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ABSTRACT

Thermal instabilities in a viscoelastic rod under cyclic loading

are discussed by determining the stresses and temperature in a visco-

elastic rod insulated on its lateral surface and driven by a sinusoidal

stress at one end. Temperature dependence of the complex Young's

modulus of the rod and the effect of thermomechanical coupling are in-

cluded in the analysis. A method of finite differences is used to

directly determine the steady state stresses and temperature without

obtaining the complete time history of the process. The iterative

algorithm used is very useful and converges rapidly for a wide range

of driving stress amplitudes and frequencies. It is found that rapid

rise of temperature to dangerous levels occurs for relatively low

values of driving stress amplitudes, especially if the driving fre-

quency is close to one of the eritical frequencies of the rod. Dras-

tic softening of the rod leads to large strains. Thus, failure of the

rod could occur at low values of the driving stress.

ii
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INTRODUCTION

Thermal effects in viscoelastic materials under cyclic loading are

of great practical importance. These materials are dissipative in na-

ture. Continuous dissipation of mechanical energy into heat coupled

with the fact that they are poor conductors of heat can lead to very

high temperatures inside the materials and consequent failure. In ad-

dition, the mechanical properties of the materials are strongly temper-

ature dependent, the complex elastic modulii, in general, being in-

versely proportional to some power of the temperature. This rapid

softening of the material often leads to large strains for relatively

small values of stress.

Several authors have studied thermal effects in viscoelastic media.

Tormey and Britton [1] carried out vibration tests of solid propellant

rocket motors. Heating due to vibration near a resonant frequency for

several hours caused the material to soften to such an extent that some

of it flowed out of the motor. Hunter [2] derived a set of thermomechan-

ically coupled equations for the propagation of stress, strain and tem-

perature fields in viscoelastic solids. He assumed thermorheologically

simple behavior and used a double time integrai expression for the dis-

sipation function. Petrof and Gratch [3] considered longitudinal wave

propagation in a finite rod. They assumed that the matexial behaves

like ideal rubber so that deformation occurs without any change in po-

tential energy. They used an integral form of the constitutive equa-

tions. The cransient response of the same problem was studied by

*Numbers in square brackets designate references at the end of this
report.
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Wolosewick and Gratch (4]. They found that due to the high damping in

viscoelastic materials, the mechanical transients decay very quickly,

and a steady state of oscillation with slowly increasing temperature can

be reached within one or two cycles.

In a series of papers [5,6,7], Schapery derived field equations for

viscoelastic media with thermomechanical coupling and solved some prob-

lems. In [6] he studied che problem of steady periodic shear oscilla-

tions using the complex modulus form of the constitutive equations. He,

however, neglected inertia aud his application was limited to lower fre-

quencies than considered here. In [7] he developed and used variational

principles to solve problems Involving bodies that were either massless

or with concentrated mass, and in his last example of a 'solid cylinder

with distributed mass' he only gives a first approximation to the solu-

tion. This paper 1.7] has been discussed in more detail in [25].

Huang and Lee [8] studied longitudinal waves in a viscoelastic rod

caused by a sinusoidal stress applied at one end. They included time as

an independent variable and obtained time histories of the stress and

temperature using the method of finite differences. Chang [9] has stu-

died the transient temperature profile in an Infinite viscoelastic

medium exterior to a cylindrical cavity subjected to an oscillatory,

axially symmetric boundary shear. More recently, Knauss [10], liege-

mier and Morland [11], and Edelstein [12] have studied thermal effects

in viscoelastic solids. Knauss considered the dynamic response of a

1,ng viscoelastic bar due to a step displacement at the end; Hegemier

and Morland the response of a viscoelastic half space to the sudden

application of a heat source distribution; and Edelstein an abalating
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cylinder. All three of them, however, neglected thermomechanical coupl-

ing, i.e., the heat source due to dissipation.

Studies of thermal effects in nonlinear viscoelastic media have

been reported in [13]-[20]. In [14] Coleman and Gurtin discussed the

velocity and the growth and decay of one-dimensional acceleration waves

in conductors and in media which do not conduct heat. In [15] some of

the findings of [14] were extended to three-dimensional acceleration

waves. In [16] one-dimensional shock waves in non-conducting viscoelas-

tic media were discussed. In [17] Achenbach, Vogel and Herrmann dis-

cussed the propagation of shock waves in a viscoelastic material with

temperature dependent properties and thermomechanical coupling. The

waves were caused by sudden application of surface tractions and the

analysis was concerned with small strains and changes in temperature.

Oden and Raztdrez [18] manipulated their relations for finite difference

application. McGuirt and Lianis [19] compared experimental results of

finite uniaxial and equal biaxial tests for non-isothermal conductors

with theory and reported good agreement; while Lianis [201 suggested

integral constitutive equations for nonlinear thermoviscoelastic mate-

rials. Random temperature effects have been considered by Parkus and

Bargmann [21] in a recent paper.

This report is concerned with efficiently obtaining steady state

solutions for stress and temperature in longitudinal wave propagation

in a viscoelastic rod with thermal coupling subjected to a sinusoidal

stress at one end. Huang and Lee In [8] obtained time histories for

the stress and temperature for this problem. They set up the govern-

ing nonlirLear partial differential equations based on Schapery's model



and solved them - a method of finite differences. In practice, the

temperature in the rod increases with time owing to a continuous dissi-

patf)n of mechanical inergy into heat and a stfady state might be

t -cached if the rate of heat get _ration by the dissipative source equals

"• rat- of heat fiou.ng out of tbe rod. Such a steady state yields

mos. sev- e r-mperature conaitions %ich are of primary interest in

d Aign. ir. %.u Ab ases it is m -h more efficient to obtain the steady

state direc.. y instead of following the complete time history of the

process. In this report this is done by solving a set of nonlinear

ordinary differential equations by a method of finite differences. A

very useful algorithm is developed by 'partial liaearization' of the

equations and numerical solutions for a Lockheed solid propellant are

obtained over a wide range of driving stresses and frecuencies. For

the cases studied, steady state solutions for stress and temperature

are obtained. The very high temperatures reached, however, would cause

failure of the rod. The word 'Instability' in the title may thi b.

interpreted from an engineering (practical) point of view, although the

existence of a mathematical instability cannot be ruled out since the

complex modulus approaches zero as the temperpture increases. In fact,

if the driven end is insulated, instead of being kept at constant tem-

perature as in our problem, unbounded increase of the compliance, cor-

responding to vanishing modulus, would lead to unbounded dissipation

of power at the driven end. This would then cause infinite tempera-

tures and a steady state temperature solution would no longer exist.

These aspects of the problem are discussed in more detail later on in

the report.
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FORMUlATION OF' THE PROBLEM

The formulation of tf,& p"-Qbiem closely follows that in [81 with

the essential difference that *fti steady state problem is considered

here. Variational principles uere used by the author to obtain a nu-

merical solution to this problem for one value of driving stress and

frequenc.y in [25].

Let us define stress, strain and displacement as the rc-al patts

of

a e , e, uue (1)

where i , =%r. is the frequency and t is time. The complex

quantities a , a and u , functiins of the space variable x , will

be referred to simply as the stress, strain and temperature respec-

tively.

Let us consider a viscoelastic rod of length I insulated on its

lateral surface, as in Fig. I. The left end is free while the right

end has a prescribed stress C cos Wt (G real). The temperature ofo 0

tbe vibrator is assumed constant at T while a radiation boundary con-

dition is assumed at x = 0

The boundary conditions, therefore, are

C=0

x=0

c(T - T0 )

(2)

IT
0

T =T
0
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Here T is the temperature and c = h/K is the ratio of the sur-

face conductance h to the thermal conductivity K of the viscoelastic

material.

The equation of motion in one dimension can be written as

d2C + Pw 2 D* 0 (3)

dx
2

where p is the mass per unit volume and D is the complex tensile

compliance which gives the strain in terms of the stress

D =DO (4)

D is a function of the frequency w and the temperature T

The material is assumed to be thermorheologically simple (see [8]) so

that

D (W') = D (aT(T)w)

where w' is the reduced frequency which is related to the actual

frequency w by a temperature-dependent shift factor aT . The vari-

able aT represents the effect of temperature on viscosity.

Writing

a= 01 + i 2

D D 1 - iD 2

we can separate Eq. (3) into its real and imaginary parts

d2l
do2a1  2

+ Da Y 0 (5)

d222

d O2

dx 2 +PW(D 1 2 - D2 G) =0 (6)
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The steady state energy equation in one dimension for the cycle

averaged temperature is given by (see (7,8,25])

K d2T + 2D = 0 (7)
dx 2

Here 2D is the cycle averaged value of the mechanical dissipa-

tion function

72

2D = WRe(G) Re~d#) dt'

t

+ 2 1 2

where Re denotes the real part of the complex argument.

We note here that part of the mechanical dissipation is trans-

formed into heat while the remaining causes increase of potential energy.

"Heat is also produced due to dilatational compression. These coupling

terms due to dilatation and potential energy, however, are periodic

and drop out if the energy equation is integrated over a cycle. Thus

the temperature T here is the cycle averaged value of the true tem-

perature. T is assumed to attain a steady state after a sufficiently

long time and become independent of time. Strictly speaking, the tem-

perature has small cyclic variations about a mean value as a result of

the cyclic variations of the potential energy, dilatation and dissipa-

tion, but these are quite negligible.

We note a3so that while the mechanical transients vanish within

one or two cycles as reported in (4], thermal transients, i.e., the slow

[ .4



increase of temperature with time, can continue over several hours be-

fore it settles down to a steady state, if, in fact, a steady state

exists. In the numerical examples given in this report, such a steady

state is found to exist and is obtained directly without integrating

forward in time.

Equations (5), (6), and (7) constitute a set of three nonlinear

ordinary differential equations for the unknowns 01 I C2 and T.

The associated two point boundary conditions are given by Eq. (2).

Thermomechanical coupling is caused by the nonlinear dissipative

source D . The real and imaginary parts of the complex compliance
,

D are, in general, nonlinear functions of temperature.

For a Lockheed solid propellant over a wide reduced frequency

range we can express DI and D2 by the following empirical formulae

(see [8])

DI c (T -T)

(8)

D2 = c2w '(T - T)

where cI , c 2 , , y and T are constants.

Let us define the nondimensional quantities

q I T - T1 1/2
TT = ic-T X [2KwpT T1I)

s XG so ka O c s = Xul s 2 = XG 2 (9)
d0

•__dI •w~pD1 d 2 = •w2D 2
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The governing differential equations (5), (6), and (7) reduce to

the simplified form

si + dis + d s = 0 (10)

s2 +dls2 - d2 sI 0 (II)
2 2

T" + d2 (s2 + S2) 0 (12)

where

clair , = c2a•r

a = k2p w2+P (T° - TI)Y, a constant

and

d

The boundary conditions, Eq. (2), become

q=0 s 1 0 , 2 0 , ' (T - 1)(

(13)

q S 0, s 2  0 , T=

We thus have a two point boundary value problem which is solved

by a method of finite differences (see [22,23,24]).

METHOD OF SOLUTION

I. Partial Linearization

Equations (10) and (11) are linear in the stresses given the tem-

perature distribution. However, Eq. (12) is not linear in temperature,

given the stresses, since d2 is a nonlinear function of temperature.
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If Eq. (10) is multiplied by s2 Eq. (11) by s, and the resulting

[ second equation substracted from the first, we get

,, 2 2
s 1s 2 d2(sI+ds2) =+ 0 (14)

and using Eqs. (14) and (12) we have

11= s 21sI SlS2l (15)

Integrating once with respect to the independent variable q

- = s s-sl2 (16)

Now Eq. (16) is linear in temperature given the stress distribution

and can be used to replace Eq. (12) in the original set of Eqs. (10),

(11) and (12). Thus, the new set of governing differential equations

((10), (11), and (16)) are 'partially linear' and this set, together

"with the associated boundary conditions (Eq. (13)) is used to obtain

solutions for the stress, strain and temperature distributions.

2. Finite Difference Algorithm

The iterative procedure works as follows:

GuessT(0

(J) Equations of Motion 0) (j)
T (10) and ( 11) S s 2

+ boundary conditions

Modified Energy T(J+I)
> Equation (16) =A j

+ boundary conditions

where the superscript j denotes the jth approximation to the solution.

Iteration is continued till convergence is achieved.



Let

S=•-: , qk = k6 (k = 0,1,....N14+1)

Here 8 is the step size and N+1 the number of mesh points. Hence

Sqo 0 ,I i qN+l

Let us define, for' k 0,1,...,N+1 , the vectors

I R Isqk) = k , 2(k =k k

dl(qk) = dlk cla'kY , d2 (qk) = d2k ' c2ak

T(qk) = •k

The difference equations for the equations of motion (Eqs. (10)

and (11)) become

"Tk-l + BAK + =+l -- 0 (k = 1,2,...,N) (17)

where Ik is a sequence of two component vectors

Ilk (k = 0,1,...N+I)

Si

and Bk is a sequence of 2 x 2 matrices

62dlk-2 82d2k

B= 1 (k 1,2,...,N)
k 62d2k 82dlk" 2
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The boundary conditions give

0~ So0

Let Vk be a sequence of 2 x 2 transfer matrices defined as

k = Vkl~ (k = 0,1,... ,N) (19)

Now

Vo = (20)

L 0 0

and substituting Eq. (19) into Eq. (17) we get the recurrence relation
%1

V =- [Bk + VkI] (k = 1,2,...,N) (21)

Now with V known from Eq. (20), Eq. (21) gives V1 , , ... ,

VN and then Eq. (19) gives 'N , '

Thus, the equations of motion are completely solved for a certain

guess of the temperature distribution. The use of transfer matrices

is a big advantage since only 2 x 2 matrices need to be inverted.

The modified energy equation (16) and its associated boundary con-

ditions become

R R I I1 R(S k+- Sk-I S k (Sk+1 - Sk1 ) k (k+I Tk-I)

26 26 26

S- (•o -0 (k = 1,2,...,N)
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"T2 + 4TI - 3o = 26 X(T- 1)

I = 1 (22)

Let

)(k 0,,...,T+I) (23)
k = k~o + Yk (

k-IR k- (k = 1,2,.. ,N)

I I

z = Sk+l - Ski ..

Substitution of Eq. (23) into Eq. (22) leads to

0 = I + 6

Yo = 0 I I I R
o y 1 =. (SI•- S4z1) -1

and the recurrence relations

= +26K (k= 1,2,...,N)

(24)

Sk+l = k-l - 26x + z kSR (k = 1,2,...,N)

and once Bk 'Y k (k = 0,1,...,N+I) are known, we have

(1 - YN+I)
T 0 0N+l N+I

and Tk (k 1,2,...,N) are obtained from Eq. (23).

Thus, the modified energy equation (16) is solved for the tempera-

ture, given the stresses.

The iterative procedure outlined in the beginning of this section
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is allowed to proceed till successive approximations fr T k are within

certain prescribed convergence limits. The accuracy of the solution is

verified by back substitution into the original finite difference equa-

tions. Different mesh sizes are chosen in such a way that halving the

step size causes a change of .5% or less in the results.

Thus, the steady state values of the real and imaginary parts of

the nondimensional stress, s1  and s2 and the nondimensional tempera-

ture T are obtained. The nondimensional stress at any time is

Re(s e iWt) = s cos wt - s2 sin wt

RESULTS AND CONCLUSIONS

Numerical calculations have been carried out for the following

data for a Lockheed solid propellant (8*

c = 4.61 x 10- (psi)f (sec) (F)'Y

c2 =1.62 x 101 (psi)" 1 (sec) (oF)-y

- 0.214 , -y = 3.21

1.0 , T =65*F
0

TI = -125F , L3in.

2 -4 2
2P= 1.023 x 10"4 psi-sec

2K,(10 TI) = 8.08 x 10- P2-sec

In (8], K should read 1.0 instead of 0.1.
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Various values for the frequency w and the driving stress s

were used.

Figure 2 shows the value of T as a function of q for various

values of the driving stress s 0 . The frequency w is kept constant
4o

at 104 radians/second. The steady state temperature profiles are

found to exist. However, the temperature response is markedly non-

linear, increasing much more rapidly than stress and reaching danger-

ously high levels for low values of driving stress. The constitutive

law used here assumed that the complex Young's modulus E = I/D ap-

proaches zero as the temperature T-- (see Eq. (8)). Schapery [6]

has an experimental graph for aT(T) for our Lockheed propellant which

shows that for large temperatures E -- 0 for a finite value of T

E -->0 means zero wave velocity in the material and consequently

failure. Thus, the temperature levels attained in our calculations

(as shown in Fig. 2) would lead to melting and failure of the rod, even

though a mathematical steady state solution exists and T is finite

everywhere.

Other interesting observations can be made regarding Fig. 2. The

rapid softening of the material of the rod leads to large values of

strain (around 20% near the driven end for so0 = 3.0) so that further

calculations for larger values of s0 would not be valid within the

realm of linear viscoelasticity. With increasing stress the location

of the temperature maximum asymptotically approaches the driven end of

the rod since the larger damping at higher temperatures leads to rapid

attenuation of the stress away from the driven end. Consequently, most

of the mechanical energy is dissipated as heat near the driven end of
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the rod. Another consequence of softening of the rod is lower stress

wave velocities and therefore smaller wave lengths since the driving

frequency is kept the same. These effects on the sI and s2 profiles

are clearly evident in Figs. 3, 4 and 5 which show s and s2 as

functions of q for so = 0.5, 1.5, and 2.5 with W = 104 radians/

second. In Fig. 5 the stress is practically zero beyond about a third

of the length of the rod from the driven end.

The effect of driving frequency on the maximum temperature is

shown in Fig. 6 for two values of the driving stress. The maximum

temperature is seen to have several peaks at certain critical frequen-

cies. Increase of driving stress gives higher and more frequent peaks

at different critical frequencies. This is because more input of

mechanical energy leads to more dissipative heating and therefore

larger temperatures. This, in turn, lowers E and the change of

properties of the rod changes the critical frequencies. Also, softening

of the material lowers the stress wave velocity in the rod and this

leads to a lower fundamental frequency for higher driving stress.

The effect of driving stress is, of course, largest near these

critical frequencies. As an example, the temperature and stress plots

for w = 2500 radians/second (the fundamental critical frequency for

a 0 = 2.84 psi) are shown for 0 = 1.42 psi and 0 = 2.84 psi in

Figs. 7, 8, and 9. A very large temperature rise is obtained for a

doubling of the driving stress and the sI and s2 plots are consid-

erably different for a - 2.84 psi compared to those at 1.42 psi. Thus,0

these critical frequencies are of utmost importance in design.

An attempt was made to compare the critical frequencies of the
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coupled problem (as in Fig. 6) with the natural frequencies of the un-

coupled problem where the temperature distribution in the rod is al-

ready specified. If a certain temperature distribution is prescribed

in the rod, we have an inhomogenious viscoelastic rod where the complex

Young's modulus is known as a function of the distance along it. We

thus have a linear problem and the complex natural frequencies of the

rod can be determined by solving the resultant eigenvalue problem.

This was done using a method of finite differences. The details of the

method are given in the appendix.

Let t~he temperature distribution from the coupled problem for

Go = 2.84 psi , w - 2500 radians/second be prescribed in the rod.

The table gives a comparison of the first three uncoupled natural fre-

quencies uith the critical frequencies of the coupled problem from

Fig. 6.

Uncoupled Frequency Coupled Frequency

Radians/second Radians/second

W 1739.04 + 333.03i 2500

W2 4195.78 + 803.501 5000

W 6708.83 + 1284.75i 7500
13

Also, the fundamental uncoupled frequency in case the temperature
distribution is prescribed for 0 = 1.42 psi , = 4000 radians/

0

second is 3484.36 + 667.261 radians/second compared to the coupled

fundamental critica' 'equency of 4000 radians/second.

The response of the uncoupled rod to forced oscillation at various

frequencies is shown in Fig. 10. Here the prescribed temperature
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distribution is that obtained from the general coupled problem for 0o

2.84 psi , w = 2500 radians/second. We see from Fig. 10 that owing to

the presence of damping the peak is shallow and occurs around 1800

radians/second (compare with WI in table). Thus the eigenvalues of

the uncoupled problem give us an idea of those of the coupled problem

and shed some light on the correlation between mechanical and thermal

resonance.

This study shows that mechanical failure of viscoelastic polymers

under cyclic loading can occur at very low values of driving stress,

especially if the driving freqeuncy is close to one of the critical fre-

quencies of the coupled problem. For purposes of design, the direct

determination of the steady state solutions for temperature and stress

appear superior to the method used by Huang and Lee in [8] where the

complete time histories of the above mentioned quantities were deteir-

mined. A lot of computational effort is saved since the method used

here requires solution of ordinary rather than partial differential

equations in a computer. 'Partial linearization' of the problem leads

to a very useful algorithm which converges rapidly for a wide range of

driving stresses and frequencies.

li

m•I
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APPENDIX

Response of a Linear Inhomogenious Viscoelastic Rod with the

Temperature Distribution .r(q) Prescribed

1. Determination of Natural Frequencies

The equations of motion of the rod can be written as

s" + ds - 0 (A-1)

where

s = s1 + is 2  , d =d 1 - id 2

d(q) = (c1 - ic 2 )(T° - T,)y t 2p(T(q))y W2+Y

Let

d(q) r(q) I1

where

(c1 + ic2) _____

p(q) = 1/r(q) (2 12 + I 2)

(c 2 + c 2) (T T T) y2p~r(q))y

Now Eq. (A-i) becomes

p(q) s" + pis 0 (A-2)

s(O) = s(l) = 0

which is an eigenvalue problem with p , . and s complex.
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Let
I •" ' q k k 8 ( k = 0 , 1 , . . . ,N l t)

s(qk) =sk

P = k (k = 0,1,...,N+I)

and we have, from Eq. (A-2)

"Pk + 2p-k s k -2 Sk (k = 1,2,...,N)

S =S = 0

In matrix form, this can be written as

Ps S 2 s

where

2p, -P1  0 0 .... 0 0 0

S"2 2 P2  - P 2  0 . . . . 0 0 0

S0 -P 3  2P 3  -P3  .... 0 0 0

0 0 0 0 ... "PN- 2 pN-1 PN-I

0 0 0 0 .... 0 "PN 2 PN

s 1
S 

2

S =



-21-

Thus, V. (i 1,2,... ,N) are the eigenvalues of P the

natural frequencies

I

U.(i

We know, from [22] that these numbers approximate the N smallest

natural frequencies. Also, if arranged in an increasing order of magni-

tude, the approximation is very good foi the first natural frequency W)I

but the accuracy of the approximation decreases rather rapidly with in-

creasing N

In order to determine the complex eigenvalues of the complex ma-

trix P , it is enough to solve for the eigenvalues of the real matrix

P1 since

cI

and, of course, the eigenvalues of P

Sic2
• •iv. = yl + -• • •

Il

where a. are the eigenvalues of Pi

Since Re(r(G)) > 0 for all q , all ui are real and positive

(see [221).

The normal modes can be determined, if desired, by finding the

eigenvalues of P

2. Response to Forced Oscillations

This problem is a special case of the general problem with thermo-

mechanical coupling and can be easily solved using a slight modification

of the algorithm for the coupled problem.

.~ . .........
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o" 0 Re a)= coswt

J-_T = c(T-To) T= To
dx

Figure 1. Boundary conditions for the problem.
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