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Representation of Time Dependent

Characteristics of Metals 1

by

2 3S.R. Bodner and Y. Partom

Abstract

A new approach to the representation of time dependent inelastic

material behavior is described. Realistic properties such as strain

hardening, strain rate effects, and anelasticity can be incorporated

in this description which is particularly well suited for the computa-

tional solution of structural problems involving cyclic loading and

large inelastic strains. Application to technological metals such as

titanium is indicated.

1 This report has been prepared for presentation at the Eighth
Congress of the International Council of the Aeronautical Sciences
(ICAS) to be held in Amsterdam, August 1972, and will be published
in the Proceedings of the Congress.

2 Professor and Head, Department of Materials Eihgineering,
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3 Adjunct Lecturer, Department of Materials Engineering,
Technion - Isracl Institute of Technology
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Introduction

The analysis of the mechanical response of structures and machine

parts in the range where the material r-sponse is inelastic and time

dependent requires adequate representation of the material behavior

under those conditions. The classical idealizations of elasticity,

plasticity, and viscoelasticity have considerable limitations when time

effects combined with strain hardening and inelasticity are significant

factors. These limitations are especially severe when the structures are

subjected to complicated loading histories that include changes of

direction and rate of loading such as cyclic loading in the inelastic

range. The various generalizations of the classical material ideali-

zations that have been proposed to account for certain material pro-

perties, e.g. rate dependent plasticity, [1], (2], are difficult to

use in structural problems and do not properly represent material resp-

onse for general loading and unloading histories.

The present paper reports on a new method of characterization of

material behavior that can serve for a wide range of properties includ-

ing strain hardening, strain rate sensitivity, anelasticity, accumula-

tion of large plastic strains, and creep. The method is well suited

for the computer solution of structural problems involving large defor-

mations and complicated loading histories. An interesting aspect of

the representation is that the stress strain curve of the material is
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a consequence of the constitutive equations and the conditions of loading.

That is, the stress-strain curve is the solution of a particular boundary

value problem and is not a "basic" material property.

A description of this approach has appeared in an earlier paper [3]

for the case of perfect plasticity, i.e. neglect of strain hardening.

The present paper reviews the procedure including the consideration of

strain hardening. Examples are given to show the applicability of the

equations to the case of titanium tensile specimens subjected to uni-

axial loading at various uniform and changing strain rates.
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General Foriwlation

The essential point ' :he ;'iese. -.-,cedure is that the deformation

rate tensor d.. is consid..dA to con-g,, i both elasti- (fully reversible)13

and inelastic (irreversible! componentb at each stage,

d.. = d. + dP. )
1) 13 13

The relations between these components and the elastic stress, which is

the reference state variabl:, are the basic constitutive equations of

the material. There is therefore no distinct region of material res-

ponse that is fully elastic since inelastic strains would be present

at all stages of loading and unloading. A special unloading criterion

is therefore not required since the same constitutive equations hold

under all conditions. This makes the method particularly well adopted

for computer applications involving arbitrary loading histories.

Another consideration is that the total stress contains an anelas-

tic component in addition to the elastic stress. The anelastic stress

is introduced to account for viscous resistance to motion and is

responsible for energy losses for geometrically reversible motions,

e.g. internal damping. This stress can, in general, be expressed

as a function of the elastic stress and the total deformation rate.

The anelastic stress will, however, be taken as zero in the examples



I -5-

discussed in this paper.

The equations relating the deformation rate to '.e velocity gradients

and the strain rate using the Almansi strain measure have been described for

general deformation states [3]. The elastic strain is a function of the

elastic stress, so the elastic component of the deformation rate can,

upon integration, be directly related to the elastic stress.

The constitutive law for the plastic (irreversible) component is also

a relation between dP. and a... In following the flow law of classical
13L 13

plasticity, this relation is taken to have the general form

d = dP. X)a.. (2)13 -13 -1)

where the bar symbol refers to the deviatoric tensor. The quantity X is

determined by squaring (2) to give

X D2/J (3)
- =2

f where Jis the second invariant of the elastic stress deviator and DP

is the second invariant of the plastic deformation rate tensor. The

vyon ises yield criterion of classical plasticity states that plastic

flow occurs when, in the present notation,

J~- Y2/3 (4)F=2

4
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where Y is the yield stress in tension.

The present viscoplastic theory considers that a relation exists

between DP and J to be used in conjunction with (2) and (3). This rela-
-2 =-2

tion between the plastic deformation rate and the elastic stress invar-

iants,

'4

D= f(J 2) (5)

therefore forms the constitutive equation for describing the viscoplas-

tic deformation properties of the material. Expressions for this rela-

tion are motivated by the equations relating dislocation velocity

with stress which are basic to the field of "dislocation dynamics",

e.g. [4]. A useful particular form for (5) is

DP = D exp (-[C2/c-J2)]n (6)
2 o0I. 2 J

where

- 1 z2(n)l/n (6a)32 n

In these equations, Do, Z and n are material parameters. The coeffic-

ient DO is the asymptotic value of the deformation rate at large

stresses, i.e. the plastic deformation rate is bounded. The quantity

n is a measure of the steepness of the curve and is therefore a measure



of the strain rate sensitivity of the material; larger values of n would

correspond to a steeper slope and therefore mean the response is less

rate sensitave The parameter Z is related in a very general way to the

yieid strength of the material since the maximum slope of the curve

occurs when

J_ Z/ (7)

However, there is no direct correspondence between 7 and the usual

definitions of yield stress

To Insorporate strain hardening into the formulation it is neces-

sary to identify the var3ables that represent this property. The

simplest and seemingly most logical is the work donv during plastic

deformation, Wp, s:nce all strain hardening mechanisms described in

the metaliuzgica.' literature are related in some manner to this para-

meteL This had also been suggested by Hill [5] as the most significant

single representative measure of strain hardening, On the microscopic

le~el, strain hardening means increased resistance to dislocation motion

and therefore to plastic flow. In the present formation this would

correspond to dp be:ng a decreasing function of W which is a state
iJ p

pp
variable There should, however, be a iimiting lower limit to dP.

since othezvwise the material woejd oehave fully elastically as 11
p

I

1*
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became very large. That would correspond to an upward turning on the stress

strain curve at large strains which is not realistic. Microscopic analy-

ses also indicate that plastic flow never fully ceases since there are lim-

its to the distances between the obstacles that oppose dislocation motion.

Strain hardening can therefore be introduced into (6) by making D a
0)

decreasing function or C an increasing function of W . The latter was
p

chosen in the present example and the parameter Z was taken to have the

f orm
SZ e-mWp/ZoZ Z z1 e Pzo 01

where Z1 , Zo, and m are new material parameters.

This formulation of strain hardening corresponds to isotropic

hardening which moans that it would not account for any Bauschinger

effect Tb would require introducing particular non-symmetric features

into the analysis which is possible in principle but very complicated.

The above formulation could also account for other special material

ef"-',. such as age hardening and strain ageing. Age hardening would mean

that dp would be a decreasing function of absolute time. Strain ageing
13

is a more complicated phenomenon and could be considered by making dR.

decrease with the time of deformation. This would mean that shorter

deformation times would correspond to larger values of dp and therefore

to lower stresses which are the macroscopic characteristics of strain

ageing. The present example, however, considers only strain hardening as

indicated by (8).
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Specialization to Uniaxial Straining

The examples described in this paper are of uniaxial straining of a

material at various uniform and changing strain rates. The constitutive

equations developed for this case can also be used for multiaxial boundary

value problems.

The deformation rate tensor is defined in terms of the velocity

gradient,

d = /2(vij ÷ vji) (9)

where vi is the velocity vector. For the uniaxial stress state, the only

non-zero deformation rate components are dx (axial direction) and d inx y

both transverse directions. All shearing components vanish for this case.

The axial deformation rate is simply

dv
dx = dx (10)

where v is the particle velocity in the axial direction. In terms of the

crosshead velocity of the straining device Vc and the specimen gauge length

dx = V c/L (11)
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The other component d is determined by the state of stress. The devia-
y

toric components of the deformation rate are then given by

d =2/3 (d -d) (12a)

parts, e.g.

d = d Pe dp (13)x -x -x

The elastic stress-strain relations, assuming the elastic strains are

sufficiently small so that Hooke's Law is applicable, are

a.. =2G e.. (14)

4 akk =3K Ckk (15)

and in this example a is the only non-zero stress component.
I x

For large strains, the deformation rate is not, in general, equal to

the strain rate [3], However, this identity does hold for the simple geo-
i

metry of the present problem since the other terms in the general relation-

ship become zero.
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The elastic part of the deformation rate tensor is related to the

stresses through (14) and (15) and the plastic part through (2), (3), i
(6) and (8). The material is compressibie for elastic deformations (IS)

and is incompressible for plastic deformations in accordance with the

flow law (2). The rate of plastic work, Wp, is given by

W dP (16)

These equations can then serve to determine the stress required to pull

a rod of the material at a uniform velocity V . This is actually a

I particular boundary value problem whose solution leads to the uniaxial

force-.longation (stress-strain) relation of the material.

A numerical scheme was devised to compute the stress from the preced-

ing equations when the material constants and the applied velocity Vc are

given. The method is a step by step procedure which follows the deforma-

tion history. All quantities such as dP, d W the total elongation,

and the stress are determined at each step. The numerical scheme can be

readily adjusted to account for changes in the applied velocity and for

loading and reloading. That is, the method can consider completely arbi-

trary loading ar straining histories. In this paper, however, only

examples involving uniform velocities and a single change of velocity are

descilbed

t1
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Ap_2lication to Titanium

A series of tensile tests were performed in a 10 ton capacity Instron

testing machine on specimens of commercially pure titanium. The specimens

were cut from a 1 mm thick plate in the rolling direction and were 8 mm

wide, An extensometer was used for the strain measurement and the load was

recorded as a function of strain, Titanium is a fairly rate sensitive

material which makes it useful for studying the effect of different strain-

ing rates and the response to changes of rate during a test. In general,

material response is influenced by the complete strain rate history and

titanium appears to be a good specimen material for such studies. This has

S• been emphasized recently by a number of investigators, e.g. [6]. Tihe pro-

posed method of material representation and the associated constitutive

Seqittions intrinsically include strain rate history effects.

In order to examine the applicability of the present theory to titan-

ium, the material constants of the constitutive equations, (6), (6a), (8)

were determined from the results of two tests at different constant exten-

sion rates. The response to other straining rates and to varying straining

histories were then calculated and compared to corresponding experimental

results

Tests were conducted for four constant crosshead velocities: 0.005,

0 05, 0.5 and 1.0 cm/min. The effective overall specimen gauge length

was 52 mm so the imposed velocities correspond respectively to the strain
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rates: 1.6 x 10=s, 1.6 x 10-4, 1.6 x 10-3 and 3.2 x 103sec".

The material constants were obtained by fitting the calculated response

of the material at the highest and lowest rates to the corresponding exper-

imental curves. The values of the material constants determined in this

manner for zommercially pure titanium are:

Z = 11.5 Kbars (112.8 Kg/mm2 )
0

Z1 = 14.0 Kbars (137.0 Kg/mm2)
SD2 

108 sec-2
0

n =1

m =100

"The elastic constants for titanium are

t K = 1.23 x 103 Kbars (12.0 x 103 Kg/mm2 )

G = 0.44 x 103 Kbars (4.3 x 103 Kg/mm2 )

The calculated stress-strain curves for these constants are shown in

Fig, 1 for the highest and lowest straining rates. Also shown are the

experimental curves to which they were fitted. Calculated stress-strain

curves for the other straining rates are shown in Fig.. 2 along with the

corresponding experimental results.

Of greater interest is the effect of varying strain and strain rate

histories on the deformation characteristics. One significant experiment

of this kind is to change the crosshead velocity during the course of a

test. This can be easily accomplished on an Instron machine by pressing
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the button that activates a magnetic clutch on the speed regulator. A

number of tests were run in which the slowest and fastest rates were inter-

changed at 4% strain without unloading. The experimental results were

consistently reproducible, Figs. 3, -, and could be summarized as follows:

(a) Ineediately.upon changing from the high to the low rate, the stress

drops in an essentially elastic manner to about or slightly above
the level corresponding to the lower rate for a constant rate test.

The stress then shows a small rise and continues approximately paral-

lel and above the constant rate curve and tends toward 3.t with

increasing strain (Fig. 3).

(b) Upon changing from a lower to a higher rate, the immediate response

is close to the elastic value and the stress then approaches the

curve corresponding to the higher uniform rate test but at a lower

level. There is a small rise and fall of the stress curve after

the initial elastic response which is similar to the "upper yield

jpoint" phenomena, The stress tends toward the uniform rate curve

with increasing strain. The flow stress at a high rate is therefore

less when it is subjected to prior deformation at a low rate than if

uniformly strained at the high rate (Fig. 4).

Another closely related experiment would be to unload the specimen at

a given strait: and then to reload at a different rate. A few experiments

of this kind were performed and the results indicated little overall dif-

ferences between this case and that of rate changing without unloading.



-is -

The "cusp" observed in going from the high to the low rate in the former

tests is not observed when the specimen is fully unloaded before the rate

is changed. An "upper yield point" effect is also observed in this case

upon reloading at a higher rate, but it is less pronounced than when the

rate is changed without unloading.

Similar experiments to type (b) above, namely changing from a low

Sto a hh rate without unloading have been performed on titanium in shear
4A

[6] - nerally similar results. The "upper yield point" effect was,

however, not observed in those tests [6]. An experiment of this kind on

aluminum for a very large change of rate of loading has been reported [7]

and the "upper yield point" behavior of the incremental response was ob-

served. Various experiments on changing the rate of straining after

complete unloading were performed on aluminum [8,9] and led, in general,

to results similar to those obtained here.

The calculated response of the material based on the present theoret-

ical formulation for the same variable strain rate history gave results

that closely approximated the experimental ones, Figs. 3, 4. The "cusps"

observed on reducing the strain rate and the "upper yield point" observed

on increasing the rate were, however, not reproduced in the calculated

response curves, These seem to be transient effects which depend on more

detailed mechanisms of plastic flow than are represented in the present

theoretical formulation. It may be possible to include such effects by

-------------
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generalizing the material constants to more closely simulate microscopic para-

meters (internal variables) such as dislocation density and velocity. The

reason for the respective stress levels upon changing rates can be explained

in terms of the plastic work Wp prior to the rate change which influences
p

the subsequent flow stress. IVp is larger at the higher rate which leads

to a relatively higher stress curve upon reaucing the rate (compared to a

constant lower rate test), while the reverse holds for the other case. I
These stress level differences could also be explained in terms of the

developed microstructure but this will be left to a subsequent paper.

It is particularly interesting to examine the details of the deforma-

tion upon changing from the lower to the higher rate. For this particular

case, the plastic deformation rate component dR. is initially 99.7% of

the total d. at 4% strain. Immediately after the change, the value of

dP. increases slightly but its percentage of d.. drops to S6.6%. The in-3J •

cremental response has therefore a large elastic component and experimentally

the response may appear to be fully elastic for approximate measurements,

If the change of imposed velocity at the specimen end had been sufficiently

rapid to generate waves, then an elastic wave would propagate along the

specimen. The plastic component would not be dominant and would attenuate

rapidly with distance. Observations some distance from the end would indi-

cate that the incremental response to the velocity change is elastic.

The proposed constitutive equations are also suitable for cyclic

loading histories, which would be important for low cycle fatigue studies.
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An independent criterion, however, would have to be introducted to indi-

cate the onset of fatigue microcracks or other failure phenomena. If

such a criterion were expressible in terms of the state variables a and

W and other quantities such as accumulated plastic strain, then the
p

present analysis could serve to determine the condition for which the

criterion would be reached for very general cyclic loading histories.

I

I

3
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List of Captions

Fig. 1- Experimental and Calculated (Fitted) Stress-Strain Curves for

Titanium at Constant Strain Rates.

Fig. 2 - Experimental and Calculated (Derived) Stress-Strain Curves for

Titanium at Constant Strain Rates.

Fig. 3 - Experimental and Calculated (Derived) Stress-Strain Curves for

Titanium Subjected to a Rapid Change (Decrease) in Strain Rate.

Fig. 4 E xperimental and Calculated (Derived) Stress-Strain Curves for

Titanium Subjected to a Rapid Change (Increase) in Strain Rate.
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