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TASK 2:  HUMAN-COMPUTER INTERACTION MODELS 

1. Technical Problem 

The purpose of this research program is to continue the 

development of models for human-computer interaction at the 

human-computer interface level. 

2. General Methodology 

Laboratory experiments, 

3. Technical Results 

Vie  have implemented a Measuring System to obtain the 

statistical parameters necessary to specify a Queueing Theory 

model of the dynamic behavior of a state-of-the-art, time-shared 

computer system, and we present results on the statistics of the 

usage of such a computer system. 

We present a methodology for the performance of experiments 

involving human users and for the interpretation of their results, 

We expect that these results will yield predictive models for 

the overall efficiency of the "users-computer systera" under 

various circumstances. 

A paper has been prepared for publication describing the 

features that a system should incorporate in order to be con- 

sidered effective and well human-engineered. 

4. Department of Defense Implications 

Large savings in the cost of software development are 
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potentially possible by converting from the batch-processing 

computer systems that are widely used today to interactive, time- 

shared computer systems. To design, operate, or even select an 

interactive system in a rational way, it is necessary to predict 

its relative acceptability and performance. 

VI 
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PREFACE 

The present contract is a partial continuation of a research 

program begun in 1966 under ARPA sponsorship, of the four tasks 

eventually funded under Contract F44 620-67-C-0033, with the Air 

Force Office of Scientific Research, the first two tasks were 

awarded continuing support under the present contract.  Those 

tasks are: 

1. Second-language learning 

2., Models of man-computer interaction 

The Final Technical Report covers the work performed in the 

second of these tasks during the twelve months of the new contract, 

V/e have bound the reports of the two tasks separately, to facili- 

tate their distribution and use.  In addition to a copy of this 

page, both sections of this report contain an appropriate subset 

of the documentation data required for the whole report:  a con- 

tract information page, a summary sheet for the particular task 

at hand, and a DD Form 1473 for document control. 

VI i 
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1.  INTRODUCTION 

In this final report, we present the results of v/ork on 

User-Computer Interaction performed from 1 January to 31 December 

1971. The body of the report is organized as follows: 

In Section 2 we deal with the subject of modelling the dynamic 

behavior of programs in a time-shared computer system. We give 

a succinct description of TENEX (the time-sharing operating system 

that we are using); we present a Oucueing Theory model; and we 

describe the measuring system that we have implemented to obtain 

the necessary statistical parameters. 

In Section 3, we present several results on the statistics of 

session duration and actual computer time used, as well as on 

certain characteristics of system and subsystem performance. 

Section 4 describes our work in the area we consider most 

difficult—that of modelling user behavior at the user-computer 

interface. As a result of this work, we believe that we have 

found a sound methodological basis for the performance of experi- 

ments and for the interpretation of their results that will yield 

predictive models for the overall efficiency of the "users-computer 

system" under various circumstances. 

Finally, in Section 5, we describe those system features 

developed at BBN and elsewhere that have turned out to be well 

human-engineered and particularly effective as user aids. 
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2.  COMPUTER MODELS 

2.1  INTRODUCTION 

In this section, we shall describe our work towards the 

construction of probabilistic models for the dynamic behavior of 
programs in a time-shared computer. 

Probabilistic models based on Queueing Theory have been used 

with success in the past to describe the dynamic behavior of 

programs in a time-sharing system. The mathematical framework of 

Queueing Theory, with its treatment of units and servers, is a 

natural and legitimate body of knowledge upon which to draw for 

the construction of models.  In fact, in a time-sharina system, 

user programs line up to be run ore at a time (serviced by the 

central processor unit) until a termination condition is reached, 

whereupon they may undergo service by some other processor (server) 

and eventually return to the first server, all in rapid succession. 

In the body of this section, wc shall demonstrate the formal 

adequacy of such an approch for the TENEX system, and shall de- 

scribe the measuring system that was implemented in order to gether 

the statistics that yield the model parameters. 
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2.2  MODEL STRUCTURE 

The computer system we shall model is TENEX, a time-sharing 

operating system conceived and developed by BBN,* now available 

on two independent DEC PDP-10 computers at our Research Computer 

Center. The advanced features of TENEX, the availability of the 

systems personnel responsible for its development, the possibi- 

lity of introducing changes in the operating system to meet mea- 

suring requirements, and the richness and variety of the user's 

environment at BBN are just a few of the reasons that make TENEX 

an obvious choice for our modelling efforts. 

2.2.1 The TENEX System 

TENEX is a system which utilizes paged core memory.  In con- 

trast to the swapping-type monitors like DEC's 10/40 or 10/50 

monitors, TENEX allows users to write their programs as if they 

had a large (virtual) memory at their disposal, while at the 

same time reducing the time it takes to swap a user's program 

between core memory and secondary storage.  This is so because 

only the working pages of a user*s program (the "working set") 

need to be in core for his program to run.  The necessary paging 

hardware-designed and built by BBN-^nakes it possible for core 

memory to be used more efficiently.  Pieces (i.e., pages) of 

programs may be scattered anywhere in real core; the pager re- 

locates each page to provide a contiguous "virtual memory" for 

the user.  Thus, the system no longer has to worry about col- 

lecing "holes" in core memory (as is required in most non-paged 

systems) in order to fit programs in a simply-connected area of 

Priw^6 i0int  SUSP°ut 0f BBN and of the Advanced Research Projects Agency of the DOD. 
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real core. Another advantage of paging is that it makes it pos- 

sible to run programs which would physically require more core 

than is available.  In fact, only pages that are needed at the 

moment must be in core.  When new pages that are not in real 

core are referenced they can be swapped in from secondary stor- 

age and the program can then continue execution. Note also that 

being able to run partially loaded programs can substantially 

increase core memory utilization. 

Communication with TENEX takes the form of a dialogue in 

which the user gives a command, TENEX performs the desired ac- 

tion, and then waits for a new command. The collection of 

available commands, together with certain special characters 

and conventions, makes up what is known as the Executive Language, 

which is the user's handle on the time-sharing system.  The lan- 

guage is very powerful and yet very easy to use, thanks to its 

good human engineering design.  It is based on highly natural 

mnemonic commands and allows command recognition, input editing, 

and multiple input formats to be freely intermingled. 

TENEX has a flexible file system. Files are distinguished 

by device, directory name, file name, extension, and version. 

Names and extensions may be up to 39 characters long. A very 

well human-engineered set of default values makes it extremely 

easy to reference commonly used files. Users can have several 

directories, and an elaborate system for file sharing and pro- 

tection has been developed. 

TENEX allows its users to run hierarchically dependent 

"parallel processes" that share memory among themselves and use 

a pseudo-interrupt system to facilitate interprocess communica- 

tion. 
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Most standard user programs that run under the standard DEC 

PDP-10 operating system will also run under TENEX. Among them 

we have FORTRAN IV, MACRO and FAIL (machine language assemblers), 

LOADER, TECO (a powerful editing language), DDT (DEC's debugging 

language), TELCOMP (a BBN-developed language patterned after 

JOSS), LISP, and a variety of other subsystems of less widespread 
use. 

2.2.2    Scheduling and Storage Management 

A description of the structure of the TENEX software would 

be quite voluminous and is clearly beyond the scope of the pre- 

sent report.  However, in order to be able to interpret and 

understand the structure of our model, it is necessary to de- 

scribe at least the Scheduling and Core Managing functions. 

The following paragraphs are taken from TENEX memo #12. 

"The functions of Scheduling and Storage Managing are 

handled by several inter-related software modules, each 

with a specific, separable set of operations to perform. 

Start up and 
Dismiss 
Interfaces 

Drum 

Manager 

1 
r 

■ • 

r   i 

Core 

Manager 

Balance Set 

Controller 

Process  J    • 

Controller Swapper : i 
i 

Sch edul er 

i 

St oraae Man acrer 

The modules to the left of the dashed line comprise the 

scheduler, those to the right the storage manager." 
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"The process controller performs those functions usually 

associated with a time sharing scheduler.  It contains 

tables of all processes existing in the system and their 

state of execution (runnable, blocked for I/O, etc.). 

It contains routines which change the state of processes 

on request from other system modules or as a result of 

process activity.  A central routine of the process con- 

troller performs the basic scheduling function, i.e., 

it considers the state of the processes in existence 

and the available system resources, and selects a pro- 

cess to be given some CPU service.  It keeps an 

accounting of the recent activity of each process, 

particularly CPU usage, and allocates each system re- 

source among the process competing for it according 

to some defined criteria." 

"The balance set control is concerned with making ef- 

ficient use of the core and drum channel resources of 

the system.  It constantly monitors the state of core 

utilization and working set requirements of the pro- 

cesses in core, and decides when another process can 

be admitted or one must be thrown out.  The "balance 

set" is defined as a set of runnable processes whose 

working sets can co-exist in core.  It is thus a sub- 

set of the set of all runnable processes, and normally 

consists of those runnable processes which are most 

due for CPU service as determined by the process con- 

troller. " 

"The information gathering and decision making procedures 

involved in determining working sets and core utilization 
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are quite complex, and incorrect handling of these func- 

tions in a multi-process paged system can result in poor 

efficiency and bad service.  The first step in avoiding 

this pitfall is to define a portion of the monitor which 

is directly responsible for these functions rather than 

having them diffused through many parts of the system." 

"The function of the startup and dismiss routines is 

fairly common and straight forward. Included in this 

section are routines to save and restore environments 

as they go out of and into execution. No important 

scheduling or other decisions are made by this module." 

"The swapper handles the communication between the 

secondary storage devices (drum and disk) and core 

memory.  It receives requests from the scheduler to 

move processes into and out of core, constructs I/O 

requests and performs queueing. 

The core manager selects core pages to be used for 

swap reads from the drum or disk, performs some "aging" 

operations, and handles the selection of core pages to 

be swapped to the drum.  It has principal use and con- 

trol of the Core Status Table (CST) which reflects at 

all times the current state of each page of core memory. 

The CST is also modified by the paging hardware, re- 

cording information about the activity of the running 

process. 

The drum manager is responsible for assigning storage 

on the swapping drum and for selecting pages to be 

moved to the disk in the event the drum becomes full." 



Report No. 2352 Bolt Beranek and Newman Inc. 

2.2.3 The Basic Sequence of Events 

Let us now consider a typical sequence of events as they 

would appear to a user when he gives a command to TENEX. Con- 

sider Fig. 1.  The user types in the last character of his command 

(TIWK) which is usually a carriage return meaning, "now go and do 

what I have commanded." The system recognizes such wake-up char- 

acters, and as soon as one is received the user's program becomes 

runnable. After some length of time that depends on the system's 

load and the user's priority, the program becomes a member of 

the "balance set" and the CPU starts executing the given com- 

mand until the user's program references a page that is not in 

real-core memory at the time; i.e., a page fault occurs (PGF). 

A request to read the page from the drum is entered after the 

core manager has found room for the page.  Eventually the page 

is brought in (PI) and execution resumes.  After possibly many 

such faults, the running time exceeds a fixed "quantum" (QO) 

and the program is dismissed (it is removed from the balance 

set).  After some time (again, depending upon system load and 

upon a.now diminished priority) execution continues and an output 

to be typed out on the user's terminal is generated.  Execution 

stops and the program is dismissed as soon as the output buffer 

fills up (TOBLK). When the output buffer is almost empty, the 

program is reactivated (TOWK), generates the rest of the output 

(without filling up the remainder of the output buffer) and seeks 

further input from the terminal.  Since the user has not yet 

typed in a wake-up character (he may not have started typing in 

his next command) the program is dismissed (TIBLK). 

Let us next write a scenario for the sequence of events that 

occurs in schedulinq and managing core for several processes.  In 
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Fig. 2 we have represented events for each of three processes 

in the balance set.  The bottom horizontal line represents time, 

t, in milliseconds.  The user who owns process 1 finishes in- 

putting a command (TIWK) at t=20.  This causes the process con- 

troller to reassign priorities and the balance set control to 

estimate storage requirements  The core manager sees that room 

is provided in core for the new process and the swapper is 

activated.  The first page of process 1 is brought in and a 

very short burst of CPU service follows, ended by a page fault. 

About 20 milliseconds later, the page requested arrives and it 

so happens that the CPU is available.  Process 1 gets another 

short burst of computation, until it page faults again.  Pro- 

cesses 2 and 3 are also in the balance set and the CPU service 

bursts that they receive are interspersed among those of Process 

1. Notice that the fourth burst of Process 1 and all bursts of 

Process 3 begin considerably later than the moment the page they 

requested has actually arrived in core. At t=200 milliseconds, 

Process 2 blocks for I/O.  That is, the process stops running 

because information must be transferred to or from the external 

world in a slow device; for example, the process waits for the 

user to type something into his Teletype.  At this point, the 

Process Controller and the Balance Set Controller may decide to 

bring a different runnable process into the balance set and  i 

throw out Process 2. After some time. Process 1 finally blocks, 

nnd Process 2 wakes up again. 

2.2.4 The Queueing Network Model 

From this admittedly sketchy description of the internal 

workings of TENEX, we may now proceed to present the structure 

of our model—a state diagram, comprising the network of servers 

and their attending queues of user programs, that is represented 

10 
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in Fig. 3,  In this diagram, user programs may be imagined as 

marbles leaping from one box (that we call a state) to another 

via the directed paths represented by lines.  User programs remain 

in the various states for randomly varying periods of time, 

ranging from a few milliseconds to several seconds, in accordance 

with the characteristics of the state they are in.  Transitions, 

or leaps, are assumed to occur instantaneously. 

All runnable programs are either in GO or in the set of 

states included in the dashed box called BALSET.  Runnable pro- 

grams are those programs which have completed their I/O and are 

waiting to be executed (or are being executed).  A subset of 

these, selected by the balance set controller, has had core mem- 

ory allocated to it and is considered to be compatible (their 

working sets can all fix.  together in core, simultaneously). 

Programs in the balance set can be removed therefrom and placed 

in GO, and vice versa, depending upon their priorities as 

judged by the balance set controller.  Programs in the READY 

state (those which are both runnable and in the balance set) are 

selected for execution by the scheduler and enter the RUN server. 

RUN service is terminated for one of several reasons: 

a)  The program is I/O blocked, demanding service by any of 

the several input-output devices available, such as 

dectape (DTA), lineprinter (LPT), terminal 

output (TTO), and terminal input (TTI).  The 

box labeled LIMBO corresponds to several instances 

of suspended animation in which a program may find 

itself as a consequence of the operation of the 

pseudo-interrupt system. 

12 
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b) The program runs for its full quantum and is re- 

turned to the READY state. Here, the balance set 

controller will determine whether the program must 

be thrown out of the balance set because of demands 

from other runnable programs (in GO), or whether it 

can be allowed to stay in READY state. 

c) The program may finish computation altogether, i.e., 

the user logs out (OUT). 

d) A page fault has occured and the page referenced 

must be brought in from the drum or disk (DR and 

DK). After the page has been brought in, the 

program may go back to READY state, or may find 

that during the time taken by the page transfer, 

the balance set controller decided to throw the 

program out of the balance set. 

e) The program may stop execution at its own re- 

quest or als the system's request.  The former 

type of request is relatively rare; the latter 

type of request is exemplified by the system's 

need to determine which pages of what program 

to throw out of core memory in order to make 

room for execution of the jobs currently in the 

balance set. 

As we can see, the GO and the READY states of our diagram 

really correspond to user programs waiting to be processed; 

i.e., they represent waiting lines. All the other states ex- 

cept IN and OUT represent servers with different characteristics, 

14 
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For example, TTI and TTO can be considered parallel, multi- 

channel servers capable of servicing simultaneously as many 

porgrams as there are active terminal lines, while the drum (DR) 

can serve as many programs in one drum revolution as there are 

non-superimposed transfer requests (superimposed requests would 

be those involving overlapping drum azimuths). Others, such äs 

RUN, and also the disk (DK) in certain cases, must be considered 

as single-channel servers capable of servicing one user program 

at a time. 

In summary, each server is characterized by the way in 

which waiting programs are selected for service (queue 

discipline), by the number of programs that can be serviced 

simultaneously, by the probability density of its service time, 

and by its transition probabilities (the probabilities with 

which programs will request their next service to be performed 

by another server). A measure of these quantities is all that 

is required to identify and quantitatively define the model. 

From the model, characteristics such as the number of programs 

in any of its states, the load factors for each server, the . 

distribution of waiting times—the quantities that are needed 

to satisfy our goals of description and prediction of system 

response characteristics—Kjan be obtained. 

2.3  MEASURING SYSTEM 

We have designed and implemented a software measuring 

system to obtain the statistics we need to specify quantita- 

tively our model.  The data are obtained by a set of software 

probes inserted at such points in the TENEX monitor where a 

state transition can be said to occur.  The measuring system 

15 
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consists actually of two parts: the set of software probes 

and a special user program.  The software probes are patched 

directly into the TENEX Monitor at points corresponding to 

the directed paths in Fig. 3.  Every time a user's program is 

dismissed for I/o, for example, it activates a probe inserted 

at an appropriate point in that section of the monitor code 

that performs the dismissal. 

The probe gathers data, compacts it into two PDP^-IO 36-bit 

words and records it in a buffer located in the monitor's ad- 

dress space.  The data gathered are the following. 

a) The measurement number (identifying the corresponding 

position in Fig. 3) 

b) The job number (identifying the user program) 

c) The fork number (what process in the hierarchy of 

processes the user program may have spawned) 

d) The time of day (in milliseconds) 

e) State dependent data, such as the I/O blocked condition, 

i.e., what I/O device is involved. These data are 

specific to the example chosen; for other measuring 

points,such as page faulting for example, the virtual 

and the real core page numbers are specified. 

The special user program has the following functions: 

a)  It allows the user to specify an I/O device for 

permanent storage of the measurement data, as 

well as to write headings and other indexing 

information. 

16 
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b) It copies the entire monitor code as the first 

record of the data. This is done to facilitate 

reduction of the measurement data, and to help 

explain possible anomalies in the data produced 

by undocumented changes in the monitor. 

c) It inserts the probes into the monitor code and 

dismisses itself (goes to LIMBO) until the special 

wake-up condition described next is met. 

d) When the buffer is more than a given percent full, 

the program wakes up, dumps the contents of the 

buffer onto the I/O device selected in a), checks 

whether the user has signaled termination of the 

measurement, and if he has not, goes back to sleep. 

This loop is then repeated. 

Two data-reduction programs are available to unscramble the 

data recorded: a time-history program and a histogram-generating 

program. The time-history program simply translates the bit 

patterns of the raw data into easily readable descriptions of 

the event recorded so that the gyrations of any particular program 

in the time-sharing system can be followed and interpreted. The 

histogram-generating program produces and makes available the 

probability densities that we need for our modelling. These programs 

are described in detail next. 

17 
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2,3,1 Time History 

In Pig, 4 we present a short segment of a typical time- 

history output. As we can see, at time 21.605 fork 5 of job 5 

completes an I/O operation and becomes runnable (enters the GO 

state); it is immediately incorporated to the balance set (GO to 

READY), and starts execution (READY to RUN). Two milliseconds 

later, execution stops because of another request for I/O and 

fork 5 of job 5 leaves the balance set (RUN to I/O),  the particular 

input-output operation being coded in the first of tv/o DATA codes. 

Fork 6 of job 7 was expecting a page to be brought into core from 

the drum, and at time 21.681 the page has arrived (DRUM to READY), 

the program starts execution (READY to RUN), and page faults again 

3 milliseconds later (RUN to DRUM). There is nothing else for 

the system to do but wait for this page to arrive at time 21.772. 

Thereupon the same sequence of transitions occurs, untim at 

time 21,858 fork 6 of job 6 blocks for I/O and leaves the balance 

set.  Immediately, fork 7 of job 3 is brought back into the balance 

set (GO to READY), and starts execution (READY to RUN), While it 

is executing, fork 7 of job 7 terminates its I/O, and, as a con- 

sequence of its becoming the program that is most in need of 

execution (as determined by the scheduler), fork 3 of job 7 is 

stopped without leaving the balance set (RUN to READY? fork 6 of 

job 6 enters the balance set (GO to READY), and the balance set 

controller decides it cannot keep both jobs simultaneously in 

core and throws job 7 of job 3 out of the balance set (READY to GO). 

Skipping now to time 28.146, we see that fork j? of job |? 

(a phantom job used by the system to watch over file operations) 

terminates its I/O and becomes runnable (I/O to GO). Consequently, 

the scheduler stops execution of fork 7 of job 3 (RUN to READY; 

fork ^ of job JJ enters the balance set (GO to READY); a page is 

18 
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Time FRK Job Trns Data 
mn sees No. . No. (state dependent) 

0:00:21.605 5 5  I0-G0 0 a05ab5 
0:00:21,605 5 5  GO-RY 0 a05a35 
0:00:21.606 5 5  RY-HN uu 33 
0:00:21,608 5 5  RN-IO 2763a 
0:00:21.681 6 6  DR-RY 177 
0:00:21.681 6 6  RY-HN 763 666 
0:00:21,6814 6 6  RN-DR 157 1 1 
0:00:21,772 6 6  DR-RY 157 
0:00:21.773 6 6  RY-RN 765 667 
0:00:21,777 6 6  RN-DR 161 123 
0:00:21,8UH 6 6  DR-RY 161 
0:00:21,saa 6 6  RY-RN 766 6/0 
0:00:21.858 6 6  RN-IO 27667 
0:00:21.859 7 3  GO-RY a 366231 
0:00:21,860 7 3  RY-RN asa 220 
0:00:25,263 6 6  I0-G0 0 aia6b0 
0:00:25,263 7 3  RN-HY a 366231 
0:00:25.264 6 6  GO-RY 0 aia6b0 
0:00:25.26U 7 3  RY-GO a 366231 
0:00:2b.292 6 6  RY-RN 767 6/1 
0:00:25.307 6 6  RN-IO 27667 
0:00:25.308 7 3  GO-RY a 366231 
0:00:25.309 7 3  RY-RN a7i 266 
0:00:28.1116 0 0  I0-G0 0 4223:33 
0:00:28.me 7 3  RN-RY a a152ai 
0:00:28.U7 0 0  GO-RY 0 a223b3 
0200:28,U9 0 0  PY-DP 172 a 
0:00:28,152 0 0  DR-DR 17U 22 
0:00:28,15a 7 3  RY-RN 507 33a 
0:00:26,213 7 3  RN-RY a ai52ai 
0:00:28,21U 0 ?  DR-RY 0 
0:00:28,214 0 0  RY-RN 1 1171 30/a 
0:00:28,216 0 0  PN-DR 171 212 
0:00:28,218 7 3  RY-RN 507 33a 
0:00:28.263 7 3  RN-RY a ai52ui 
0:00:28,26a 0 0  DR-RY 171 
0:00:28,26a 0 i*  RY-RN 11171 J0/5 
0:00:28,270 0 0  P.N-DB 173 ai37 
0:00:28,272 7 3  RY-RN 507 33Ü 
0:00:28,313 -7 3  RN-RY a aib2ai 
0:00:28,31a 0 0  DR-RY 173 
0:00:28,31a 0 H  RY-RN i 1173 30/6 
0:00:28,321 0 0  RN-IO aa363 
0:00:28,331 7 3  RY-RN 507 33a 
0:00:28,333 5 5  IO-GO 0 U226a6 
0:00:28,333 7 3  RN-RY a "15241 
0:00:28,33a 5 5  GO-RY 0 422646 
0:00:28.335 5 5  RY-RN au 33 
0:00:28,336 5 5  RN-IO aa363 
0:00:28,3a5 7 3  RY-RN 507 33a 

FIG.4 A SEGMENT OF TIME-HISTORY OUTPUT 
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requested from the drum (Ri:ADY to DRUM), and a second page is 

requested after the first one arrives (DRUM to DRUM). V7e see here 

an instance of preloading—a job that has been away long enough 

from the balance set and has had all of its pages physically re- 

moved from core cannot begin execution until two of its key pages 

are brought in first. 

Obviously, the program just described makes it possible to 

observe the behavior of user programs in minute detail.  In order 

to obtain the needed statistical data, however, it becomes neces- 

sary to perform another step in reducing the data by generating 

histograms, 

2,3.2 Histograms 

The histogram-generating program: 

a) computes an approximation to the probability density 

of service times, that is, the relative frequency with 

which a program will remain in any given state for a time 

comprised between a given interval.  It also computes the 

mean and standard deviation of such times; 

b) computes occupancies, that is, the frequency densities 

v/ith which 1, 2, 3, ,,,n programs will occupy any given 

state simultaneously, as well as the mean and standard 

deviation of such state occupancies; 

c) computes the transition probabilities, that is the rela- 

tive frequency with which a program will leap from any 

given state to any of the others. 
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Most of the probability densities in (a) have very long tails, 

and it would be impractical to use a linear time scale for the 

construction of histograms. For this reason, we have used in such 

cases a log-linear time scale compression of the following form: 

T(i) = [8 + (i mod 8)]2IP(l/8) - 8 for i = 1, 2,  3,... 

where T(i+1) - T(i) is the width of the i  time interval and IP(.) 

denotes the greatest integer less than or equal to the argument. 

In this way, the width of the first eight time intervals was one 

time unit, the width of the second eight was two, that of the third 

eight was four, and so on.  Events with durations between T(i) 

and T(i+1) were assigned time T(i). Due to the particular char- 

acteristics of rotational devices, this time compression was not 

necessary for the probability densities of times in Drum and Disk. 

In Table la we present a portion of a typical time probability 

output, corresponding to a test run; in Table lb we reproduce the 

occupancy probabilities; and in Table Ic the transition probabilities 

for that same run. Some observations and comments on these data 

follow immediately. 

One of the most important states in the model is the RUN 

state.  Inspection of the frequency density of times in that state 

reveals its extreme skewness—94% of the times in RUN are less than 

0,1 sec, and yet the average RUN time is .13 sec. This is due to 

the fact that job 3 is a CPU-bound program—whenever the system 

has nothing to do, it executes this job, sometimes for as long as 

eight seconds without interruption. 
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TABLE la 

FREQUENCY DENSITY OF TIMES IN STATES 
(service time probabilities) 

TIME 
B£QS 

E 
60 BDY RUN TBLK LMB 

0.00119 
.001 
,002 
.003 
.00a 
.005 
.006 
.007 
.008 
.010 
.012 
.01a 
.016 
.018 
.020 
.022 
.024 
.028 
.03 2 
.036 
.0U0 
.0au 
.0a8 
.052 
.056 
.064 

.3900 

.4800! 
0.0000 
0,0000 
.0051' 
.0051 

0.0000 
0.0000 
.0102 
.0051 
.0102 

0.0000 
0,0000 
.0510 

0.0000 . 
0,0000 ! 

0,0000 
0,0000 ' 
.3102 

0.0000 ■ 
0,0000 ' 
.0051 

0.0000 ; 
0.0000 i 
0.0000 I 

4.600 
5 .112 
5.624 

l 6.136 
6.648 
7.160 
7.672 
8.184 

NUMB 
AVRG 
ST DV L 

0.0000 
0,05500 
0,0000 
0.0000 
0.0000 
0.0000 
t\0000 

.0153 

196.0000 
1.3590 

11.7180 

.2819 
,5367 
.0390 
,0150 
.0120 
.0105 
.0030 
.0045 
.0060 
.0135 
.0345 
,0120 
,0075 
,0015 
,0075 
,0015 
,0060 
,0015 

0.0000 
0.0000 
3,0000 
.0030 

0.0000 
0.0000 
0,0000 
,0030 

0,0000 
0,0000 
0,0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.i;000 

667.0000 
.0020 
.0060 

,0078 
.1264 
.2434 
.0733 
.0484 
.1^718 
.0499 
.0218 
,0530 
,0655 
,0328 
.0140 
.0078 
.0140 
,0094 
.0047 
.0125 
,0253 
.0062 
.0 125 
.0094 
.0062 
.0094 
,0094 
,^094 
,0031 

JL 

,2759 
,3103 
.0172 
.0172 

0.0000 
0.0000 
0.0000 
.0345 
.2069 
.0862 
.0172 

0.0000 
0,0000 
0,0000 
0,0000 
0,0000 
.0172 

0,0000 
0.0000 
0.0000 
0.0000 
0,0000 
0,0000 
0.0000 
0.0000 
0.0000 

164 

.0047 

.0031 

.0031 
0.^000 
.i.'016 

0,0000 
,0316 

0.0000 

.0000 

.1300 

.7570 

0,0000 
0,10000 
0.0000 
0,0000 
,0310 
,0543' 
,0310 
,0465: 

,0233 
,0310 

0,0000. 
0,0000 

»T- 

0,0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

58.0000 
.0070 
.0240 

■»»•'■'■'"• 

0,0000 
,0078 

0,00(90 
,0078 
,0155 

0,0000 
0,0000 
0,0000 
0,0000 
0.0000 
0,0000 
0,0000 
0,0000 
0.0000 

,0078 
,0388 
,0078 
.0076 
,0310 

0,0000 
,0155 
,1395 

129,0000 
4,8060 
13.5520 
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TABLE lb 

FREQUENCY DENSITY OF NUMBER OF PROGRAMS IN STATE 
(occupancy probabilities) 

NO, OF PHOGS S     1 r   A T S    s 
GO RD* RUN TDLK LHB 

.975 .906 ,28a .9y7 .003 
•I .02U ,ai3 ,716 .00« .006 
2 .£01 .0^1 0,000 0.000 .00a 
3 .301 0,0^0 0.000 0.000 .019 a 0,»?? 0.0J0 0,000 0.000 .050 
5 0,/J03 0,0^0 0,000 0.000 .2ab 
6 0.000 0,0160 0,000 0.000 .673 

AVRG 0.000 ' .0^3 ,716 .00U 5.53ai 
ST DSV 0,000 ' .0^U ,451 ,060 .8a9i 

'            i - ■     —i 
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TABLE Ic 

PROBABILITY OP TRANSITION FROM A STATE TO ANOTHELR 

FROM/TO 10 GO RY RN DR DK BK TO TI LB 

10 .78 .11 .11 

GO 1.0 

RY .01 .96 .03 

RN .002 .11 .46 .08 .09 .05 .21 

DR .01 .95 .04 

DK .49 .51 

BK 1.0 

TO 

TI 1.0 

LB 1.0 
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The difference in behavior of programs as they arc in the 

DRUM or the DISK state is also worth pointing out. As we can 

see in Table Ic, the probability is very nearly 50% that a program 

exiting DISK will remain in the balance set, while a program 

leaving the DRUM state has a 99% chance of remaining in the balance 

set. Since DISK access times are considerably larger than DRUM 

access times, the balance set controller tends to keep within the 

balance set those programs that are likely to be READY in a short 
period of time. 
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3.  USAGE STATISTICS 

3.1  SESSION DURATION AND CPU TINE CONSUMED 

Each usage of the time-sharing system by an individual user 

is called a session. For each session, the TENEX accounting sys- 

tem keeps track of the time elapsed between login and logout, 

and of several computer resources used during that time interval. 

As a first attempt at characterizing (and modelling) the behavior 

of users, we have collected data on the length of sessions of our 

TENEX time-sharing system, along with the CPU time consumed in 

each session. 

We have examined data for all the usages of the TENEX time- 

sharing system from 1 December 1970 to 30 June 1971, a total of 

more than 14,000 sessions. A special feature developed espec- 

ially for our purposes allows these data to be classified and 

sorted in a two-dimensional histogram, recording the number of 

sessions lasting between T and T , minutes and consuming between 

C and C +, seconds of CPU time. As a compromise between resolu- 

tion and size, we adopted a log-linear time scale (giving pro- 

gressively longer time intervals) according to the formula 

Tn=2
E(n/3) [15+5(n mod 3)]-15 (in minutes) 

where E(n/3) is the greater integer <n/3.  This gives, for 

n = 1,2,3,...7, the values 5, 10, 15, 25, 35, 45, 65.  Exactly 

the same expression was used for C , except that times were ex- 

pressed in seconds.  The measured relative frequencies cor- 

responding to such a histogram are reproduced in Table II.  V.7e 

observe, for example, that 10.37 percent of all sessions recorded 

here were less than 5 minutes long, and consumed less than 5 

seconds of CPU. 
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We begin our analysis by computing some statistics.  It 

will be assumed throughout that the relative frequencies in 

Table I are a discrete probability density function representing 

events that occur at the arithmetic mean of the interval. For 

example, all sessions lasting less than five minutes and consum- 

ing less than five seconds of CPU will be represented by a session 

of 2.5 minutes duration and consuming 2.5 seconds of CPU. We 

shall also adopt the following terminology; 

n  m 

26 
P(T ) = Z    P(T C ) and 

n m=i        n, m 

is the probability density 
of a session lasting between 
T n-1 and T minutes, consum- n 
between C . and C seconds m-i     m 
of CPU. 

1 6 
P(Cm)=Z  P(T .C) m n_^    n m are the marginal probability 

densities of session duration 
and CPU consumed, respectively. 

P(Tn|Cm)=P(Tn,Cm)/P(Cin) and 

P(Cm|Tn)=P(VCm)/P(Tn) 

28   16 
Elg(T)]=Z  E 

m=l n=l 9(
Tn+Tn+l) nf m 

are the conditional probab- 
ility densities of session 
duration given CPU consumed, 
and of CPU consumed given 
session duration, respec- 
tively. 

is the expected value of the 
function g(T) of session dura- 
tion. Similar definitions 
apply with respect to CPU 
consumed and with respect to 
the conditional and the mar- 
ginal densities. 
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E[(T-E[Tl)*(C-E[C])] is the correlation coefficient 
P" between session duration and 

0T 0C CPU consumed, where 

2     2 
oT=SORT(E[T  ]   -E   [T])   and 

2     2 
Oc=SQRT(E[C ] -E [C]) 

We present in Table III the means and standard deviations of 

both conditional and both marginal densities.  Inspection of 

Table II shows that a strong correlation e^lsäts between session 

duration and CPU consumed. However, the relatively low value of 

the correlation coefficient (see Table III) shows that this cor- 

relation is not linear. An excellent linear fit is obtained by 

computing E[log T|C] and E[log C|T] and plotting it on semi-log 

paper (see Figure 5). One gets: 

Ellog C|T] = .20 + log T 

E[log T|C] = .42 + 0.66 log C 

These expressions are especially suited to our modelling work 

because they allow us to estimate, for example, how much CPU 

will be consumed, on the average, in a session of duration T. 

Let us now turn our attention to the different probability 

densities involved. Figures 6 and 7 show plots of ehe  cumulative 

conditional probabilities 

N 
Pr[T<T |C] = E  P(Tn|C) and 

n=l 

Pr[C<Cm|T] = Z      P(Cm|T) 
m 
E 
m=l 
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TABLE III 

CONDITIONAL AND MARGINAL STATISTICS 

T(mins) 
or     — 

Session Duration CPU Consumed 
c(secs) E[T C] 

11.1 

0T C 

38.9 

Weight 

.138 

ECC T] aC|T Weight 

5 8.3 29.2 .167 
10 18.7 38.7 .097 21.6 29.4 .091 
15 27.3 48.8 .060 36.0 49.2 .064 
25 33.4 46.7 .086 57.1 72.5 .098 
35 41.1 51.5 .063 83.6 123.2 .074 
45 47.5 52.9 .047 132.5 188.8 .062 
65 53.7 58.1 .068 174.9 217.4 .096 
85 70.0 71.2 .048 228.5 289.4 .073 

105 74.3 66.5 .038 287.3 351.3 .056 
145 83.3 75.9 .056 342.6 405.2 .073 
185 86.2 68.4 .042 449.6 525.4 .044 
225 117.7 87.0 .035 528.3 574.5 .028 
305 121.1 89.2 .048 728.1 863.8 .034 
385 137.6 100.4 .033 830.2 855.3 .017 
465 149.0 100.2 .022 899.2 1095.5 .011 
625 157.8 109,6 .035 1766.6 1922.6 .012 
785 162.2 106.1 .022 
945 176.0 116.6 .016 

1265 215.2 127.4 .019 
1585 224.4 123.2 .009 
1905 244.1 120.1 .005 
2545 294.0 125.2 .006 
3185 325.8 117.1 .003 
3825 333.5 127.3 .001 
5105 376.6 106.1 .001 
6385 420.6 66.5 .001 
7665 265.0 .0 .000 

E[T] = 72 min E[C] = 205 sees 

oT = 93 min 0C « 472 sees 

P = 0.55 
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on logarithmic normal probability paper. The fit to a log 

normal distribution is good for P(T|C) and not quite so good 
for P(C|T). 

Plots of the marginal densities P(T) and P(C) are presented 

in Pig. 8. While the hypothesis of lognormality could be defended 
for P(C), it appears to be untenable for P{T). 

After many attempts to fit a number of well-known probability 

density functions to the data, we finally settled for a hyper- 
exponential function of the form 

p(t) = aX^l*      + bX2e"
X2t + cX e'^-t 

3" 3' 

where a, b, and c are all positive and a + b + C = 1, 

This probability density corresponds to a queueing model of 
the following form. 

a -     , 
1 •   Ai    ■  » 

b    I 1 
(i »   A2     »-—f 

L£-*   x,     •-* 
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where the boxes represent exponential service time servers. The 

fitted value of service rates (X's) and coefficients for the 

console time data are: 

X1 = ,2,   X2  = ,019, X3 = ,0068 

a = ,11, b = ,53, c = ,3 

The fitting procedure was based on the chi-square method 

of goodness of fit. After each choice of X's and of the coeffi- 

cients b and c, chi-square was computed as well as its partial 

derivatives with respect to the X's and coefficients.  The next 

set of values of X's and coefficients was selected by adjusting 

the one of them for which the absolute value of the partial deri- 

vative was highest. The initial set of values was obtained by 

plotting the observed frequency density on senilog paper and by 

choosing X's by eye. 

We terminated arbitrarily the procedure when chi-square 

descended to a value of 10.3, with 10 degrees of freedom. This 

means that if a new sample of data were obtained from the same 

population, the probability that its chi-squared value be larger 

than 10,3 would be 0.42, Therefore, the hypothesis of a hyper- 

exponentiality is in good agreement* with the observed frequency 

density. 

*See paragraph 30.4 of H. Cramer's Mathematical Methods of 
Statistics, Princeton University Press, 1946. 
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We then performed another type of analysis of the data to 

see how the user load on the computer changed with the time of 

day. To this end we computed histograms of session durations 

and CPU time consumed for sessions begun between 8 a.m. and 9 a.m., 

9 a.m. and 10 a.m., 10 a.m. and 11 a.m., and so on.  Sessions 

begun between n and n+1 were assigned to the n+1  histogram slot, 

with the exception of 8 a.m. that concentrates all sessions begun 

between jS  a.m. and 8 a.m.  While these histograms retained a 

basic similarity with the overall ones, significant parametric 

differences were observed.  In Fig. 9 we represent the average 

and median of console time consumed as functions of the time of 

day of login.  We see that, in general, sessions tend to be longer 

at the beginning of the day, and decrease in length toward the 

end of the day. A shallow, short lunch lull is visible in the 

average and median, as well as a longer one at around dinner time. 

The percentage of logins reveals even more clearly the bimodal 

character of the working sessions of TENEX users—most of the 

sessions begin between 9 a.m. and 12 noon, and between 1 p.m. and 

5 p.m. Here, there is a pronounced dip at around 12 noon, un- 

doubtedly due to lunch time.  In Fig. 10 we represent the same 

statistics (average and median) for the number of CPU seconds 

consumed per session as a function of the time of day of login. 

We can observe that the same general trends and character- 

istics pointed out previously about console time appear to hold 

also for CPU time. An interesting feature of these data can be 

ascertained by plotting the ratio of median CPU records consumed 

to median minutes of console time per session, as a function of 

the time of day. As can be seen in Fig. 11, this ratio is re- 

markably constant throughout the day, except around 9 p.m., when 

this ratio almost doubles.  It seems that TENEX users have 
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disciplined themselves to postpone their CPU-bound jobs until 

the night hours, when the number of users in the system is small 

And the chances of perturbing (or being perturbed by) other users 

with heavy demands of CPU time are small. 

3.2  SYSTEM STATISTICS 

One of the features of the TENEX Executive System allows 

certain privileged users to obtain information related to both the 

performance of the time-sharing system itself and the performance 

of the sjibsystems run under TENEX.  This facility, called STATISTICS, 

provides the following types of information: 

1. Allocation of system resources, such as the fraction of 

the total up-time spent: 

a) running user's program 

b) idling, that is without any runnable user program 

c) waiting for secondary storage transfers 
(all runnable user programs have page-faulted) 

d) managing core 

e) handling page faults (included in item (a) above) 

2. The total number of pages read/written from/onto the 

drum and the disk 

3. The amount of core memory available to users 

4. The number of times user programs have been dismissed 

because of terminal I/O, and have been interrupted from the 

terminal 

5. The time integral (in milliseconds) of the number of run- 

nable user programs the system thinks can be simultaneously 

kept in core 
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6, The running time (in milliseconds) of user programs in 

each of the five queues of the system 

7. Allocation of subsystem usage. This will be dealt with 

in detail in the next subsection. 

We have gathered system data by running STATISTICS at 0900 

hours and at 1800 hours for 48 consecutive working days, comprising 

the entire months of February and March and part of April 1971. 

Figure 12a is a typical printout of these data.  We have processed 

these data and shall proceed now to report some of the results 

that are of interest. 

The average UP time as measured at 1800 hours was 14 hours, 

30 minutes. The average time spent running user programs was 242 

minutes, or almost exactly 4 hours. This was obtained by averag- 

ing the result of subtracting idling, waiting, and core managing 

times from UP time. 

In Table IV we present some statistics obtained by analyzing 

the afternoon data. Averages and standard deviations were ob- 

tained by weighting and corresponding quotients in proportion to 

the day's running time. Thus, for example, for the first entry 

in the table, the formulas used were 

48 
AVE = E TWKn/SUMRUN, where TWK is the number of terminal wake-ups, 

n-1 

ST.DV.= 

where 

(HS 2 v 

I       TWK  n  /RUN'GJ/SUMRUN-AVE' 

I/J 

SUMRUN  =E        RUN'G 
n=l n 
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IOAYTIHE 
TUESDAY« APRIL   13* 1971   11 

ISYSTAT 

UP 251 411 39     13 JOBS 

JOB TTY USER SUBSYS 
8 57 SATTERFIELD EXEC 
3 46 WEBBER < PRIV) 
A 40 JSI EGEL EXEC 
6 21 6RIGNETTI EXEC 
1 31 MURPHY MACRO 
9 27 WEGBREIT TECO 
12 OET HANSON CPRIV) 
13 37 REMINGTON TEL COM 
15 35 HARTLEY LISP 
16 34 WOODS EXEC 
19 56 CM.LEVA EXEC 
23 60 MURPHY EXEC 
24 17 HOLLISTER MOEVEL 

ISTATISTICS 

18100127 

IDLE 34S  WAITING 29Z CORE MGMT 3Z PAGER TRAPS 8X 
ORH READS 1999463 WRITES 998211  OSK READS 126238 WRITES 49453 
83 PAGES OF USER CORE 
67640 TERM WAKEUPS  3283 TERN INTERRUPTS 
TIME INTEGRAL OF # JOBS IN BM.ANCE SET 123201023 
RUNTIME OF JOBS ON Q*S 0-4 (MSEC) 

1510700 3757137 6641200 3318948 16149699 

FIG. 12a SYSTEMS STATISTICS PRINTOUT 
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Description 

TABLE IV 

SYSTEM STATISTICS 

Ave. 
Std. 
Dev. 

140 30 

.66 .21 

.085 .03 

.19 .06 

3.3 0.97 

4540 1210 

2933 914 

3116 922 

Units 

Terminal wakeups 

Waiting 

Managing Core 

Handling Page Traps 

User Programs in Core 

Drum Reads and Writes 

Drum Reads 

Drum and Disk Reads 

per min run'g 

mins/min run'g 

mins/min run'g 

mins/min run'g 

pages/min run'g 

pages/min run'g 

pages/min run'g 
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It should be realized that the value given in the table is 

not the standard deviation of the number of terminal wake-ups as 

they would be counted at the end of each minute of running time. 

It is instead the standard deviation of a set of 48 large sample 

averages obtained as ratios of a large number of terminal wake- 

ups to a large number of minutes of running time.  When this fact 

is considered, the standard deviations appear to be rather large. 

An estimate of the true standard deviation can be obtained by 

multiplying the standard deviation of the sample averages by the 

square root of the average running time, 242 minutes.  So the 

standard deviations per minute of running time appear to be 15.6 

times as big as the ones in Table IV,  Apparently, we are 

dealing either with highly skewed distributions with very long 

tails, or with multimodal distributions.  When we obtain data 

with our complete measurement system, the forms of these distri- 

butions will become clear. 

A better understanding of these data can be gained by plot- 

ting the various items whose descriptions appear in Table IV 

versus running time and versus the number of page faults. These 

plots show a high linear dependence, and computation of the best 

linear fits produces the results detailed in Table V. 

Thus, for example, running time (RT) appears to be a good 

predictor of waiting time (WT)—the prediction equation being: 

WT a 3.76 + .67*RT 

with a correlation coefficient (p) of .96 and with a root mean 

square error of 33.2 minutes. Notice that since the intercept is 

small, the slope of the prediction line coincides with the aver- 

age value of the ratio WT/RT given in Table IV, as it should. 
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TABLE V 

Linear Regressici 
Statistics 

Waiting 
Time 
(mins) 

Slope 

Intercept 

P 

rms error 

Core     Slope 
Management 
Time     Intercept 
(mins) 

rms error 

Trap 
Time 
(mins) 

Slope 

Intercept 

P 

rms error 

Page 
Faults 

(thousands) p 

Slope 

Intercept 

rms error 

Slope 

Time     Intercept 
Integral 
of Jobs  p 
in Core 
(mins)   —»,_ „•,..,».« rms error 

vs. 

j Running Time 
(mins) 

.67 

3.76 

.96 

33.2 

.069 

2.74 

.83 

7.36 

.159 

5.68 

.86 

14.9 

2.55 

117.5 

.87 

231.4 

2.89 

116.3 

.95 

154.9 

vs. 
Page Faults 
(thousands) 

.22 

3.9 

.91 

47.7 

.025 

1.22 

.87 

6.55 

.061 

.51 

.97 

7.7 

1.00 

74.4 

.96 

137.4 
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Notice also the strong correlation that exists between running 

time and page faultso This strong correlation makes it undesirable 

to attempt fitting the various items by means of double regression 

(on both running time and page faults, simultaneously),  in fact, 

if we do so, we would find that the variability of the result would 

be very large due to the smallness of the determinant of the co- 

variance matrix. It is better and simpler to divide the various 

items by the running times, and to fit the quotients to the number 

of page faults per unit running time. The results of this appear 

in Table VI. 

3.3  SUBSYSTEM USAGE STATISTICS 

A subsystem is defined in TENEX as any executable program that 

is stored in the SUBSYS directory. A large number of them (com- 

pilers, conversational languages, text editors, utility programs, 

debugging aids, operation accounting, monitoring, and controlling 

programs, etc.) can be run under TENEX and are in daily use. The 

range of usage of the subsystems varies considerably. One, the 

EXECUTIVE language, is used by all TENEX users since it is the 

handle with which they communicate and work with TENEX. A few, 

such as LISP, FORTRAN, etc., are in common and widespread use, 

but many others are private programs that may be executed only by 

a single user. 

In this section we present statistics on certain aspects of 

subsystem usage. We shall concentrate on a few subsystems of gen- 

eral interest, for v/hich sufficient use has been observed to make 

the data reliable. These data are of the follovring types: 

a) CPU time accumulated since the system was started 

b) Number of page faults since the system was started 

c) Time blocked for TTY input 

d) Number of TTY wake ups 

e) Average size of program when blocked. 
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TABLE VI 

Linear Regressive Statistics vs. 

Page Faults 
(thousands per 
min. running time) 

Waiting Slope .065 

(per min. running) Intercept .495 

P .40 

rms error .35 

Core Slope .019 

Management Intercept .023 

(per min. running) P .60 

rms error .024 

Trap Slope .049 

(per min. running) Intercept .033 

P .82 

rms error .032 

Jobs in Slope .56 

Core Intercept 1.69 

(per min. running) P .81          1 

rms error .39 
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Let us explain each of the above in detail. 

Item (a), CPU time accumulated, is the total amount of time 

the computer was actually executing a given SUBSYS program, regard- 

less of who used it. The same holds for item (b) with respect to 

the total number of page faults. 

When a command has been carried out and the user has not yet 

finished typing in another command, execution stops, i.e., the 

process blocks for teletype input. When the user finished typing 

in his next command and orders the computer to perform it by typing 

a wake-up character (usually a carriage return), the time elapsed 

between this event and the previous blocking is noted.  Item (c) 

represents the total amount of time any given subsystem was waiting 

for each of its users to finish typing in a command, while item (d) 

is a count of the teletype wake-ups for the subsystem. 

Finally, item (e) is the average number of pages that were 

in real core memory at teletype input block time for each subsystem. 

Tabulations of these quantities (see Pig. 12b) were obtained 

twice a day, at about 0900 hours and 1800 hours, for each working 

day for several months.  In each case, each quantity represents 

the accumulated total since the system was restarted last. Because 

of crashes that occurred at random intervals, the length of these 

periods (UP times) ranged from a few minutes to several days. 

The data we actually analyzed were selected from the after- 

noon tabulations, after suppressing those that corresponded to UP 

times of 7 hours of less. The reasons for this were: First, we 

wanted to dilute the perturbations in "steady-state" behavior that 

inevitably occur when the system is restarted after a crash, and 
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SUBSYS TIME PG  FLTS, TTBLKTM TTWAKES TTBLK SZ 

EXEC 15689 79 54929 32309237 2389 18*12 

(PRIV) 747932 26361 22252931 7265 10.18 

NETSER 119398 8464 0 0 0 

NOTIFY 956 1 6433 2^ 5.00 
TECO 1040464 13725 35823680 3534 8.43 

LISP 217803 36466 13799730 1919 19.57 
COPYM 229.7 95 9179 9 6.00 
LOGO 74449 3359 2244553 464 14.27 
TELCOM 56724 7 330 ; 2522976 277 33.89 
PAKSEC 431085 24262 1412125 365 19.57 
NETSTA 7 34 46 0 0 0 
TELNET 778'; 1 3132 787 4849 3155 7.81 
FAIL 46296 1781 560318 6 42.8 3 
MAUKO 535913 4762 281045 1 M 4 14.99 

LOADEH 729 426 1 438 1 298 5669 1396 9.84 

K/4Ü 1 41 S< 39 2426 16759 19 31.95 

IMGPTP 512 42 1839 2 1 1 . SO 
RUNOFF 1 53119'1 501 96245 13 9.3^ 
SHOT in 5 55 574 364642 132 8.9 3 
DISC« is 57S 32 0 0 0 

LISPX 70591 729 6 532613 87 33.41 

FIG. 12b TYPICAL SUBSYSTEM STATISTICS TABULATION 
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second, we wanted each data entry to be representative of at 

least the better part of a normal working day. 

We also suppressed tabulations that were partial accumulations 

of others. This means that when the system stayed UP without 

crashing for several days, we took only the tabulation correspond- 

ing to the longest UP time, and eliminated those of the previous 

days which were contained in it. 

In this manner we selected 74 tabulations, extracted from 

the period 14 May 1971 to 20 January 1972, representing a total UP 

time of 1234 hours. 

As we indicated before, the number of subsystems available 

under TENEX is very large. Furthermore, many of these subsystems 

are short-lived. For these reasons we selected from the subsystems 

a subset of nine that spanned a considerable range of usages and 

accounted for 80% of the actual CPU time consumed. These sub- 

systems are: 

1. The EXECUTIVE language, which is the primary means of 

communication between TENEX and its users. 

2. FORTRAN and MACRO, two compilers in widespread use by 

the BBN community of users. 

3. LISP, a list-processing language used intensively by a 

large group of people involved in artificial intelligence work. 

4. TECO and RUNOFF.  TECO is a powerful text-editing language 

widely used to input and edit source code, as well as other 

textual material such as program documentation, reports, etc. 

RUNOFF is a report-production facility that is commonly used 

in conjunction with TECO to produce report-grade print that 

can be offset directly. 
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5. TELCOMP, an interactive, JOSS-type language developed and 

marketed (until recently) by BBN. 

6. A catch-all category called PRIVATE, encompassing all the 

programs that users create and run as independent entities, 

as, for example, compiled FORTRAN programs. 

Many changes were incorporated into TENEX during the eight 

months that comprised our observations. These changes were mostly 

add-ons, and, with one significant exception, should not have caused 

marked deviations in terms of the quantities we recorded. The sig- 

nificant was the addition of 64K of coi  memory, nearly doubling 

the amount of core memory available to users. Of the 1234 hours 

of UP time comprised during our observation period, 750 hours were 

recorded before the addition and 484 hours were recorded after the 

addition. 

This addition, we thought, would provide us with a unique op- 

portunity to test the validity of our hypothesis that changes in 

the response characteristics of the computer system should bring 

about changes in user's behavior. Unfortunately, in spite of quite 

clear alterations in system response characteristics, any corre- 

sponding changes that may have taken place in user's behavior were 

not revealed by our measurements. 

In Table VII we present our results.  In order to discuss 

them, let us first describe in detail what each number represents. 

Columns 1-3 represent the percentages of the total CPU time consumed, 

the total number of page faults incurred, and the total number of 

teletype wake-ups typed in by the users of each subsystem over the 

whole observation period. Column 4 is the average time that a 

user remained blocked for teletype input while using the subsystem; 

column 5 is the average CPU time consumed per interaction; and 
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column 6 is the average blocked size for the entire period.  Co- 

lumns 7, 8, 9 and 10 contain the average number of page faults per 

teletype wake-up, the average number of page faults per CPU second 

of execution, the average CPU seconds per teletype wake-up, and 

the average number of seconds blocked for teletype input, respec- 

iively, for the 484 hours that the system was observed with the 

longer user core. Columns 11, 12, 13 and 14 contain the same type 

of information for the 750 hours that the system was observed with 

the smaller user core. 

Again, with a single exception, the clearest effect of in- 

creasing the core size can be seen in the reduction in the number 

of page faults, either with respect to teletype wake-ups or with 

respect to CPU seconds.  Each command requires less drum swapping 

of pages with large user core than is required with small user core. 

The exception referred to above is TELCOMP, where there is a marked 

increase in the number of page faults per CPU second.  We attribute 

this increase to differences in the mode of usage of this sub- 

system before and after the addition of core memory.  This hypo- 

thesis is tenable in view of the snallness of the sample size 

(TELCOMP usage represents only 1% of the used CPU time), and can 

be confirmed by examining the data on a day-by-day basis. 

Observe also that, in general, page faulting is very frequent 

at the beginning of an interaction (the program has to build up its 

working set), and diminishes as the CPU time for the interaction 

increased.  Other things being equal, we would then predict a 

higher page fault rate for shorter interactions than for longer 

ones.  Considering that the CPU time per terminal wake-up is. for 

TELCOMP, 0.56 sec for the small user core, and is 0.28 sec for the 

large user core, we are led to conclude that the observed increase 

in page faults per CPU seconds is due to this effect. 
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Another interesting observation can be made with respect to the 
the "seconds blocked per teletype wake-up.- These quantities repre- 
sent the user response time, or the time during which the user 

plans and prepares his next command. One would hypothesize that, 
for a constant interaction time, a shorter computer response time 
would imply a longer user response time, since the computer is 
indeed responding more rapidly with a large user core than with a 
small user core, one would expect to see the effect indicated 
above in the "blocked time." This expectation is borne out by our 
data. The notable exception is MACRO, but it can easily be ex- 
plained away by usage differences which are all the more to be 
expected, given that MACRO is a compiler. 

To account quantitatively for the observed differences would 
require more detailed measurements that transcend the scope of the 
present work. 
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4.  USER MODELS 

The gathering of daily statistics of time-sharing system per- 

formance through the use of the measurement system described in 

Section 2 enabled us to understand how the system behaved over a 

period of time. To understand why it behaves this way and how it 

might behave under different conditions, we require models of user 

behavior in addition to models of time-sharing system behavior. " 

4.1  INTRODUCTION 

In the course of our work on this contract, our views con- 

cerning the structure of user models have evolved considerably. 

In our previously reported work, we concentrated on building an 

understanding of users' problem-solving strategies and of the fine 

structural details of their command-selection procedures. We at- 

tempted to account for why a user chose a particular command at a 

particular time. The approach required carefully controlled experi- 

ments in highly constrained situations in order to delimit the op- 

tions among which the users could choose. Our MINITECO text-editing 

experiments constituted an example of this technique.* 

Gradually, we came to the realization that building models at 

this level is an impossibly slow process, because the results are 

highly dependent upon the task being studied and upon the constraints 

imposed. We turned to less constrained, more realistic tasks, such 

as FORTRAN debugging, and redefined our goals. We decided to settle 

♦Semiannual Report No. 7, 31 July 1970, ARPA Order #890, Amendment 4. 
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for a statistical description of the commands chosen, and turned 

toward Markov models of user behavior. We conducted preliminary 

experiments with FORTRAN debugging tasks, and took a hard look 

at what kinds of information could be extracted from them. 

While we were reexamining our approach to user modelling, 

we were also making rapid grogress in formalizing our time-sharing 

system models. As this occurred, we could begin to assess how the 

user and the computer models would have to interface, and whether 

the user models being contemplated would yield the outputs re- 

quired by the computer models. We have now concluded that the 

command-choice models previously discussed are simply not appro- 

priate for our purposes. 

One difficulty with command-choice models is the large number 

of them that would be required to treat the wide variety of users 

and tasks represented on a multi-purpose time-sharing system. 

Another difficulty is that there is poor correspondence between 

the type of command chosen by a user and the actual computational 

load placed on the time-sharing system.  There are two principal 

reasons for this; 

1. The computer resources demanded by a particular command 

are highly context-dependent; it makes no sense, for example, 

to speak of the resources demanded by a COMPILE command 

without specifying at least the size of the file being com- 

piled. 

2. The fundamental unit of interaction between the user and 

the computer is not really the command; in many circumstances, 

commands are concatenated and processed in a single inter- 

action, while in other cases a single command may give rise to 

a whole series of interactions as the computer requests sev- 

eral items of information from the user. 
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We have now concluded that our user models must be structured 

around the basic user-computer interaction cycle and must yield 

outputs in terms that are relevant to the computer models, namely, 

the amounts of various computer resources being demanded during a 

particular interaction. 

We see the development of these user models as a three-stage 

process. The first stage involves finding descriptors for user 

demands that are general enough to encompass widely different 

classes of users who are using the time-sharing system in quite dis- 

similar ways. The second stage involves validating these de- 

scriptors and demonstrating that they are sufficiently stable to 

characterize adequately the behavior of a specific class of users 

over some period of time. The third stage involves the develop- 

ment of mathematical techniques for describing the manner in which 

the descriptors change in response to changes in the computer 

system characteristics. 

The remainder of this section elaborates these ideas, and 

can be considered as our contribution towards a methodology for 

the development of user models. 
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4.2  DESCRIPTORS FOR USER DEMAND 

In Section 2.2, we discussed the various events that can oc- 

cur during an interaction cycle.  Of these, we chose the TIBLK 

(where the program becomes blocked while waiting for additional 

teletype input from the user) as a salient point marking the be- 

ginning of an interaction cycle. We defined the time between 

TIBLK and the next TIWK (the teletype input wake-up caused by 

typing the terminating character of a new command string) as the 

user response time (DRT). We defined the remaining part of the 

cycle—the time between a TIWK and the next TIBLK—as the com- 

puter response time (CRT).  (See Pig. 1 for a graphic representa- 

tion of these parts of the interaction cycle.) 

The CRT for an interaction is a function of the computer 

resources demanded by the user during that interaction.  Speci- 

fically, we have identified three important system resources by 

which such a demand may be characterized. 

x,   = CPU time 

x» = core 

x. = input/output 

For notational purposes, we define the vector 

^ - (Xj^, x2, x3)i 

as the user demand during interaction i. 

Our object is to describe, in some statistical manner, the 

user interaction characteristics, URT and x. We, therefore, need 

the joint probability density pO^) of the resource demand.  In 

addition, we must describe the temporal characteristics of a 

series of demands, i.e., the probability density function for 

URT^ 
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We expect that URT will depend strongly on other interac- 

tion descriptors; namely, the resources demanded.  Therefore, 

we need also the conditional probability density function 

pOJRT.Ix.^x.) 

where x^ and x. are, respectively, the resources demanded in the 

last interaction and the resources to be demanded in the present 

interaction.  The probability density for URT alone can be ob- 

tained, if desired, by summing over x. ,, x. . 

Our motivation for conditioning URT. in this manner is based, 

in part, on the following: 

a) The resources demanded in the previous interaction, 

xi_1, constitute a measure of the interaction complexity. 

The user will spend some time thinking about the results 

of the previous interaction.  The time he spends will 

depend, to some extent, on the complexity of the pre- 

vious interaction, especially on the amount of output 

generated, x-j.  In addition, üRTi will depend on the 
CR,ri-l (which' in turn, should correlate highly with 

xi_1).  The user might in part plan his next request 

while awaiting the results of the last interaction. 

This would have the effect of shortening URT.. 
i 

b)  3^ are the computer resources that are about to be 

demanded by the user.  We expect a substantial cor- 

relation between the time spent planning a demand, 

URT., and the resources demanded, x.. 
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In summary, we believe that the important aspects of a 

series of user demands can be characterized by a joint prob- 

ability density function for resources demanded per interaction 

and by a conditional probability density function for URT. Of 

course, certain components of x.^, x. may correlate poorly with 

URT.  In this case, the conditional probability density function 

can be simplified by neglecting these components. 

4.3  VALIDATION OP DESCRIPTORS 

Before we can attempt to model user behavior (i.e., to 

predict how the user related probability densities change under 

various circumstances), we must first demonstrate that the des- 

criptors chosen are both general and stationary. 

4.3.1 Generality 

Each individual user tends to interact with a computer in 

a unique manner.  Studying individual reactions, however, is 

undesirable (and virtually hopeless). We expect that by mea- 

suring the demands of a large number of users over some period 

of time, one should be able to demonstrate the existence of a 

relatively small number of user alasses.     These classes would be 

task-defined, not user-defined. Practically speaking, the classes 

should correspond with subsystems available on the time-sharing 
system. 
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The users within a given class would tend to interact with 

the machine in a similar manner.  Each class could, therefore, 

be characterized by its own unique set of descriptors—presum- 

ably, the probabilistic description of LISP users will be different 

from that of TECO (editor) users.  It is crucial then to ascer- 

tain whether the descriptors pO^) and p(üRTi|x. , x. ,) do 

indeed characterize the demands of any given user class. 

We feel that the identification and description of the user 

classes would represent a highly useful achievement, independent 

of subsequent successes in modeling the details of the class 
behavior. 

4.3.2 Stationarity 

Parameters that serve to describe the user probability den- 

sity functionst should be stable for a given class of users when 

calculated from data collected over reasonably short periods of 

time.  Thus, descriptor parameters calculated for TECO users 

this week should be reasonably similar to those calculated for 

this same class last week.  We expect that individual differences 

between users and the jobs on which they are working will be 

great enough so that for small samples of data (say, 100 

te.g., the moments of the distribution, functional characterizers, 
etc.  As an example, the mean and variance suffice to describe 
a gaussian distribution. 
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consecutive interactions) the calculated parameters will show 

substantial variability.  We hope that for larger samples (say, 

1000 interactions) enough different users and jobs will be re- 

presented in the samples to reduce this variability,  if we find 

that very large samples (say, 10,000 interactions) are required 

to achieve repeatable results, then the usefulness of the des- 

criptors will be quite limited—data would have to be collected 

over a period of many weeks or months—and the descriptors gene- 

rated from these data would not account for short-term variations 

in user demands.  However, this negative result would be in 

itself, an important conclusion. 

One way to estimate the stability of our descriptor parameters 

would be to proceed as follows:  If we have data for 5000 consecu- 

tive interactions, we canrproduce density histograms for resources 

demanded for the first 100 interactions, the second 100 interac- 

tions, etc., and then run Chi-square tests on the hypothesis that 

all 50 such histograms are drawn from the same population.  If 

we must reject this hypothesis, then we can repeat the calcula- 

tion for histograms containing 200 or 500 or 1000 interactions, 

proceeding to pool larger numbers of interactions until we are 

unable to reject our hypothesis.  The smaller the number of in- 

teractions, the more stable our descriptors for that sample can 
be said to be. 

Obviously, it is not realistic to pretend that there is 

some particular sample size for which the descriptors suddenly 

become stable, where they were not before. We view this tenta- 

tive procedure, rather, as a consistent way of comparing the 

relative stability of data obtained under different conditions. 
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From a mathematical viewpoint, demonstrating the stationarity 

of user descriptors implies that the density functions pXx.) and 

p(CRTi) are not explicitly  dependent on i.  Thus, 

A 
PCJ^) = P(xi+1)= P(x) 

for all i, and p(CRTi) is independent of the specific interaction 

number; i.e., we have stationarity.  fThere are some subtle 

points here regarding the ergodicity of the interaction process. 

However, they are beyond the present scope.) 

4.4  SYSTEM MEASUREMENTS WITH SIxMULATED USERS 

Once we have identified various classes of users and have 

characterized their demands, we can begin to make more effective 

use of our measuring system (described in section 2.3).  With 

real user data, measurements of times spent by each job in each 

system state, transition probabilities between states, and so 

forth, will be corrupted by variations in user population and in 

the types of jobs being run.  Thus, whatever is extracted from 

these measurements is confounded with the effects of a constantly 

fluctuating load of users working on a large variety of tasks. 

To explore the interplay between man and machine as a basis for 

analytic modelling efforts, we must have the ability to perform 

carefully controlled experiments that are not subject to extra- 

neous variability.  However, controlling the real users' demands 

in the working environment is out of the question.  We, there- 

fore, propose to make measurements on classes of "simulated 

users" whose demands we aan  control explicitly.  On a class 

basis, these simulated users must behave like real users in 

all statistical respects.  This implies that when the real 
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users are replaced by a set of equivalent simulated users on the 

time-sharing system, no changes should result in the system mea- 

surements obtained. Our procedure is outlined below. 

A simulated user in class M, for example, will be designed 

to generate demands statistically, equivalent to those measured 

for class-M users. We will have characterized these interaction 

demands in terms of the probability density functions p(x) and 

p(URT), so that generating representative demands should be 

straightforward.  Next, the simulated users must be validated 

by placing them on the time-sharing system and comparing the 

statistics gathered by our measuring system with the statistics 

that correspond to real users.  If the simulated users do, in 

fact, mimic real users in all important respects, the results 

should be indistinguishable. 

There is a great potential in having the ability to simulate 

the demands of "typical" users of various classes.  By controlling 

the user demands over some time period, we can isolate the effects 

of these demands on the behavior of the time-shared computer 

system. For example, we can conduct system measurements with 

controlled numbers of simulated users belonging to a given class, 

in order to determine how system behavior is affected by changes 

in user descriptors and in numbers of users. We can also com- 

bine different types of simulated users, to study how differing 

demands may interfere within the computer system. Besides 

studying the effects of changes in user Parameters, we can also 

make certain changes in the syetem   (e.g., changes in core alloca- 

tion or in scheduling algorithms), to determine how system 

behavior is affected for a selected group of simulated users. 
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Thus, the two-pronged objective of our experimenting with 

simulated users is to study the eenaitivity  of system behavior 

with respect to changes in user demand descriptor parameters and 

with respect to changes in computer parameters. The simulated 

users give us the capability to assess the effects of proposed 

system changes, assuming that user demand descriptors do not 

change. We will also have some idea of how much  these des- 

criptors would have to change in order to produce a noticeable 

effect on the predicted system behavior.  However, the models 

obtained will not  account for the changes in ueer  behavior that 

may result from a change in system  behavior. The simulated 

users are valid only for the system on which the original mea- 

surements were made.  Therefore, our next task should be to 

determine how the user descriptors are likely to change in 

response to a given change in system behavior. We should then 

be able to describe completely the overall aloeed-loop  man- 

computer-man-response . 

4.5  MEASURING USER BEHAVIOR ON SIMULATED SYSTEMS 

To study changes in human behavior that are effected by 

changes in computer characteristics, we must experiment with 

real users.  However, a major difficulty with such experiments 

will be to segregate changes  in user behavior caused by changes 

in system response from the inherent variability  in the demands 

of different users working on different tasks. 

One way to alleviate this difficulty would be to create an 

"adjustable system." The time-sharing system monitor can be 

programmed to delay system responses to the inputs of any par- 

ticular user in such a way as to simulate the way the system 
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would  respond with some specified set of system parameters and 

user demand descriptors. Using this adjustable system, it should 

be possible to isolate any user or group of users from the spurious 

effects of other users' demands, thus reducing measurement uncer- 

tainty arising from human variability. 

For a given  task,   it will be necessary to study how a user's 

demand descriptors change as changes are made in the simulated 

system. The words "for a given task" are critical here? for some 

tasks a user may have substantial latitude in choosing a strategy 

of attack, while for others his choices may be quite limited.  It 

will be necessary to derive user demand descriptor parameters for 

users working on similar tasks under various simulated system con- 

ditions. The conditions used will be chosen on the basis of the 

results obtained from the system measurements with simulated 

users; sets of system parameters that produce substantially dif- 

ferent system responses to a given set of user demand descriptors 

should be chosen, thereby providing maximal incentives for the 

users to change their interaction strategies. 

4.6 ANALYTIC MODELLING OP USER BEHAVIOR 

The outcomes of the preceding series of experiments should 

provide direction to the analytic modelling effort, in addition 

to providing valuable data points useful in subsequent model 

validation.  In forming behavioral models for users, it is crucial 

to focus on the modelling and prediction of changes  in user be- 

havior that arise in response to system changes.  Since it is 

impossible to construct absolute models of user behavior that are 

independent of a knowledge of the current operating state of the 

system, the alternative is to describe how the measured user prob- 

ability density functions change as computer parameters are 
changed. 
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These user models, as currently envisioned, would consist of 

rules for transforming an initial set of user descriptors to a 

new set for given changes in system response. We dan view these 

transformation rules as a mathematical operation 

F = (HI; Pp.Pj) 
where 

I = the initial set of user descriptors 

Pj = computer parameters associated with condition I 

Pp * computer parameters associated with the new condition P 

P = the final set of user descriptors 

♦ = transformation rules that change I into P. 

Note that the transformation 4) depends parametrically on changes 

in the computer parameters.  If these changes are zero, then 

Pp « Pj and 

P = I = 0(1; Pj, Pj). 

There are two other properties that the transformation $ must 

possess. They are 

(1) Transivity - If a user descriptor changes from d0 

in system condition 0 to d^ in system condition 1 ac- 
cording to the relation 

dl " ^V Pl'Po1 

then when the system is changed from condition 1 to 

condition 2, the relation 

d2-<j.(d1jp2,p1) - «.«.(d^p^p^p^) = <Md0;p2,p0) 
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must hold for any d. and p.. Condition 1 serves as 

an intermediate state. Thus, $(dQ;  P2'Po) must be 

the aompoaition  of «Kd»; p.^p.) and (frCd^; P2#P^) • 

(2)  Invertability - If the system is changed from 

condition 0 to condition 1 and then back to condi- 

tion 0, the net change in the user descriptors should 

be zero. Thus, 

d0 « (|)(<t>(d0; PJ^PQ)» P0» P!) and 

<M*'  Pfj/Pi) may ^e called the inverse 
of ♦(.;  PJ^^PQ). 

These operators can be derived empirically for various 

system changes. To go beyond this stage, however, to a point 

where we can predict  mathematically the changes in user descrip- 

tors that will occur by changing system parameters over a wide 

range of values, it will be necessary to look into some of the 

mechanisms by which a user actually modifies his behavior, such 

as 

(1) the exchange of one series of commands for another 

that will accomplish the same goal, but which involves 

a different mixture of resources demanded; 

(2) the exchange of a small number of high demand in- 

teractions for a larger number of lower demand inter- 

actions which demand the same amounts of resources 

(the difference being that an error may be found part 

way through the interactions, making the remainder 

of the series unnecessary); and 
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(3) the exchange of user think-time for computer 

resources (i.e., more careful planning by the user 

and fewer redundant requests). 

Once a sufficient data base of user demands under various 

conditions has been gathered, it will be possible to apply op- 

timality considerations in modelling the users' trade-offs. To 

do this, it will be necessary to collect sufficient data to map 

out the possible compensatory interchanges that users can make 

from various operating points.  It will be necessary also to 

formalize our notions of the optimality of system operation, as 

discussed in the next section. 

4.7  OPTIMALITY CONSIDERATIONS 

Using the models discussed above^ a manager could investi- 

gate the effects of proposed changes in a time-sharing system 

before committing himself to what might be very substantial 

capital expenditures.  He could compare the improvements that 

might result from adding more core, from replacing the drum with 

a faster-access unit, and from other alternatives being con- 

sidered.  If he had well defined measures for judging quantita- 

tively the results of the various alternatives, he could choose 

the alternative that gave the greatest improvement per dollar 

expended.  In other words, he could optimize system performance 

within certain financial constraints. 

Unfortunately, the optimization of system performance means 

different things to different people; there are no simple cri- 

teria.  To the manager of the computation center, optimization 

involves such factors as 
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(1) scheduling to achieve maximum utilization of 

the time-sharing system—e.g., minimizing idle 

time. 

(2) scheduling to maximize the number of users 

receiving some specified quality of service 

(3) scheduling to minimize the delays experienced 

by a fixed set of users. 

To the manager of the staff that uses the services of the 

computation center, optimization means the maximization of the 

total job throughput by all users.  This is a higher level of op- 

timization than that implied by any of the factors listed above, 

and is substantially more difficult to treat.  Optimization in 

these terms requires knowledge of the real time behavior of the 

set of users, not just the computer time spent on various jobs. 

This level of optimization has received very little consideration 

in the past. We consider it to be a serious problem; it is by no 

means clear that optimizing a criterion of concern to the compu- 

tation center manager will result in the optimization of total 
real time spent per job.  For example, optimizing some internal 

measure of time-sharing system performance (such as minimizing 

idle time) is not necessarily equivalent to optimizing the total 

work throughput of system and users. We offer a simplified, but 

realistic, example of why this is so. 

Consider first a highly idealized time-sharing system that 

can swap users into and out of core in zero time, and that can 

carry out all its scheduling activities in zero time.  Assume 

that the users of this system are all identical and, in the 

absence of other users on the system, would each demand 6 minutes 
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of CPU time per hour (i.e., 1/10 of the available resources). 

Then, as the number of such users on the system increases, the 

observed number of total CPU minutes per hour expended on the 

ideal system will increase as shown by the dashed line in Fig. 

13a.  For ten or more users the system will be running at 100% 

capacity. But for more than ten users, the number of CPU minutes 

per man-hour expended by all users on the system will begin to 

drop as shown by the dashed line in Fig, 13b. This line, of 

course, is just the dashed line of pig, 13a divided by n, the 
number of users. 

Now consider a more realistic system that spends a non- 

trivial percentage of time in scheduling, swapping, and core 

management functions. Such a system might exhibit a CPU minute 

per hour curve such as the solid line in Fig. 13a. For large 

numbers of users, this system will suffer increasing inefficiencies 

in scheduling and swapping so that a decrease in CPU time per 

hour will be observed. Dividing this solid curve by n, we obtain 

the solid curve for CPU minutes per man-hour shown in Fig, 13b. 

Before proceeding further, note that in this example the 

maximum CPU usage per hour occurs with n=14 users. At this point, 

the system is running at "maximum efficiency" in one sense. But 

let us look at "efficiency" in a broader sense—one that includes 

the costs associated with user time, too. 

Let us suppose that the users are perfo ing tasks in which 

useful work is exactly proportional to the CPU time expended, or, 

more accurately, that each task can be characterized as requiring 

a fixed amount of CPU time regardless of the real time expended 

by the user. In reality, of course, it is usually possible for a 

user to finish a given task using less CPU time if he is willing 

to invest more of his own time in order to plan his strategy more 

carefully; let us assume here that this effect is negligible. 
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Assume that the computer center costs $100 per hour to run, 

regardless of the number of users supported. Assume that users 

cost $20 per hour in salaries and overhead. Then, the total costs 

of supporting the center and its users will be as shown in Fig. 

13c. Now let us calculate the total cost per unit of useful work 

performed, i.e., per CPU minute used. This cost is 

total cost      total cost/hour 
CPU minute  "   n*CPU min/man-hour 

Refer to Fig. 13d. The dashed line shows the result for the 

ideal system. Note that the minimum cost per CPU minute occurs 

for ten users, the point at which system saturation occurs. For 

the more realistic system (represented by the solid line), the 

minimum cost occurs for eight users and is approximately $6 per 

CPU minute. Note that the cost of running with fourteen users 

(where total CPU time per hour is maximized) is approximately 

$9 per CPU minute, a level 50% higher than the minimum costI 

While these results depend on the numbers chosen and the 

assumptions made, it appears that for any system exhibiting ef- 

ficiency characteristics of the form shown in Pig. 13a, the min- 

imum total cost per CPU minute must  occur at a usage rate below 

that which maximizes CPU time per hour. 

In future experiments, CPU time per hour for various numbers 

of artificial users could be measured for various combinations 

of system parameters. Mechanisms by which a manager might attempt 

to optimize the overall efficiency of the system and users could 

then be explored. Consideration must be taken of such complica- 

ting factors as the fact that the number of real users on a 

system will vary randomly with the time of day and with other 

74 



Report No. 2352 Bolt ßeranek and Newman Ine, 

factors.  It seems to us, however, that this area is an extremely 

fruitful one in terms of immediate utility of results. We see 

possibilities of developing improved scheduling strategies to 

maximize utilization of existing systems and of developing clear- 

cut procedures for specifying new systems (or modifying old ones) 

to maximize total efficiency in various applications. 
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5.  EFFECTIVE USER AIDS 

5.1 ANNOTATED BIBLIOGRAPHY 

Nickerson, Raymond S. and Pew, Richard W.  "Oblique Steps 

towards the Human Factors Engineering of, Interactive Computer 

Systems„" 

This paper presents a potpourri of human-factors consider- 

ations pertaining to the design of general-purpose, interactive 

computer systems that are meant to be used by nonprogrammers. 

The reader is warned that it is informal, discursive and opin- 

ionated. The intent is to identify some specific problems, to 

offer tentative solutions ho a few of them, and, most importantly, 

to stimulate more thinking on the part of both system designers 

and human-factors specialists along these lines. 

5.2 REPORT 

The paper annotated above is included in this report im- 

mediately after this page. 
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Abstract 

This paper presents a potpourri of human-factors 

considerations pertaining to the design of general- 

purpose, interactive computer systems that are meant 

to be used by nonprogrammers• The reader is warned 

that it is informal, discursive ar.  linionated. 

The intent is to identify some spec    problems, to 

offer tentative solutions to a few of uiem, and, most 

importantly, to stimulate more thinking on the part 

of both system designers and human-factors specialists 

along these lines. 
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The utility of an on-line, interactive, computational 

facility that is to be used by nonprogramroers will depend on 

(1) what capabilities the system provides, and (2) how acces- 

sible they are to the user. A scientist, for example, is 

interested in getting on with his research and is not likely 

to be enthusiastic about investing much time and effort in 

acquiring skills that do not have an obvious payoff in terms 

of his own research goals. There is nothing to be gained by 

providing him with a sophisticated system that will do many 

impressive things, none of which he is particularly interested 

in having done. Nor is there any advantage in giving him a 

system that will do some of the things he would like it to do, 

but is prohibitively difficult to use.  But what are the char- 

acteristics and capabilities that a gpneral purpose, on-line 

interactive facility should have? And how does one go about 

implementing them in any particular functional system? 

The second of these questions clearly is a technical one, 

or, more accurately, it spawns a host of problems which must 

be answered in terms of programming or engineering techniques. 

The first question, however, is one of human needs and prefer- 

ences. This being so, it might appear that the answer would be 

most readily obtained by asking the prospective user what he 

needs or wants. We think it is not likely to be as simple as 

that. A realistic appreciation of the features that an inter- 

active system should have is most likely to be obtained as a 

result of first-hand experience with working systems. 

The remarks in this paper are indeed based largely on 

first-hand experience with a small number of existing inter- 

active systems and a second-hand (reading) acquaintance with 
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a few others. The treatment of the subject is discursive and 

informal. No attempt has been made to formalize a set of design 

criteria or even to map an approach that might be taken to do 

so. Moreover, we make no claim to exhaustiveness in our enum- 

eration of design considerations. Our intent is simply to iden- 

tify what appear to us to be some  of the features that an inter- 

active system should have if it is to be generally useful to 

individuals whose main areas of interest lie outside the domain 

of computer technology itself. Many of the design features 

recommended below are incorporated in one or more existing sys- 

tems; although, to our knowledge, no single system incorporates 

them all. Some of the features that will be noted will appear 

so obviously desirable as to preclude the necessity of even be- 

ing mentioned. However, that it is painfully easy to overlook 

what is obvious to hindsight is attested by the fact that opera- 

tional systems exist in which some, of the most clearly desirable 

features are missing. 

It will be evident that we focus primarily on general- 

purpose, scientifically-oriented—and, in particular, JOSS-like 

—systems (Baker, 1966). We hope, however, that the reader who 

is more concerned with special-purpose, problem-oriented, sys- 

tems—reservation systems, cost-control systems, medical systems, 

instructional systems—will find some of the discussion germane 

to his area of interest. The need for effective user-oriented 

design is especially great in such special-purpose systems, 

inasmuch as the user is apt to see himself as even further re- 

moved from programming and other computer-related activities 

than is the user of a general-purpose system. 

The recommendations that are made constitute a very "mixed 

bag." They involve various aspects of interactive systems— 
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languages, facilities, services, dynamics.  (We have not paid 

much attention to the design of user terminals, a topic which is 

perhaps closer to conventional human engineering than are those 

which we do discuss.  For discussions of some of the human-factors 

problems encountered in the design of keyboard terminals see Baker, 

1967 and Dolotta, 1970. A more comprehensive discussion of human- 

factors considerations as they pertain to computer input and out- 

put devices is contained in Shackel and Shipley, 1970.)  We have 

made no attempt to categorize our recommendations in any way, 

feeling that to do so would take us beyond the limited objectives 

of this paper, and perhaps create the impression of a more system- 

atic treatment of the subject than is intended.  The recommenda- 

tions vary greatly in scope and specificity: general design prin- 

ciples are thrown in with "little tricks for making life easier 

for the user." They are offered quite frankly as opinions, and 

no effort is made to justify them with experimental data, or 

otherwise.  If they stimulate further thought along these lines, 

or even the expression of opposing views, they will have served a 

useful function. 

The Cardinal Assumption of the Uninformed User 

Efficient interaction with the system should not be depend- 

ent on a knowledge of either the internal structure or the de- 

tails of operation of either the system or the service programs. 

The user should be free to do his thinking at the level of the 

language with which he and the computer converse.  There should 

be no need for him to be concerned with the way in which his 

program is represented within the machine, unless of course it 

is imperative to him that his program run at maximum efficiency, 

which usually will not be the case. 
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Training Requirements and Self-Teaching Capabilities 

The system should require very little off-line training 

or instruction of the user.  Ideally, it should be designed so 

that a novice can use it, at least haltingly, after spending a 

few minutes with a tutor or a manual, and can expect to learn 

to use it efficiently from the feedback provided by the system 

itself.  Insofar as possible, the system should be designed in 

such a way that the most efficient and powerful approaches to 

problems are readily discovered by the user in the process of 

interacting with it. That is to say, the system should have a 

built-in teaching capability designed to facilitate the acqui- 

sition of that knowledge and those skills that qualify a user 

as an expert. 

For example, it would be helpful to the novice user to be 

able to request the computer to give him examples of types of 

statements whose format he has forgotten, or not yet learned. 

To illustrate:  a beginner might realize that the language al- 

lows "if" statements, but may not be able to put into an appro- 

priate format a particular conditional that he wishes to write. 

He would then like to be able to put the system into a "teach" 

mode and ask it to give him some illustrative "if" statements— 

perhaps by simply typing "TEACH IF." The computer could there- 

upon produce a sequence of "if" statements in an order of in- 

creasing complexity until it had either satisfied the user or 

exhausted its supply of examples. Such a feature would also 

serve the more experienced user, who from time to time needs 

to refresh his memory regarding allowable statement formats. 

A common practice is to build format information into the 

error diagnostics.  For example, a format error might elicit a 
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remark from the computer such as "The correct format is:" fol- 

lowed by an example of a correctly formatted statement repre- 

sentative of the type that the diagnostic program thinks the 

user was attempting to write. The objection to this procedure 

is that, if an experienced user is at the console, the lengthy 

output may be not only unnecessary but even bothersome.  He may 

know exactly what his error is the moment it is pointed out to 

him that an error has been made.  It would be in keeping with the 

policy of eliminating noninformative computer-to-user messages 

(see below) to provide the user with illustrative statements 

and detailed error diagnostics only in response to an explicit 

request. 

Prompting can be another useful teaching technique and 

memory aid. To log in to the TENEX system,* for example, the 

user must type, in order and with appropriate terminators, the 

word "LOGIN," his name, a "password" and a job number (the latter 

for billing purposes). The experienced user does this more or 

less automatically; however, the novice or infrequent user can 

easily violate the format requirements, enter items in the 

wrong order, or forget to enter an item altogether.  TENEX facil- 

itates entry by identifying each of the components of the log- 

in procedure (except the first). The user need remember simply 

to type "LOGIN," followed by a special terminating symbol (the 

"escape" key on the teletype in this case). The computer will 

*TENEX is a time-sharing system implemented on a DEC PDP-10 
computer at Bolt Beranek and Newman Inc.  Several of our ex- 
ampies are drawn from this system, in part because we happen 
to be familiar with it and in part because considerable at- 
tention was given to human factors problems by its designers, 
For descriptions of the system, see Myer and Barnaby (1971) 
and Burchfiel and Leavitt (1S71). 
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then type "(USER)" and wait for the user to type his name, where- 

upon it will type "(PASSWORD)", and  so on. The experienced user 

can suppress this prompting simply by using a different termina- 

ting symbol. 

Updating Information 

The need to train the neophyte is one requirement that oc- 

curs to everyone. A less obvious training requirement concerns 

the continuing education of the experienced but sporadic user. 

Few interactive systems are static. New procedures and upgraded 

versions of old procedures appear regularly. The chronic user 

who is on the system much of the time will assimilate changes 

gradually as they occur. The infrequent user will find it much 

more difficult to accommodate to changes that have occurred 

during a period of a few weeks or months that he has not used 

the system. 

Typically this kind of training is provided by announcements 

made at sign-on time for two or three days following a change, and 

a memo to users may be issued to be read at their convenience. A 

better procedure would be to provide communication about system 

modifications contingent on their need. If a new format or com- 

mand is defined that replaces an old one, the user should be 

trapped to a brief description of the new one and how to use 

it whenever he attempts to execute the old one. This procedure 

is rather like that used to correct for the dialing of an out- 

of-date phone number: the operator interrupts and provides the 

new number. When new procedures are introduced that supplement 

rather than replace others, use of the basic command should call 

forth a description of the supplemental procedure prior to exe- 

cution of the command for the first three or four times the user 
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applies it. The important point is that the critical dimension 

relating to the need for prompting the user's memory is not the 

time since the system change was made but the number of times 

that particular user has already been reminded of that change, 

and perhaps the recency of the last reminder. Such a procedure 

implies a bookkeeping burden for the executive program, but one 

that could be easily managed in a good system. 

One simple expedient for getting updating information to 

users who need it, without forcing it on those who do not, would 

be to have the computer type the date (or perhaps the number) 

of the last change in the system, whenever anyone logs in.  If 

the user is already aware of the change, he will simply proceed 

with the work session; if not, he can ask for a report.  Follow- 

ing the typing of the report the computer would then give the 

date of the next-to-last change, and again, the user can decide 

whether he needs, or wants, to know about it. And so on. 

Computer-to-User Messages 

Computer-to-user messages should be designed to accommodate 

users representing all degrees of familiarity with the system. 

There are two types of computer-to-user messages that may occur 

in an interactive session: (a) those which the user intentionally 

elicits, either by requesting some specific outputs (program 

listings, valuek of variables, etc), or by inserting messages 

of his own composition into the body of his program, and (b) 

these that are preprogrammed into the basic system.  We shall be 

concerned here only v/ith the latter. 

The purpose of such messages is to convey to the user some 

information that will facilitate his further progress with his 
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program. Most coiranonly, they take the form of requests for 

specific inputs, of information concerning the state of the 

system, or of error diagnostics. In the latter case, an indi- 

cation that an error has been made may or may not be accom- 

panied by some information concerning the probable nature of 

the error. The problem is that of designing a message set and 

rules for message generation that satisfy the needs of users 

who represent every possible level of expertness in their in- 

teraction with the system. Novices will require lengthy mes- 

sages which are completely self-explanatory; experts will prefer 

coded outputs which are as brief as they can possibly be made. 

Ideally, for the novice, every message should be meaningful 

the first time it is encountered.  Satisfying this desideratum 

is in keeping with the objective of minimizing the amount of 

training a beginner must have before interacting directly with 

the system.  It means, however, that messages should be written 

in a natural language (e.g., English) in whatever detail and 

with whatever degree of redundancy are necessary to ensure that 

they will be readily understood.  Detail and redundancies that 

are helpful to a user who is learning the system will become 

sources of irritation, however, as he acquires skill.  (One 

of the most reliable marks of the experienced user of an on- 

line system is his tendency to be exasperated by any delays 

which he perceives to be unnecessary. Given the opportunity, 

he would invariably replace lengthy messages with the briefest 

possible codesJ)  Even for experienced users, however, it is 

imperative that the computer do something  whenever it receives 

a command that it cannot interpret. This is essential if one 

is to avoid the situation in which the computer is v/aiting for 

the user to input something interpretable, while the user is 

waiting for the computer to operate on what he assumes was an 

interpretable input. 



Several possibilities suggest themselves for coping with 

the problem of conflicting desiderata of novices and experts 

concerning the form and content of computer-to-user messages. 

1. Two separate programs. One possibility is to keep on 

hand two entirely independent systems which differ primarily, 

or only, with respect to the computer-to-user messages they gen- 

erate. In one case, the messages, being complete and, hope- 

fully, self-explanatory, are designed for the novice, the oc- 

casional user, and the visiting observer.  In the other case, 

the messages are greatly abbreviated and intelligible only to 

the programmer or the user who has had considerable experience 

with the system. 

2. One program, two message sets.  It is, of course, over- 

simplifying things considerably to recognize only two types 

of users: novices and experts. It is more realistic to recog- 

nize that users represent a full spectrum of expertness. Any 

particular user masters a system only slowly over a long period 

of time. Moreover, different users, because of their own par- 

ticular needs, may acquire skill with some aspects of a system 

while remaining relatively unskilled with respect to others. 

It may be advantageous, then, to allow the user himself to de- 

cide when he wishes to be treated as a novice, and when he wishes 

to attempt to play the expert. A simple way to provide this 

option is to include two complete message sets in the system, 

and to allow the user to switch at will between one and the 

other. Presumably, given such an option, the amount of time the 

user spends in the novice mode will decrease fairly regularly 

as he gains experience with the system. 
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3. «Y«ahr yeah" signal. A third possibility Is to provide 

the user with the means of cutting short a computer-to-user 

message while It Is being typed out. For this approach to be 

effective, the user should be able to terminate any message, by 

pressln- a single key, at any time during the message typeout. 

With this capability, the user need attend to the typeout only 

so long as It Is Informative. How much of a message he will 

want to see will depend, of course, on his familiarity with the 

system. Presumably, one's use of the Interrupt option will be- 

come more frequent and more rapid as his experience with the 

system Increases. 

4. Two-part messages. A fourth possible approach Is to 

(a) store each computer-to-user message In two forms-a concise 

mnemonic code and a complete self-explanatory statement, (b) 

always  output the coded form of the message first, and (c) out- 

put the self-explanatory statement only If the user requests 

It say, by responding to the coded form with ■?". The advan- 

tages of this approach are several. First, the same program and 

the same mode of operation are appropriate for all users  Sec- 

ond, although decoded messages are always available when desired, 

the user never receives a lengthy message unless he specifically 

requests it. Third, the procedure facilitates the acquisition 

of just that knowledge which will make time-consuming messages 

unnecessaxy. 

A combination of (4) and (3) would provide a particularly 

accommodating facility. 
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String Recognition 

The capability for the computer to perform recognition on 

a partially complete character string effectively combines the 

principles of concise computer-to-user messages, prompting, and 

efficient training procedures. The string recognition proce- 

dure that is implemented in the TENEX system works in the follow- 

ing way. Whenever the user thinks that he has typed enough of 

a command string or file designator so that the intended command 

or file is uniquely specified, he may terminate the partially 
completed string with one of several terminators.  With one term- 

inator the computer either completes the typing of the designated 

string and waits for the next entry or parameter, or, if it can- 

not identify uniquely the string that has been terminated pre- 

maturely, it rings the terminal bell and awaits further input 

to complete the string. In a second termination mode the sys- 

tem accepts the abbreviation as it stands and either executes 

the command directly, or, if it cannot recognize the command or 

make a unique selection, it prints a "?" and aborts. In an 

earlier version of this recognition feature the computer took 

over for the user as soon as it.had received sufficient charac- 

ters and completed the string automatically. Given this pro- 

cedure the user finds it easy to type accidently more than the 

requisite number of characters befjre the computer has time to 

take control. The result may be the typing of a few stray char- 

acters at the end of the command that at best are misleading 

and at worst confound the beginning of the next input. The 

string-recognition feature, as currently implemented in TENEX, 

is especially convenient if it can be applied to terms defined 

by the user himself as well as to system-defined commands. 
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Default Values and Conditiona 

Often in interperson conversations, information is ex- 

changed by default. If one mentions Paris, for example, it is 

likely to be assumed that he is referring to Paris, France; 

had he meant Paris, Maine, he would have been expected to say 

Paris, Maine,     Similarly, in the case of man-computer inter- 

action it is sometimes possible to assume what unstated values 

of program parameters should be, and to assign them by default 

whenever the user does not explicitly indicate otherwise. De- 

fault conditions make it possible to build into the system 

considerable sophistication that can be exploited by the user 

as far as he wishes, or to the degree consistent with his level 

of training. As an example consider the file designation pro- 

cedure used by the TENEX system. A complete file designator 

consists of five parts, and might look as follows: 

ALPHA.  F4; 3; A12345; P7752JJ2 

Part I (ALPHA in our example) is the file name assigned by 

the user. The system will recognize an abbreviation (first 

few letters) of the name so long as no other file name would be 

abbreviated the same way. Part II (F4) is the file extension, 

which tells the system what kind of file is involved.  It is 

also subject to the automatic recognition procedure. Part III 

(3) is the version number. When creating a new file the default 

value of the version number is one. When creating a new ver- 

sion of an old file the default value is one greater than the 

last number used with that file name and extension. When delet- 

ing a file the earliest version number is assumed unless the 

user explicitly specifies a higher one. Part IV (A12345) is the 

account number to which page charges will be assigned. If the 
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user defaults this number, the account to which his compute time 

is charged is assumed. Part V (P7752/2) describes a protection 

or privacy status for the file.  If no number is specified it is 

assumed that any other user may read the file but only the cre- 

ator of the file may write into it or delete it. Note that for 

a typical user Parts I, IT and occasionally Part III are suf- 

ficient to declare most files and it is the exception that re- 

quires further specification. 

In some cases in which it is not clear in advance what the 

best default value is, it might be appropriate to sample user 

opinion or to collect statistics on the most frequently used 

value in order to determine what it should be. When it is im- 

portant for the user to know exactly what he defaulted, the 

machine should prompt him with the de'faulted value.  It is im- 

portant, for example, for the TENEX user to know his extension 

and version number, but the account and protection information 

are not displayed unless specifically requested. 

Program Component Identification 

There should be a straightforward way of structuring a 

program and of identifying its components. Perhaps the most 

common structure in conventional programming is that of a heir- 

archy: programs, subprograms, routines, subroutines, etc. 

There is every reason to expect that this will be equally true 

of interactive programming; hence, there is need for a means 

of identifying program components in such a way as to make it 

possible to refer to any level in a hierarchy of arbitrary depth. 
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Several of the current JOSS-like systems provide for a 

two-level organization of a program in "parts" and "steps," 

The convention is to identify steps with decimal numbers, the 

integer part of the number designating the part to which the 

step belongs.  Reference can then be made to, and operations 

performed upon, either individual steps or parts as wholes. 

Thus, for example, the command "DELETE PART 3" would, in effect, 

delete steps 3.1, 3.12, 3.2 and any other steps identified with 

a number whose integer part is 3.  The restriction of two levels 

imposed by this scheme might not be a serious limitation for the 

casual user of a system; however, it probably does represent an 

unnecessary constraint for the more experienced -ser. Moreover, 

it is a limitation that is removed by simply making the con- 

vention that when a command can appropriately reference more 

than a single step (e.g., DELETE, TYPE, DO), the command will 

be understood to refer to all steps whose most significant digits 

correspond to the number in the command statement. Hence, the 

command "TYPE PART .1324" would cause the typing of steps .13241, 

.13242, .132431, and any other step whose number began with .1324. 

If the user wished to refer to a dingle step, he would, of course, 

have to use enough digits to identify that step uniquely.  For 

example, assuming that his program contained each of the above 

step numbers, in order to have the single step .1324 typed, he 

would have to say "TYPE .1324|J." 

List-processing languages such as IPL and LISP are not or- 

ganized in terms of numbered steps, so this convention does not 

apply.  In LISP, program components are "symbolic expressions," 

each of which is coraprised of a function and its arguments. 

The arguments of a function may be functions in turn, so that 

these programs also have a hierarchical structure. Expressions 



or subexpressions may be identified via the appropriate function 

names.  List-processing languages are less likely to be of concern 

to the nonprogrammer computer user than are the JOSS-like lan- 

guages—at least in the near future—so they are given little 

attention here. 

Editing Capabilities 

The system should provide flexible editing and error-cor- 

recting capabilities.  It is convenient to make a distinction 

between two broad clacses of editing and error-correcting opera- 

tions:  those which may be performed on a program component or 

step as it is being composed, or local  operations, and those 

which may be performed on steps which have already been inserted 

into the program, or remote  operations. 

There are two local operations which, from the user's point 

of view, are needed: one to delete the last character typed, 

and one to delete the entire step or program component currently 

being entered. Each of these should be executed by striking a 

single-control character. The operation deleting the last char- 

acter should be iterative, allowing the user co delete the last 

n characters typed.  In the case of teletype or typewriter input 

it should not be possible, with this operation, to delete ele- 

ments past the first character of the current line or program 

comporent because it becomes very difficult to keep track of ex- 

actly what was deleted. This restriction is not important in 

the case of a CRT terminal where the consequences of deletion 

can be portrayed literally to the user; i.e., the deleted char- 

acters actually can be made to disappear and new ones to appear 

in their places. 

S3 



When text is being displayed on a CRT as it is being typed, 

a cursor or underscore should be used to show the location of 

the next character to be typed. This is especially helpful when 

nonprinting characters (spaces, tabs, carriage returns) are be- 

ing used in formatting tables, labeling graph axes, etc.).  A 

further convenience to the user would be an alternate mode of 

display in which nonprinting characters are explicitly repre- 

sented by special symbols. 

A flashing cursor can be helpful when backspacing over dis- 

played characters for erasure or editing.  Rule:  have the cursor 

flash whenever it is pointing to the location of a character 

that has just been deleted from memory. Again this would be 

particularly useful in the case of nonprinting characters. 

There are four remote editing operations that are essential 

to an on-line system. They are the operations of deletion, re- 

placement, insertion, and revision. The operand may be a vari- 

able, a step or other program component. Given a step-numbering 

scheme such as that described above, the remote operations of 

step deletion and insertion are self-evident. One advantage of 

such a scheme is that it obviates the renumbering following the 

deletion or addition of steps. For example, given a program 

comprised of steps .11, .12, .13, and .14, deletion of step .12 

and insertion of two additional steps between .13 and .14 would 

not necessitate renumbering any of the original steps that are 

retained, even though their ordinal positions in the program 

have been changed.  The steps of the program following the in- 

dicated changes raight be numbered .11, .13, .131, .132, and .14. 

Step replacement would be accomplished by simply writing a new 

step and assigning it an old number, the system being designed 
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so that whenever a step is given the same number as that of a 

previously entered step, the original step is replaced by the 

new one. 

The delete operation can of course cause grief when supplied 

with em erroneous argument. An easy way to guard against this 

event is to force the user to think twice about any such command. 

In PROPHET (Castleman, et al,,  1970), a CRT-oriented chemical/ 

biological information-handling system, the effect of a delete 

command is to have the to-be-deleted element blink on the display. 

The user then must verify that the blinking element is in fact 

the one that he wishes to delete. 

A system that allows only the three remote operations of 

deletion, replacement, and insertion would be reasonably ade- 

quate for many applications; however, to be truly efficient, it 

should include, in addition, a capability for revising steps or 

other program components without completely retyping them.  In 

many instances the user will want to change only those portions 

of a step that are in error, while retaining those portions 

that are correct. It is an inconvenience, for example, to have 

to retype a lengthy and involved algebraic statement to correct 

a single erroneous character. The need here is for deletion, 

replacement, and insertion operations which can be performed on 

elements  within a step. The more sophisticated systems provide 

editing commands for searching program components for particular 

characters or character strings, and for performing delete, re- 

place, or insert operations relative to the result of the search. 

In addition to providing these component editing capabilities 

it is also important not to place artificial constraints on the 
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ways in which they may be used.  It should be permissible to 

intermix freely editing commands and to make up strings of 

commands to be executed as a unit-  For example, to change 

N«N+1 to N»N+2# one might want to write an editing procedure 

that would search for the string N»N+, delete the next character 

in the line and insert 2 in its place.  In the TENEX version of 

TECO, which is a language used primarily for the purpose of ed- 

iting, this is accomplished by taping the string 

SN=N+$DI2$$ 

where the S, D and I indicate search, delete and insert, re- 

spectively. The first and second dollar signs terminate the 
search and insertion strings, and the third executes the string 

of editing instructions, 

A common practice in algebraic interactive languages is 

to reject an input string if the computer detects a syntactic 

error and to inform the user of why the input was unacceptable. 

We recommend instead that the aberrant string be retained in 

the buffer and the computer automatically shifted into an edit- 

ing mode so that the user may choose to delete the entire 

string or, if possible, to correct it by changing one or two 

erroneous characters.  It is more than mildly irritating to 

coraplete the typing of a complex algebraic expression only to 

find that it must be completely reentered in order to add one 

forgotten right parenthesis. 

. Direct and Indirect Commands 

The system should allow both direct and indirect commands. 
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By direct command is meant a command that is to be executed 

immediately; an indirect command is one that is to comprise 

a component of a program, and that will be executed in the 

course of the execution of the program to which it belongs. 

The direct-command capability allows the computer to be used 

as a powerful desk calculator for such purposes as evaluating 

mathematical expressions, generating tables, and plotting 

functions on a one-shot basis.  It also serves as an important 

tool for debugging and editing active programs.  Indirect 

commands provide for the construction of programs.  Virtually 

all conversational languages include both direct and indirect 

commands.  In some cases, however, direct commands comprise 

a minimum set (DO, RUN, EXECUTE), in which case in order to 

use the computer as a desk calculator one must enter an indi- 

rect command and then execute it as a program. 

Arbitrary Starting Point 

The user should be able to start or restart his program 

at any point.  In particular, after fixing an error that has 

caused a running program to halt, he should be able to restart 

the program at the point at which it stopped. 

Variable Names 

In composing programs, the user should be free to assign 

names to variables in a way most consistent with his own mne- 

monic conventions.  Ideally, he should be allowed to call vari- 

ables anytning he wants; in practice, other considerations may 

place a limit on the number or types of characters a name may 

be allowed to contain.  If a limit must be imposed, five or six 

37 



character, per nan» vould probably be edequate for most user., 

three oharaoters per nas« is perhaps tolerable, a smgle ohar- 

Toter Station 'even with subsoriptin,. is a definite handioap. 

Language Modification a-d Abbreviations 

A „eans should be provided for the user to nodify the lan- 

guage and redefine terms. For example, an individual «^o finds 

himself using a small set of con^ands very ^»"'■*" "^ 
it eoonomical to replace each of these commands with a single 

character abbreviation.  Insofar as possible, he should be 

allowed to establish equivalences of this sort. 

One should also be able to define and use abbreviations 

for such things as variable names.  For example, PROPHET the 

chemical/biological information-handling program -"^ 

above, permits one to give a variable such a name as MOLECULAR 

FORMULA OF ASPIRN," and then define and use an abbreviation 

such as "MA" (Castleman, et al., 1970). 

The user should not, of course, be allowed to make language 

changes that will affect other users in any way. 

Address Arithmetic 

Languages for which a step is the basic program component 

(e g., JOSS-like languages) should permit the changing of step 

nulrs for any specified program segment with a "^f ^~1- 

For example, a co^nand like "CUAMOE STEPS .21 *■"'**£* 
used to replace all the step mmtoers beginnrng ""* •" *» »T 

.      i*.v,  Afi  i«»avina the less significant digits numbers beginning with .46, leaving tne 

unchanged, 
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Algebraic Expressions as Inputs 

The system should accept and correctly interpret any eval- 

uatable algebraic expression in any case in which a number is 

an admissible input.  As a simple but important example, one 

should be able to input fractions a« fraotione,  thdt is, one 

should be able to insert 1/17 as opposed to .^5888.^. The im- 

portance of this capability does not stem from the fact that a 

fraction is easier to type than a decimal (although if one wants 

accuracy, he will, in general, have to type several more char- 

acters in the latter case), but rather from the fact that, if 

the user has the fraction to begin with, converting it to a 

decimal number involves a task that the computer, not he, should 

perform. The ability to input fractions directly is a partic- 

ular advantage to the user who is dealing extensively with prob- 

abilities. 

Identification of Precision Limits 

The limitations of the system with respect to numerical 

precision should be explicit in the output.  The system should 

not produce numbers with more significant digits than are justi- 

fied by the computational accuracy of its number-handling pro- 

cedures. I -JX  example, if the system can assure only ten bits 

of accuracy in its number representation, it should not output 

numbers with more than three significant (decimal) digits. 

Since most machines use floating-point arithmetic, which allows 

the manipulation of numbers whose magnitude is far beyond the 

precisional limits of the system, there must be some straight- 

forward way to represent arbitrarily large numbers so that the 

accuracy limitation is obvious. One possibility is to express 
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all numbers in scientific notation with the fractional part 

being limited to the number of digits implied by the precisional 

capabilities of the system. Another possibility is the use of 

filler symbols.  For example, given a limitation of three deci- 

mal digits of accuracy, the number 365,741 might be represented 

as 366,xxx. It should not be represented as 366,00?, since in 

this case the limitation is not obvious.  The system should 

round the output to the least significant digit; it should not 

truncate.  In short, when a user receives a number from the com- 

puter, he should be able to assume that it is  exactly the number 

that he would have obtained had the computation been done by 

hand, and rounded off to the same number of significant digits. 

Formatting Options 

The system should provide formatting options specifically 

designed to assist the user in making his program easy to read. 

Extra spaces and carriage returns should be freely allowed and 

should be preserved in storage at the level of the symbolic 

program.  In scientific programming, one frequ4ntly wishes to 

construct algebraic statements involving several depths of 

nested parentheses. Parenthesizing errors are very easy to make, 

and can be frustratingly difficult to find.  It would be a help 

to have several, say three, different characters, e.g., (, [, {, 

for formatting algebraic statements. These characters could be 

equivalant as far as the program interpreter is concerned, but 

the distinction should be maintained at the level of the conver- 

sational program.  Such a feature would facilitate the construc- 

tion of complex algebraic statements and would simplify the pro- 

cess of finding errors when they occur.  It would be particular- 

ly helpful if the different parenthesizing symbols were differ- 

ent sizes. 
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Another useful formatting convention» easily implemented 

with a typewriter as the I/O device is that of color-coding the 

dialogue, printing user-generated text in one color and computer- 

generated text in another (Baker, 1966). 

Procedure Definition 

There should be a straightforward means of defining and 

storing generalized program components and retrieving them for 

incorporation as elements in programs or higher-order compo- 

nents. Having once written a particular generalized program 

component (procedure, function, macro, subroutine), one should 

not have to write the same component again.  Heavy users of an 

interactive system are likely to be developing many programs 

having common components.  The prospect of developing a library 

of program components especially tailored to one's own needs is 

perhaps one of the most compelling enticements that a computer 

system can offer to a prospective user. 

I 
Procedure Library 

The system should maintain a central public library of 

programs and procedures that are available to all users. The 

library should be designed to expand as users generate new pro- 

grams of general interest.  Every user should have read-only 

access to the library on a continuous bciis.  He should not, 

however, be able to enter programs directly into the library. 

One possible scheme for allowing a user to contribute to the 

library would be to have him deliver a program to a temporary 

file which is periodically examined by the system supervisor or 

librarian for the purpose of updating the library file. 
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Compilation Capability 

A system designed specifically for scientific and engineer- 

ing applications probably should have a compilation capability. 

The interpreter should be used for exploratory programming; how- 

ever, when a program is to be used frequently for production runs 

it should be compiled. This is especially true when compilation 

results in noticeably shorter system response times.  It is essen- 

tial, however, that such a compiler accept as input the program 

as it was written for the interpreter. 

File Storage 

In cases where lengthy work sessions are anticipated, it 

should be possible for the user, when terminating a session with 

work unfinished, to leave the system in such a state that, upon 

reentering it at a later time, he will be able to resume his work 

exactly where he left off. This means providing the user with 

the capability to store his virtual core in a long-term storage 

medium such as magnetic tape or disc, and to retrieve it upon 

reentering the system. The user should also be able to maintain 

files of his own subroutines, programs and data sets. 

Short Interruptions 

In addition tc the capability for the resumption of work 

after indefinite periods, there should be a simple procedure for 

allowing brief interruptions in a work session.  It frequently 

happens in the course of an on-line session that the user finds 

it necessary or advantageous to leave the console temporarily 

(e.g., to attend to an unexpected visitor .«r telephone call, or 
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to dispose of some pressing business—or perhaps to cogitate 

about his program or some results he has obtained from running 

it).  If it is likely to be several minutes before he will return 

to the computer, and particularly if he is being charged on the 

basis of on-line time, he will want in such cases to be able to 

take "time out," to tell the computer it can forget about him 

until such time that he indicates that he is ready to resume the 

session.  The procedure for effecting such a recess should be 

less involved than that used to store a system for reactivation 

in the indefinite future.  It should not, for example, be neces- 

sary explicitly to create files on a long-term storage device. 

Ideally, to initiate the time out, the user should be required 

to do nothing more complicated than to press a special function 

key, or perhaps to type "time out" or "wait" or some such thing. 

Resumption of the session should be effected by an equally simple 

procedure. 

Program and File Information 

The system, on request, jhould be able to provide the user 

with information concerning the status or contents of his program. 

It should be able to produce, at the minimum, a copy of any 

specified segment of the user's program, a list of variables, 

functions, procedures, macros that the user has defined, a table 

of contents of the user's files or previously stored programs, 

values of variables, indexes, subscripts, etc. 

Status and Control Information 

The user should be provided continuously with status and 

control information.  At the very least, he should be informed 
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as to whether he is waiting for the machine or it is waiting for 

him,  (The JOSS system provides this information via a red and a 

green light at the console that indicate whether the computer or 

the user is controlling the typewriter [Baker, 1966].)  Given that 

the user is waiting for the computer, he might like to know: 

(1) is the computer currently working on his problem?  (2) is it 

waiting for a peripheral device like a tape unit or line printer? 

(3) is it waiting in a queue for its "slice" of time? or (4) is 

the system dead? 

Feedback to the user is particularly important when the 

length of the delay to be expected is unknown. For example, a 

long pause after some data have been entered can make the user 

wondsi. if he has entered data incorrectly, or possibly has not 

properly signaled the computer that he is done.  The computer 

should signal receipt (or acceptance) of entry immediately, 

even though there may be a delay before the next entry can be 

accepted, or before there is a substantive response (Poole, 1966). 

In some systems it is practical to include an auxiliary 

display at the terminal that provides the user with his current 

status with respect to these alternatives, but in systems opera- 

ting over telephone lines this may not be economically practical. 

An alternative that seems to be quite effective is to provide 

a status command with which the user can interrupt the ongoing 

computation long enough to have printed a computer-to-uner 

message describing both his current status (running, I/O 

wait, etc.) and give the cumulative log-on and CPU time used 

tc date.  The systcn is then restored irnediately to its ferner 

status with no loss of priority.  In the course of a long com- 

putation, user-initiated periodic status interrupts of this 

sort can provide quantitative information regarding how much of 

the machine's time one is getting per unit of elapsed time. 
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The system should be able to tell the user how much time he 

has used since the beginning of the session, or since some spec- 

ified date.  It should also be able to produce a statement of 

charges accrued since the beginning of the current billing period 

against the user's job number or account. 

System Dynamics Information 

If the system dynamics (e.g., response time) change signif- 

icantly with the load, as they usually do, it would be a con- 

venience to the user if he could get an indication of what the 

load is before deciding whether he should get on.  At a minimum 

the system should be able to answer the question:  How many users 

are now on line? Other, and more helpful, items of information 

are, in principle, obtainable (e.g., mean system response time 

to a request for a given time slice over the last n minutes), 

but only at a somewhat greater cost in overhead program execution. 

Fail-Safe Provisions against Potentially Fatal Operations 

Users make mistakes. They enter commands they did not in- 

tend and sometimes discover what they have done too late to avoid 

the dire consequences. If one deletes a program, or a file, by 

mistake, for example, in most systems there is no provision for 

recovering from such an error. The program, or file, is gone 

and v/ould have to be reentered in its entirety. Provisions can 

be made, however, either for decreasing the probability of such 

errors or for facilitating recovery from them when they do occur. 

A simple measure for decreasing the probability of such 

errors is to require for commands that modify stored programs 

or files (e.g., DELETE, KILL, MODIFY) some confirmation in 
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through the machine, it is possible to type at the keyboard 

while the computer is occupied with computation. The typescript 

that is entered this way is not reflecteu back to the terminal 

until the computer releases control of the interaction.  If the 

computation is ended appropriately all is well, but if the com- 

putation is terminated prematurely because of an error or because 

of an unanticipated program branch, then the preentered typescript 

is appended to the end of the error message and is interpreted 

as the beginning of a new, but, in this case, inappropriate 

message. Nhaiwver an error termination like this occurs, the 

system should automatically dump the prestored typescript and 

leave the user with a clean slate to deal with the error condi- 

tion. 

Report Quality Output 

The system should be capable of producing output of a quality 

acceptable for incorporation in official reports.  This goal is 

somewhat more easily realized with typewriters or with MODEL 37 

teletypewriters than with MODUL 33 or 35 teletypewriters, since 

in the former cases one has a conventional character set, includ- 

ing both upper- and lower-case characters.  There is, however, a 

considerable need for research into the problem of improving the 

design of keyboard devices that are to be used as computer ter- 

minals (see Dolotta, 1970). The identification of an adequate 

character set is only one of the many problems that arise in this 

context. 

"Sense" Switches 

Most computers provide the programmer with a set of toggle 

switches (usually referred to as "sense switches") on the console, 
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each of whose positions (up or down) can be examined by the 

program.  By making the course of the program at different 

points contingent on their positions, the programmer can make 

it possible to control the flow of his program at run time by 

manipulating the appropriate switches.  Such real-time control 

of a running program could be a very great convenience to the 

user of an interactive system, and could be provided by means 

of a set of sense switches located at the remote terminal. A 

cutout overlay that accompanies the program to be run could be 

used to remind the user of the status and meaning of each sense 

switch, which could change, of course, as a function of the 

program being run. 

User Interrupt 

We may think of the user-computer interaction as always 

being under the control of either the user or the computer. 

VThenever it is the user's turn to "say" something, we say he 

is in control.  He may actually be typing a user-to-conputer 

message, or he may be scratching his head thinkirrej aboul: what 

to type; in either case, if the computer is waiting for an input 

from him, we say he is in control of the interaction.  Similarly, 

the computer, while in control, may be outputting a computer- 

to-user message, or it may be executing a program in preparation 

for outputting a message. Normally, control passes either from 

the user to the computer, or vice versa, at the termination of 

a message.  That is, one of the communicants regains control 

by virtue of the fact that the other relinquishes it, having 

completed a message, and having nothing more to say at the 

moment. To a large extent, it is this continual exchanging of 

control, the give-and-take dynamics of the situation, that jus- 

tifies describing the interaction as "conversational." There 
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is a need for one exception, however, to the normal way of pas- 

sing control from the computei.* to the user:  the user should 

have the ability to interrupt. That is, he should be able to 

seize control of the interaction at any time, without waiting 

for the computer to relinquish it. 

The need for this capability is most clearly seen in the 

case of a lengthy computer output which, from its beginning, is 

obviously erroneous.  Suppose, for example, that the user has 

programmed a loop to generate a lengthy table, and that by the 

time the first few values of the table have been typed, it is 

clear that there is something wrong with the algorithm.  In such 

a case, the user should not be forced to wait until the entire 

table has been generated before regaining control of the inter- 

action.  He should be able, by pressing a bingle key, to cause 

the computer to stop what it is doing and to await further in- 

structions from him. 

Background Execution Option 

The efficiency of an interactive system could be increased 

by providing the user with the option of "detaching" his program 

from interactive control at the terminal and having it run as a 

low-priority background process.  Suppose, for example, a par- 

ticular application involves developing a procedure for genera- 
i 

ting fairly lengthy tables. While developing and debugging the 

procedure, the user wants to be on-line.  Once the procedure is 

operating satisfactorily, however, he may sir.ply want to leave 

it alone and let it generate its output.  In such a case, the 

user would like to be able to leave the terminal and return 

after the tables have been completed. Moreover, unless there is 

some urgency for an immediate result, he would probably be 
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content to have it generated at the computer's leisure, espec- 

ially if background-processing time were charged out at a lower 

rate than on-line time. 

Programmed Logout 

There should be an instruction to discontinue service that 

could be appended at the end of a program, thus permitting the 

user to log out of the system and disconnect the terminal in- 

directly.  If one has written a program that will run for a 

considerable time without intervention, it should not be neces- 

sary for the user to stay around simply to pull the plug at the 

end of the session.  As a fail-safe protective measure against 

program malfunction, it would be a convenience for the user to 

be ab.e to specify a time at which his program should be automat- 

ically terminated in the event that it is still running. 

Complaints and Suggestions 

The system should have a complaint or suggestion input 

capability.  Ideas for system improvement frequently occur to 

a user in the process of interacting with the system, and are 

forgotten by the end of the session.  Similarly, a minor mal- 

function, unless it is serious enough to terminate the session, 

is apt not to be remembered.  It would be a convenience to the 

user, and it should be an aid to the system managers, if it 

were possible to insert a complaint or suggestion directly into 

an appropriately designated file at the point during the on- 

line session when the occasion arises. A hard-copy record of 

the file could then be made periodically and might prove to be 

a valuable source of information when attempting to improve the 

system. 
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