
RFO^R -TR -72-13 2^
BOLT BERANEK AND NEWMAN 'MC

CONSULTING D E V E I O P M E N T RESEARCH

INFORMATION PROCESSING MODELS AND

COMPUTER AIDS FOR HUMAN PERFORMANCE

Report No, 2352
Job No. 11546

FINAL TECHNICAL REPORT—SECTION 2

Task 2: HUMAN-COMPUTER INTERACTION MODELS

CO
CO

^4 15 March 1972

Q

0^2 öflKl^

ARPA ORDER NO. 890, Amendment No. 6

Sponsored by the Advanced Research Projects Agency,
Department of Defense, under Air Force Office of
Scientific Research Contract F44620-71-C-0065

.^^)~G2Ä9\^
Roproduced by

NATIONAL TECHNICAL
iNFORMATION SERVICE

U S Deparlmenl of Commerce
Springf;eld VA 22151

Prepared for:
Air Force Office of Scientific Research
1400 Wilson Boulevard
Arlington, Virginia 22209

Approved for public release;
dlttrlbution unliwited»

/*l

k.t #"• e i c e \ *

V .r

OKtLASSIFIED
Security Clasaifi

%
fication

3H
DOCUMENT eÖNTRÖMPATA ■ R & 0

(Securily clm*sllle»llon ol Uli», body of abattmct and Indexing «nnatalion must be »nltred when thr overall tepotl If clnrtsilied

t. ORIGINATING ACTIVITY fCoiporale aul/ior;

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

2a, REPORT SECURITY C U » SSI P I C » T I ON

UNCLASSIFIED
2b. GROUP

3 REPORT TITLE

INFORMATION PROCESSING MODELS AND COMPUTER AIDS FOR HUMAN PERFORMANCE
FINAL TECHNICAL REPORT—SECTION 2, TASK 2: HUMAN-COMPUTER INTERACTION MODELS

4. DESCRIPTIVE NOTES (Type ol tepotl and lnclus:-e daloi)

Scientific Tntprim
9- AUTHORISI (Flral nmme, middlm Initial, latl name)

Mario C. Grignetti, Duncan C. Miller, Raymond S. Nickerson,
Richard W. Pew

6. REPORT DATE

15 March 1972
aa. CONTRACT OR GRANT NO.

F44620-71-C-0065

b. PROJECT NO. AO 890-6

c 61I01D

d. 681313

7a. TOTAL NO. OF PAGES

111

7b. NO. OF REFS

8
9a. ORIGINATOR'S REPORT NUMBERISI

9^ OTHER REPORT NO(S1 f^ny other numbata that may he easlgned
Ihla report)

AFOSR TR-72-13 22
1C1 DIST R1BUT ION STATEMENT

Approved for public release;
distribution unlimited.

II SUPPLEMFNT»HY NOTES

TECHsOTHER

12 SPONSORING MILI TA«> ACTIVITY

Air Force Office of Scientific Research
1400 Wilson Boulevard (NL)
Arlington, Virginia 22209

13 ABSTRACT

We have implemented a measuring system to obtain the statistical
parameters necessary to specify a queueing theory model of the dynamic
behavior of a state-of-the-art time-shared computer system; and present
results on the statistics of usage of one such computer system.

We present a methodology for the performance of experiments
involving human users and for the interpretation of their results, ■
We expect that these results will yield predictive models for the
overall efficiency of the "users-computer system" under various
circumstances.

A paper has been prepared for publication describing the features
that a system should incorporate in order to be considered effective
and well human-engineered.

jds

DD ^.,1473 UNCLASSIFIED

.UNgtjV ASSIFIED
Security Classification

K EY WORDS) '

Human-Computer Interaction Models
Time-Sharing System Computer Models
Time-Sharing System User Models
Time-Sharing System Usage Statistics

it-

ROLC

UNCLASSIFIED
Security Clattification

Report No. 2352 Bolt Beranek and Newman Inc.

INFORMATION PROCESSING MODELS AND

COMPUTER AIDS FOR HUMAN PERFORMANCE

FINAL TECHNICAL REPORT—SECTION 2

Task 2: HUMAN-COMPUTER INTERACTION MODELS

15 March 1972

by

Mario C, Grignetti
Duncan C. Miller

Raymond S, Nickerson
Richard W. Pew

ARPA Order No. 890, Amendment No. 6

Sponsored by the Advanced Research Projects Agency
Department of Defense, under Air Force Office of
Scientific Research Contract No. F44620-71-C-0065

Prepared for: ulibG^Sli S^
Air Force Office of Scientific Research ' ^ ^

1400 Wilson Boulevard
Arlington, Virginia 22209

i,C/ Approved for public release;
distribution unlimited«.

Report No. 2352 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS Page

SUMMARY V-Vi

PREFACE VÜ

1. INTRODUCTION 1

2. COMPUTER MODELS 2

2.1 INTRODUCTION 2

2.2 MODEL STRUCTURE „ 3

2.2.1 The TENEX System 3

2.2.2 Scheduling and Storage Management 5

2.2.3 The Basic Sequence of Events 8

2.2.4 The Queueing Network Model 10

2.3 MEASURING SYSTEM 15

2.3.1 Time History 18

2.3.2 Histograms 20

3. USAGE STATISTICS 26

3.1 SESSION DURATION AND CPU TIME CONSUMED 26

3. 2 SYSTEM STATISTICS , 41

3.3 SUBSYSTEM USAGE STATISTICS „ 47

4 . USER MODELS 56

4.1 INTRODUCTION 56

4.2 DESCRIPTORS FOR USER DEMAND 59

4.3 VALIDATION OF DESCRIPTORS 61

4.3.1 Generality 61

4.3.2 Stationär ity 62

4.4 SYSTEM MEASUREMENT WITH SIMULATED USERS 64

4.5 MEASURING USER BEHAVIOR ON SIMULATED SYSTEMS.. 66

li

Report No. 2352 Bolt Beranek and Newman Inc.

Page

4.6 ANALYTIC MODELLING OF USER BEHAVIOR 67

4.7 OPTIMALITY CONSIDERATIONS 70

5. EFFECTIVE USER AIDS 76

5.1 ANNOTATED BIBLIOGRAPHY 76

5.2 REPORT 76

iii

Report No. 2352 Bolt Beranek and Newman Inc.

FINAL TECHNICAL REPORT—SECTION 2

Period 1 January to 31 December 1971

ARPA Order No. 890

Program Code No. 1D20

Contractor: Bolt Beranek and Newman Inc.

Effective Date of Contract: 1 January 1971

Contract Expiration Date: 31 December 1971

Amount of Contract: $340,461

Principal Investigators: John A, Swets

Daniel N. Kalikow

Mario C. Grignetti

Duncan C. Miller

Telephone No. (617)-491-1850

Title: INFORMATION PROCESSING MODELS AND

COMPUTER AIDS FOR HUMAN PERFORMANCE

IV

Report No. 2352 Bolt Beranek and Newman Inc.

TASK 2: HUMAN-COMPUTER INTERACTION MODELS

1. Technical Problem

The purpose of this research program is to continue the

development of models for human-computer interaction at the

human-computer interface level.

2. General Methodology

Laboratory experiments,

3. Technical Results

Vie have implemented a Measuring System to obtain the

statistical parameters necessary to specify a Queueing Theory

model of the dynamic behavior of a state-of-the-art, time-shared

computer system, and we present results on the statistics of the

usage of such a computer system.

We present a methodology for the performance of experiments

involving human users and for the interpretation of their results,

We expect that these results will yield predictive models for

the overall efficiency of the "users-computer systera" under

various circumstances.

A paper has been prepared for publication describing the

features that a system should incorporate in order to be con-

sidered effective and well human-engineered.

4. Department of Defense Implications

Large savings in the cost of software development are

Report No. 2352 Bolt Beranek and Newman Inc.

potentially possible by converting from the batch-processing

computer systems that are widely used today to interactive, time-

shared computer systems. To design, operate, or even select an

interactive system in a rational way, it is necessary to predict

its relative acceptability and performance.

VI

Report No. 2352 Bolt ßeranek and Newman Inc.

PREFACE

The present contract is a partial continuation of a research

program begun in 1966 under ARPA sponsorship, of the four tasks

eventually funded under Contract F44 620-67-C-0033, with the Air

Force Office of Scientific Research, the first two tasks were

awarded continuing support under the present contract. Those

tasks are:

1. Second-language learning

2., Models of man-computer interaction

The Final Technical Report covers the work performed in the

second of these tasks during the twelve months of the new contract,

V/e have bound the reports of the two tasks separately, to facili-

tate their distribution and use. In addition to a copy of this

page, both sections of this report contain an appropriate subset

of the documentation data required for the whole report: a con-

tract information page, a summary sheet for the particular task

at hand, and a DD Form 1473 for document control.

VI i

Report No. 2352 Dolt Eeranek and Ncv/man Inc.

1. INTRODUCTION

In this final report, we present the results of v/ork on

User-Computer Interaction performed from 1 January to 31 December

1971. The body of the report is organized as follows:

In Section 2 we deal with the subject of modelling the dynamic

behavior of programs in a time-shared computer system. We give

a succinct description of TENEX (the time-sharing operating system

that we are using); we present a Oucueing Theory model; and we

describe the measuring system that we have implemented to obtain

the necessary statistical parameters.

In Section 3, we present several results on the statistics of

session duration and actual computer time used, as well as on

certain characteristics of system and subsystem performance.

Section 4 describes our work in the area we consider most

difficult—that of modelling user behavior at the user-computer

interface. As a result of this work, we believe that we have

found a sound methodological basis for the performance of experi-

ments and for the interpretation of their results that will yield

predictive models for the overall efficiency of the "users-computer

system" under various circumstances.

Finally, in Section 5, we describe those system features

developed at BBN and elsewhere that have turned out to be well

human-engineered and particularly effective as user aids.

Report No. 2352 n^i*. n
Bolt Beranek and Newman Inc.

2. COMPUTER MODELS

2.1 INTRODUCTION

In this section, we shall describe our work towards the

construction of probabilistic models for the dynamic behavior of
programs in a time-shared computer.

Probabilistic models based on Queueing Theory have been used

with success in the past to describe the dynamic behavior of

programs in a time-sharing system. The mathematical framework of

Queueing Theory, with its treatment of units and servers, is a

natural and legitimate body of knowledge upon which to draw for

the construction of models. In fact, in a time-sharina system,

user programs line up to be run ore at a time (serviced by the

central processor unit) until a termination condition is reached,

whereupon they may undergo service by some other processor (server)

and eventually return to the first server, all in rapid succession.

In the body of this section, wc shall demonstrate the formal

adequacy of such an approch for the TENEX system, and shall de-

scribe the measuring system that was implemented in order to gether

the statistics that yield the model parameters.

Report No. 2352 p«n. r, , Eolt Beranek and Newman Inc.

2.2 MODEL STRUCTURE

The computer system we shall model is TENEX, a time-sharing

operating system conceived and developed by BBN,* now available

on two independent DEC PDP-10 computers at our Research Computer

Center. The advanced features of TENEX, the availability of the

systems personnel responsible for its development, the possibi-

lity of introducing changes in the operating system to meet mea-

suring requirements, and the richness and variety of the user's

environment at BBN are just a few of the reasons that make TENEX

an obvious choice for our modelling efforts.

2.2.1 The TENEX System

TENEX is a system which utilizes paged core memory. In con-

trast to the swapping-type monitors like DEC's 10/40 or 10/50

monitors, TENEX allows users to write their programs as if they

had a large (virtual) memory at their disposal, while at the

same time reducing the time it takes to swap a user's program

between core memory and secondary storage. This is so because

only the working pages of a user*s program (the "working set")

need to be in core for his program to run. The necessary paging

hardware-designed and built by BBN-^nakes it possible for core

memory to be used more efficiently. Pieces (i.e., pages) of

programs may be scattered anywhere in real core; the pager re-

locates each page to provide a contiguous "virtual memory" for

the user. Thus, the system no longer has to worry about col-

lecing "holes" in core memory (as is required in most non-paged

systems) in order to fit programs in a simply-connected area of

Priw^6 i0int SUSP°ut 0f BBN and of the Advanced Research Projects Agency of the DOD.

Report No. 2352 Bolt Beranek and Newman Inc.

real core. Another advantage of paging is that it makes it pos-

sible to run programs which would physically require more core

than is available. In fact, only pages that are needed at the

moment must be in core. When new pages that are not in real

core are referenced they can be swapped in from secondary stor-

age and the program can then continue execution. Note also that

being able to run partially loaded programs can substantially

increase core memory utilization.

Communication with TENEX takes the form of a dialogue in

which the user gives a command, TENEX performs the desired ac-

tion, and then waits for a new command. The collection of

available commands, together with certain special characters

and conventions, makes up what is known as the Executive Language,

which is the user's handle on the time-sharing system. The lan-

guage is very powerful and yet very easy to use, thanks to its

good human engineering design. It is based on highly natural

mnemonic commands and allows command recognition, input editing,

and multiple input formats to be freely intermingled.

TENEX has a flexible file system. Files are distinguished

by device, directory name, file name, extension, and version.

Names and extensions may be up to 39 characters long. A very

well human-engineered set of default values makes it extremely

easy to reference commonly used files. Users can have several

directories, and an elaborate system for file sharing and pro-

tection has been developed.

TENEX allows its users to run hierarchically dependent

"parallel processes" that share memory among themselves and use

a pseudo-interrupt system to facilitate interprocess communica-

tion.

Renort No. 2352 Bolt Beranek and Newman Inc.

Most standard user programs that run under the standard DEC

PDP-10 operating system will also run under TENEX. Among them

we have FORTRAN IV, MACRO and FAIL (machine language assemblers),

LOADER, TECO (a powerful editing language), DDT (DEC's debugging

language), TELCOMP (a BBN-developed language patterned after

JOSS), LISP, and a variety of other subsystems of less widespread
use.

2.2.2 Scheduling and Storage Management

A description of the structure of the TENEX software would

be quite voluminous and is clearly beyond the scope of the pre-

sent report. However, in order to be able to interpret and

understand the structure of our model, it is necessary to de-

scribe at least the Scheduling and Core Managing functions.

The following paragraphs are taken from TENEX memo #12.

"The functions of Scheduling and Storage Managing are

handled by several inter-related software modules, each

with a specific, separable set of operations to perform.

Start up and
Dismiss
Interfaces

Drum

Manager

1
r

■ •

r i

Core

Manager

Balance Set

Controller

Process J •

Controller Swapper : i
i

Sch edul er

i

St oraae Man acrer

The modules to the left of the dashed line comprise the

scheduler, those to the right the storage manager."

Report No. 2352 Bolt Beranek and Newman Inc.

"The process controller performs those functions usually

associated with a time sharing scheduler. It contains

tables of all processes existing in the system and their

state of execution (runnable, blocked for I/O, etc.).

It contains routines which change the state of processes

on request from other system modules or as a result of

process activity. A central routine of the process con-

troller performs the basic scheduling function, i.e.,

it considers the state of the processes in existence

and the available system resources, and selects a pro-

cess to be given some CPU service. It keeps an

accounting of the recent activity of each process,

particularly CPU usage, and allocates each system re-

source among the process competing for it according

to some defined criteria."

"The balance set control is concerned with making ef-

ficient use of the core and drum channel resources of

the system. It constantly monitors the state of core

utilization and working set requirements of the pro-

cesses in core, and decides when another process can

be admitted or one must be thrown out. The "balance

set" is defined as a set of runnable processes whose

working sets can co-exist in core. It is thus a sub-

set of the set of all runnable processes, and normally

consists of those runnable processes which are most

due for CPU service as determined by the process con-

troller. "

"The information gathering and decision making procedures

involved in determining working sets and core utilization

Report No. 2352 Bolt Beranek and Newman Inc.

are quite complex, and incorrect handling of these func-

tions in a multi-process paged system can result in poor

efficiency and bad service. The first step in avoiding

this pitfall is to define a portion of the monitor which

is directly responsible for these functions rather than

having them diffused through many parts of the system."

"The function of the startup and dismiss routines is

fairly common and straight forward. Included in this

section are routines to save and restore environments

as they go out of and into execution. No important

scheduling or other decisions are made by this module."

"The swapper handles the communication between the

secondary storage devices (drum and disk) and core

memory. It receives requests from the scheduler to

move processes into and out of core, constructs I/O

requests and performs queueing.

The core manager selects core pages to be used for

swap reads from the drum or disk, performs some "aging"

operations, and handles the selection of core pages to

be swapped to the drum. It has principal use and con-

trol of the Core Status Table (CST) which reflects at

all times the current state of each page of core memory.

The CST is also modified by the paging hardware, re-

cording information about the activity of the running

process.

The drum manager is responsible for assigning storage

on the swapping drum and for selecting pages to be

moved to the disk in the event the drum becomes full."

Report No. 2352 Bolt Beranek and Newman Inc.

2.2.3 The Basic Sequence of Events

Let us now consider a typical sequence of events as they

would appear to a user when he gives a command to TENEX. Con-

sider Fig. 1. The user types in the last character of his command

(TIWK) which is usually a carriage return meaning, "now go and do

what I have commanded." The system recognizes such wake-up char-

acters, and as soon as one is received the user's program becomes

runnable. After some length of time that depends on the system's

load and the user's priority, the program becomes a member of

the "balance set" and the CPU starts executing the given com-

mand until the user's program references a page that is not in

real-core memory at the time; i.e., a page fault occurs (PGF).

A request to read the page from the drum is entered after the

core manager has found room for the page. Eventually the page

is brought in (PI) and execution resumes. After possibly many

such faults, the running time exceeds a fixed "quantum" (QO)

and the program is dismissed (it is removed from the balance

set). After some time (again, depending upon system load and

upon a.now diminished priority) execution continues and an output

to be typed out on the user's terminal is generated. Execution

stops and the program is dismissed as soon as the output buffer

fills up (TOBLK). When the output buffer is almost empty, the

program is reactivated (TOWK), generates the rest of the output

(without filling up the remainder of the output buffer) and seeks

further input from the terminal. Since the user has not yet

typed in a wake-up character (he may not have started typing in

his next command) the program is dismissed (TIBLK).

Let us next write a scenario for the sequence of events that

occurs in schedulinq and managing core for several processes. In

Report No. 2352 Bolt Beranek and Newman Inc.

CO

V)

03

Z
3
OC

(0

<

o
o
ce
a.

I-

♦2

<
1-

Z 3 >-

A
G

A
I

C
O

R
E

O
U

T
P

 1-
CL z 1-
UJ 3

3s d 1-
a.
z

R
U

N
N

A
B

IS

N
O

T

E
D

U
N

T
 (0

0 _i
1-
z
3

SüS 2
w Off

UJuJ
2lüQS (T w»-
OHoUJ(0 UJ

U.
u.

IS
M

IS

A
R

A
C

ffloSSw 3
< Z- CD 0 X

U
P.

 P

R
O

G
R

A
M

R

E
FE

R
E

N
C

E
S

P

E
E

N

S
W

A
P

P
E

D

O
G

R
A

M

IS

D
IS

K
 -
 P

R
O

G
R

A
M

P

T
Y

A

K
E

-U
P

.
 O

U
T

P
U

T

U
N

N
A

B
L

E
 A

G
A

IN

C
K

-P
R

O
G

R
A

M

IS

Y
P

E
S

W
A

K
E

-U
P

Cl

fA
K

E
-

R
A

M

1
H

A
S

B

W
.
 P

R

B
LO

C

Y
)

E
M

jtOCOH
»o OHd

A
L

 O
U

T
P

U
T

M

B
E

C
O

M
E

S

oo OC
,00-135 HS
o-^cniu^z 23

A
L

IN

A
U

LT
.

E
Q

U
E

IM

O
V

A

L

01

t
 IS

(

A
L

IN

A
TE

S

s^psa z^ z z
SUJUJZZU.SC9Z Z
cr 0 0 < a: u. oc 0 oc cr
UJ<<3liJ3UJQ:biüJ
1-a. a. 01-a) K 0.1-H

1 1 1 1 1 1 1
^ ^

P O M O O §
-J
aa

1-0.0.0»- 1- P

Q

o u
w
«
w

Ö

Q
H

H
CJ
H

W

CO
EH
Z

w
CM
O

U u z
M

O
a w

I
H
CM

Report No. 2352 Bolt Beranek and Newman Inc.

Fig. 2 we have represented events for each of three processes

in the balance set. The bottom horizontal line represents time,

t, in milliseconds. The user who owns process 1 finishes in-

putting a command (TIWK) at t=20. This causes the process con-

troller to reassign priorities and the balance set control to

estimate storage requirements The core manager sees that room

is provided in core for the new process and the swapper is

activated. The first page of process 1 is brought in and a

very short burst of CPU service follows, ended by a page fault.

About 20 milliseconds later, the page requested arrives and it

so happens that the CPU is available. Process 1 gets another

short burst of computation, until it page faults again. Pro-

cesses 2 and 3 are also in the balance set and the CPU service

bursts that they receive are interspersed among those of Process

1. Notice that the fourth burst of Process 1 and all bursts of

Process 3 begin considerably later than the moment the page they

requested has actually arrived in core. At t=200 milliseconds,

Process 2 blocks for I/O. That is, the process stops running

because information must be transferred to or from the external

world in a slow device; for example, the process waits for the

user to type something into his Teletype. At this point, the

Process Controller and the Balance Set Controller may decide to

bring a different runnable process into the balance set and i

throw out Process 2. After some time. Process 1 finally blocks,

nnd Process 2 wakes up again.

2.2.4 The Queueing Network Model

From this admittedly sketchy description of the internal

workings of TENEX, we may now proceed to present the structure

of our model—a state diagram, comprising the network of servers

and their attending queues of user programs, that is represented

10

Report No. 2352 Bolt Beranek and Newman Inc,

CO

w
Ui
D

U

W

!3
H

w

o
(i*

(0

z
$ w
b
O
w
u
w
D
O
M
W

EH

Ü
H

11

Report No. 2352 Bolt Beranek and Newman Inc.

in Fig. 3, In this diagram, user programs may be imagined as

marbles leaping from one box (that we call a state) to another

via the directed paths represented by lines. User programs remain

in the various states for randomly varying periods of time,

ranging from a few milliseconds to several seconds, in accordance

with the characteristics of the state they are in. Transitions,

or leaps, are assumed to occur instantaneously.

All runnable programs are either in GO or in the set of

states included in the dashed box called BALSET. Runnable pro-

grams are those programs which have completed their I/O and are

waiting to be executed (or are being executed). A subset of

these, selected by the balance set controller, has had core mem-

ory allocated to it and is considered to be compatible (their

working sets can all fix. together in core, simultaneously).

Programs in the balance set can be removed therefrom and placed

in GO, and vice versa, depending upon their priorities as

judged by the balance set controller. Programs in the READY

state (those which are both runnable and in the balance set) are

selected for execution by the scheduler and enter the RUN server.

RUN service is terminated for one of several reasons:

a) The program is I/O blocked, demanding service by any of

the several input-output devices available, such as

dectape (DTA), lineprinter (LPT), terminal

output (TTO), and terminal input (TTI). The

box labeled LIMBO corresponds to several instances

of suspended animation in which a program may find

itself as a consequence of the operation of the

pseudo-interrupt system.

12

Report No. 2352 Bolt Beranek and Newman Inc.

IN

BALSET

GO

TBLK

RDY RUN

OR a OK

OUT

]

LIMBO h I/O

i OTHER

OTA

LPT

i TTO

TTI

J
j

TCüZET"
-| DK

OR a OK

FIG.3 QUEUEING MODEL OF THE BEHAVIOR OF PROGRAMS IN TENEX

13

Report No. 2352 Bolt Eeranek and Newman Inc.

b) The program runs for its full quantum and is re-

turned to the READY state. Here, the balance set

controller will determine whether the program must

be thrown out of the balance set because of demands

from other runnable programs (in GO), or whether it

can be allowed to stay in READY state.

c) The program may finish computation altogether, i.e.,

the user logs out (OUT).

d) A page fault has occured and the page referenced

must be brought in from the drum or disk (DR and

DK). After the page has been brought in, the

program may go back to READY state, or may find

that during the time taken by the page transfer,

the balance set controller decided to throw the

program out of the balance set.

e) The program may stop execution at its own re-

quest or als the system's request. The former

type of request is relatively rare; the latter

type of request is exemplified by the system's

need to determine which pages of what program

to throw out of core memory in order to make

room for execution of the jobs currently in the

balance set.

As we can see, the GO and the READY states of our diagram

really correspond to user programs waiting to be processed;

i.e., they represent waiting lines. All the other states ex-

cept IN and OUT represent servers with different characteristics,

14

Report No. 2352 Bolt Beranek and Newman Inc,

For example, TTI and TTO can be considered parallel, multi-

channel servers capable of servicing simultaneously as many

porgrams as there are active terminal lines, while the drum (DR)

can serve as many programs in one drum revolution as there are

non-superimposed transfer requests (superimposed requests would

be those involving overlapping drum azimuths). Others, such äs

RUN, and also the disk (DK) in certain cases, must be considered

as single-channel servers capable of servicing one user program

at a time.

In summary, each server is characterized by the way in

which waiting programs are selected for service (queue

discipline), by the number of programs that can be serviced

simultaneously, by the probability density of its service time,

and by its transition probabilities (the probabilities with

which programs will request their next service to be performed

by another server). A measure of these quantities is all that

is required to identify and quantitatively define the model.

From the model, characteristics such as the number of programs

in any of its states, the load factors for each server, the .

distribution of waiting times—the quantities that are needed

to satisfy our goals of description and prediction of system

response characteristics—Kjan be obtained.

2.3 MEASURING SYSTEM

We have designed and implemented a software measuring

system to obtain the statistics we need to specify quantita-

tively our model. The data are obtained by a set of software

probes inserted at such points in the TENEX monitor where a

state transition can be said to occur. The measuring system

15

Report No. 2352 Bolt Beranek and Nevnnan Inc.

consists actually of two parts: the set of software probes

and a special user program. The software probes are patched

directly into the TENEX Monitor at points corresponding to

the directed paths in Fig. 3. Every time a user's program is

dismissed for I/o, for example, it activates a probe inserted

at an appropriate point in that section of the monitor code

that performs the dismissal.

The probe gathers data, compacts it into two PDP^-IO 36-bit

words and records it in a buffer located in the monitor's ad-

dress space. The data gathered are the following.

a) The measurement number (identifying the corresponding

position in Fig. 3)

b) The job number (identifying the user program)

c) The fork number (what process in the hierarchy of

processes the user program may have spawned)

d) The time of day (in milliseconds)

e) State dependent data, such as the I/O blocked condition,

i.e., what I/O device is involved. These data are

specific to the example chosen; for other measuring

points,such as page faulting for example, the virtual

and the real core page numbers are specified.

The special user program has the following functions:

a) It allows the user to specify an I/O device for

permanent storage of the measurement data, as

well as to write headings and other indexing

information.

16

Report No. 2352 Bolt Beranek and Newman Inc.

b) It copies the entire monitor code as the first

record of the data. This is done to facilitate

reduction of the measurement data, and to help

explain possible anomalies in the data produced

by undocumented changes in the monitor.

c) It inserts the probes into the monitor code and

dismisses itself (goes to LIMBO) until the special

wake-up condition described next is met.

d) When the buffer is more than a given percent full,

the program wakes up, dumps the contents of the

buffer onto the I/O device selected in a), checks

whether the user has signaled termination of the

measurement, and if he has not, goes back to sleep.

This loop is then repeated.

Two data-reduction programs are available to unscramble the

data recorded: a time-history program and a histogram-generating

program. The time-history program simply translates the bit

patterns of the raw data into easily readable descriptions of

the event recorded so that the gyrations of any particular program

in the time-sharing system can be followed and interpreted. The

histogram-generating program produces and makes available the

probability densities that we need for our modelling. These programs

are described in detail next.

17

Report No. 2352 Bolt Beranek and Newman Inc.

2,3,1 Time History

In Pig, 4 we present a short segment of a typical time-

history output. As we can see, at time 21.605 fork 5 of job 5

completes an I/O operation and becomes runnable (enters the GO

state); it is immediately incorporated to the balance set (GO to

READY), and starts execution (READY to RUN). Two milliseconds

later, execution stops because of another request for I/O and

fork 5 of job 5 leaves the balance set (RUN to I/O), the particular

input-output operation being coded in the first of tv/o DATA codes.

Fork 6 of job 7 was expecting a page to be brought into core from

the drum, and at time 21.681 the page has arrived (DRUM to READY),

the program starts execution (READY to RUN), and page faults again

3 milliseconds later (RUN to DRUM). There is nothing else for

the system to do but wait for this page to arrive at time 21.772.

Thereupon the same sequence of transitions occurs, untim at

time 21,858 fork 6 of job 6 blocks for I/O and leaves the balance

set. Immediately, fork 7 of job 3 is brought back into the balance

set (GO to READY), and starts execution (READY to RUN), While it

is executing, fork 7 of job 7 terminates its I/O, and, as a con-

sequence of its becoming the program that is most in need of

execution (as determined by the scheduler), fork 3 of job 7 is

stopped without leaving the balance set (RUN to READY? fork 6 of

job 6 enters the balance set (GO to READY), and the balance set

controller decides it cannot keep both jobs simultaneously in

core and throws job 7 of job 3 out of the balance set (READY to GO).

Skipping now to time 28.146, we see that fork j? of job |?

(a phantom job used by the system to watch over file operations)

terminates its I/O and becomes runnable (I/O to GO). Consequently,

the scheduler stops execution of fork 7 of job 3 (RUN to READY;

fork ^ of job JJ enters the balance set (GO to READY); a page is

18

Report No. 2352 Bolt Beranek and Newman Inc.

Time FRK Job Trns Data
mn sees No. . No. (state dependent)

0:00:21.605 5 5 I0-G0 0 a05ab5
0:00:21,605 5 5 GO-RY 0 a05a35
0:00:21.606 5 5 RY-HN uu 33
0:00:21,608 5 5 RN-IO 2763a
0:00:21.681 6 6 DR-RY 177
0:00:21.681 6 6 RY-HN 763 666
0:00:21,6814 6 6 RN-DR 157 1 1
0:00:21,772 6 6 DR-RY 157
0:00:21.773 6 6 RY-RN 765 667
0:00:21,777 6 6 RN-DR 161 123
0:00:21,8UH 6 6 DR-RY 161
0:00:21,saa 6 6 RY-RN 766 6/0
0:00:21.858 6 6 RN-IO 27667
0:00:21.859 7 3 GO-RY a 366231
0:00:21,860 7 3 RY-RN asa 220
0:00:25,263 6 6 I0-G0 0 aia6b0
0:00:25,263 7 3 RN-HY a 366231
0:00:25.264 6 6 GO-RY 0 aia6b0
0:00:25.26U 7 3 RY-GO a 366231
0:00:2b.292 6 6 RY-RN 767 6/1
0:00:25.307 6 6 RN-IO 27667
0:00:25.308 7 3 GO-RY a 366231
0:00:25.309 7 3 RY-RN a7i 266
0:00:28.1116 0 0 I0-G0 0 4223:33
0:00:28.me 7 3 RN-RY a a152ai
0:00:28.U7 0 0 GO-RY 0 a223b3
0200:28,U9 0 0 PY-DP 172 a
0:00:28,152 0 0 DR-DR 17U 22
0:00:28,15a 7 3 RY-RN 507 33a
0:00:26,213 7 3 RN-RY a ai52ai
0:00:28,21U 0 ? DR-RY 0
0:00:28,214 0 0 RY-RN 1 1171 30/a
0:00:28,216 0 0 PN-DR 171 212
0:00:28,218 7 3 RY-RN 507 33a
0:00:28.263 7 3 RN-RY a ai52ui
0:00:28,26a 0 0 DR-RY 171
0:00:28,26a 0 i* RY-RN 11171 J0/5
0:00:28,270 0 0 P.N-DB 173 ai37
0:00:28,272 7 3 RY-RN 507 33Ü
0:00:28,313 -7 3 RN-RY a aib2ai
0:00:28,31a 0 0 DR-RY 173
0:00:28,31a 0 H RY-RN i 1173 30/6
0:00:28,321 0 0 RN-IO aa363
0:00:28,331 7 3 RY-RN 507 33a
0:00:28,333 5 5 IO-GO 0 U226a6
0:00:28,333 7 3 RN-RY a "15241
0:00:28,33a 5 5 GO-RY 0 422646
0:00:28.335 5 5 RY-RN au 33
0:00:28,336 5 5 RN-IO aa363
0:00:28,3a5 7 3 RY-RN 507 33a

FIG.4 A SEGMENT OF TIME-HISTORY OUTPUT

19

Report Mo. 2352 Bolt Eeranek and Newman Inc.

requested from the drum (Ri:ADY to DRUM), and a second page is

requested after the first one arrives (DRUM to DRUM). V7e see here

an instance of preloading—a job that has been away long enough

from the balance set and has had all of its pages physically re-

moved from core cannot begin execution until two of its key pages

are brought in first.

Obviously, the program just described makes it possible to

observe the behavior of user programs in minute detail. In order

to obtain the needed statistical data, however, it becomes neces-

sary to perform another step in reducing the data by generating

histograms,

2,3.2 Histograms

The histogram-generating program:

a) computes an approximation to the probability density

of service times, that is, the relative frequency with

which a program will remain in any given state for a time

comprised between a given interval. It also computes the

mean and standard deviation of such times;

b) computes occupancies, that is, the frequency densities

v/ith which 1, 2, 3, ,,,n programs will occupy any given

state simultaneously, as well as the mean and standard

deviation of such state occupancies;

c) computes the transition probabilities, that is the rela-

tive frequency with which a program will leap from any

given state to any of the others.

20

Report No, 2352 Bolt Beranek and Newman Inc.

Most of the probability densities in (a) have very long tails,

and it would be impractical to use a linear time scale for the

construction of histograms. For this reason, we have used in such

cases a log-linear time scale compression of the following form:

T(i) = [8 + (i mod 8)]2IP(l/8) - 8 for i = 1, 2, 3,...

where T(i+1) - T(i) is the width of the i time interval and IP(.)

denotes the greatest integer less than or equal to the argument.

In this way, the width of the first eight time intervals was one

time unit, the width of the second eight was two, that of the third

eight was four, and so on. Events with durations between T(i)

and T(i+1) were assigned time T(i). Due to the particular char-

acteristics of rotational devices, this time compression was not

necessary for the probability densities of times in Drum and Disk.

In Table la we present a portion of a typical time probability

output, corresponding to a test run; in Table lb we reproduce the

occupancy probabilities; and in Table Ic the transition probabilities

for that same run. Some observations and comments on these data

follow immediately.

One of the most important states in the model is the RUN

state. Inspection of the frequency density of times in that state

reveals its extreme skewness—94% of the times in RUN are less than

0,1 sec, and yet the average RUN time is .13 sec. This is due to

the fact that job 3 is a CPU-bound program—whenever the system

has nothing to do, it executes this job, sometimes for as long as

eight seconds without interruption.

21

Report No. 2352 Bolt Beranek and Newman Inc.

TABLE la

FREQUENCY DENSITY OF TIMES IN STATES
(service time probabilities)

TIME
B£QS

E
60 BDY RUN TBLK LMB

0.00119
.001
,002
.003
.00a
.005
.006
.007
.008
.010
.012
.01a
.016
.018
.020
.022
.024
.028
.03 2
.036
.0U0
.0au
.0a8
.052
.056
.064

.3900

.4800!
0.0000
0,0000
.0051'
.0051

0.0000
0.0000
.0102
.0051
.0102

0.0000
0,0000
.0510

0.0000 .
0,0000 !

0,0000
0,0000 '
.3102

0.0000 ■
0,0000 '
.0051

0.0000 ;
0.0000 i
0.0000 I

4.600
5 .112
5.624

l 6.136
6.648
7.160
7.672
8.184

NUMB
AVRG
ST DV L

0.0000
0,05500
0,0000
0.0000
0.0000
0.0000
t\0000

.0153

196.0000
1.3590

11.7180

.2819
,5367
.0390
,0150
.0120
.0105
.0030
.0045
.0060
.0135
.0345
,0120
,0075
,0015
,0075
,0015
,0060
,0015

0.0000
0.0000
3,0000
.0030

0.0000
0.0000
0,0000
,0030

0,0000
0,0000
0,0000
0.0000
0.0000
0.0000
0.0000
0.i;000

667.0000
.0020
.0060

,0078
.1264
.2434
.0733
.0484
.1^718
.0499
.0218
,0530
,0655
,0328
.0140
.0078
.0140
,0094
.0047
.0125
,0253
.0062
.0 125
.0094
.0062
.0094
,0094
,^094
,0031

JL

,2759
,3103
.0172
.0172

0.0000
0.0000
0.0000
.0345
.2069
.0862
.0172

0.0000
0,0000
0,0000
0,0000
0,0000
.0172

0,0000
0.0000
0.0000
0.0000
0,0000
0,0000
0.0000
0.0000
0.0000

164

.0047

.0031

.0031
0.^000
.i.'016

0,0000
,0316

0.0000

.0000

.1300

.7570

0,0000
0,10000
0.0000
0,0000
,0310
,0543'
,0310
,0465:

,0233
,0310

0,0000.
0,0000

»T-

0,0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

58.0000
.0070
.0240

■»»•'■'■'"•

0,0000
,0078

0,00(90
,0078
,0155

0,0000
0,0000
0,0000
0,0000
0.0000
0,0000
0,0000
0,0000
0.0000

,0078
,0388
,0078
.0076
,0310

0,0000
,0155
,1395

129,0000
4,8060
13.5520

22

Report No. 2352 Bolt Beranek and Newman Inc.

TABLE lb

FREQUENCY DENSITY OF NUMBER OF PROGRAMS IN STATE
(occupancy probabilities)

NO, OF PHOGS S 1 r A T S s
GO RD* RUN TDLK LHB

.975 .906 ,28a .9y7 .003
•I .02U ,ai3 ,716 .00« .006
2 .£01 .0^1 0,000 0.000 .00a
3 .301 0,0^0 0.000 0.000 .019 a 0,»?? 0.0J0 0,000 0.000 .050
5 0,/J03 0,0^0 0,000 0.000 .2ab
6 0.000 0,0160 0,000 0.000 .673

AVRG 0.000 ' .0^3 ,716 .00U 5.53ai
ST DSV 0,000 ' .0^U ,451 ,060 .8a9i

' i - ■ —i

23

Report No. 2352 Bolt Beranek and Newman Inc.

TABLE Ic

PROBABILITY OP TRANSITION FROM A STATE TO ANOTHELR

FROM/TO 10 GO RY RN DR DK BK TO TI LB

10 .78 .11 .11

GO 1.0

RY .01 .96 .03

RN .002 .11 .46 .08 .09 .05 .21

DR .01 .95 .04

DK .49 .51

BK 1.0

TO

TI 1.0

LB 1.0

24

Report No. 2352 Bolt Beranek and Newman Inc.

The difference in behavior of programs as they arc in the

DRUM or the DISK state is also worth pointing out. As we can

see in Table Ic, the probability is very nearly 50% that a program

exiting DISK will remain in the balance set, while a program

leaving the DRUM state has a 99% chance of remaining in the balance

set. Since DISK access times are considerably larger than DRUM

access times, the balance set controller tends to keep within the

balance set those programs that are likely to be READY in a short
period of time.

25

Report No. 2352 Bolt Beranek and Newman Inc.

3. USAGE STATISTICS

3.1 SESSION DURATION AND CPU TINE CONSUMED

Each usage of the time-sharing system by an individual user

is called a session. For each session, the TENEX accounting sys-

tem keeps track of the time elapsed between login and logout,

and of several computer resources used during that time interval.

As a first attempt at characterizing (and modelling) the behavior

of users, we have collected data on the length of sessions of our

TENEX time-sharing system, along with the CPU time consumed in

each session.

We have examined data for all the usages of the TENEX time-

sharing system from 1 December 1970 to 30 June 1971, a total of

more than 14,000 sessions. A special feature developed espec-

ially for our purposes allows these data to be classified and

sorted in a two-dimensional histogram, recording the number of

sessions lasting between T and T , minutes and consuming between

C and C +, seconds of CPU time. As a compromise between resolu-

tion and size, we adopted a log-linear time scale (giving pro-

gressively longer time intervals) according to the formula

Tn=2
E(n/3) [15+5(n mod 3)]-15 (in minutes)

where E(n/3) is the greater integer <n/3. This gives, for

n = 1,2,3,...7, the values 5, 10, 15, 25, 35, 45, 65. Exactly

the same expression was used for C , except that times were ex-

pressed in seconds. The measured relative frequencies cor-

responding to such a histogram are reproduced in Table II. V.7e

observe, for example, that 10.37 percent of all sessions recorded

here were less than 5 minutes long, and consumed less than 5

seconds of CPU.

26

Report No. 2352 Bolt Beranek and Newman Inc.

to
c
o

•H
■P

s
p
a
a
o

•H
m
m
a>
(A

«M
O

Hi
o

•H
U c
0)
3
D1

0)
M
b

>
•H
*J
10
H
O
«

c
o

^ 03
W g
•p 3
•H (0
c c
9 O u

H O

CO
•H C

3
CQ

(0

in

A

in
n

m
f":

cu
CM

in
CO

^

■n

•n
CO

•n
vO

■n
■7

■n

■n
CVJ

ISJ

•n

m cvi « n (M <r<TO]r-<j-t-ini>'cr-.;x>o.n-q,G

-<S)«-<<M'3->r'sr-«o(Mvoo„t-Ovo-T-7^tnv0cvj_^„:2

(0
U Ü

(U
(0

WininooinovcoP) i>acuin ^o o\o> ov ■»« — «ro

«^^Mtn^^vo<rT0,n-.gv<ro>Cj^wv0cyQJ
— WCOOIOJOPXMW«-.

— cucvjwojcviro^rrocvjocvj-NCM —

«— wojcvinooinin^oroin^inocvi-.-«

Oovo\WKi^ncnvO'-vOrtp-.nOJ^sin«ocuT-.s-.3(a(S5
— cvj-<c\jronn'n-!x^'nncvjncvj-« — — ^ w «j

-t«-w<23'5r2sS"'v0'nov SJVOOOVT -«o-.-.-.ra(3S(a' -._-,^<T^M)sr<TcO!n^«0<',-<0-.<M<\J SM =a ca ca

— wcvjiri'nnoo-q-nmin-'ro-i«-« o.^^«,!^

wr2'jin^(>'.nroToo'y)T-.-,voo\<T-. - s-.s SSQQS

or«-ininr2nxor»«o>nrc<rovo\in(^-'Q a SQSSQSSS

o\^-5r^»oc5(M2tn(>co-nvos-.cas sasosass»®

-^ <M — -« "" "'

O vO •* CO "T -^
Q O —

Q-«S(S)SSJS3SC3S

•n 3 in in ^n in n in in -n -n 'n -n -n m n >n m in 'n 'n m n m -n 'n m
- - w <o T <o co a -r v> ai -n TO »a cvj co -^ ^o x« a ^ M w 5 m 5

— —-•cucooTor-a* cvi-n^n — rc-^tovo
-•-" — cvjncji/isor»

27

Report No. 2352 Bolt Deranek and Newman Inc.

We begin our analysis by computing some statistics. It

will be assumed throughout that the relative frequencies in

Table I are a discrete probability density function representing

events that occur at the arithmetic mean of the interval. For

example, all sessions lasting less than five minutes and consum-

ing less than five seconds of CPU will be represented by a session

of 2.5 minutes duration and consuming 2.5 seconds of CPU. We

shall also adopt the following terminology;

n m

26
P(T) = Z P(T C) and

n m=i n, m

is the probability density
of a session lasting between
T n-1 and T minutes, consum- n
between C . and C seconds m-i m
of CPU.

1 6
P(Cm)=Z P(T .C) m n_^ n m are the marginal probability

densities of session duration
and CPU consumed, respectively.

P(Tn|Cm)=P(Tn,Cm)/P(Cin) and

P(Cm|Tn)=P(VCm)/P(Tn)

28 16
Elg(T)]=Z E

m=l n=l 9(
Tn+Tn+l) nf m

are the conditional probab-
ility densities of session
duration given CPU consumed,
and of CPU consumed given
session duration, respec-
tively.

is the expected value of the
function g(T) of session dura-
tion. Similar definitions
apply with respect to CPU
consumed and with respect to
the conditional and the mar-
ginal densities.

28

Report No. 2352 Dolt Beranek and Newman Inc.

E[(T-E[Tl)*(C-E[C])] is the correlation coefficient
P" between session duration and

0T 0C CPU consumed, where

2 2
oT=SORT(E[T] -E [T]) and

2 2
Oc=SQRT(E[C] -E [C])

We present in Table III the means and standard deviations of

both conditional and both marginal densities. Inspection of

Table II shows that a strong correlation e^lsäts between session

duration and CPU consumed. However, the relatively low value of

the correlation coefficient (see Table III) shows that this cor-

relation is not linear. An excellent linear fit is obtained by

computing E[log T|C] and E[log C|T] and plotting it on semi-log

paper (see Figure 5). One gets:

Ellog C|T] = .20 + log T

E[log T|C] = .42 + 0.66 log C

These expressions are especially suited to our modelling work

because they allow us to estimate, for example, how much CPU

will be consumed, on the average, in a session of duration T.

Let us now turn our attention to the different probability

densities involved. Figures 6 and 7 show plots of ehe cumulative

conditional probabilities

N
Pr[T<T |C] = E P(Tn|C) and

n=l

Pr[C<Cm|T] = Z P(Cm|T)
m
E
m=l

29

Report No. 2352 Bolt Beranek and Newman Inc.

TABLE III

CONDITIONAL AND MARGINAL STATISTICS

T(mins)
or —

Session Duration CPU Consumed
c(secs) E[T C]

11.1

0T C

38.9

Weight

.138

ECC T] aC|T Weight

5 8.3 29.2 .167
10 18.7 38.7 .097 21.6 29.4 .091
15 27.3 48.8 .060 36.0 49.2 .064
25 33.4 46.7 .086 57.1 72.5 .098
35 41.1 51.5 .063 83.6 123.2 .074
45 47.5 52.9 .047 132.5 188.8 .062
65 53.7 58.1 .068 174.9 217.4 .096
85 70.0 71.2 .048 228.5 289.4 .073

105 74.3 66.5 .038 287.3 351.3 .056
145 83.3 75.9 .056 342.6 405.2 .073
185 86.2 68.4 .042 449.6 525.4 .044
225 117.7 87.0 .035 528.3 574.5 .028
305 121.1 89.2 .048 728.1 863.8 .034
385 137.6 100.4 .033 830.2 855.3 .017
465 149.0 100.2 .022 899.2 1095.5 .011
625 157.8 109,6 .035 1766.6 1922.6 .012
785 162.2 106.1 .022
945 176.0 116.6 .016

1265 215.2 127.4 .019
1585 224.4 123.2 .009
1905 244.1 120.1 .005
2545 294.0 125.2 .006
3185 325.8 117.1 .003
3825 333.5 127.3 .001
5105 376.6 106.1 .001
6385 420.6 66.5 .001
7665 265.0 .0 .000

E[T] = 72 min E[C] = 205 sees

oT = 93 min 0C « 472 sees

P = 0.55

30

Report No. 2352 Bolt Beranek and Newman Inc n to
M

I
\

\
\

1-

 Ü -

\

\
Ü

JL^
I ^

\
V
/

V
\ V

V \

"X \
\

_^^
\

\
\

N
\ \

\
\

\ \

^

10

M

O
0>

to
(0
M

s
to
CM
<0

to

10
o
r«

IO
CO

10
<0

to

IO
10

IO
CM

IO

o

05

§
u
o
cu
u
EM
O

Q

I
o

g
(0 §
S S?; s O

H
10 m
S w
IO

Si u o
(A

IO CM
10

Ü o
Hi

I
M a

b
O

en

i

Q

$
U
M
ft
X
H

3
O

Q

in

O
H
fa

Report No. 2352 Bolt Beranek and Newman Inc.

•5

90

80

70

60

£50

40

30

20,

10

5

2

1

0.5

0.2

0.1

7 *

t r J Vi J >
-i Vv /

7^

^' ^
■V 0 yy /. z r

J^ /,

r H V \A
A M

r

^
■ J y > Y A S

/
r

i ,.^ y, / /

r
..-.,_

y A \y r / J y
y A V, Y A f A
'L^.L' J y j r
SY / >

Y
y *.

 "■ ^r
/

/ /

/A /

y y y
10 IS 25 35 45 65 65 105

T (MIN)

145 165 225 305 365465

FIG.6 CUMULATIVE P(T/C)

32

Report No. 2352

C(SEC)
1585 2545

625 785 945 1265 1905 3185
' I I. 1 .L I

Bolt Beranek and Newman Inc.

35 45 65 85 105 145 185 225 305 385 41

C(SEC)

FIG.7 CUMULATIVE P(C/T)

33

Report No. 2352 Bolt Deranek and Newman Inc.

on logarithmic normal probability paper. The fit to a log

normal distribution is good for P(T|C) and not quite so good
for P(C|T).

Plots of the marginal densities P(T) and P(C) are presented

in Pig. 8. While the hypothesis of lognormality could be defended
for P(C), it appears to be untenable for P{T).

After many attempts to fit a number of well-known probability

density functions to the data, we finally settled for a hyper-
exponential function of the form

p(t) = aX^l* + bX2e"
X2t + cX e'^-t

3" 3'

where a, b, and c are all positive and a + b + C = 1,

This probability density corresponds to a queueing model of
the following form.

a - ,
1 • Ai ■ »

b I 1
(i » A2 »-—f

L£-* x, •-*

34

Report No. 2352 Bolt Beranek and Newman Ixth.

AA A

1600 2500
825 785 945 1150 1900 5200
III III II 99.9

99.8

99.5 ,? ^>

> 99

^^

i^-
^: 98

Jt A ̂r > /
95 A ^c

^
/

90,

y /
^

^'

80

. 1%^ £ r TO

.^
^

t^'X 60
^> ?< V P*"1 ■

% 50

^
i

40

_^ 90

sH ̂
ZO

i^
10

5

2

i i

0.5

0.2
 ^^^,

10 15 25 35 45 65 85 105 145 185 225 305 38946

FIG.8 CUMULATIVE P(T) and P(C)

35

Report Mo, 2352 Bolt Beranek and Newman Inc.

where the boxes represent exponential service time servers. The

fitted value of service rates (X's) and coefficients for the

console time data are:

X1 = ,2, X2 = ,019, X3 = ,0068

a = ,11, b = ,53, c = ,3

The fitting procedure was based on the chi-square method

of goodness of fit. After each choice of X's and of the coeffi-

cients b and c, chi-square was computed as well as its partial

derivatives with respect to the X's and coefficients. The next

set of values of X's and coefficients was selected by adjusting

the one of them for which the absolute value of the partial deri-

vative was highest. The initial set of values was obtained by

plotting the observed frequency density on senilog paper and by

choosing X's by eye.

We terminated arbitrarily the procedure when chi-square

descended to a value of 10.3, with 10 degrees of freedom. This

means that if a new sample of data were obtained from the same

population, the probability that its chi-squared value be larger

than 10,3 would be 0.42, Therefore, the hypothesis of a hyper-

exponentiality is in good agreement* with the observed frequency

density.

*See paragraph 30.4 of H. Cramer's Mathematical Methods of
Statistics, Princeton University Press, 1946.

36

Report No. 2352 Bolt Beranek and Newman Inc.

We then performed another type of analysis of the data to

see how the user load on the computer changed with the time of

day. To this end we computed histograms of session durations

and CPU time consumed for sessions begun between 8 a.m. and 9 a.m.,

9 a.m. and 10 a.m., 10 a.m. and 11 a.m., and so on. Sessions

begun between n and n+1 were assigned to the n+1 histogram slot,

with the exception of 8 a.m. that concentrates all sessions begun

between jS a.m. and 8 a.m. While these histograms retained a

basic similarity with the overall ones, significant parametric

differences were observed. In Fig. 9 we represent the average

and median of console time consumed as functions of the time of

day of login. We see that, in general, sessions tend to be longer

at the beginning of the day, and decrease in length toward the

end of the day. A shallow, short lunch lull is visible in the

average and median, as well as a longer one at around dinner time.

The percentage of logins reveals even more clearly the bimodal

character of the working sessions of TENEX users—most of the

sessions begin between 9 a.m. and 12 noon, and between 1 p.m. and

5 p.m. Here, there is a pronounced dip at around 12 noon, un-

doubtedly due to lunch time. In Fig. 10 we represent the same

statistics (average and median) for the number of CPU seconds

consumed per session as a function of the time of day of login.

We can observe that the same general trends and character-

istics pointed out previously about console time appear to hold

also for CPU time. An interesting feature of these data can be

ascertained by plotting the ratio of median CPU records consumed

to median minutes of console time per session, as a function of

the time of day. As can be seen in Fig. 11, this ratio is re-

markably constant throughout the day, except around 9 p.m., when

this ratio almost doubles. It seems that TENEX users have

37

Report No. 2352 Bolt Beranek and Newman Inc.

SNiocn %
OD iß

ismm imi

38

Report No. 2352

2 Äo>
SNI901 %

00 N (0

Bolt Beranek and Newman Inc.

CM

ro
(Vl

(M
CM

CM

o
CM

o

<T> CO
»—

LU
CO

00
i— LU

Q.

> a
K < Ul
r- Q

Ü. to

J£ O
LÜ

o o

m

ro

CM

o

o

_ O

— 0»

oo

O
CM
CM

O
O
CM

o
CD

N CO A

NVIQ3IN
X

o
to

o o
CM

o o o
CD

o o o
CM

39Vd3AV (03S) 3WJi

Report No. 2352 Bolt Beranek and Newman Inc.

CNJ o
•—1

CO
CO
ÜJ
m
ec
Ul
Q.

<M
<M m

CM

CO

(VJ

CO

o LU
CM

O
CO

a> o
o

00 »-<
r" a

LU

>- z:
N < o

i-

li. Q o Lü
U) s:

LU =>

5 CO

in t- o o r—

CO o
2=

V O o
CO

_ o

— 0>

Jco
CO

o
LU

O

o

<
cc

ID

W

Report No. 2352 Bolt Beranek and Newman Inc.

disciplined themselves to postpone their CPU-bound jobs until

the night hours, when the number of users in the system is small

And the chances of perturbing (or being perturbed by) other users

with heavy demands of CPU time are small.

3.2 SYSTEM STATISTICS

One of the features of the TENEX Executive System allows

certain privileged users to obtain information related to both the

performance of the time-sharing system itself and the performance

of the sjibsystems run under TENEX. This facility, called STATISTICS,

provides the following types of information:

1. Allocation of system resources, such as the fraction of

the total up-time spent:

a) running user's program

b) idling, that is without any runnable user program

c) waiting for secondary storage transfers
(all runnable user programs have page-faulted)

d) managing core

e) handling page faults (included in item (a) above)

2. The total number of pages read/written from/onto the

drum and the disk

3. The amount of core memory available to users

4. The number of times user programs have been dismissed

because of terminal I/O, and have been interrupted from the

terminal

5. The time integral (in milliseconds) of the number of run-

nable user programs the system thinks can be simultaneously

kept in core

41

Report No. 2352 Bolt Beranek and Newman Inc,

6, The running time (in milliseconds) of user programs in

each of the five queues of the system

7. Allocation of subsystem usage. This will be dealt with

in detail in the next subsection.

We have gathered system data by running STATISTICS at 0900

hours and at 1800 hours for 48 consecutive working days, comprising

the entire months of February and March and part of April 1971.

Figure 12a is a typical printout of these data. We have processed

these data and shall proceed now to report some of the results

that are of interest.

The average UP time as measured at 1800 hours was 14 hours,

30 minutes. The average time spent running user programs was 242

minutes, or almost exactly 4 hours. This was obtained by averag-

ing the result of subtracting idling, waiting, and core managing

times from UP time.

In Table IV we present some statistics obtained by analyzing

the afternoon data. Averages and standard deviations were ob-

tained by weighting and corresponding quotients in proportion to

the day's running time. Thus, for example, for the first entry

in the table, the formulas used were

48
AVE = E TWKn/SUMRUN, where TWK is the number of terminal wake-ups,

n-1

ST.DV.=

where

(HS 2 v

I TWK n /RUN'GJ/SUMRUN-AVE'

I/J

SUMRUN =E RUN'G
n=l n

42

Report No. 2352 Bolt Beranek and Newman Inc.

IOAYTIHE
TUESDAY« APRIL 13* 1971 11

ISYSTAT

UP 251 411 39 13 JOBS

JOB TTY USER SUBSYS
8 57 SATTERFIELD EXEC
3 46 WEBBER < PRIV)
A 40 JSI EGEL EXEC
6 21 6RIGNETTI EXEC
1 31 MURPHY MACRO
9 27 WEGBREIT TECO
12 OET HANSON CPRIV)
13 37 REMINGTON TEL COM
15 35 HARTLEY LISP
16 34 WOODS EXEC
19 56 CM.LEVA EXEC
23 60 MURPHY EXEC
24 17 HOLLISTER MOEVEL

ISTATISTICS

18100127

IDLE 34S WAITING 29Z CORE MGMT 3Z PAGER TRAPS 8X
ORH READS 1999463 WRITES 998211 OSK READS 126238 WRITES 49453
83 PAGES OF USER CORE
67640 TERM WAKEUPS 3283 TERN INTERRUPTS
TIME INTEGRAL OF # JOBS IN BM.ANCE SET 123201023
RUNTIME OF JOBS ON Q*S 0-4 (MSEC)

1510700 3757137 6641200 3318948 16149699

FIG. 12a SYSTEMS STATISTICS PRINTOUT

43

Report No. 2352 Bolt Beranek and Newman Inc.

Description

TABLE IV

SYSTEM STATISTICS

Ave.
Std.
Dev.

140 30

.66 .21

.085 .03

.19 .06

3.3 0.97

4540 1210

2933 914

3116 922

Units

Terminal wakeups

Waiting

Managing Core

Handling Page Traps

User Programs in Core

Drum Reads and Writes

Drum Reads

Drum and Disk Reads

per min run'g

mins/min run'g

mins/min run'g

mins/min run'g

pages/min run'g

pages/min run'g

pages/min run'g

44

Report No. 2352 Bolt Beranek and Newman Inc.

It should be realized that the value given in the table is

not the standard deviation of the number of terminal wake-ups as

they would be counted at the end of each minute of running time.

It is instead the standard deviation of a set of 48 large sample

averages obtained as ratios of a large number of terminal wake-

ups to a large number of minutes of running time. When this fact

is considered, the standard deviations appear to be rather large.

An estimate of the true standard deviation can be obtained by

multiplying the standard deviation of the sample averages by the

square root of the average running time, 242 minutes. So the

standard deviations per minute of running time appear to be 15.6

times as big as the ones in Table IV, Apparently, we are

dealing either with highly skewed distributions with very long

tails, or with multimodal distributions. When we obtain data

with our complete measurement system, the forms of these distri-

butions will become clear.

A better understanding of these data can be gained by plot-

ting the various items whose descriptions appear in Table IV

versus running time and versus the number of page faults. These

plots show a high linear dependence, and computation of the best

linear fits produces the results detailed in Table V.

Thus, for example, running time (RT) appears to be a good

predictor of waiting time (WT)—the prediction equation being:

WT a 3.76 + .67*RT

with a correlation coefficient (p) of .96 and with a root mean

square error of 33.2 minutes. Notice that since the intercept is

small, the slope of the prediction line coincides with the aver-

age value of the ratio WT/RT given in Table IV, as it should.

45

Report No. 2352 Bolt Beranek and Newman Inc.

TABLE V

Linear Regressici
Statistics

Waiting
Time
(mins)

Slope

Intercept

P

rms error

Core Slope
Management
Time Intercept
(mins)

rms error

Trap
Time
(mins)

Slope

Intercept

P

rms error

Page
Faults

(thousands) p

Slope

Intercept

rms error

Slope

Time Intercept
Integral
of Jobs p
in Core
(mins) —»,_ „•,..,».« rms error

vs.

j Running Time
(mins)

.67

3.76

.96

33.2

.069

2.74

.83

7.36

.159

5.68

.86

14.9

2.55

117.5

.87

231.4

2.89

116.3

.95

154.9

vs.
Page Faults
(thousands)

.22

3.9

.91

47.7

.025

1.22

.87

6.55

.061

.51

.97

7.7

1.00

74.4

.96

137.4

46

fceport No. 2352 Bolt Beranek and Newman Inc.

Notice also the strong correlation that exists between running

time and page faultso This strong correlation makes it undesirable

to attempt fitting the various items by means of double regression

(on both running time and page faults, simultaneously), in fact,

if we do so, we would find that the variability of the result would

be very large due to the smallness of the determinant of the co-

variance matrix. It is better and simpler to divide the various

items by the running times, and to fit the quotients to the number

of page faults per unit running time. The results of this appear

in Table VI.

3.3 SUBSYSTEM USAGE STATISTICS

A subsystem is defined in TENEX as any executable program that

is stored in the SUBSYS directory. A large number of them (com-

pilers, conversational languages, text editors, utility programs,

debugging aids, operation accounting, monitoring, and controlling

programs, etc.) can be run under TENEX and are in daily use. The

range of usage of the subsystems varies considerably. One, the

EXECUTIVE language, is used by all TENEX users since it is the

handle with which they communicate and work with TENEX. A few,

such as LISP, FORTRAN, etc., are in common and widespread use,

but many others are private programs that may be executed only by

a single user.

In this section we present statistics on certain aspects of

subsystem usage. We shall concentrate on a few subsystems of gen-

eral interest, for v/hich sufficient use has been observed to make

the data reliable. These data are of the follovring types:

a) CPU time accumulated since the system was started

b) Number of page faults since the system was started

c) Time blocked for TTY input

d) Number of TTY wake ups

e) Average size of program when blocked.

47

Report No. 2352 Bolt Beranek and Newman Inc.

TABLE VI

Linear Regressive Statistics vs.

Page Faults
(thousands per
min. running time)

Waiting Slope .065

(per min. running) Intercept .495

P .40

rms error .35

Core Slope .019

Management Intercept .023

(per min. running) P .60

rms error .024

Trap Slope .049

(per min. running) Intercept .033

P .82

rms error .032

Jobs in Slope .56

Core Intercept 1.69

(per min. running) P .81 1

rms error .39

48

Report No. 2352 Bolt Beranek and Newman Inc.

Let us explain each of the above in detail.

Item (a), CPU time accumulated, is the total amount of time

the computer was actually executing a given SUBSYS program, regard-

less of who used it. The same holds for item (b) with respect to

the total number of page faults.

When a command has been carried out and the user has not yet

finished typing in another command, execution stops, i.e., the

process blocks for teletype input. When the user finished typing

in his next command and orders the computer to perform it by typing

a wake-up character (usually a carriage return), the time elapsed

between this event and the previous blocking is noted. Item (c)

represents the total amount of time any given subsystem was waiting

for each of its users to finish typing in a command, while item (d)

is a count of the teletype wake-ups for the subsystem.

Finally, item (e) is the average number of pages that were

in real core memory at teletype input block time for each subsystem.

Tabulations of these quantities (see Pig. 12b) were obtained

twice a day, at about 0900 hours and 1800 hours, for each working

day for several months. In each case, each quantity represents

the accumulated total since the system was restarted last. Because

of crashes that occurred at random intervals, the length of these

periods (UP times) ranged from a few minutes to several days.

The data we actually analyzed were selected from the after-

noon tabulations, after suppressing those that corresponded to UP

times of 7 hours of less. The reasons for this were: First, we

wanted to dilute the perturbations in "steady-state" behavior that

inevitably occur when the system is restarted after a crash, and

49

Report No. 2352 Bolt Beranek and Newman Inc.

SUBSYS TIME PG FLTS, TTBLKTM TTWAKES TTBLK SZ

EXEC 15689 79 54929 32309237 2389 18*12

(PRIV) 747932 26361 22252931 7265 10.18

NETSER 119398 8464 0 0 0

NOTIFY 956 1 6433 2^ 5.00
TECO 1040464 13725 35823680 3534 8.43

LISP 217803 36466 13799730 1919 19.57
COPYM 229.7 95 9179 9 6.00
LOGO 74449 3359 2244553 464 14.27
TELCOM 56724 7 330 ; 2522976 277 33.89
PAKSEC 431085 24262 1412125 365 19.57
NETSTA 7 34 46 0 0 0
TELNET 778'; 1 3132 787 4849 3155 7.81
FAIL 46296 1781 560318 6 42.8 3
MAUKO 535913 4762 281045 1 M 4 14.99

LOADEH 729 426 1 438 1 298 5669 1396 9.84

K/4Ü 1 41 S< 39 2426 16759 19 31.95

IMGPTP 512 42 1839 2 1 1 . SO
RUNOFF 1 53119'1 501 96245 13 9.3^
SHOT in 5 55 574 364642 132 8.9 3
DISC« is 57S 32 0 0 0

LISPX 70591 729 6 532613 87 33.41

FIG. 12b TYPICAL SUBSYSTEM STATISTICS TABULATION

50

Report No. 2352 Bolt Beranek and Newman Inc.

second, we wanted each data entry to be representative of at

least the better part of a normal working day.

We also suppressed tabulations that were partial accumulations

of others. This means that when the system stayed UP without

crashing for several days, we took only the tabulation correspond-

ing to the longest UP time, and eliminated those of the previous

days which were contained in it.

In this manner we selected 74 tabulations, extracted from

the period 14 May 1971 to 20 January 1972, representing a total UP

time of 1234 hours.

As we indicated before, the number of subsystems available

under TENEX is very large. Furthermore, many of these subsystems

are short-lived. For these reasons we selected from the subsystems

a subset of nine that spanned a considerable range of usages and

accounted for 80% of the actual CPU time consumed. These sub-

systems are:

1. The EXECUTIVE language, which is the primary means of

communication between TENEX and its users.

2. FORTRAN and MACRO, two compilers in widespread use by

the BBN community of users.

3. LISP, a list-processing language used intensively by a

large group of people involved in artificial intelligence work.

4. TECO and RUNOFF. TECO is a powerful text-editing language

widely used to input and edit source code, as well as other

textual material such as program documentation, reports, etc.

RUNOFF is a report-production facility that is commonly used

in conjunction with TECO to produce report-grade print that

can be offset directly.

51

Report No. 2352 Bolt Beranek and Newman Inc.

5. TELCOMP, an interactive, JOSS-type language developed and

marketed (until recently) by BBN.

6. A catch-all category called PRIVATE, encompassing all the

programs that users create and run as independent entities,

as, for example, compiled FORTRAN programs.

Many changes were incorporated into TENEX during the eight

months that comprised our observations. These changes were mostly

add-ons, and, with one significant exception, should not have caused

marked deviations in terms of the quantities we recorded. The sig-

nificant was the addition of 64K of coi memory, nearly doubling

the amount of core memory available to users. Of the 1234 hours

of UP time comprised during our observation period, 750 hours were

recorded before the addition and 484 hours were recorded after the

addition.

This addition, we thought, would provide us with a unique op-

portunity to test the validity of our hypothesis that changes in

the response characteristics of the computer system should bring

about changes in user's behavior. Unfortunately, in spite of quite

clear alterations in system response characteristics, any corre-

sponding changes that may have taken place in user's behavior were

not revealed by our measurements.

In Table VII we present our results. In order to discuss

them, let us first describe in detail what each number represents.

Columns 1-3 represent the percentages of the total CPU time consumed,

the total number of page faults incurred, and the total number of

teletype wake-ups typed in by the users of each subsystem over the

whole observation period. Column 4 is the average time that a

user remained blocked for teletype input while using the subsystem;

column 5 is the average CPU time consumed per interaction; and

52

Report No. 2352 Bolt Beranek and Newman Inc.

53

Report No, 2352 Bolt Beranek and Newman Inc.

column 6 is the average blocked size for the entire period. Co-

lumns 7, 8, 9 and 10 contain the average number of page faults per

teletype wake-up, the average number of page faults per CPU second

of execution, the average CPU seconds per teletype wake-up, and

the average number of seconds blocked for teletype input, respec-

iively, for the 484 hours that the system was observed with the

longer user core. Columns 11, 12, 13 and 14 contain the same type

of information for the 750 hours that the system was observed with

the smaller user core.

Again, with a single exception, the clearest effect of in-

creasing the core size can be seen in the reduction in the number

of page faults, either with respect to teletype wake-ups or with

respect to CPU seconds. Each command requires less drum swapping

of pages with large user core than is required with small user core.

The exception referred to above is TELCOMP, where there is a marked

increase in the number of page faults per CPU second. We attribute

this increase to differences in the mode of usage of this sub-

system before and after the addition of core memory. This hypo-

thesis is tenable in view of the snallness of the sample size

(TELCOMP usage represents only 1% of the used CPU time), and can

be confirmed by examining the data on a day-by-day basis.

Observe also that, in general, page faulting is very frequent

at the beginning of an interaction (the program has to build up its

working set), and diminishes as the CPU time for the interaction

increased. Other things being equal, we would then predict a

higher page fault rate for shorter interactions than for longer

ones. Considering that the CPU time per terminal wake-up is. for

TELCOMP, 0.56 sec for the small user core, and is 0.28 sec for the

large user core, we are led to conclude that the observed increase

in page faults per CPU seconds is due to this effect.

54

Report No. 2352 Bolt Beranek and ^^ ^^

Another interesting observation can be made with respect to the
the "seconds blocked per teletype wake-up.- These quantities repre-
sent the user response time, or the time during which the user

plans and prepares his next command. One would hypothesize that,
for a constant interaction time, a shorter computer response time
would imply a longer user response time, since the computer is
indeed responding more rapidly with a large user core than with a
small user core, one would expect to see the effect indicated
above in the "blocked time." This expectation is borne out by our
data. The notable exception is MACRO, but it can easily be ex-
plained away by usage differences which are all the more to be
expected, given that MACRO is a compiler.

To account quantitatively for the observed differences would
require more detailed measurements that transcend the scope of the
present work.

55

Report No. 2352 Bolt Beranek and Newman Inc.

4. USER MODELS

The gathering of daily statistics of time-sharing system per-

formance through the use of the measurement system described in

Section 2 enabled us to understand how the system behaved over a

period of time. To understand why it behaves this way and how it

might behave under different conditions, we require models of user

behavior in addition to models of time-sharing system behavior. "

4.1 INTRODUCTION

In the course of our work on this contract, our views con-

cerning the structure of user models have evolved considerably.

In our previously reported work, we concentrated on building an

understanding of users' problem-solving strategies and of the fine

structural details of their command-selection procedures. We at-

tempted to account for why a user chose a particular command at a

particular time. The approach required carefully controlled experi-

ments in highly constrained situations in order to delimit the op-

tions among which the users could choose. Our MINITECO text-editing

experiments constituted an example of this technique.*

Gradually, we came to the realization that building models at

this level is an impossibly slow process, because the results are

highly dependent upon the task being studied and upon the constraints

imposed. We turned to less constrained, more realistic tasks, such

as FORTRAN debugging, and redefined our goals. We decided to settle

♦Semiannual Report No. 7, 31 July 1970, ARPA Order #890, Amendment 4.

56

Report No, 2352 Bolt Beranek and Newman Inc.

for a statistical description of the commands chosen, and turned

toward Markov models of user behavior. We conducted preliminary

experiments with FORTRAN debugging tasks, and took a hard look

at what kinds of information could be extracted from them.

While we were reexamining our approach to user modelling,

we were also making rapid grogress in formalizing our time-sharing

system models. As this occurred, we could begin to assess how the

user and the computer models would have to interface, and whether

the user models being contemplated would yield the outputs re-

quired by the computer models. We have now concluded that the

command-choice models previously discussed are simply not appro-

priate for our purposes.

One difficulty with command-choice models is the large number

of them that would be required to treat the wide variety of users

and tasks represented on a multi-purpose time-sharing system.

Another difficulty is that there is poor correspondence between

the type of command chosen by a user and the actual computational

load placed on the time-sharing system. There are two principal

reasons for this;

1. The computer resources demanded by a particular command

are highly context-dependent; it makes no sense, for example,

to speak of the resources demanded by a COMPILE command

without specifying at least the size of the file being com-

piled.

2. The fundamental unit of interaction between the user and

the computer is not really the command; in many circumstances,

commands are concatenated and processed in a single inter-

action, while in other cases a single command may give rise to

a whole series of interactions as the computer requests sev-

eral items of information from the user.

57

Report No. 2352 Bolt Beranek and Newman Inc.

We have now concluded that our user models must be structured

around the basic user-computer interaction cycle and must yield

outputs in terms that are relevant to the computer models, namely,

the amounts of various computer resources being demanded during a

particular interaction.

We see the development of these user models as a three-stage

process. The first stage involves finding descriptors for user

demands that are general enough to encompass widely different

classes of users who are using the time-sharing system in quite dis-

similar ways. The second stage involves validating these de-

scriptors and demonstrating that they are sufficiently stable to

characterize adequately the behavior of a specific class of users

over some period of time. The third stage involves the develop-

ment of mathematical techniques for describing the manner in which

the descriptors change in response to changes in the computer

system characteristics.

The remainder of this section elaborates these ideas, and

can be considered as our contribution towards a methodology for

the development of user models.

58

Report No. 2352 Bolt Beranek and Newman Inc.

4.2 DESCRIPTORS FOR USER DEMAND

In Section 2.2, we discussed the various events that can oc-

cur during an interaction cycle. Of these, we chose the TIBLK

(where the program becomes blocked while waiting for additional

teletype input from the user) as a salient point marking the be-

ginning of an interaction cycle. We defined the time between

TIBLK and the next TIWK (the teletype input wake-up caused by

typing the terminating character of a new command string) as the

user response time (DRT). We defined the remaining part of the

cycle—the time between a TIWK and the next TIBLK—as the com-

puter response time (CRT). (See Pig. 1 for a graphic representa-

tion of these parts of the interaction cycle.)

The CRT for an interaction is a function of the computer

resources demanded by the user during that interaction. Speci-

fically, we have identified three important system resources by

which such a demand may be characterized.

x, = CPU time

x» = core

x. = input/output

For notational purposes, we define the vector

^ - (Xj^, x2, x3)i

as the user demand during interaction i.

Our object is to describe, in some statistical manner, the

user interaction characteristics, URT and x. We, therefore, need

the joint probability density pO^) of the resource demand. In

addition, we must describe the temporal characteristics of a

series of demands, i.e., the probability density function for

URT^

59

Report No. 2352 Bolt ßeranek and Newman Inc.

We expect that URT will depend strongly on other interac-

tion descriptors; namely, the resources demanded. Therefore,

we need also the conditional probability density function

pOJRT.Ix.^x.)

where x^ and x. are, respectively, the resources demanded in the

last interaction and the resources to be demanded in the present

interaction. The probability density for URT alone can be ob-

tained, if desired, by summing over x. ,, x. .

Our motivation for conditioning URT. in this manner is based,

in part, on the following:

a) The resources demanded in the previous interaction,

xi_1, constitute a measure of the interaction complexity.

The user will spend some time thinking about the results

of the previous interaction. The time he spends will

depend, to some extent, on the complexity of the pre-

vious interaction, especially on the amount of output

generated, x-j. In addition, üRTi will depend on the
CR,ri-l (which' in turn, should correlate highly with

xi_1). The user might in part plan his next request

while awaiting the results of the last interaction.

This would have the effect of shortening URT..
i

b) 3^ are the computer resources that are about to be

demanded by the user. We expect a substantial cor-

relation between the time spent planning a demand,

URT., and the resources demanded, x..

60

Report No. 2352 Bolt Beranek and Newman Inc.

In summary, we believe that the important aspects of a

series of user demands can be characterized by a joint prob-

ability density function for resources demanded per interaction

and by a conditional probability density function for URT. Of

course, certain components of x.^, x. may correlate poorly with

URT. In this case, the conditional probability density function

can be simplified by neglecting these components.

4.3 VALIDATION OP DESCRIPTORS

Before we can attempt to model user behavior (i.e., to

predict how the user related probability densities change under

various circumstances), we must first demonstrate that the des-

criptors chosen are both general and stationary.

4.3.1 Generality

Each individual user tends to interact with a computer in

a unique manner. Studying individual reactions, however, is

undesirable (and virtually hopeless). We expect that by mea-

suring the demands of a large number of users over some period

of time, one should be able to demonstrate the existence of a

relatively small number of user alasses. These classes would be

task-defined, not user-defined. Practically speaking, the classes

should correspond with subsystems available on the time-sharing
system.

61

Report No. 2352 Bolt Beranek and Newman Inc.

The users within a given class would tend to interact with

the machine in a similar manner. Each class could, therefore,

be characterized by its own unique set of descriptors—presum-

ably, the probabilistic description of LISP users will be different

from that of TECO (editor) users. It is crucial then to ascer-

tain whether the descriptors pO^) and p(üRTi|x. , x. ,) do

indeed characterize the demands of any given user class.

We feel that the identification and description of the user

classes would represent a highly useful achievement, independent

of subsequent successes in modeling the details of the class
behavior.

4.3.2 Stationarity

Parameters that serve to describe the user probability den-

sity functionst should be stable for a given class of users when

calculated from data collected over reasonably short periods of

time. Thus, descriptor parameters calculated for TECO users

this week should be reasonably similar to those calculated for

this same class last week. We expect that individual differences

between users and the jobs on which they are working will be

great enough so that for small samples of data (say, 100

te.g., the moments of the distribution, functional characterizers,
etc. As an example, the mean and variance suffice to describe
a gaussian distribution.

62

Report No. 2352 Bolt Beranek and Newman Inc.

consecutive interactions) the calculated parameters will show

substantial variability. We hope that for larger samples (say,

1000 interactions) enough different users and jobs will be re-

presented in the samples to reduce this variability, if we find

that very large samples (say, 10,000 interactions) are required

to achieve repeatable results, then the usefulness of the des-

criptors will be quite limited—data would have to be collected

over a period of many weeks or months—and the descriptors gene-

rated from these data would not account for short-term variations

in user demands. However, this negative result would be in

itself, an important conclusion.

One way to estimate the stability of our descriptor parameters

would be to proceed as follows: If we have data for 5000 consecu-

tive interactions, we canrproduce density histograms for resources

demanded for the first 100 interactions, the second 100 interac-

tions, etc., and then run Chi-square tests on the hypothesis that

all 50 such histograms are drawn from the same population. If

we must reject this hypothesis, then we can repeat the calcula-

tion for histograms containing 200 or 500 or 1000 interactions,

proceeding to pool larger numbers of interactions until we are

unable to reject our hypothesis. The smaller the number of in-

teractions, the more stable our descriptors for that sample can
be said to be.

Obviously, it is not realistic to pretend that there is

some particular sample size for which the descriptors suddenly

become stable, where they were not before. We view this tenta-

tive procedure, rather, as a consistent way of comparing the

relative stability of data obtained under different conditions.

63

Report No. 2352 Bolt Beranek and Newman Inc.

From a mathematical viewpoint, demonstrating the stationarity

of user descriptors implies that the density functions pXx.) and

p(CRTi) are not explicitly dependent on i. Thus,

A
PCJ^) = P(xi+1)= P(x)

for all i, and p(CRTi) is independent of the specific interaction

number; i.e., we have stationarity. fThere are some subtle

points here regarding the ergodicity of the interaction process.

However, they are beyond the present scope.)

4.4 SYSTEM MEASUREMENTS WITH SIxMULATED USERS

Once we have identified various classes of users and have

characterized their demands, we can begin to make more effective

use of our measuring system (described in section 2.3). With

real user data, measurements of times spent by each job in each

system state, transition probabilities between states, and so

forth, will be corrupted by variations in user population and in

the types of jobs being run. Thus, whatever is extracted from

these measurements is confounded with the effects of a constantly

fluctuating load of users working on a large variety of tasks.

To explore the interplay between man and machine as a basis for

analytic modelling efforts, we must have the ability to perform

carefully controlled experiments that are not subject to extra-

neous variability. However, controlling the real users' demands

in the working environment is out of the question. We, there-

fore, propose to make measurements on classes of "simulated

users" whose demands we aan control explicitly. On a class

basis, these simulated users must behave like real users in

all statistical respects. This implies that when the real

64

Report No. 2352 Bolt Beranek and Newman Inc.

users are replaced by a set of equivalent simulated users on the

time-sharing system, no changes should result in the system mea-

surements obtained. Our procedure is outlined below.

A simulated user in class M, for example, will be designed

to generate demands statistically, equivalent to those measured

for class-M users. We will have characterized these interaction

demands in terms of the probability density functions p(x) and

p(URT), so that generating representative demands should be

straightforward. Next, the simulated users must be validated

by placing them on the time-sharing system and comparing the

statistics gathered by our measuring system with the statistics

that correspond to real users. If the simulated users do, in

fact, mimic real users in all important respects, the results

should be indistinguishable.

There is a great potential in having the ability to simulate

the demands of "typical" users of various classes. By controlling

the user demands over some time period, we can isolate the effects

of these demands on the behavior of the time-shared computer

system. For example, we can conduct system measurements with

controlled numbers of simulated users belonging to a given class,

in order to determine how system behavior is affected by changes

in user descriptors and in numbers of users. We can also com-

bine different types of simulated users, to study how differing

demands may interfere within the computer system. Besides

studying the effects of changes in user Parameters, we can also

make certain changes in the syetem (e.g., changes in core alloca-

tion or in scheduling algorithms), to determine how system

behavior is affected for a selected group of simulated users.

65

Report No. 2352 Bolt Beranek and Newman Inc.

Thus, the two-pronged objective of our experimenting with

simulated users is to study the eenaitivity of system behavior

with respect to changes in user demand descriptor parameters and

with respect to changes in computer parameters. The simulated

users give us the capability to assess the effects of proposed

system changes, assuming that user demand descriptors do not

change. We will also have some idea of how much these des-

criptors would have to change in order to produce a noticeable

effect on the predicted system behavior. However, the models

obtained will not account for the changes in ueer behavior that

may result from a change in system behavior. The simulated

users are valid only for the system on which the original mea-

surements were made. Therefore, our next task should be to

determine how the user descriptors are likely to change in

response to a given change in system behavior. We should then

be able to describe completely the overall aloeed-loop man-

computer-man-response .

4.5 MEASURING USER BEHAVIOR ON SIMULATED SYSTEMS

To study changes in human behavior that are effected by

changes in computer characteristics, we must experiment with

real users. However, a major difficulty with such experiments

will be to segregate changes in user behavior caused by changes

in system response from the inherent variability in the demands

of different users working on different tasks.

One way to alleviate this difficulty would be to create an

"adjustable system." The time-sharing system monitor can be

programmed to delay system responses to the inputs of any par-

ticular user in such a way as to simulate the way the system

66

Report No. 2352 Bolt Beranek and Newman Inc.

would respond with some specified set of system parameters and

user demand descriptors. Using this adjustable system, it should

be possible to isolate any user or group of users from the spurious

effects of other users' demands, thus reducing measurement uncer-

tainty arising from human variability.

For a given task, it will be necessary to study how a user's

demand descriptors change as changes are made in the simulated

system. The words "for a given task" are critical here? for some

tasks a user may have substantial latitude in choosing a strategy

of attack, while for others his choices may be quite limited. It

will be necessary to derive user demand descriptor parameters for

users working on similar tasks under various simulated system con-

ditions. The conditions used will be chosen on the basis of the

results obtained from the system measurements with simulated

users; sets of system parameters that produce substantially dif-

ferent system responses to a given set of user demand descriptors

should be chosen, thereby providing maximal incentives for the

users to change their interaction strategies.

4.6 ANALYTIC MODELLING OP USER BEHAVIOR

The outcomes of the preceding series of experiments should

provide direction to the analytic modelling effort, in addition

to providing valuable data points useful in subsequent model

validation. In forming behavioral models for users, it is crucial

to focus on the modelling and prediction of changes in user be-

havior that arise in response to system changes. Since it is

impossible to construct absolute models of user behavior that are

independent of a knowledge of the current operating state of the

system, the alternative is to describe how the measured user prob-

ability density functions change as computer parameters are
changed.

67

Report No. 2352 Bolt Bearanek and Newman Inc.

These user models, as currently envisioned, would consist of

rules for transforming an initial set of user descriptors to a

new set for given changes in system response. We dan view these

transformation rules as a mathematical operation

F = (HI; Pp.Pj)
where

I = the initial set of user descriptors

Pj = computer parameters associated with condition I

Pp * computer parameters associated with the new condition P

P = the final set of user descriptors

♦ = transformation rules that change I into P.

Note that the transformation 4) depends parametrically on changes

in the computer parameters. If these changes are zero, then

Pp « Pj and

P = I = 0(1; Pj, Pj).

There are two other properties that the transformation $ must

possess. They are

(1) Transivity - If a user descriptor changes from d0

in system condition 0 to d^ in system condition 1 ac-
cording to the relation

dl " ^V Pl'Po1

then when the system is changed from condition 1 to

condition 2, the relation

d2-<j.(d1jp2,p1) - «.«.(d^p^p^p^) = <Md0;p2,p0)

68

Report No. 2352 Bolt Beranek and Newman Inc.

must hold for any d. and p.. Condition 1 serves as

an intermediate state. Thus, $(dQ; P2'Po) must be

the aompoaition of «Kd»; p.^p.) and (frCd^; P2#P^) •

(2) Invertability - If the system is changed from

condition 0 to condition 1 and then back to condi-

tion 0, the net change in the user descriptors should

be zero. Thus,

d0 « (|)(<t>(d0; PJ^PQ)» P0» P!) and

<M*' Pfj/Pi) may ^e called the inverse
of ♦(.; PJ^^PQ).

These operators can be derived empirically for various

system changes. To go beyond this stage, however, to a point

where we can predict mathematically the changes in user descrip-

tors that will occur by changing system parameters over a wide

range of values, it will be necessary to look into some of the

mechanisms by which a user actually modifies his behavior, such

as

(1) the exchange of one series of commands for another

that will accomplish the same goal, but which involves

a different mixture of resources demanded;

(2) the exchange of a small number of high demand in-

teractions for a larger number of lower demand inter-

actions which demand the same amounts of resources

(the difference being that an error may be found part

way through the interactions, making the remainder

of the series unnecessary); and

69

Report No. 2352 Bolt Beranek and Newman Inc.

(3) the exchange of user think-time for computer

resources (i.e., more careful planning by the user

and fewer redundant requests).

Once a sufficient data base of user demands under various

conditions has been gathered, it will be possible to apply op-

timality considerations in modelling the users' trade-offs. To

do this, it will be necessary to collect sufficient data to map

out the possible compensatory interchanges that users can make

from various operating points. It will be necessary also to

formalize our notions of the optimality of system operation, as

discussed in the next section.

4.7 OPTIMALITY CONSIDERATIONS

Using the models discussed above^ a manager could investi-

gate the effects of proposed changes in a time-sharing system

before committing himself to what might be very substantial

capital expenditures. He could compare the improvements that

might result from adding more core, from replacing the drum with

a faster-access unit, and from other alternatives being con-

sidered. If he had well defined measures for judging quantita-

tively the results of the various alternatives, he could choose

the alternative that gave the greatest improvement per dollar

expended. In other words, he could optimize system performance

within certain financial constraints.

Unfortunately, the optimization of system performance means

different things to different people; there are no simple cri-

teria. To the manager of the computation center, optimization

involves such factors as

70

Report No. 2352 Bolt Beranek and Newman Inc,

(1) scheduling to achieve maximum utilization of

the time-sharing system—e.g., minimizing idle

time.

(2) scheduling to maximize the number of users

receiving some specified quality of service

(3) scheduling to minimize the delays experienced

by a fixed set of users.

To the manager of the staff that uses the services of the

computation center, optimization means the maximization of the

total job throughput by all users. This is a higher level of op-

timization than that implied by any of the factors listed above,

and is substantially more difficult to treat. Optimization in

these terms requires knowledge of the real time behavior of the

set of users, not just the computer time spent on various jobs.

This level of optimization has received very little consideration

in the past. We consider it to be a serious problem; it is by no

means clear that optimizing a criterion of concern to the compu-

tation center manager will result in the optimization of total
real time spent per job. For example, optimizing some internal

measure of time-sharing system performance (such as minimizing

idle time) is not necessarily equivalent to optimizing the total

work throughput of system and users. We offer a simplified, but

realistic, example of why this is so.

Consider first a highly idealized time-sharing system that

can swap users into and out of core in zero time, and that can

carry out all its scheduling activities in zero time. Assume

that the users of this system are all identical and, in the

absence of other users on the system, would each demand 6 minutes

71

Report No. 2352 Bolt Beranek and Newman Inc.

of CPU time per hour (i.e., 1/10 of the available resources).

Then, as the number of such users on the system increases, the

observed number of total CPU minutes per hour expended on the

ideal system will increase as shown by the dashed line in Fig.

13a. For ten or more users the system will be running at 100%

capacity. But for more than ten users, the number of CPU minutes

per man-hour expended by all users on the system will begin to

drop as shown by the dashed line in Fig, 13b. This line, of

course, is just the dashed line of pig, 13a divided by n, the
number of users.

Now consider a more realistic system that spends a non-

trivial percentage of time in scheduling, swapping, and core

management functions. Such a system might exhibit a CPU minute

per hour curve such as the solid line in Fig. 13a. For large

numbers of users, this system will suffer increasing inefficiencies

in scheduling and swapping so that a decrease in CPU time per

hour will be observed. Dividing this solid curve by n, we obtain

the solid curve for CPU minutes per man-hour shown in Fig, 13b.

Before proceeding further, note that in this example the

maximum CPU usage per hour occurs with n=14 users. At this point,

the system is running at "maximum efficiency" in one sense. But

let us look at "efficiency" in a broader sense—one that includes

the costs associated with user time, too.

Let us suppose that the users are perfo ing tasks in which

useful work is exactly proportional to the CPU time expended, or,

more accurately, that each task can be characterized as requiring

a fixed amount of CPU time regardless of the real time expended

by the user. In reality, of course, it is usually possible for a

user to finish a given task using less CPU time if he is willing

to invest more of his own time in order to plan his strategy more

carefully; let us assume here that this effect is negligible.

72

Report No. 2352 Bolt Beranek and Newnan Inc.

u> m

MH NVW
NIW-n<D (MH/XSOD IVIOI) ISOO IVXOi

(0

o

o u

i
<

o
H

§

w a

o

o o o o o o o
to in q- ro CM •-

UH
Nilltf-n«0

\ t- 2 \ •
\ 5 (0 \ V £ \ <• 3- *
\ ss- y v • E

3 O
CJ

\ ^Ä- o
\ *>*
\ oo. on i k NO
\ <••«►- (0

\ - *

i i A- CJ

o o o o o c > o o o o o m * K) CM <-

UH
isoa iviox

3
a*
o

EH
CO
X
CO

o

u z
H
H u
H
b
W

M

H

75

Report No. 2352 Bolt Beranek and Newman Inc.

Assume that the computer center costs $100 per hour to run,

regardless of the number of users supported. Assume that users

cost $20 per hour in salaries and overhead. Then, the total costs

of supporting the center and its users will be as shown in Fig.

13c. Now let us calculate the total cost per unit of useful work

performed, i.e., per CPU minute used. This cost is

total cost total cost/hour
CPU minute " n*CPU min/man-hour

Refer to Fig. 13d. The dashed line shows the result for the

ideal system. Note that the minimum cost per CPU minute occurs

for ten users, the point at which system saturation occurs. For

the more realistic system (represented by the solid line), the

minimum cost occurs for eight users and is approximately $6 per

CPU minute. Note that the cost of running with fourteen users

(where total CPU time per hour is maximized) is approximately

$9 per CPU minute, a level 50% higher than the minimum costI

While these results depend on the numbers chosen and the

assumptions made, it appears that for any system exhibiting ef-

ficiency characteristics of the form shown in Pig. 13a, the min-

imum total cost per CPU minute must occur at a usage rate below

that which maximizes CPU time per hour.

In future experiments, CPU time per hour for various numbers

of artificial users could be measured for various combinations

of system parameters. Mechanisms by which a manager might attempt

to optimize the overall efficiency of the system and users could

then be explored. Consideration must be taken of such complica-

ting factors as the fact that the number of real users on a

system will vary randomly with the time of day and with other

74

Report No. 2352 Bolt ßeranek and Newman Ine,

factors. It seems to us, however, that this area is an extremely

fruitful one in terms of immediate utility of results. We see

possibilities of developing improved scheduling strategies to

maximize utilization of existing systems and of developing clear-

cut procedures for specifying new systems (or modifying old ones)

to maximize total efficiency in various applications.

75

Report No, 2352 Bolt Beranek and Newman Inc.

5. EFFECTIVE USER AIDS

5.1 ANNOTATED BIBLIOGRAPHY

Nickerson, Raymond S. and Pew, Richard W. "Oblique Steps

towards the Human Factors Engineering of, Interactive Computer

Systems„"

This paper presents a potpourri of human-factors consider-

ations pertaining to the design of general-purpose, interactive

computer systems that are meant to be used by nonprogrammers.

The reader is warned that it is informal, discursive and opin-

ionated. The intent is to identify some specific problems, to

offer tentative solutions ho a few of them, and, most importantly,

to stimulate more thinking on the part of both system designers

and human-factors specialists along these lines.

5.2 REPORT

The paper annotated above is included in this report im-

mediately after this page.

76

OBLIQUE STEPS TOWARD THE HUMAN-FACTORS ENGINEERING

OF INTERACTIVE COMPUTER SYSTEMS*

Raymond S. Nickerson

and

Richard W. Pew

20 July 1971

S

\

*Sponsored by the Advanced Research Projects Agency. Department
of Defense, under Air Force Office of Scientific Research Contract
F44620-71-C-0065, ARPA Order No. 890, Amendment No, 6, Code 1D20.

The authors are grateful to Mario Grignetti for his helpful com-
Ktents on a draft of this report.

77

Abstract

This paper presents a potpourri of human-factors

considerations pertaining to the design of general-

purpose, interactive computer systems that are meant

to be used by nonprogrammers• The reader is warned

that it is informal, discursive ar. linionated.

The intent is to identify some spec problems, to

offer tentative solutions to a few of uiem, and, most

importantly, to stimulate more thinking on the part

of both system designers and human-factors specialists

along these lines.

78

The utility of an on-line, interactive, computational

facility that is to be used by nonprogramroers will depend on

(1) what capabilities the system provides, and (2) how acces-

sible they are to the user. A scientist, for example, is

interested in getting on with his research and is not likely

to be enthusiastic about investing much time and effort in

acquiring skills that do not have an obvious payoff in terms

of his own research goals. There is nothing to be gained by

providing him with a sophisticated system that will do many

impressive things, none of which he is particularly interested

in having done. Nor is there any advantage in giving him a

system that will do some of the things he would like it to do,

but is prohibitively difficult to use. But what are the char-

acteristics and capabilities that a gpneral purpose, on-line

interactive facility should have? And how does one go about

implementing them in any particular functional system?

The second of these questions clearly is a technical one,

or, more accurately, it spawns a host of problems which must

be answered in terms of programming or engineering techniques.

The first question, however, is one of human needs and prefer-

ences. This being so, it might appear that the answer would be

most readily obtained by asking the prospective user what he

needs or wants. We think it is not likely to be as simple as

that. A realistic appreciation of the features that an inter-

active system should have is most likely to be obtained as a

result of first-hand experience with working systems.

The remarks in this paper are indeed based largely on

first-hand experience with a small number of existing inter-

active systems and a second-hand (reading) acquaintance with

?9

a few others. The treatment of the subject is discursive and

informal. No attempt has been made to formalize a set of design

criteria or even to map an approach that might be taken to do

so. Moreover, we make no claim to exhaustiveness in our enum-

eration of design considerations. Our intent is simply to iden-

tify what appear to us to be some of the features that an inter-

active system should have if it is to be generally useful to

individuals whose main areas of interest lie outside the domain

of computer technology itself. Many of the design features

recommended below are incorporated in one or more existing sys-

tems; although, to our knowledge, no single system incorporates

them all. Some of the features that will be noted will appear

so obviously desirable as to preclude the necessity of even be-

ing mentioned. However, that it is painfully easy to overlook

what is obvious to hindsight is attested by the fact that opera-

tional systems exist in which some, of the most clearly desirable

features are missing.

It will be evident that we focus primarily on general-

purpose, scientifically-oriented—and, in particular, JOSS-like

—systems (Baker, 1966). We hope, however, that the reader who

is more concerned with special-purpose, problem-oriented, sys-

tems—reservation systems, cost-control systems, medical systems,

instructional systems—will find some of the discussion germane

to his area of interest. The need for effective user-oriented

design is especially great in such special-purpose systems,

inasmuch as the user is apt to see himself as even further re-

moved from programming and other computer-related activities

than is the user of a general-purpose system.

The recommendations that are made constitute a very "mixed

bag." They involve various aspects of interactive systems—

SO

languages, facilities, services, dynamics. (We have not paid

much attention to the design of user terminals, a topic which is

perhaps closer to conventional human engineering than are those

which we do discuss. For discussions of some of the human-factors

problems encountered in the design of keyboard terminals see Baker,

1967 and Dolotta, 1970. A more comprehensive discussion of human-

factors considerations as they pertain to computer input and out-

put devices is contained in Shackel and Shipley, 1970.) We have

made no attempt to categorize our recommendations in any way,

feeling that to do so would take us beyond the limited objectives

of this paper, and perhaps create the impression of a more system-

atic treatment of the subject than is intended. The recommenda-

tions vary greatly in scope and specificity: general design prin-

ciples are thrown in with "little tricks for making life easier

for the user." They are offered quite frankly as opinions, and

no effort is made to justify them with experimental data, or

otherwise. If they stimulate further thought along these lines,

or even the expression of opposing views, they will have served a

useful function.

The Cardinal Assumption of the Uninformed User

Efficient interaction with the system should not be depend-

ent on a knowledge of either the internal structure or the de-

tails of operation of either the system or the service programs.

The user should be free to do his thinking at the level of the

language with which he and the computer converse. There should

be no need for him to be concerned with the way in which his

program is represented within the machine, unless of course it

is imperative to him that his program run at maximum efficiency,

which usually will not be the case.

81

Training Requirements and Self-Teaching Capabilities

The system should require very little off-line training

or instruction of the user. Ideally, it should be designed so

that a novice can use it, at least haltingly, after spending a

few minutes with a tutor or a manual, and can expect to learn

to use it efficiently from the feedback provided by the system

itself. Insofar as possible, the system should be designed in

such a way that the most efficient and powerful approaches to

problems are readily discovered by the user in the process of

interacting with it. That is to say, the system should have a

built-in teaching capability designed to facilitate the acqui-

sition of that knowledge and those skills that qualify a user

as an expert.

For example, it would be helpful to the novice user to be

able to request the computer to give him examples of types of

statements whose format he has forgotten, or not yet learned.

To illustrate: a beginner might realize that the language al-

lows "if" statements, but may not be able to put into an appro-

priate format a particular conditional that he wishes to write.

He would then like to be able to put the system into a "teach"

mode and ask it to give him some illustrative "if" statements—

perhaps by simply typing "TEACH IF." The computer could there-

upon produce a sequence of "if" statements in an order of in-

creasing complexity until it had either satisfied the user or

exhausted its supply of examples. Such a feature would also

serve the more experienced user, who from time to time needs

to refresh his memory regarding allowable statement formats.

A common practice is to build format information into the

error diagnostics. For example, a format error might elicit a

82

remark from the computer such as "The correct format is:" fol-

lowed by an example of a correctly formatted statement repre-

sentative of the type that the diagnostic program thinks the

user was attempting to write. The objection to this procedure

is that, if an experienced user is at the console, the lengthy

output may be not only unnecessary but even bothersome. He may

know exactly what his error is the moment it is pointed out to

him that an error has been made. It would be in keeping with the

policy of eliminating noninformative computer-to-user messages

(see below) to provide the user with illustrative statements

and detailed error diagnostics only in response to an explicit

request.

Prompting can be another useful teaching technique and

memory aid. To log in to the TENEX system,* for example, the

user must type, in order and with appropriate terminators, the

word "LOGIN," his name, a "password" and a job number (the latter

for billing purposes). The experienced user does this more or

less automatically; however, the novice or infrequent user can

easily violate the format requirements, enter items in the

wrong order, or forget to enter an item altogether. TENEX facil-

itates entry by identifying each of the components of the log-

in procedure (except the first). The user need remember simply

to type "LOGIN," followed by a special terminating symbol (the

"escape" key on the teletype in this case). The computer will

*TENEX is a time-sharing system implemented on a DEC PDP-10
computer at Bolt Beranek and Newman Inc. Several of our ex-
ampies are drawn from this system, in part because we happen
to be familiar with it and in part because considerable at-
tention was given to human factors problems by its designers,
For descriptions of the system, see Myer and Barnaby (1971)
and Burchfiel and Leavitt (1S71).

83

then type "(USER)" and wait for the user to type his name, where-

upon it will type "(PASSWORD)", and so on. The experienced user

can suppress this prompting simply by using a different termina-

ting symbol.

Updating Information

The need to train the neophyte is one requirement that oc-

curs to everyone. A less obvious training requirement concerns

the continuing education of the experienced but sporadic user.

Few interactive systems are static. New procedures and upgraded

versions of old procedures appear regularly. The chronic user

who is on the system much of the time will assimilate changes

gradually as they occur. The infrequent user will find it much

more difficult to accommodate to changes that have occurred

during a period of a few weeks or months that he has not used

the system.

Typically this kind of training is provided by announcements

made at sign-on time for two or three days following a change, and

a memo to users may be issued to be read at their convenience. A

better procedure would be to provide communication about system

modifications contingent on their need. If a new format or com-

mand is defined that replaces an old one, the user should be

trapped to a brief description of the new one and how to use

it whenever he attempts to execute the old one. This procedure

is rather like that used to correct for the dialing of an out-

of-date phone number: the operator interrupts and provides the

new number. When new procedures are introduced that supplement

rather than replace others, use of the basic command should call

forth a description of the supplemental procedure prior to exe-

cution of the command for the first three or four times the user

84

applies it. The important point is that the critical dimension

relating to the need for prompting the user's memory is not the

time since the system change was made but the number of times

that particular user has already been reminded of that change,

and perhaps the recency of the last reminder. Such a procedure

implies a bookkeeping burden for the executive program, but one

that could be easily managed in a good system.

One simple expedient for getting updating information to

users who need it, without forcing it on those who do not, would

be to have the computer type the date (or perhaps the number)

of the last change in the system, whenever anyone logs in. If

the user is already aware of the change, he will simply proceed

with the work session; if not, he can ask for a report. Follow-

ing the typing of the report the computer would then give the

date of the next-to-last change, and again, the user can decide

whether he needs, or wants, to know about it. And so on.

Computer-to-User Messages

Computer-to-user messages should be designed to accommodate

users representing all degrees of familiarity with the system.

There are two types of computer-to-user messages that may occur

in an interactive session: (a) those which the user intentionally

elicits, either by requesting some specific outputs (program

listings, valuek of variables, etc), or by inserting messages

of his own composition into the body of his program, and (b)

these that are preprogrammed into the basic system. We shall be

concerned here only v/ith the latter.

The purpose of such messages is to convey to the user some

information that will facilitate his further progress with his

85

program. Most coiranonly, they take the form of requests for

specific inputs, of information concerning the state of the

system, or of error diagnostics. In the latter case, an indi-

cation that an error has been made may or may not be accom-

panied by some information concerning the probable nature of

the error. The problem is that of designing a message set and

rules for message generation that satisfy the needs of users

who represent every possible level of expertness in their in-

teraction with the system. Novices will require lengthy mes-

sages which are completely self-explanatory; experts will prefer

coded outputs which are as brief as they can possibly be made.

Ideally, for the novice, every message should be meaningful

the first time it is encountered. Satisfying this desideratum

is in keeping with the objective of minimizing the amount of

training a beginner must have before interacting directly with

the system. It means, however, that messages should be written

in a natural language (e.g., English) in whatever detail and

with whatever degree of redundancy are necessary to ensure that

they will be readily understood. Detail and redundancies that

are helpful to a user who is learning the system will become

sources of irritation, however, as he acquires skill. (One

of the most reliable marks of the experienced user of an on-

line system is his tendency to be exasperated by any delays

which he perceives to be unnecessary. Given the opportunity,

he would invariably replace lengthy messages with the briefest

possible codesJ) Even for experienced users, however, it is

imperative that the computer do something whenever it receives

a command that it cannot interpret. This is essential if one

is to avoid the situation in which the computer is v/aiting for

the user to input something interpretable, while the user is

waiting for the computer to operate on what he assumes was an

interpretable input.

Several possibilities suggest themselves for coping with

the problem of conflicting desiderata of novices and experts

concerning the form and content of computer-to-user messages.

1. Two separate programs. One possibility is to keep on

hand two entirely independent systems which differ primarily,

or only, with respect to the computer-to-user messages they gen-

erate. In one case, the messages, being complete and, hope-

fully, self-explanatory, are designed for the novice, the oc-

casional user, and the visiting observer. In the other case,

the messages are greatly abbreviated and intelligible only to

the programmer or the user who has had considerable experience

with the system.

2. One program, two message sets. It is, of course, over-

simplifying things considerably to recognize only two types

of users: novices and experts. It is more realistic to recog-

nize that users represent a full spectrum of expertness. Any

particular user masters a system only slowly over a long period

of time. Moreover, different users, because of their own par-

ticular needs, may acquire skill with some aspects of a system

while remaining relatively unskilled with respect to others.

It may be advantageous, then, to allow the user himself to de-

cide when he wishes to be treated as a novice, and when he wishes

to attempt to play the expert. A simple way to provide this

option is to include two complete message sets in the system,

and to allow the user to switch at will between one and the

other. Presumably, given such an option, the amount of time the

user spends in the novice mode will decrease fairly regularly

as he gains experience with the system.

87

3. «Y«ahr yeah" signal. A third possibility Is to provide

the user with the means of cutting short a computer-to-user

message while It Is being typed out. For this approach to be

effective, the user should be able to terminate any message, by

pressln- a single key, at any time during the message typeout.

With this capability, the user need attend to the typeout only

so long as It Is Informative. How much of a message he will

want to see will depend, of course, on his familiarity with the

system. Presumably, one's use of the Interrupt option will be-

come more frequent and more rapid as his experience with the

system Increases.

4. Two-part messages. A fourth possible approach Is to

(a) store each computer-to-user message In two forms-a concise

mnemonic code and a complete self-explanatory statement, (b)

always output the coded form of the message first, and (c) out-

put the self-explanatory statement only If the user requests

It say, by responding to the coded form with ■?". The advan-

tages of this approach are several. First, the same program and

the same mode of operation are appropriate for all users Sec-

ond, although decoded messages are always available when desired,

the user never receives a lengthy message unless he specifically

requests it. Third, the procedure facilitates the acquisition

of just that knowledge which will make time-consuming messages

unnecessaxy.

A combination of (4) and (3) would provide a particularly

accommodating facility.

^8

String Recognition

The capability for the computer to perform recognition on

a partially complete character string effectively combines the

principles of concise computer-to-user messages, prompting, and

efficient training procedures. The string recognition proce-

dure that is implemented in the TENEX system works in the follow-

ing way. Whenever the user thinks that he has typed enough of

a command string or file designator so that the intended command

or file is uniquely specified, he may terminate the partially
completed string with one of several terminators. With one term-

inator the computer either completes the typing of the designated

string and waits for the next entry or parameter, or, if it can-

not identify uniquely the string that has been terminated pre-

maturely, it rings the terminal bell and awaits further input

to complete the string. In a second termination mode the sys-

tem accepts the abbreviation as it stands and either executes

the command directly, or, if it cannot recognize the command or

make a unique selection, it prints a "?" and aborts. In an

earlier version of this recognition feature the computer took

over for the user as soon as it.had received sufficient charac-

ters and completed the string automatically. Given this pro-

cedure the user finds it easy to type accidently more than the

requisite number of characters befjre the computer has time to

take control. The result may be the typing of a few stray char-

acters at the end of the command that at best are misleading

and at worst confound the beginning of the next input. The

string-recognition feature, as currently implemented in TENEX,

is especially convenient if it can be applied to terms defined

by the user himself as well as to system-defined commands.

89

Default Values and Conditiona

Often in interperson conversations, information is ex-

changed by default. If one mentions Paris, for example, it is

likely to be assumed that he is referring to Paris, France;

had he meant Paris, Maine, he would have been expected to say

Paris, Maine, Similarly, in the case of man-computer inter-

action it is sometimes possible to assume what unstated values

of program parameters should be, and to assign them by default

whenever the user does not explicitly indicate otherwise. De-

fault conditions make it possible to build into the system

considerable sophistication that can be exploited by the user

as far as he wishes, or to the degree consistent with his level

of training. As an example consider the file designation pro-

cedure used by the TENEX system. A complete file designator

consists of five parts, and might look as follows:

ALPHA. F4; 3; A12345; P7752JJ2

Part I (ALPHA in our example) is the file name assigned by

the user. The system will recognize an abbreviation (first

few letters) of the name so long as no other file name would be

abbreviated the same way. Part II (F4) is the file extension,

which tells the system what kind of file is involved. It is

also subject to the automatic recognition procedure. Part III

(3) is the version number. When creating a new file the default

value of the version number is one. When creating a new ver-

sion of an old file the default value is one greater than the

last number used with that file name and extension. When delet-

ing a file the earliest version number is assumed unless the

user explicitly specifies a higher one. Part IV (A12345) is the

account number to which page charges will be assigned. If the

SO

user defaults this number, the account to which his compute time

is charged is assumed. Part V (P7752/2) describes a protection

or privacy status for the file. If no number is specified it is

assumed that any other user may read the file but only the cre-

ator of the file may write into it or delete it. Note that for

a typical user Parts I, IT and occasionally Part III are suf-

ficient to declare most files and it is the exception that re-

quires further specification.

In some cases in which it is not clear in advance what the

best default value is, it might be appropriate to sample user

opinion or to collect statistics on the most frequently used

value in order to determine what it should be. When it is im-

portant for the user to know exactly what he defaulted, the

machine should prompt him with the de'faulted value. It is im-

portant, for example, for the TENEX user to know his extension

and version number, but the account and protection information

are not displayed unless specifically requested.

Program Component Identification

There should be a straightforward way of structuring a

program and of identifying its components. Perhaps the most

common structure in conventional programming is that of a heir-

archy: programs, subprograms, routines, subroutines, etc.

There is every reason to expect that this will be equally true

of interactive programming; hence, there is need for a means

of identifying program components in such a way as to make it

possible to refer to any level in a hierarchy of arbitrary depth.

SI

Several of the current JOSS-like systems provide for a

two-level organization of a program in "parts" and "steps,"

The convention is to identify steps with decimal numbers, the

integer part of the number designating the part to which the

step belongs. Reference can then be made to, and operations

performed upon, either individual steps or parts as wholes.

Thus, for example, the command "DELETE PART 3" would, in effect,

delete steps 3.1, 3.12, 3.2 and any other steps identified with

a number whose integer part is 3. The restriction of two levels

imposed by this scheme might not be a serious limitation for the

casual user of a system; however, it probably does represent an

unnecessary constraint for the more experienced -ser. Moreover,

it is a limitation that is removed by simply making the con-

vention that when a command can appropriately reference more

than a single step (e.g., DELETE, TYPE, DO), the command will

be understood to refer to all steps whose most significant digits

correspond to the number in the command statement. Hence, the

command "TYPE PART .1324" would cause the typing of steps .13241,

.13242, .132431, and any other step whose number began with .1324.

If the user wished to refer to a dingle step, he would, of course,

have to use enough digits to identify that step uniquely. For

example, assuming that his program contained each of the above

step numbers, in order to have the single step .1324 typed, he

would have to say "TYPE .1324|J."

List-processing languages such as IPL and LISP are not or-

ganized in terms of numbered steps, so this convention does not

apply. In LISP, program components are "symbolic expressions,"

each of which is coraprised of a function and its arguments.

The arguments of a function may be functions in turn, so that

these programs also have a hierarchical structure. Expressions

or subexpressions may be identified via the appropriate function

names. List-processing languages are less likely to be of concern

to the nonprogrammer computer user than are the JOSS-like lan-

guages—at least in the near future—so they are given little

attention here.

Editing Capabilities

The system should provide flexible editing and error-cor-

recting capabilities. It is convenient to make a distinction

between two broad clacses of editing and error-correcting opera-

tions: those which may be performed on a program component or

step as it is being composed, or local operations, and those

which may be performed on steps which have already been inserted

into the program, or remote operations.

There are two local operations which, from the user's point

of view, are needed: one to delete the last character typed,

and one to delete the entire step or program component currently

being entered. Each of these should be executed by striking a

single-control character. The operation deleting the last char-

acter should be iterative, allowing the user co delete the last

n characters typed. In the case of teletype or typewriter input

it should not be possible, with this operation, to delete ele-

ments past the first character of the current line or program

comporent because it becomes very difficult to keep track of ex-

actly what was deleted. This restriction is not important in

the case of a CRT terminal where the consequences of deletion

can be portrayed literally to the user; i.e., the deleted char-

acters actually can be made to disappear and new ones to appear

in their places.

S3

When text is being displayed on a CRT as it is being typed,

a cursor or underscore should be used to show the location of

the next character to be typed. This is especially helpful when

nonprinting characters (spaces, tabs, carriage returns) are be-

ing used in formatting tables, labeling graph axes, etc.). A

further convenience to the user would be an alternate mode of

display in which nonprinting characters are explicitly repre-

sented by special symbols.

A flashing cursor can be helpful when backspacing over dis-

played characters for erasure or editing. Rule: have the cursor

flash whenever it is pointing to the location of a character

that has just been deleted from memory. Again this would be

particularly useful in the case of nonprinting characters.

There are four remote editing operations that are essential

to an on-line system. They are the operations of deletion, re-

placement, insertion, and revision. The operand may be a vari-

able, a step or other program component. Given a step-numbering

scheme such as that described above, the remote operations of

step deletion and insertion are self-evident. One advantage of

such a scheme is that it obviates the renumbering following the

deletion or addition of steps. For example, given a program

comprised of steps .11, .12, .13, and .14, deletion of step .12

and insertion of two additional steps between .13 and .14 would

not necessitate renumbering any of the original steps that are

retained, even though their ordinal positions in the program

have been changed. The steps of the program following the in-

dicated changes raight be numbered .11, .13, .131, .132, and .14.

Step replacement would be accomplished by simply writing a new

step and assigning it an old number, the system being designed

34

so that whenever a step is given the same number as that of a

previously entered step, the original step is replaced by the

new one.

The delete operation can of course cause grief when supplied

with em erroneous argument. An easy way to guard against this

event is to force the user to think twice about any such command.

In PROPHET (Castleman, et al,, 1970), a CRT-oriented chemical/

biological information-handling system, the effect of a delete

command is to have the to-be-deleted element blink on the display.

The user then must verify that the blinking element is in fact

the one that he wishes to delete.

A system that allows only the three remote operations of

deletion, replacement, and insertion would be reasonably ade-

quate for many applications; however, to be truly efficient, it

should include, in addition, a capability for revising steps or

other program components without completely retyping them. In

many instances the user will want to change only those portions

of a step that are in error, while retaining those portions

that are correct. It is an inconvenience, for example, to have

to retype a lengthy and involved algebraic statement to correct

a single erroneous character. The need here is for deletion,

replacement, and insertion operations which can be performed on

elements within a step. The more sophisticated systems provide

editing commands for searching program components for particular

characters or character strings, and for performing delete, re-

place, or insert operations relative to the result of the search.

In addition to providing these component editing capabilities

it is also important not to place artificial constraints on the

95

ways in which they may be used. It should be permissible to

intermix freely editing commands and to make up strings of

commands to be executed as a unit- For example, to change

N«N+1 to N»N+2# one might want to write an editing procedure

that would search for the string N»N+, delete the next character

in the line and insert 2 in its place. In the TENEX version of

TECO, which is a language used primarily for the purpose of ed-

iting, this is accomplished by taping the string

SN=N+$DI2$$

where the S, D and I indicate search, delete and insert, re-

spectively. The first and second dollar signs terminate the
search and insertion strings, and the third executes the string

of editing instructions,

A common practice in algebraic interactive languages is

to reject an input string if the computer detects a syntactic

error and to inform the user of why the input was unacceptable.

We recommend instead that the aberrant string be retained in

the buffer and the computer automatically shifted into an edit-

ing mode so that the user may choose to delete the entire

string or, if possible, to correct it by changing one or two

erroneous characters. It is more than mildly irritating to

coraplete the typing of a complex algebraic expression only to

find that it must be completely reentered in order to add one

forgotten right parenthesis.

. Direct and Indirect Commands

The system should allow both direct and indirect commands.

or»

By direct command is meant a command that is to be executed

immediately; an indirect command is one that is to comprise

a component of a program, and that will be executed in the

course of the execution of the program to which it belongs.

The direct-command capability allows the computer to be used

as a powerful desk calculator for such purposes as evaluating

mathematical expressions, generating tables, and plotting

functions on a one-shot basis. It also serves as an important

tool for debugging and editing active programs. Indirect

commands provide for the construction of programs. Virtually

all conversational languages include both direct and indirect

commands. In some cases, however, direct commands comprise

a minimum set (DO, RUN, EXECUTE), in which case in order to

use the computer as a desk calculator one must enter an indi-

rect command and then execute it as a program.

Arbitrary Starting Point

The user should be able to start or restart his program

at any point. In particular, after fixing an error that has

caused a running program to halt, he should be able to restart

the program at the point at which it stopped.

Variable Names

In composing programs, the user should be free to assign

names to variables in a way most consistent with his own mne-

monic conventions. Ideally, he should be allowed to call vari-

ables anytning he wants; in practice, other considerations may

place a limit on the number or types of characters a name may

be allowed to contain. If a limit must be imposed, five or six

37

character, per nan» vould probably be edequate for most user.,

three oharaoters per nas« is perhaps tolerable, a smgle ohar-

Toter Station 'even with subsoriptin,. is a definite handioap.

Language Modification a-d Abbreviations

A „eans should be provided for the user to nodify the lan-

guage and redefine terms. For example, an individual «^o finds

himself using a small set of con^ands very ^»"'■*" "^
it eoonomical to replace each of these commands with a single

character abbreviation. Insofar as possible, he should be

allowed to establish equivalences of this sort.

One should also be able to define and use abbreviations

for such things as variable names. For example, PROPHET the

chemical/biological information-handling program -"^

above, permits one to give a variable such a name as MOLECULAR

FORMULA OF ASPIRN," and then define and use an abbreviation

such as "MA" (Castleman, et al., 1970).

The user should not, of course, be allowed to make language

changes that will affect other users in any way.

Address Arithmetic

Languages for which a step is the basic program component

(e g., JOSS-like languages) should permit the changing of step

nulrs for any specified program segment with a "^f ^~1-

For example, a co^nand like "CUAMOE STEPS .21 *■"'**£*
used to replace all the step mmtoers beginnrng ""* •" *» »T

. i*.v, Afi i«»avina the less significant digits numbers beginning with .46, leaving tne

unchanged,

^8

Algebraic Expressions as Inputs

The system should accept and correctly interpret any eval-

uatable algebraic expression in any case in which a number is

an admissible input. As a simple but important example, one

should be able to input fractions a« fraotione, thdt is, one

should be able to insert 1/17 as opposed to .^5888.^. The im-

portance of this capability does not stem from the fact that a

fraction is easier to type than a decimal (although if one wants

accuracy, he will, in general, have to type several more char-

acters in the latter case), but rather from the fact that, if

the user has the fraction to begin with, converting it to a

decimal number involves a task that the computer, not he, should

perform. The ability to input fractions directly is a partic-

ular advantage to the user who is dealing extensively with prob-

abilities.

Identification of Precision Limits

The limitations of the system with respect to numerical

precision should be explicit in the output. The system should

not produce numbers with more significant digits than are justi-

fied by the computational accuracy of its number-handling pro-

cedures. I -JX example, if the system can assure only ten bits

of accuracy in its number representation, it should not output

numbers with more than three significant (decimal) digits.

Since most machines use floating-point arithmetic, which allows

the manipulation of numbers whose magnitude is far beyond the

precisional limits of the system, there must be some straight-

forward way to represent arbitrarily large numbers so that the

accuracy limitation is obvious. One possibility is to express

J 99

all numbers in scientific notation with the fractional part

being limited to the number of digits implied by the precisional

capabilities of the system. Another possibility is the use of

filler symbols. For example, given a limitation of three deci-

mal digits of accuracy, the number 365,741 might be represented

as 366,xxx. It should not be represented as 366,00?, since in

this case the limitation is not obvious. The system should

round the output to the least significant digit; it should not

truncate. In short, when a user receives a number from the com-

puter, he should be able to assume that it is exactly the number

that he would have obtained had the computation been done by

hand, and rounded off to the same number of significant digits.

Formatting Options

The system should provide formatting options specifically

designed to assist the user in making his program easy to read.

Extra spaces and carriage returns should be freely allowed and

should be preserved in storage at the level of the symbolic

program. In scientific programming, one frequ4ntly wishes to

construct algebraic statements involving several depths of

nested parentheses. Parenthesizing errors are very easy to make,

and can be frustratingly difficult to find. It would be a help

to have several, say three, different characters, e.g., (, [, {,

for formatting algebraic statements. These characters could be

equivalant as far as the program interpreter is concerned, but

the distinction should be maintained at the level of the conver-

sational program. Such a feature would facilitate the construc-

tion of complex algebraic statements and would simplify the pro-

cess of finding errors when they occur. It would be particular-

ly helpful if the different parenthesizing symbols were differ-

ent sizes.

100

Another useful formatting convention» easily implemented

with a typewriter as the I/O device is that of color-coding the

dialogue, printing user-generated text in one color and computer-

generated text in another (Baker, 1966).

Procedure Definition

There should be a straightforward means of defining and

storing generalized program components and retrieving them for

incorporation as elements in programs or higher-order compo-

nents. Having once written a particular generalized program

component (procedure, function, macro, subroutine), one should

not have to write the same component again. Heavy users of an

interactive system are likely to be developing many programs

having common components. The prospect of developing a library

of program components especially tailored to one's own needs is

perhaps one of the most compelling enticements that a computer

system can offer to a prospective user.

I
Procedure Library

The system should maintain a central public library of

programs and procedures that are available to all users. The

library should be designed to expand as users generate new pro-

grams of general interest. Every user should have read-only

access to the library on a continuous bciis. He should not,

however, be able to enter programs directly into the library.

One possible scheme for allowing a user to contribute to the

library would be to have him deliver a program to a temporary

file which is periodically examined by the system supervisor or

librarian for the purpose of updating the library file.

101
I i

Compilation Capability

A system designed specifically for scientific and engineer-

ing applications probably should have a compilation capability.

The interpreter should be used for exploratory programming; how-

ever, when a program is to be used frequently for production runs

it should be compiled. This is especially true when compilation

results in noticeably shorter system response times. It is essen-

tial, however, that such a compiler accept as input the program

as it was written for the interpreter.

File Storage

In cases where lengthy work sessions are anticipated, it

should be possible for the user, when terminating a session with

work unfinished, to leave the system in such a state that, upon

reentering it at a later time, he will be able to resume his work

exactly where he left off. This means providing the user with

the capability to store his virtual core in a long-term storage

medium such as magnetic tape or disc, and to retrieve it upon

reentering the system. The user should also be able to maintain

files of his own subroutines, programs and data sets.

Short Interruptions

In addition tc the capability for the resumption of work

after indefinite periods, there should be a simple procedure for

allowing brief interruptions in a work session. It frequently

happens in the course of an on-line session that the user finds

it necessary or advantageous to leave the console temporarily

(e.g., to attend to an unexpected visitor .«r telephone call, or

102

to dispose of some pressing business—or perhaps to cogitate

about his program or some results he has obtained from running

it). If it is likely to be several minutes before he will return

to the computer, and particularly if he is being charged on the

basis of on-line time, he will want in such cases to be able to

take "time out," to tell the computer it can forget about him

until such time that he indicates that he is ready to resume the

session. The procedure for effecting such a recess should be

less involved than that used to store a system for reactivation

in the indefinite future. It should not, for example, be neces-

sary explicitly to create files on a long-term storage device.

Ideally, to initiate the time out, the user should be required

to do nothing more complicated than to press a special function

key, or perhaps to type "time out" or "wait" or some such thing.

Resumption of the session should be effected by an equally simple

procedure.

Program and File Information

The system, on request, jhould be able to provide the user

with information concerning the status or contents of his program.

It should be able to produce, at the minimum, a copy of any

specified segment of the user's program, a list of variables,

functions, procedures, macros that the user has defined, a table

of contents of the user's files or previously stored programs,

values of variables, indexes, subscripts, etc.

Status and Control Information

The user should be provided continuously with status and

control information. At the very least, he should be informed

103

as to whether he is waiting for the machine or it is waiting for

him, (The JOSS system provides this information via a red and a

green light at the console that indicate whether the computer or

the user is controlling the typewriter [Baker, 1966].) Given that

the user is waiting for the computer, he might like to know:

(1) is the computer currently working on his problem? (2) is it

waiting for a peripheral device like a tape unit or line printer?

(3) is it waiting in a queue for its "slice" of time? or (4) is

the system dead?

Feedback to the user is particularly important when the

length of the delay to be expected is unknown. For example, a

long pause after some data have been entered can make the user

wondsi. if he has entered data incorrectly, or possibly has not

properly signaled the computer that he is done. The computer

should signal receipt (or acceptance) of entry immediately,

even though there may be a delay before the next entry can be

accepted, or before there is a substantive response (Poole, 1966).

In some systems it is practical to include an auxiliary

display at the terminal that provides the user with his current

status with respect to these alternatives, but in systems opera-

ting over telephone lines this may not be economically practical.

An alternative that seems to be quite effective is to provide

a status command with which the user can interrupt the ongoing

computation long enough to have printed a computer-to-uner

message describing both his current status (running, I/O

wait, etc.) and give the cumulative log-on and CPU time used

tc date. The systcn is then restored irnediately to its ferner

status with no loss of priority. In the course of a long com-

putation, user-initiated periodic status interrupts of this

sort can provide quantitative information regarding how much of

the machine's time one is getting per unit of elapsed time.

104

The system should be able to tell the user how much time he

has used since the beginning of the session, or since some spec-

ified date. It should also be able to produce a statement of

charges accrued since the beginning of the current billing period

against the user's job number or account.

System Dynamics Information

If the system dynamics (e.g., response time) change signif-

icantly with the load, as they usually do, it would be a con-

venience to the user if he could get an indication of what the

load is before deciding whether he should get on. At a minimum

the system should be able to answer the question: How many users

are now on line? Other, and more helpful, items of information

are, in principle, obtainable (e.g., mean system response time

to a request for a given time slice over the last n minutes),

but only at a somewhat greater cost in overhead program execution.

Fail-Safe Provisions against Potentially Fatal Operations

Users make mistakes. They enter commands they did not in-

tend and sometimes discover what they have done too late to avoid

the dire consequences. If one deletes a program, or a file, by

mistake, for example, in most systems there is no provision for

recovering from such an error. The program, or file, is gone

and v/ould have to be reentered in its entirety. Provisions can

be made, however, either for decreasing the probability of such

errors or for facilitating recovery from them when they do occur.

A simple measure for decreasing the probability of such

errors is to require for commands that modify stored programs

or files (e.g., DELETE, KILL, MODIFY) some confirmation in

105

to say.» such a faU-,afe ^aasura 1, , f ' meant

™T sy3tem(as noted ^rLXX:::^::;!..

Pot.ntl.Uy «säst«« eeJ^' ^ ^t^
0n«OU' «"^ »,

have i.plenented "UNDELETE,. "UNDO,"" ^STO' " eI<a"Ple'
In BBN TENEX, UNDELETE restoreS the fil TIT 0O,mnands-
aUer it has heen i^ro^ZTJ^ TnTT ""^

r^rLt rioss 7oi the :-J::: ---ny

.«.ot.ofas—zr: ^'r1^:::undoe8-
the program to the status if- h ^ u PA«T 4 would restore

jjo Invisible Mi«i-»i,..

Interactive systems make freauent •,« „t
acters as centre! characters it is 1 ° TO"P^ntl„g char-

Is attempts to dlag„ose a 'er or h «u L" T ^ ^ ^
have an error hidden because It Involves the ao 1 POSe ^
nonprlntln, character. Thls can ZZLTXZT " ', .
character echoed at the terminal for every one tha !o
In a character string. oes ocour

Conditional punp of SUekrt Input

10(i

through the machine, it is possible to type at the keyboard

while the computer is occupied with computation. The typescript

that is entered this way is not reflecteu back to the terminal

until the computer releases control of the interaction. If the

computation is ended appropriately all is well, but if the com-

putation is terminated prematurely because of an error or because

of an unanticipated program branch, then the preentered typescript

is appended to the end of the error message and is interpreted

as the beginning of a new, but, in this case, inappropriate

message. Nhaiwver an error termination like this occurs, the

system should automatically dump the prestored typescript and

leave the user with a clean slate to deal with the error condi-

tion.

Report Quality Output

The system should be capable of producing output of a quality

acceptable for incorporation in official reports. This goal is

somewhat more easily realized with typewriters or with MODEL 37

teletypewriters than with MODUL 33 or 35 teletypewriters, since

in the former cases one has a conventional character set, includ-

ing both upper- and lower-case characters. There is, however, a

considerable need for research into the problem of improving the

design of keyboard devices that are to be used as computer ter-

minals (see Dolotta, 1970). The identification of an adequate

character set is only one of the many problems that arise in this

context.

"Sense" Switches

Most computers provide the programmer with a set of toggle

switches (usually referred to as "sense switches") on the console,

107

each of whose positions (up or down) can be examined by the

program. By making the course of the program at different

points contingent on their positions, the programmer can make

it possible to control the flow of his program at run time by

manipulating the appropriate switches. Such real-time control

of a running program could be a very great convenience to the

user of an interactive system, and could be provided by means

of a set of sense switches located at the remote terminal. A

cutout overlay that accompanies the program to be run could be

used to remind the user of the status and meaning of each sense

switch, which could change, of course, as a function of the

program being run.

User Interrupt

We may think of the user-computer interaction as always

being under the control of either the user or the computer.

VThenever it is the user's turn to "say" something, we say he

is in control. He may actually be typing a user-to-conputer

message, or he may be scratching his head thinkirrej aboul: what

to type; in either case, if the computer is waiting for an input

from him, we say he is in control of the interaction. Similarly,

the computer, while in control, may be outputting a computer-

to-user message, or it may be executing a program in preparation

for outputting a message. Normally, control passes either from

the user to the computer, or vice versa, at the termination of

a message. That is, one of the communicants regains control

by virtue of the fact that the other relinquishes it, having

completed a message, and having nothing more to say at the

moment. To a large extent, it is this continual exchanging of

control, the give-and-take dynamics of the situation, that jus-

tifies describing the interaction as "conversational." There

4C8

•

is a need for one exception, however, to the normal way of pas-

sing control from the computei.* to the user: the user should

have the ability to interrupt. That is, he should be able to

seize control of the interaction at any time, without waiting

for the computer to relinquish it.

The need for this capability is most clearly seen in the

case of a lengthy computer output which, from its beginning, is

obviously erroneous. Suppose, for example, that the user has

programmed a loop to generate a lengthy table, and that by the

time the first few values of the table have been typed, it is

clear that there is something wrong with the algorithm. In such

a case, the user should not be forced to wait until the entire

table has been generated before regaining control of the inter-

action. He should be able, by pressing a bingle key, to cause

the computer to stop what it is doing and to await further in-

structions from him.

Background Execution Option

The efficiency of an interactive system could be increased

by providing the user with the option of "detaching" his program

from interactive control at the terminal and having it run as a

low-priority background process. Suppose, for example, a par-

ticular application involves developing a procedure for genera-
i

ting fairly lengthy tables. While developing and debugging the

procedure, the user wants to be on-line. Once the procedure is

operating satisfactorily, however, he may sir.ply want to leave

it alone and let it generate its output. In such a case, the

user would like to be able to leave the terminal and return

after the tables have been completed. Moreover, unless there is

some urgency for an immediate result, he would probably be

109

content to have it generated at the computer's leisure, espec-

ially if background-processing time were charged out at a lower

rate than on-line time.

Programmed Logout

There should be an instruction to discontinue service that

could be appended at the end of a program, thus permitting the

user to log out of the system and disconnect the terminal in-

directly. If one has written a program that will run for a

considerable time without intervention, it should not be neces-

sary for the user to stay around simply to pull the plug at the

end of the session. As a fail-safe protective measure against

program malfunction, it would be a convenience for the user to

be ab.e to specify a time at which his program should be automat-

ically terminated in the event that it is still running.

Complaints and Suggestions

The system should have a complaint or suggestion input

capability. Ideas for system improvement frequently occur to

a user in the process of interacting with the system, and are

forgotten by the end of the session. Similarly, a minor mal-

function, unless it is serious enough to terminate the session,

is apt not to be remembered. It would be a convenience to the

user, and it should be an aid to the system managers, if it

were possible to insert a complaint or suggestion directly into

an appropriately designated file at the point during the on-

line session when the occasion arises. A hard-copy record of

the file could then be made periodically and might prove to be

a valuable source of information when attempting to improve the

system.
110

REFERENCES

Baker, C. L., 1966. JOSSi Introduction to a helpful assistant.

Memorandum ÄA/-5058-PÄ. The Rand Corp., Santa Monica, Calif.

Baker, C. L., 1967. JOSS: Console design. Memorandum ffff.

5218-PÄ. The Rand Corp., Santa Monica, Calif.

Burchfiel, J. D. and E. M. teavitt, 1971. TENEX: user's Guide.

Bolt Beranek and Newman Inc., Cambridge, Mass.

Castleman, P. A. et al,, 1970. THE PROPHET SYSTEM: A final

report on Phase I of the design effort for the chemical/

biological information-handling program. National Institutes

of Health and Bolt Beranek and Newman Inc.

Dolotta, T. A., 1970. Functional specifications for type-

writer-like time-sharing terminals. Computing Surveye, 2,
5-31.

Myer, T. H. and J. R. Barnaby., 1971. TENEX: Executive lan-

guage manual for users. Bolt Beranek and Newman Inc., Camb-
ridge, Mass.

Pools, H. H. Fundamentale of Dieplay Syeteme. Spartan Books,
MacMillan & Co., 1966.

Shackel, B. and P. Shipley. Man-computer interaction: A review

of ergonomics literature and related research. EMI Electronics
Ltd., Report No. DMP 3472, Feb. 197C.

Ill

