) =

+ 4o
e O, +2 ... 0 42k ™
= kz_w pi (al O3y Ky T km )
1 m_
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By Sample Optimal
————3 and 3 Continuous-Time p———>»

Hold Filter

P R S TR RIS

Figure 8: Illustrating the Concept of Using the Continuous-Time Filter

: to Approximate the Discrete-Time Filter

If p is a multidimensional normal density, then py is called an

(n, m) normal density -- n referring to the number of marginal densities
which are normal and m to the number of folded normal marginal

4 densities.

It is easy to see that minor changes in the arguments of this

it

m

¥

section lead to the following conclusion: let C: Rn+ ~ Rk be a

s

linear map and w a k-dimensional normal random variable independent

o3

of x, an (n+m)-dimensional normal rardom variable. Consider the

random variable y defined by
v = Cx +w
1 and define the associated random variable v by

Y. = V. 1< i< k
» i ‘1 = "="1

-t

kl< i<k
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E

2 {.

E 5 ‘ Then the conditional density fxr‘; can be wriften as a (k-kl)-times

% countably infinite sum of normal distributions, the (rl, EREE )tl’l

g - 1

§ of these being the linear result if ;
% .‘é
E Ve 4 = Ty 4 * 2T R (104) ;
: 1 ! g
3
E and the coefficient of this term is just the conditional probability for gzg
? equation {104) to hold, given the random variable y . g

4.2 The Discrete Measurement Problem Using Fourier Series

As was seen in subsection 2. 2, Fourier series can be a useful

tool. In this subsection we will use it to aid in analyzing a rather

general discrete-time estimation problem on Sl . Again, we will

consider the single measurement case., Extension to the multistage

P
s
H
{

i
g
|
|

process with measurement noise independent from stage to stage

is immediate.

We consider the problem of taking a measurement of a random

variable, 8, on the circle with a priori deunsity

-]
S | .
Pe(>) ==t nz= a sinng + bn cos nf

We assume that we take a single (possibly nonlinear) measurement,

ot g

y , of 8, and that the conditional density pyl O(Bl £ ) exists. Consider-

ing this as a function of £ f,- fixed 8 , we must have

Pyo BIT +20) = by (BlT) .

i
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4
Thus, we can write py' e(Bl‘;‘) in Fourier series form in g for fixed B ,g
= i s g
by alBlF) = 4B + nz_; ¢ (B) sin nf +d (B) cos nt :
= 3
where the cn's and dn's are functions of 3. An application of 2
Bayes'‘ rule yields the Fourier series form for the conditional density ::
] Pgi (5] 8) 5
ot ! i
1 = -
*f; pe|y(s|e) =5 + z; a_(B) sinng + b (B) cos nE (105) 3l
n= 3:5
: where E
3 {
3 o (B) % (8) . :
3 *al® = wmem ¢ P T o (108)
with
. c(B) =757 p,(R) = —;—— t 5 nzz; [2n <, (B) +b_d {B)] (107)
3 c(®
3 0, (B) =3,d (B) +o— + 3 2 2,8 o) + Db e, (8]
E I O
*2 22 {ancda® Fopcou (1 - [2,3,,00) +3, ¢ c (81!
4 (108)
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( a8 k=l
5k(3) = bkdO(B) + e + i ; [bndk-n(s) - anck-n(B”

1 @
t3 ; { (a4 CpB) +b A (B +[a c . (8) +bn+Kdn(B)],' (109)

Note that the equations for c, Ay s and {G’K are bilinear in the
Fourier coefficients of pe(g) and pyle(Blg) , and one should note the
marked similarity in the structure of (108) and (109). Thus, the
computation of pe| y(El B) involves the (in general nonlinear) computa-
tion of the coefficients {cn(B)] and {dn(B)} and the evaluation of
the bilinear equations (107), (108), and (109) .

The form of these conditional density equations suggests a
truncation of the Fourier series for pe and pyl 0’ which leads to
finite sums in (107) through (109), however if we retain the first N
modes of Py and the first M modes of pyl 9’ then pel v will have
terms up to the (N+M)th mode. Thus, to keep the necessary memory
in a multistage process from growing in this manner, it becomes
necessary to devise techniques for sequentially truncating the
conditional density for 3 . We will not treat this problem in detail,
but will make some general comments. In general, just keeping the

first N modes of pel y is not an acceptable method, since we require

that the truncated density be nonnegative everywhere, However, if, for

instance pa‘ v is continucus, the coefficients fall off as —lz , and thus,

N
for any given ¢>0, we can choose N sufficientiy large so that, if

we keep the first N modes, the truncated density will be bounded below
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by -e¢ . Alternatively, if P represents the truncated version of
p9| y obtaired by keeping only the first N modes, and we then define

1:3 = max(O.'E)

we can take the Fourier coefficients of P as the coefficients of our

4 approximation to pei v

If we were to use the straightforward method of truncating the

Fourier series for pel v’ equations (107) through (109) can be writter

1 - M
e A NS T2 WA T L "‘\.%)fc'ﬂe.ﬁ{a".‘}sl'd"m;':.mm-:_;.'..’rl;\:x\-shhﬂv.h:f.l.(‘r'f.lac!én&%ﬁj

o

g(g) = A(B)h (110)

where h is the vector whose elements are the Fourier coefficients of
pG(‘;) , g(B) contains c(g) and the aK(B)'s and %’k(B)‘s and A(B) is a
(2N+1) x 2N matrix (assuming we keep N modes of Py and p6| v )

whose elements are the Fourier coefficients of pyl 6" The structure
of (107), (108), and (109) is reflected in A and may lead to efficient

methods for evaluating (110) .

Finally, we note that this approach is extremely general, in that

the only restriction onthe form of the measurement is that the conditional

density pv| 5 exist, For example, in additicn to measurements such as
y = (& +v) mod 2r

which are considered in subsection 4.1 , using the Fourier series

R el P VLA S RAL DA ' RLSAY ST AN I X2 107092 DX 320 200 SN EL L TSNS A SHALERE NN S 72 b Xt SN

approach we can also consider measurements such as

. 1
v = sing +v .

i s —————

1 It has recently been pointed out to the authors that Fourier analyeis
results for this particular measurement form were presented in ref. 47.
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. 5. Applications Including FM-AM Demodulation

The previous sections have described and analyzed a class of
mathematical muduls for which relatively simple optimal filter have been
obtained. The problems considered include rnany inherently nonlinear
ones. These results are int¢ ' 2sting in that they provide a new way of
introducing randomness into the system equations in such a manner as to
lead to simple synthesis procedures for optimal estimation.

Among the potential areas of application are FM demodulation, AM
demodulation, combined AM-FM demodulation, optical communication,
frequency stability, and gyroscopic analysis.

The usual mathematical models for the received FM signal are

(refs. 21, 32, 33)

t
r(t) = A cos Wt + gx(s)ds) + Ny (t) (111}
or
t
r(t) = A cos (W t + fx(s)ds + Ny (t)) (112)
0

where Nl and N2 are noise processes (here assumed to be Brownian
motion processes), and x is the signal.

It is the mathematical model (112) that we v7ili consider in this
section. More detaiied descriptions of and other analyses using this
model can be found in references 31-39 and 45,

We remark that there are techniquas for determining
sin (wot + Zx(s)ds + Nz(t)) from r(t). Using the n:cation of the preceding

sections, we take as our observation the “ x 2 orthogonal matrix

P ey 8

po—ar  n
b.\;:n-urrmn.,-,'..-.“-“i PYRTN

—EA R AR RO TAN o

.
¥
3
i
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t. t.
cos (Wt + 1/) x(s)ds + No(t))  sin(u,t + 4 x(s)ds + N,(t))

Z(t)

. t
x(s)ds + Nz(t)) cos(wot + 4x(s)ds + Nz(t))
0

\ﬁ'

-sin (wot +

N .
B O A T Tk L R TORN AP 5\,‘,_.-.} PO <»‘*-=vm»}£f-n5ﬂ

Then we can apply the estimation results of previous sections to obtain an

[INDRRAN

optimal estimate for the signal x(t) (see Lemma 3).

If the signal x(t) is a linear diffusion process, the optimal
demodulation equations take a particularly simple form. Also, if we have
a multi-channel FM system, we can model it & la subsection 3.5 and use

the results on filtering in abelian Lie groups to design an optimal

frequency demodulator.

The theory developed in this report also has possible applications in
AM modulation, joint AM-FM modulation (ref. 33, p. 628), and optical
communication. The Lie group of interest in these cases is C - {0} --
the set of nonzero complex rumbers with complex multiplication as the

group operation. Its (real) Lie algebra can be identified as RZ, and the

map exP:RZ — C - {0} 1is defined by

. - « . ,
N /_m.,p,g,,.m.&mm@m.'zﬁmu)muvbm35&&,:«1,Mw(v-éaMhm%;m\c‘- AU S Y
ZEIORNOR SR LIPS R

x, +1x
12 (113)

exp (xl,xz) = e

We note thet C- {0}~ &! xS! via the identification
r+ i0
(r,8) — e r€R, 0 ef-n,7)

Thus S1 is the subgroup of C- {0} consisting of al complex numbers of

2 L DO P T NN M A £ e YOty b

length one, and its Lie algebra is the subalgebr» of RZ obtained by
1
requiring Xy @ 0. We note that this representation of S° could have been

used in the preceding sections, instead of the 2 x 2 orthogonal matrices.

m
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Also, we see from (113) that x4 controls the amplitude of exp(xl, xz),

while X, controls the phase.

Now suppose that we have a continuous signal process on R

x4 ()
x(t)

We define our measurement process, z(t), as follows:

dy(t) = x(t)dt + dv(t) - (114)

Y8 +iy,(1)
z(t) - exply,(t),y,(t)) - e (115)

where v' = (vl,vz) is a 2-dimensional Brownian motion process,

independent of x.

This problem cleariy fits into the framework discussed in Section 3,
and thus can be solved by the methods described previously -- i.e.
knowledge of 2(s), s <t is equivalent to knov.ledge of y(s), s<t. In

fact, we can express dy(t) in terms of z(t) and dz(t) with the aid of the

Ito differential rule:
dz(t) = (dyl(t) t+ idy, (t))z(t)

qll(t) + ziqlz(t) = qzz(t)

> z(t)dt

where

E(dv(t)dv'(l)) : Q(t)dt

q,,(t q,.()
Q(t) 11 1z l

1 A i natarsd A8 B LF A i £ v LA N AL

R N N T Y P A T LT B L R W I VT T I

PR

(o TP

E‘%
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Thus

dt

) dzt)]  911{8) - 9pp(t)
dyl(t) Re { 2(6) } - 5

dy,(t) = Im ld?z(%l} - qy,(t)dt

Also note that, if we assume y(0) = 0, we have

CH A R A A A EA s Bt o NN 22

t
v{t) = x(s)ds + v(t)
o -

and thus

A
<

e

t.
[ vy () + ivz(t):\ \: _(/) [x;(s) + ix?_(s)]ds]
(116)

z(t) = l_e e
We then see that our signal is both amplitude and frequency modulated,
and the noise enters multiplicatively and is a complex lognormal process
(ref. 40).

Thus, equation (116) yields a message model for a joint AM-FM
modulation system, for which there is a simple optimal estimator. The

AM case is obtained by setting Xy 2V, = 0. We note that our AM

modulation is not the usual one -- actually xl(t) is more like an amplitude
rate modulating signal. However, if we let xl(t) = (d/dt) ?El (t), where

;l(t) is the actuil signal we want transmitted, we have that the amplitude

R o
Ao si ANV AWEATS LRI S H et oS0 WL S SRR s 11 A MM oA A F it

modulation is (assuming xl(O) . 0 and ;l is deterministic).

tr ~
6x1(s) ds xl{t)

&

Mu,am«ym $ ot ML ONACL S IS ONAL s o'rsad SN D s s

et
SR iR e s sty 8 Db B L T TR
- N e o L e
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Thus
; t) - q,,(t)
) dZ(t)] 9418 - 95,
dy, () = Re{ =5 - > dt
d
dy,t) = Im {—ZE%} - q,(t)dt
Also note that, if we assume y(0) = 0, we have
t
vit) = fx(s)ds + v(t)
0
and thus

e - (116)

t. . ]
vl(t) + ivz(t)} [ _!) [xl(s) + 1:4.2(5)]d:s|
Z(t) = e

We then se¢ that our signal is both amplitude and frequency modulated,
and the noise enters multiplicatively and is a complex lognormal process
(ref. 40).

Thus, equation (116) yields a message model for a joint AM-FM
modulation system, for which there is a simple optimal estimator. The

AM case is obtained by setting Xy 2V, 2 0. We ncte that cur AM
modulation is not the usual one -- actually xl(t) is more like an amplitude
rate modulating signal. [owever, if we let xl(t) - (d/dt) ;l (t), where
;l(t) is the actual signal we want transmitted, we have that the a mplitude

modulation is (assuming xl(O) . 0 and ;1 is deterministic).

e

t
X (1)
‘[xl(S) ds xl(t,
e

B
Lo A PPN Rt 35t 750 1M 3 LU 2 £ A 0 . s, - ew
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: 5
E

g ¥

3 - (d/dt)X, (t) 5
A or, if X is deterministic and differcntiable, and we let xl(t) -_— 4
: x,(t)
: then ¢
1 3
t
i éxl(s)ds :

‘ e EACYERV |

(assuming ;1 > 0). Also note that in the AM case (x2 z 0) we can include

0) we can include

v,(t) as a random phase, and in the FM case (x1

vl(t) as a random amplitude.

L

In optical communication theory, variations in the transmission

LGOS k1

medium -- e. g. turbulence in the atmosphere -- cause variations in the

N5 A e A GRS AN 1 M R £ 45 R AR P R S,

refractive index of the air. This disturbance can be modeled (ref. 40) as

(99T

a lognormal noise process which multiplies the signal. In this case, this

L

analysis (equations (113) through (116)) may prove to be helpful in the

design of good receivers. In particular, these results may be useful in the

case of spatially uniform noise, and, in addition, we can treat the problem

2 A A10CIAN . YA

with real and imaginary parts of the noise process dependent on each other

ETIA S Y

(q;,(t) } 0, see ref. 40).
The problem of frequency stability {refs. 41, 42, 43) is another area

of application of the results of this report. This problem involves devices,
such as oscillators and extremely accurate clocks, in which we wish to

measure deviations of the cperating frequency from some ideal or nominal

4 o
Y Ao A e passien raoe. .

frequency. In other words, we have a signal of the form

Ty

i(wot + Z x(s)ds)

e

where wy is the fixed, ideal frequency and x(s) is the random, time-

varying deviation of the actual frequency from the ideal frequency. The

h‘m Y UGt Lt A SR AL NS 1 DTN LN b L ot L AN QU IO KIS 02 190 352 KDy Bid

A ez 3 P i
a4, = AR o L e T S e,

by
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problem is to devise a measurement and estimation system to determine
the deviation x(t).

There are various types of measurement processes discussed in the
literature (refs. 41, 42, 43). One of the most widely mentioned involves
the multiplication of the signal by the output cf a second oscillator and the
measurement of the beat frequency. That is, .f the signal from the
second oscillator is

i(wlt - vit))
e

where Wy is a fixed frequency, close to wo, and v(t) is a random deviation

from w;, our measurement essentially is

t
i - w) t+ 4 x(s)ds + v(t)]

e
If we assume that v is a Brownian motion process independent of x, and
if we subtract off the known term (wo - wl)t, we are left with the

observation equations

dz(t) - x(t)dt + dv(t)
z@) - =

which is precisely the form considered in this report. Further if we model ]
x as a Brownian motion process or a linear diffusion process, we can use
the optimal filtering equations of subsection 3. 3.

A final area of application is in the estimation of the angular position
of a body spinning about a given axis. If we consider the single-degree-of-

freedom integrating gyroscope, (ref. 44, pp. 104-105), we note that the

s et o S
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output of this device is an angle -- essentially the shift in orientation of
the gyro from some reference position. The orientation of the gyro is
determined by the integral of the angular velocity acting on the gyro about
some fixed axis. Noise in the system is modeled as gyro drift -- an
error in the angular velocity detected by the device. Using this model for
the dynamics, the estimation results of this report can be used to design

a system to estimate the actual angular velucity.
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6. Conclusions

In this report, a class of estimation problems on the unit circle is
formulated and resolved. Both the continuous time and discrete time
estimation problems are considered. The signal and observation processes
on the circle are constructed by taking the projection modulo 27 of the
corresponding standard l1-dimensional processes. The stochastic
differential equations which govern their evolution are bilinear in form.
The observational noise can be viewed as entering multiplicatively.

Error criteria, probability distributions, and optimal estimates on
the circle are studied. In particular, various properti:s of the folded
normal density in connection with estimation are discussed in detail.

An effective synthesis procedure Zor continuous time estimation is
provided. The measurement data is first processed through a nonlinear
transformat.ca. The transformed process then goes through an oxrdinary
cstimator, such as the Kalman-Bucy filter, After another nonlinear
processing of the output of the ordinary estimator, the desired estimate is
yielded. Filtering, smoothing and prediction can all be treated in this
manner, 4nd its generalization to estimation on an arbitrary abelian Lie
group finds no difficulty.

In addition, the discrete time problem was studied, and an intrinsic
difference between the continuous and discrete problems was discussed.
This difference stems from the loss of information between the discrete
rmeasurements. Unlike the vector space case, this loss of information
causes the expression for the conditional probability distribution to be
rather cumbersome. Although suboptimal estimators can be obtained from

the results of Section 4 by careful examination of the form of the equations,

————a Tl
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e
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Lo

the increasing complexity of these equations with each additional

measurement has prevented the authors from deriving recursive equations

’ for the optimal estimate.

Applications to AM and FM demodulation, optical communication,

frequency stability, and fixed axis rotation problems have been described.

LN SR ; ‘
PRSI A AL S FUENDRSAL Ay 041 4.

X

These practical problems provide physical justification for the proposed

mathematical formulation. The application of the mathematical results

of this paper is seen to lead to neat solution and easy implementation in

these practical situations.
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APPENDIX

Some Limiting Arguments Relating the Discrete

and Continuous Problems

We have seen in Section 4 that the ambiguity concerning the
number of rotations leads to equations for the conditional density that
involve infinite sums. Intuitively, if we observe the process contin-
uously, this ambiguity should disappear -- assuming the random

- processes involved are continuous. From the rigorous arguments

of Section 3, we have seen that this is the case -- i. e. in the limit
we know dy(t), not just dy(t) mod 2. We can also see this by
examining the discrete approximation to the continuous problem.

Our discrete equations are

Zyk = (Ayk)mod 2y

e AR IR i

=[m(xk,kAt)At + [q(kAt) Awk]mod 2

‘ where X = x{kAt) , and x(t) is a continuous process, independent of
the Brownian motion process w(t} . We also assume q(t) is continuous,

i m(x,t) is measurable in x for all ¢t and continuous in t for all x .

% We wish to examine the effect of one additional such measurement

5 at time t, in terms of the size of At. Thus, we assume we¢ have

- computed

Px(t)(a) e px(t)(o,|past measure:ments) (117)

o
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and that we take the measurement

Zyt = (Ayt)mod 2n

= (m(x(t), t) at + J’at_) AW mod 2n

As indicated in equation (117) we will suppress all conditioning on past
measurements. Thus, we wish to compute p ~. (2| B) in terms of
x(t)l Ayt
p\{(t)(a) and the new information Xy, . (Here B is the observed value
- [ 8

of Ay ).

i

Using the discrete measurement formulae, we have

~ +&

Purt)| By, ?) = 2., c® Pt ay el 6 + 2 (118)

n=-o

where we have the explicit formula

4+
s N(8 + 2nm - m(u,t) At; 0,q(t) At) px(t)(") dv
) = ——g
) N(B + 2rm - m(u,t) 4¢3 0,4(t) ) p,y(u) du
=
(119)
+o -
s exp - ml)_AF {B + 2a7w - m(u, t) At}2 px(t)(u) du
) +o Fo ~
rz I exp -—a#t)—A—t- {p+2rm-m(u,t) At]z px(t)(u) dv

-®

Examining this expression, we see that the numerator contains

a term

. ;. - -
e A Y] - Y S At ST, o 9 2 ‘> ] 42 £ " - <. < o]
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annz

P - g aT

which is o(t:.t{’) ¥ > 0 if n# 0. Thus, one sees that for small aAt,
the probability that Ay, and th differ by a nonzero multiple of

27 appears to go to zero quite fast as At <0 . To make a precise

statement concerning this, we must make some technical assumptions:
(1) The probability densitv for x(t} conditioned on the past
measuremernts, px(t)(a) , exists.
{2} The conditional density {or x(t) . if we were to measure
Ay, (not th) . px(t)[ Ayt(al B) exists and is bounded uniformly
ior all g and 8.

(3) We have the following bound:

4o

2 2 - 2. 2
5 o0 m (u.f) +Im(u,t) Px(t)‘“) du< K(a?-) K@ )E (120)

~®

2
where K(az) , k(a~)} are bounded for 0.2 e [0,v]. for some v>0.

We can now prove the following

If the assumptions above hold, we have the following

relationship among the cn's :

2y 22— = o(ath ¥ 4> 0 (121)
n#0 co(a)
Lo d ‘~ '
- ~ = ‘ > () 122
apx(t)l Ayt (1‘8) px(t\,l A}.t(uiS) l! O(At ) ¥¢ Z . {122)
"L

- RS, o W
< AOSTREN oF s SIS L s o

s s o g S

N
pbon o bR




52 SR YRR TR TR e o ek 555 2 AT NN 1 s S v T
X I

SIA L

: -93.

' We will need the following technical lemma:

Lemma 5: Let y(t) be a continuous, real-valued function of time, and

define
By (s) = (y(s) - v(t) ) mod 2w (s>.1)

Let q be a positive constant, p{x) a measurable real valued function
on R', h> 0, an element of LI(R) such that {h)l , >0, and
L

@
[sn] n=1 2 Sequence of real numbers decreasing to t. Then there

exists an integer NO , such that

+o
I exp - 35 {p(als, - 1) - ZEyfs )o(¥)} i dx
-0 [ 4

> 3 LN SEL (123)

Proof: Let Fn(x) be the integrand of the left-hand side of (123) .

Then, for fixed x
Iim F (x) = h(x)
n B
By Fatou's Lemma ([24]. [25])

lim inf IF dx > flim F dx
n -~ n

n n

= %:hli 1

L
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Choosc NO , such that for m> N0

. . 1
IFmdx > lim inf ]Fndx -3 lini i
n L

Proof of Theorem 9: The proof of this result requires some straight-

forward but rather lengthy computations. Thus, we shall only sketch
the proof, leaving the details to the interested reader.

- Consider the infinite sum

teo
ap) 2 g% f exp -7;1'(%)—3‘; {28(2nmw - m(u, t) at)

+ (Znﬂ - m(u, t)z} px(t)(u) du

Using (120) , we have

o 2
T _ nm(2nm - 28) at at 2o+ By |
AP < Ly X~ gy AT K(za(m) P <(zqm) (Fam ) |

We now note that w(t) is a continuous random process, and, therefore,
we assume that we are given a continuous sample path, wo(t) . We

then choose a §> 0, K0> 0, k0> 0, such that

K(%) < Ky

iy s E i te o bkl e A
T oottt A »;ms?;}‘ P e N R a a A yﬁa
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%

At

: <

S k0 ( iq ) - k'0

ENER

for all At< & (here tho is the value for the particular sample path

wo(t) selected) . Then, for at< §.

i
e | 2 2 Z
S ~ 0 {(2n -|n“n Zlnl +1)
t i d(Ayt )< Ko % exp - a( At ; exp kO{ a(®
i (124)
g and for At < min(g, q(t) /Zko) ., the right hand side of (124) is finite.
<

Examining equation (119) , we can write

LY pad ot i

~ 0
3 1 calbyg)
L ~ 0 -
3 AtY af0 CO(Ayt)
3 +. 0
c 1
2 = m—— +c
5 at® e. tm(u, § at - 28y " m(u. § (u) du
B g Zq(t) e, B A8 £8yy min Py
& -®
A Taking a sequence {Atr}:=l decreasing to zero and using Lemma 5,
, we see that there is an R 0 such that
> N +¢
¥ . 1
I exp - zq(t) {m(u t) At ZAyt {r) m(u, t) } P (t)(u) du 2
o -0
o R
£
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where

Ey2(r) = (m(x(8). 9 at_+ at) & w0) mod 2

and ?F
0_ 0 0 '
Arwt = w(t +Atr) - w(t) .
A Then, for rz_Ro
2 o~ 0 ~ 0
= c (ay, (1)) 2d(ay, (r))
1 n t t

: 4 Y A< — (125)
E: Ai:r n#0 co(Ayt (r)) Atr
ff Using (124) , it can easily be shcwn that for any ¢ > 0 , there
exists a positive integer r(c) such that
E:
: ~ 0
,: { l Cn(AYt (r) )
= i 1 =5 < = ¥r> r(¢c) ;
Al:r n#0 co(Ayt (r)) .
;
A Thus
4 ay?
g lim 1 nld y-%)_ = 0
E: at-0 1 ~ -
at’ n#0 co(Ayt )
0
for any continuous sample function w . §‘
: i
To prove (122) , wc use the assumptions that p‘(t) Av (o.l B) is
. X9 8y, |
bounded for all 3 and a. Let M be an upper bound. Then rewriting '
g cquation (118) for the particular sample path chosen, we have
{: r
: %
E, |
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2 < le
£70 r 0 i
+ <= P , a}ay, )
1+ c /c0 x(t)IA‘t t
rFd r

Thus

~ 0 ~
Px(t)lzyt (af ay,) - pX(t)|Ayt (alAyt ) l <

‘el
[ C
rg'b n 0

2M — = o(AtL) ¥L> 0 n
1+ c /e
6 " 0

We note that Theorem 9 may still be true even if equation (120)
is not satisfied. An examination of the proof shows that all we require

is the following : let

+ 2 2
Q(GZ.E) =S e "@ m (u, )4 m(u, t)

Px(t) (u) du

Then we must have
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. ~ 0 ~ 0
ml_’.m'r—ZAyt) ‘At (Zm1+Ayt)
E :exp -—

- @ , = o(AtY)
e ) At “12a(® q(t)

» ar ins*ance

+ K3§r ,

2
2 . . K Z(g +C)
Gy B ~ e

S IEANA

for given ¢ . K1 , K2 ,» K

ed as a -0, will satisfy (126) .

3> which depend only on o and are bound-

Tuus, for example, Theorem 9 holds

if m Is linear and px(t) is normal,

" A
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