>

(e
<
e
N
e
=

ONR Scientific Report
Contract Report No. 19

Thermal Instabilities ina
Viscoelastic Rod under

Cyclic Loading

by

Subrata Mukherjee

Office of Naval Research
Grant N00014-67-A-0112-0060

SUDAM No. 72-9

Rope ¢ .,
NAHO\IAL TECHNICAL
INFO»‘MATION SERVICE

mercea
)‘ 5' A77 s

JUNE 1972
Approved for Public Release; Distribution Unlimited,

Cnatiay B L2 e )

/

TRV AT LT mmm*mr:-mwwumuv'»ﬁé\- £ TN SR MY

AN AR NE BTy N

RTINS AT WOt R P T R R s i R W

E 3

WP o T

AN

Bt b

S

-

H4OPARY

.

g
;,.3 L

LiED
MECH !1“

b
4

FAE

iCS

A"'k:)

D AN W

W




4 - WV ETREE 5T -y Sl S e L L AT FTIEE T ATET NN AT g RTR RN
W«m Rathiii it S ALAL A AR i FTRE SR T S T e g v LR T L EATAGER TR TENE, AR EART T T T TR - =¥ e T B TR T TP RIS NE TSAR y A L ,-y“

unclassified \\\\\‘

Security Classificaruon

(Secytlty claseification of title, body of ba‘tatt and indexing annotation muat be entered when the overall report is classitied)
I oniainaTiN CTIVITY (Caperate aulh:;f 20. REPORT SECURITY CLASSIFICATION
Stanford University unclassified

3 Department of Applied Mechanics 26, GROUP

2 Stanford, California 94305 -

4 3 AKPORT TiTLE

DOCUMENT CON-ROL DATA.R& D ]

: THERMAL INSTABILITIES IN A VISCOELASTIC ROD UNDER CYCLIC LOADING

4 DESCRIPTIVE NOTES (Type of report and inclusive daten)

3 AU THORS) (Firat name, middle initial, last name)

SUBRATA MUKHERJEE

Mk i Kol

¢ REPORT DATE 178, TOTAL NO. OF PAGES 7b. NO OF REFS
3 June 1972 35 25
é 48 CONTRACT OR GRANT NO 98. ORIGINATOR'S REPORT NUMBER(S)
P N00014-67-A-0112-N060
: b PROJECT NO SUDAM REPORT NO. 72-9
: NR 064-471
c. ob. OTHER REPORT NOI(S} (Any other numbers that may be sasigned
thie report)
‘. Contract No. 19

10 DISTRIBUTION STATEMENT

Approved for public release; distribiticon unlimited.

1" SyPPy FuUrNTARY NOTF - 1d SPONSCRING MILITARY ACTIVITY

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20025

13 AGSTRACTY

Thermal instabilities in a viscoelastic rocd under cyclic loading are discussed
by determining the stresses and temperature in a viscoelastic rod insulated on its
lateral surface and driven by & sinusoidal stress at one end. Temperature depen-
dence of the complex Young's modulus of the rod and the effact of thermomechanical
coupling are included in the analysis. A method of finite differences is used to
directly determine the steady state stresses and temperature without obtaining the
complete time history of the process. The iterative algorithm used is very useful
and converges rapidly for a wide range of driving stress amplitudes and frequencies.
It is found that rapid rise of temperature to dangerous levels occurs for relatively
low values of driving stress amplitudes, especially if the driving frequency is
close to one of the critical froquencies of the rod. Drastic softening of the rod

leads to large strains. Thus, failure of the rod could occur at low values of the
driving stress.

DD |'~°o.v&| 91473 ; &/ unclassified

Secunty Classification

TR I ~="§&i




ﬁ‘h T R T R O R IO caabiu: Yol S (o S o i e T R R G g e e S T —
3

b . .-

; unclassified ‘,,"

3 Securtty (Tassity  rinn — .

3 14 LINK & LINK B s

Fﬁ T omenes nnLt[ we ro e [ w1 PP

&

. . . t
viscoelasticity ! §
thermal coupling ;

: thermal instability s
finite differences i
partial linearization : I :

W

l‘ unclassifiea
b Security Classification B

= SLF A uumﬁ




AT AT e el kel U, T O R IR W T TR YRR g, TR R T AR TR T W T IO BT

THERMA!, INSTABILITIES IN A

VISCOELASTIC ROD UNDER CYCLIC LOADING

Subrata Mukher jee

Department of Applied Mechanics
Stanford University

Stanford, California 9430§*

*This research was supported by
Contract No.N0O0014-67-A-0112-0060
of the Office of Naval Research,
Washington, D.C.




T A T AT TINCIAT IR YRt 5 o an e e ot
F\x\\ X y v B A e e e Bt T T B e R i
g = e e AT AR

14
!

ABSTRACT

Thermal instabilities in a viscoelastic rod under cyclic loading
are discussed by determining the stresses and temperature in a visco-
elastic rod insulated on its lateral surface and driven by a sinusoidal
stress at one end. Temperature dependence of the complex Young's
modulus of the rod and the effect of thermomechanical coupling are in-
cluded in the analysis. A method of finite differences is used to
directly deternine the steady state stresses and temperature without
obtaining the complete time history of the process. The iterative
algorithm used is very useful and converges rapidly for a wide range
of driving stress amplitudes and frequencies. It is found that rapid
rise of temperature to dangerous levels occurs for relatively low
values of driving stress amplitudes, especially if the driving'fre-
quency is close to one of the critical frequencies of the rod. Dras-
tic softening of the rod leads to large strains. Thus, failure of the

rod could occur at low values of the driving stress.
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INTRODUCTION

Thermal effects in viscoelastic materials under cyclic loading are
of great practical importance. These materials are dissipative in na-
ture. Continuous dissipation of mechanical energy into heat coupled
with the fact that they are poor conductors of heat can lead to very
high temperatures inside the materials and consequent failure. In ad-
dition, the mechanical properties of the materials are strongly temper-
ature dependent, the complex elastic modulii, in general, being in-
versely proportional to some power of the temperature. This rapid
softening of the material often leads to large strains for relatively
small values of stress.

Several authors have studied thermal effects in viscoelastic media.
Tormey and Britton [1]* carried out vibration tests of solid pr;pellant
rocket motors. Heating due to vibration near a resonant frequency for
several hours caused the material to soften to such an extent that some
of it flowed out of the motor. Hunter [?] derived a set of thermomechan-
ically coupled equations for the propagation of stress, strain and teme
perature fields in viscoelastic solids. He assumed thermorheologically
simple behavior and used a double time integrai expression for the dis-
sipation function. Petrof and Gratch [3] considered longitudinal wave
propagation in a finite rod. They assumed that the material behaves
like ideal rubber so that deformation cccurs without any change in po-
tential energy. They used an integral form of the constitutive equa-

tions. The cransient response of the same problem was studied by

*Numbers in square brackets designate references at the end of this
report.
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Wolosewick and Gratch [4]. They found that due to the high damping in
viscoelascic materials, the mechanical transients decay very quickly,
and a steady state of oscillation witn slowly increasing temperature can
be reached within one or two cycles.

In a series of papers [5,6,7], Schapery derived field equations for
viscoelastic media with thermomechanical coupling and solved some prob-
lems. In {6] he studied the probiem of steady periodic shear oscilla-
tions using the complex mudulus form of the constitutive equations. He,
however, neglected inertia and his application was limited to lower fre-
quencies than considered bere. In [7] he developed and used variational
principles to solve problems involving bodies that were either massless
or with concentrated mass, and in his last example of a *solid cylinder
with distributed mass® he only gives a first approximation to the solu-
tion. This paper (7] has been discussed in more detail in [25].

Huang and lee [8] studied longitudinal waves in a viscoelastic rod
caused by a sinusoidal stress applied at one end. They included time as
an independent variabie and obtained time histories of the stress and
temperature using the method of finite differences. Chang [9] has stu-
died the transient temperature profile in an infinite viscoelastic
medium exterior to a cylindrical cavity subjected to an oscillatory,
axially symmetric boundary shear. More recently, Knauss [10], Hege-
mier and Morland [l1], and Edelstein [12] have studied thermal effects
in viscoelastic solids. Knauss considered the dynamic response of a
Tong viscoetastic bar due to a step displacement at the end; Hegemier
and Morland the response of a viscoelastic half space to the sudden

application of a heat source distribution; and Edelstein an abalating
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cylinder. All three of them, however, neglected thermomechanical coupl-
ing, i.e., the heat source cdue to dissipation.

Studies of thermal effects in nonlinear viscoelastic media have
been reported in [13]-[20]. In {14] Coleman and Gurtin discussed the
velocity and the growth and decay of one~dimensional acceleration waves
in conductors and in media which do not conduct heat. In [15] some of
the findings of [14] were extended to three-dimensional acceleration
waves. In [16] one-dimensional shock waves in non-conducting viscoelas-
tic media were discussed. In [17] Achenbach, Vogel and Herrmann dis-
cussed the propagation of shock waves in a viscoelastic material with
temperature dependent properties and thermomechanical coupling. The
waves were caused by sudden application of surface tractions and the
analysis was concerned with small strains and changes in temperature.
Oden and Ramirez [18] manipulated their relations for finite difference
application. McGuirt and Lianis [19] compared experimental results of
finite uniaxial and e¢qual biaxial tests for non-isothermal conductors
with theory and reported good agreement; while Lianis [20] suggested
integral constitutive equations for nonlinear thermoviscoelastic mate-
rials. Random temperature effects have been considered by Parkus and
Bargmann [21] 1n a recent paper.

This report is concerned with efficiently obtaining steady state
solutions for stress and temperature in longitudinal wave propagation
in a viscoelastic rod with thermal coupling subjected to a sinusoidal
stress at one end. Huang and Lee ia [8] obtained time histories for
the stress and temperature for this problem. They set up the govern~

ing nonlinear partial differential equations based on Schapery's model
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and solved them r - a method of finite di€ferences. In practice, the
temperature in the rod increases with time owing to a continuous dissi-
patiin of mechanical -=rnergy into heat and a strady state might be
ceached 1f the rate of hcat ge: »ration by the dissipative source equals
-3 rat: of heat fiow.ng out of the rod. Such a steady state yields
mos. sev: e f-mperature conaitions v“ich are of primary interest in
¢ sign. ir <.:h ases it is m ~h more efficient to obtain the steady
state direc. .y instead of following the complete time history cf the
process. In this report this is done by solving a set of nonlinear
ordinary differential equations by a method cof finite differences. A
very useful algorithm is developed by ‘'partial liaearization' of the
equations and numerical solutions for a Lockheed solid propellant are
obtained over a wide range of driving stresses and frecuencies. For
the cases studied, steady state solutions fcv stress and temperature
are obtained. The very hizh temperatures reached, however, would cause
failure of the rod. The word 'instability' in the titie may thi b»
interpreted from an engineering (practical) point of view, although the
existence c¢f a mathematical instability cannot be ruled cut since the
complex modulus approaches zero as the temperature increases. In fact,
if the driven end is insulated, instead of being kept at constant tem-
perature as in our problem, unbounded increase of the compliance, cor-
responding to vaniching modulus, would lead to unbounded dissipation
of power at the driven end. This would then cause infinite tempera-
tures and a steady state temperature solution would no longer exist.

These aspects of the problem are discussed in more detail later on in

the report.
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FORMULATION OF THR PROBLEM

f’ The formulation of the p-ublem clnsely follows that in [8] with

the essential difference that *n~ steady state problem is considered

ST

here. Variational principles were used by the author to obtain a nu-
merical solution to this problem for one value of driving stress and
frequency in [25].

Let us define stress, strain and displacement as the real parts

of

iwt iwt

G=0e , €=¢e , lwe (1)

e
]
[y
®

B .

where 1 =\f-1 , ® 1is the frequency and t 1is time. The complex

i

'E quantities 0 , € and u , functioas of the space variatie x , will

é_ be referred to simply as tke stress, strain and temperature respeé-

r{ ively.

3 Let us consider a viscoelastic rod of length £ insulated on its
:L' lateral surface, as in Fig. 1. The left end is free while the right
;é end has a prescribed stress o, cos Wt (co real). The temperature of
{i tke vibrator is assumed constant at '1‘0 while a radiation boundary con-
Q; dition is assumed at x =0 .

The boundary conditions, thercfore, are

c =0
x=0
~— = ¢(T - T))
(2)
O =4
o
s =4
' T=T
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Here T is the temperature and c¢ = h/K 1is the ratio of the sur-

face conductance h to the thermal conductivity K of the viscoelastic
material.

The equation of motion in one dimension can be written as

2 *
i--q+pu)?'Do===0 (3)
dx2

*
where p 1is the mass per unit volume and D is the complex tensile

compliance which gives the strain in terms of the stress
e=Do (#)

*
D is 8 function of the frequency W and the temperature T .
The material is assumed to be thermorheologically simple (see [8]) so

that

D= D (w') = D*(aT(T)w)

where ' 1is the reduced frequency which is related to the actual
frequency w by a temperature-dependent shift factor ap . The vari-
able a, Tepresents the effect of temperature on viscosity.

Writing

we can separate Eq. (3) into its real and imaginary parts

d201 n
;;i‘ +pw (chl + Dzoz) =90 (5)
d202 2
;;7— +p w (D0, - D,0,) =0 (6)
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The steady state energy equation in one dimension for the cycle

'a averaged temperature is given by (see (7,8,25])

3 2
5 Kg—%“"'ZD:O )

dx

Here 2D 1is the cycle averaged value of the mechanical dissipa-

tion function

2T
3 t'i—u—"
_ CORT
| 2D == Re(9) RelSSr) dt
) t

W 2
= 3 Dy(0] + 022>

where Re denotes the real part of the complex argument.

We note here that part of the mechanical dissipation is trans-
formed into heat while the remaining causes increase of potential energy.
Heat is also produced due to dilatational compression. These coupling
terms due to cilatation and potential energy, however, are periodic
and drop out if the energy equation is integrated over a cycle. Thus
the temperature T here is the cycle averaged value of the true tem-
perature. T 1is assumed to attain a steady state after a sufficiently
long time and become independent of time. Strictly speaking, the tem-
% perature has small cycllic variations about a2 mean value as a result of

the cyclic variations of the potential energy, dilatation and dissipa-
”i tion, but these are quite negligible.
We note also that while the mechanical transients vanish within

! one or twn cycles as reported in {4], thermai transients, i.e., the slow

(o 30 Sl da M SR b T e <

bt el g i

LD St Ko o % A
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increase of temperature with time, can continue over several hours be-
fore it settles down to a steady state, if, in fact, a steady state
exists. In the numerical examples given in this report, such & steady
state is found to exist and is obtained directly without integrating
forward in time.

Equations (5), (6), and (7) constitute a set of three nonlinear
ordinary differential equations for the unknowns 01 , 02 and T .
The associated two point boundary conditions are given by Eq. (2).
Thermomechanical coupling is causad by the nonlinear dissipative
source D . The rezl and imaginary parts of the complex compliance
D* are, in general, nonlinear functions of temperature.

For a Lockheed solid propellant over a wide reduced frequency
range we can express D, and D, by the following empirical formulac

1 2
(see (8])

B WY
Dl = clw (T - Tl/
(8;
D = wS Y
g = C (T - Ty
where ¢, , <y B,y and T, are constants.
Let us define the nondimensional quantities
T-T 1
X -1
q9=3 > 'f=§—_—%—, “=ct, X=[2Rep(T- T)] 2,




~9.
The governing differential equations (5), (6), and (7) reduce to

the simplified form

= 0
s; + dlsl + d252 0 . (10)
o - = 11
s + dys, - dy5; = 0 (11)
2 2
' =
™ 4 d2(sl + 52) 0 (12)
where
dl = cl.a’\"Y s d2 = cza.'\"Y
as= Ezp w2+B(TO - TI)Y, a constant
and
d
(=g
The boundary conditions, Eq. (2), become
q=20 5y = 0 , 5, = o , T o= w7t - 1)
(13)
q=1: $S) =85, » 8, = 0o, T1=1

We thus have a two point boundary value problem which is solved

by a method of finite differences (see [22,23,24]).

METHOD OF SOLUTION

1. Partial Linearization

Equations (10) and (11) are linear in the stresses given the tem- 4
perature distribution. However, Eq. (12) is not linear in temperature,

given the stresses, since d2 is a nonlinear function of temperature.

e sonbdbiaiie et A atian ot i T 4;3
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1f Eq. (10) is multiplied by Sy Eq. (11) by Sy » and the resulting

second equation substracted from the first, we get

s" -

2 2
" + =
L - 5155 + d2(s1 52) 0 (14)

)
and using Eqs. (14) and (12) we have

™ = szsa - 5153 (15)

Integrating once with respect to the independent variable g

- 1 1]
TN - T1(0) = s,8] - 5,88 (16)

Now Eq. (16) is linear in temperature given the stress distributiom
and can be used to replace Eq. (12) in the original set of Eqs. (10),
(11) and (12). Thus, the new set of governing differential equations
((10), (11), and (16)) are 'partially linear' and this set, together
with the associated boundary conditions (Eq. (13)) is used to obtain

solutions for the stress, strain and temperature distributions.

2. Finite Difference Algorithm

The iterative procedure works as follows:

(0)

Guess T
T(j) Equations of Motion

=>  (10) and (11) = D
+ boundary conditions

Modified Energy
==> Equation (16) »> (D)
+ boundary conditions

where the superscript j denotes the jth approximation to the solution.

Iteration is continued till convergence is achieved.
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Let

b = —ie = kb (k = 0,1,...,81)
Here & 4{is the step size and M1 the number of mesh points. Hence

q=0, qmlul

i

Let us define, for k = 0,1,...,Ml , the vectors

R I
s1(q ) =8, »  sy(g) =8

(g ) = T

The difference equations for the equations of motion (Egs. (10)

and (11)) become

nk_l + Bknk + nk+1 =0 (k=1,2,...,N) an

where nk is a sequence of two component vectors

R
Sk
nk = (k = 0,1,...M1)
Sk
and Bk is a sequence of 2 x 2 matrices
8%}y -2 8%
Bk = (k = 1,2,...,N)
2 2
-8%d 6%4, -2
2k 1k
L i

N

PRI,
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t
The boundary conditions give i
3
:
g i
0 o !
'qo = ’ T‘N“'l = (18) 5
0 0 :
;
Let v, be a sequence of 2 x 2 transfer matrices defined as 3
T = Ve (k = 0,1,...,N) (19) :
H
g
Now .
g
!
0 0 ;
VoS (20) :
[_o 0 3
:
i
and substituting Eq. (19) into Eq. (17) we get the recurrence relation )
- -1 ]
v = - Bt Ve (k = 1,2,...,N) (21) :
¥
Now with Vo known from Eq. (20), Eq. (21) gives V1 s V2 s sees i
Vy and then Eq. (19) gives e nN-l » e Ty -
Thus, the equations of motion are completely solved for a certain k
guess of the temperature distribution. The use of transfer matrices
is a big advantage since only 2 x 2 matrices need to be inverted.
The modified energy equation (16) and its associated boundary con-
ditions become ¥
R R 1 I 1 R 3
Gtr = 511 S Sin - Sien? Sk M~ M) ‘
20 26 26

- T - 1) (k= 1,2,...,8)
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-T. o+ 411 - STO = 26 n(To— i)

2
T = 1 (22)
Let
Ty = BTy + Vi (k = 0,1,...,81) (23)
v = s§+1 - si_l (k = 1,2,...,8)
2 = Spep - Spp (6= 12,0

Substitution of Eq. (23) into Eq. (22) leads to

and the recurrence relations

Sk+1 = Bk-l + 26% (k = 1,2,...,N)
(24)
Y =y - 20 + w sI -z SR (k = 1,2 N)
k+1 k-1 k 'k kk rE¥r

il

and once Bk » Vi (k = 0,1,...,01) are known, we have

To = ] > TN+1 =1
N1

and Tk (k =1,2,...,N) are obtained from Eq. (23).
Thus, the modified energy equation (16) is solved for the tempera-
ture, given the stresses.

The iterative procedure outlined in the beginning of this section

Cm—————
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is allowed to proceed till successive approximations for T are within
certain prescribed convergence limits, The accuracy of the solution is
verified by back substitution into the origiral finite difference equa-
tions. Different mesh sizes are chosen in such a way that halving the
step size causes a change of .5% or less in the results.

Thus, the steady state values of the real and imaginary partec of
the nondimensional stress, sy and GBS and the nondimensional tempera-

ture T are obtained. The nondimensional stress at any time is

Re(s elwt) =) cos Wt - s, sin wt

RESULTS AND CONCLUSIONS

Numerical calculations have been carried out for the following

*
data for a Lockheed solid propellant [8]

¢y = 461 x 107 (psi) M(ser) (Y

0
[}

, = 1.62 x 107 (ps1) Hsec)? ("B

w
1]

- 0.214 , vy =3.21

=10 , T =65TF
(o]

T, = -125°F , 4 =3 in.

2

2% = 1.023 x 10™% psi-sec?

HKo(1, - T;) = 8.08 x 1074 psiz-sec

*
ITn {8), ® should read 1.0 instead of 0.1.

(AET S B S Lt i e e e PN LU L S LT e SEAE o *“'*r'w"rﬂg!
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Various values for the frequency w and the driving stress S,

were used.

Figure 2 shows the value of T as a function of q for various
values of the driving stress S, ¢ The frequency ® 1is kept constant
at 104 radians/second. The steady state temperature profiles are
found to exist. However, the temperature response is markedly non-
linear, increasing much more rapidly than stress and reaching danger-
ously high levels for low values of driving stress. The constitutive
law used here assumed that the complex Young's modulus E* = 1/D* ap-
proaches zero as the temperature T — = (see Eq. (8)). Schapery [6]
has an experimental graph for aT(T) for our Lockheed propellant which
shows that for large temperatures E*-+> 0 for a finite value of T .
E*-—> 0 means zero wave velocity in the material and consequently
failure. Thus, the temperature levels attained in our calculation;

(as shown in Fig. 2) would lead to melting and failure of the rod, even
though a mathematical steady state solution exists and T is finite
everywhere.

Other interesting observations can be made regarding Fig. 2. The
rapid softening of the material of the rod leads to large values of
strain (around 20% near the driven end for S, = 3.0) so that further
calculations for larger values of S, would not be valid within the
realm of linear viscoelasticity. With increasing stress the location
of the temperature maximum asymptotically approaches the driven end of
the rod since the larger damping at higher temperatures leads to rapid
attenuation of the stress away from the driven end. Consequently, most

of the mechanical energy is dissipated as heat near the driven end of
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; the rod. Another consequence of softening of the rod is lower stress
wave velocities and therefore smaller wave lengths since the driving
frequency is kept the same. These effects on the 1 and S, profiles
are clearly evident in Figs. 3, % and 5 which show 4 and s, as
functions of q for S, = 0.5, 1.5, and 2.5 with ® = 104 radians/
second. In Fig. 5 the stress is practically zero beyond about a third
of the length of the rod from the driven end.

The effect of driving frequency on the maximum temperature is
'i shown in Fig. 6 for two values of the driving stress. The maximum

tenmperature is seen to have several peaks at certain critical frequen-
cies. Increase of driving stress gives higher and more frequent peaks
at different critical frequencies. This is because more input of
mechanical energy leads to more dissipative heating and therefore
i larger temperatures. This, in turn, lowers E* and the change of .
properties of the rod changes the critical frequencies. Also, softening
of the material lowers the stress wave velocity in the rod and this
leads to a lower fundamental frequency for higher driving stress.

The effect of driving stress is, of course, largest near these
critical frequencies. As an example, the temperature and stress plots
for w = 2500 radians/second (the fundamental critical frequency for
o, = 2.84 psi) are shown for o, = 1.42 psi and o, = 2.84 psi in
Figs. 7, 8, and 9. A very large temperature rise is obtained for a
doubling of the driving stress and the 54 and S, plots are consid-
erably different for o, = 2.84 psi compared to those at 1.42 psi. Thus,
these critical frequencies are of utmest importance in design.

An attempt was made to compare the critical frequencies of the

A e

. I
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coupled problem (as in Fig. 6) with the natural frequencies of the un-
coupled protlem where the temperature distribution in the red is al-
ready specified. If a certain temperature distribution is prescribed
in the rod, we have an inhomogenious viscoelastic rod where the complex
Young's modulus is known as a function of the distance along it. We
thus have a linear probler and the compiex natural frequencies of the
rod can be determined by solving the resultant eigenvalue problem.

This was done using a method of finite differences. The details of the
method are given in the appendix.

Let the temperature distribution from the coupled problem for
o, = 2.84 psi , w = 2500 radians/second be prescribed in the rod.

The table gives a comparison of the first three uncoupled natural fre-

quencies with the critical frequencies of the coupled problem from

Fig. 6.
Uncoupled Frequency Coupled Frequency
Radians/second Radians/second
wy 1739.04 + 333.031 2500
wz 4195.78 + 803.501 5000
w3 6708.83 + 1284.751 7500
— = w———

Also, the fundamental uncoupled frequency in case the temperature
distribution is prescribed for o, = 1.42 psi , w = 4000 radians/
second is 3484.36 + 667.261 radians/second compared to the coupled
fundamental critica’ - -equency of 4000 radians/second.

The response of the uncoupled rod to forced oscillation at various

frequencies is shown in Fig. 10. Here the prescribed temperature

E o T RTER A AAE TS WA TIRETSA YRS AT T T T o™ W TN FETTATNRRT LT et T > BV eV TR TN IR TN T s Tl
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distribution is that obtained from the general coupled problem for o, ©
2.84 psi , w = 2500 radians/second. We see from Fig. 10 that owing to
the presence of damping the peak is shallow and occurs around 1800
radians/second (compare with @, 1in table). Thus the eigenvalues of
the uncoupled problem give us an idea of those of the coupled problem
and shed some Light on the correlation between mechanical and thermal
resnnance.

This study shows that mechanical failure of viscoelastic polymers
under cyclic loading can occur at very low values of driving stress,
especially if the driving freqeuncy is close to one of the critical fre-
quencies of the coupled problem. For purposes of design, the direct
determination of the steady state solutions for temperature and stress
appear superior to the method used by Luang and Lee in [8] where the
complete time histories of the above mentioned quantities were deter-
mined. A lot of computational effort is saved since the method used
here requires solution of ordinary rather than partial differential
equations in a computer. 'Partiel linearization' of the problem leads
to a very useful algorithm which converges rapidly for a wide range of

driving stresses and frequencies.
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APPENDIX
Response of a Linear Inhomogenious Viscoelastic Rod with the
Temverature Distribution T(q) Prescribed
1. Determination of Natural Frequencies
The equations of motion of the rod can be written as
s"+ds =0 (A-1)
where
§ =8 + is2 , d= d1 - 1d2
2 248
d@) = (e) - 1e,0(T, - )7 £5p(T(a)) " w
Let
d(q) = r(q) p
where
- 2+8
(c1 + icz)
p(q) = 1/x(q) = —5— 73 Y
(c] + ¢ (T, - 1)) £%(7(a))
Now Eq. (A-1) becomes
p(q) s" +tus =0 (A-2)

s(0) =s(1) =0

which is an eigenvalue problem with p , p and s complex.
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§ .
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3 Let
3 1
3 6 aoro qk=k5 (k = 0,1,...,M1) ; %
? j
-' -z
z S(Clk) = sk ‘
; pla) =p, (k= 0,1,...,N1)
and we have, from Eq. (A-2) ;
2
-p, + 2p,S, - P.S =u62s (k =1,2,...,N)
] k k'k k7 k+1 k
: K - =
; So = Sy = 0
: In matrix form, this can be written as ;
3 :
19 Ps = us? s 3
. 3
z 1 where
Zpl -P; 0 0 0 0 0
Py 2p2 -P, 0 0 0 0 3
; . 0 "P3 2p3 P 0 0 0
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%
E Thus, v, (1 =1,2,...,N) are the eigenvalues of P , the

natural frequencies

1
{ V2
(Di = &—2( (1 = 1,2) ’N)

i We know, from [22] that these numbers approximate the N smallest
natural frequencies. Also, if arranged in an increasing order of magni-
: tude, the approximation is very good for the first natural frequency @y

but the accuracy of the approximation decreases rather rapidly with in-

creasing N .

In order to determine the complex eigenvalues of the complex ma-
trix P , it is encugh to solve for the eigenvalues of the real matrix
Pl s Since

i

C A E
. 2
P=Pl+1P2=P1 \l-r—c—l)

)

and, of course, the eigenvalues of P , E

i

R

} ic
2 ;
vo= 1+ _c;) Y 4

where «a, are the eigenvalues of P, . i

Since Re(r(g)) > 0 for all q , all @, are real and positive

(see [22]).

The normal modes can be determined, if desired, by finding the

E eigenvalues of P .

2. Response to Forced Oscillations

This problem is a special case of the general problem with thermo-
3 mechanical coupling and can be easily solved using a slight modification

- of the algorithm for the coupled problem.
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