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DIGITAL FILTERING TECHNIQUES FOR BROADBAND BEAMFORMING
\

by

Aristides A.G, Requicha

ABSTRACT

Digital steering of broadband hydrophone arrays is studied from
the viewpoint of digital filtering theory. Emphasis is placed

on applications wherein the sampling frequency must be kept as
low as possible, implying that accurate beamforming involves
interpolating the signals?! samples. Finite-impulse-response
filters are shown to provide convenient means for digital
interpolation., Standard techniques for implementing such filters
are reviewed and.applied to the design of beamforming algorithms,
Estimates are derived for the computing time and for the amount
of core memory required by digital computer realizations of
time~domain and frequency~-domain beamforming processors. It is
shown that frequency-domain processing may yield large savings in
computing time when the sensors?! outputs have to he filtered
prior to steering; it can be competitive even for beamforming
alone. This situation arises e.,g. in "optimal" acray processing,
or in widebhand arrays used in conjunction with explosive sound
sources: It is pointed out that the digital filtering approach
clarifies the approximations and possible pitfalls involved in

the design and implementation of digital beamsteering processors,
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INTRODUCTION

Electronically steered hydrophone arrays are used in underwater
acoustics, especially when the transducer size or the scanning
speed make mechanical steering unpractical. Because of the growing
number of computers and of other digital equipment being used in
the acquisition and processing of underwater acoustics data it is

of interest to study digital techniques of array steering.

The work reported in this memorandum was a preliminary investigation
on digital beamsteering techniques to be used in the design of

beamformers for broadband arrays presently being built at SACLANTCEN.

The discussion is geared towards applications where the sampling
frequency must be kept close to its minimum theoretical value for
the data acquisition rate not to become unduly high. This situation
is often encountered in experimental work involving hydrophone
arrays and explosive sound sources. In these applications data
acquisition rates are usually quite high and can only be incrcased

at the cost of considerable equipment complexity.*

The digital filtering techniques described arc equally applicable
to hardware or software processor implementations. The discussion
of computational details, however, is mostly pertinent to implemen-
tations in general purpose digital computers, The possibility of
using a small shipborne computer to implement an array processor is
very attractive, since the computer can be time-shared with other
activities and effectively perform various data acquisition and

analysis tasks at sea. Furtherm. re, software processors afford

* The maximum data acquisition rate of a system currently used at SACLANTCEN
[(Ref. 1] is 240 kHz, corrasponding to a maximum number of 20 hydrophones at
12 kHz sampling frequency (or 10 at 24 kHz, etc.).
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great flexibility and can be modifiéd with relative ease., These
considerations justify the emphasis: on ¢omputér implementations.
It should beé noted, however; that hardware procéssors designed
for a specific¢ task can usually be made more*efficient than a
general purposé machine., Anh intéresting .compromise between
flexibility dnd -efficiency .can ke attained by éxtending thé
-capabilities of a\éeﬁtﬁalﬂpnOCessor~with‘wired’microprOgrammed

unit$, such: as .a fast Fourier transform: (EFT) processor.

Beamforming consists essentially in delaying the hydrophone
outputs by suitable amounts, followed by adding all the delayed
signals, The?beam'ﬁs*sf&éféd‘ﬁh»angértainzdiféétion by introducing
delays to compensite £or ﬁhé:®raﬁel}time difféﬁ@ncéé between
arfivals at the different hydrophone§: For narrowband signdls
timé=delaying can be im@leménﬁedrbywﬁeanswéfkphasé~shifters, the
usual é&iutionrﬁﬁtggdargphaSéd;aﬂfdySy ‘However, when the signals
are widéband, s -6ften happens in underwater acoustics, frequency-
indepéndent timezdeiaysr(liﬁéar<phg$eashifts) must. 'bé introduced.,
-This c¢an. be done using analog processing techniques by means of
delay lines. Digital imﬁieméntabioh is $traightforward provided
that the vequired delays até integpal numbers -of .sanples, and
enough meémory is availablé. Indeéd, it suffices to store a matrix
with .a number of fows equal o6 thé mumbek .of sensors, say, and a
aumber of columbs equal to the maximum delay needed; measured in
samples, ‘At -each sampling instant; and for each beam, one need
only “"choosé¥ from the matrix theé eleinents with. the corregt delay
and add: them; Then; shift the data one colunn to. the right, read
in one new sample for eé@hhS§n$6r?:3hd‘éo'ﬁDPthw Note that the
‘beam -can; be steered in any -direction by this technique within any
:p?esciiﬁed‘aéquragy merely by using a sampling fréquency high
enouigh for the delay guantization to: have hegligible effects.

When: the sanpling frequenty is chosen fairly ¢lose to its
theorétical irinimun valué, delays of fractions of a sample interval
are usually needed, Consider, for example, a linear array with
€lements equally spaceéd halfwaswavelecagth apart .at a frequency f.
It is currént;ﬁnééﬁicefat<SACLANTCEK,bo’sampié,at a frequency F_

equal to thrée timss the maximum frequency of interest. A delay




of one sample (At) is equivalent to a phase shift of 2mfAt, i.e.,
120° for f=Fs/3. In the example being discussed phase shifts of
90° between successive sensors are needed to steer the array at
30° from broadside (45° for 15° steering angle). Thus, time-

delaying by integial number of samples is seen to lead to gross

errors.

S

; Digital beamforming techniques in the frequency domain, which
1 allow the use of non-integral delays, have been described in

recent letters to the J.A.S.,A. [Refs. 2 and 3], In the present

: paper digital beamforming is studied from the viewpoint of digital
3 filtering theory., The full force of digital filtering techniques,
, developed over the past few years. can Ye called upon to design
F interpolating filters capable of approximating fractional delays
i to any prescribed accuracy, In this context, the FFT technique
i of Refs. 2 and 3 is recognized ag &« particular implementation by
means of finite--impulse~response (FIR)¥ digital filters, and it

becomes clear how to avoid the "wrap~around!" errors mentioned in
P >

3 v o Tes ke | Do

Ref, 3, which are due to the periodic nature of the discrete
Fourier transform (DFT),

s m e

Digital filtering techniques for time-~shifting a signal are

discussed in Chapter 1, Because the problem of designing time-

shifting (interpolating) filters is easier to solve for FIR

TEaT

filters, beamforming is discussed in Cthis context in Chapter 2,

CETE S LR

Running time and memory requirements arec estimated for time-domain
and frequency~domain implementations of FIR beamformers. The time
estimates given are rough and should be rcgarded as mere indicatiors
! of the orders of magnitude involved, Digital beamforming in a

4 computer is particularly attractive for broadband arrays such as

those used in conjunction with explosive sound sources [Ref. §5].

T

For this type of applications the signals must be filtered prior
to beamforming. and the computational cffort for filtering and

beanforming must be evaluated as a whole., This topic is included

in the computational considerations ¢f Chapter 2,

* Some%imes called “nonrecursive®; although this terninology is somewhat
incorrect [ Ref. 470
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L. DTGITAL TIME-SHIFTING FILTERS

1.1 Shifting by an integral number of samples

Consider a scquence {x(n)}, obtained by sampling a continuous

sigonal x(t) at the time instants {nAt], where n is an integer,

Time-shifving this sequence by mAt, for integral m, is clearly

cquivalent to convolving the discrete signal with a Kronecker delta
pulse located at sample number m:

x(n-m) = x(n)*é

whete énmﬁl for n®m, and is zero otherwise,

Direct implemen-
tation in the time domain is trivial;

however, it is useful to point
out that the convolution in the equation above can also be implemenved
(although inefiiciently) in the frequency domain by using fast

convolution techniques [Refs, 6 to 8]. Because of the cyclical

nature ot DFT--based convolution, care must be exercised iu trying

to implement aperiodic convolutions in the frequency domain,

Standard procedures exist to handle

this problem; the signal should
be sectioned into blocks the length

of which depends on the duration

ot the impulse response (IR) of the filters, and then particular

techniques, such as "select-save" or "overlap-add", should be usecd,
(The rcader is referred to the above cited literature for details;

an example using the "select~save" technique will be prescnted in
scction 1.3 L'("'low.)

2
Wleo &

Shifting by a fractional number of samples

Time-shifting a signal by a fractional number of samples consists

essentially in interpolating the signal samples. It is most

fruitful to design dinterpolating (time-shifting) filters starting
from frequency-domain specifications, since it is usually in terms

of frequency~domain tolerances that enginecrs "think", Furthermove,

the design ot digital filters to achieve specifications in the




frequency domain has been extensively studied, and numerous

design techniques are available (see e,g. Refs. 4, 9, and 10),

The ideal frequency response of an interpolating digital filter is
shown in Fig. 1, The slope of the linear phase characteristic is
proportional to the time delay. (The periodic nature of the filter
characteristics evident in Fig., 1 is of no consequence in applicataons
since signals must be bandlimiter prior to being digitized.) For
delays of a fraction of a sample the phase is discontinuous at the
Nyquist frequency (defined as one~half the sampling frequency),
implying that the imaginary component is also discontinuous. For
this reason digital filter implementations will usually exhibit
large errors in the neighbourhood of the Nyquist frequency. Note
that no discontinuity exists for delays of an integral number of

samples, because the phase is defined modulo 27,

Designing a FIR digital filter to approximate characteristics of

the type depicted in Fig., 1 is considerably simpler than designing
an infinite-impulse-~response (IIR) filter, and only FIR realizations
will be discussed in this paper. Although rather sophisticated
techniques exist for designing FIR filters [Ref. 4], a straight-
forward frequency-~sampling procedure leads to accurate approximations
with short IR's (low order filters), as the following example
illustrates. Consider a half-a-sample delaying filter, Construct
its ideal frequency response and sample it at M equidistant points.
The IR of the filter is simply the inverse DFT (IDFT) of the
frequency samples., M is the length of the IR measured in samples
(order of the filter). The frequency response of the filter can be
obtained from the frequency samples by trigonometric interpolation,
which can be performed with the FFT [Ref. 11]. Comparison with the
ideal characteristics yields the error in the approximation: The
design method consists simply in evaluating the errors forawarious
values of M, and in choosing the smallest M compatible with the
tolerances. Magnitude and phase errors for the half~a-sample delay
are shown in Fig. 2a for M=32, und ir Fig. 2b for M=8., It is clear
from the figures that high accuracy is obtained throushout most of

the band with low values of M.,
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The most effective implementation of FIR shifting filte:s depends
on the particular problem at hand. Nonrecursive realizations of
FIR filters are usually more efficient than recursive realizations
[Ref, 4], There are two main choices of nonrecursive implemen-
tations: 1) direct convolution, which is generally to be preferred
if the order of the filter is low and/or all the processing is done
in the time domain, and 2) fast convolution using the FFT, advan-
tageous if the IR is long and/or some other frequency~domain

processing is needed,

1.3 An example of FFT-based implementation

To illustrate a procedure for implementing time-shifting filters
using the FFT, a concrete example will be discussed in detail in

this section.

Consider a delay of 1.5 samples. Note that it suffices to design
a filter for % sample delay and then to shift its IR by one sample
to obtain a 1.5 samples delay. In the frequency domain this is
equivalent to multiplying the DFT of the i sample filter by
fexp(=j2mmn/N)}, where m=l, and N is the bleck size. Suppose
that a 16th, order 1 sample delaying filter designed by frequency
sampling yields errors within the required tolerances. For an IR
of length 16, the block length that leads to minimum computing time
is 64 [Ref., 8]. The IR of a 1.5 sample delaying filter, shown an
Fig, 3*, was obtained by first computing the DFT of the % sample
delay for a block size N=04, multiplying by {exp(~jrn/8)}, and

inverting,

. 343 . . _ .
For "anticipatory"** filters whose IR is zero for n=L, L+Ll, ...,

N~R, the "select~save" technique described in Refs, 0 to 8 must be

*The solid lines connecting the samples are due to the linsar interpolation
used in the plotting routins.

%%
Strictly speaking the filter is not anticipatory, because FFT-processing
automatically introduces a delay of one block siza,
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modified as indicated below. L and R are the effective lengths in

samples of the "left" and "right" parts of the IR. For the example

discussed here, L can be chosen equal to 10, and R to 6 (Fig. 3).
Note, however, that L and R could be chosen as larger numbers and
the procedure below would still be valid, although some efficiency
would have been lost. Define the parameter M as the sum L+R.

For the purposes of choosing the block size, it is this value of
that should be considered as the total length of the IR, The fast

M

convolution can be implemented as follows:

1) Insert at least M-l zeros before the first signal

samples. (This is necessary to obtain the first M-l samples of

the result.) Construct with these zeros and the signal samples a

first hlock of length N=64,
2) FFT the block.
3) Multiply by the DFT of the delaying filter.

4) IDFT and discard the first L-1 and the last R samples.
The remaining N-M+l samples are valid data,

5) Construct a new block of N points such that its first
M-1 samples are the last M-l samples of the previous

block.

6) FFT, multiply, invert, discard, and continuec the
procedure until the signal samples are exhausted,

Fig. 4 illustrates the use of the above procedure for a trapezoidal

pulse signal with a length of 70 samples.
1.4 Remarks
1.4.1 Advancing filters in the frequency domain

Neglecting the delay of one bhlock inherent in FFT processing, both
advancing and delaying filters can be implemented in the frequency




IR R AR NS NG A3 il | S AT S o

— .<.,x\f\ I v\.

b)

je——R=18 ——y

FIG. 5 IMPULSE RESPONSES OF DELAYING AND ADVANCING FILTERS




T IR T T SO

P Rt LA ARt S e

At

domain. Due to the cyclical mmature of the DFT, advancing a signal
by m samples is equivalent téﬁdelaying it by N-m samples, where N
is the block size., Figure 5a shows the IR of a 10} smaples delaying
filter of order 16 for a block size N=64. The IR of a 10} samples
advanciug filter is shown in Fig, 5b. To implement these filters
by the technique described in section 1,3 one should take

L219, R0 for the delaying filter, and L:0, R218 for the
advancing filter,

1.4.2 Trigonometric polynomial approximations

When signals are short enough to fit in the memory as a single
block, and maximum speed is not required*, one can delay the signal
by a samples (a may be non-integral) as follows:

1) DFT the signal.

2) Multiply by {exp(-j2man/N)}.
3) IDFT,

This is the method discussed in Refs, 2 and 3, It is easy to see

that this is equivalent to interpolating the signal samples with
a trigonometric polynomial [Ref, 11], and then delaying this
polynomial, The procedure can also be viewed as an implementation
of fast convolution with a filter IR of length equal to the block
size N,*% It follows from this fact that only part of the output
data 1s to be regarded as valid (see section l.2), unless the signal

is padded with an appropriate number of zeros [Ref. 7],

1.4.3 FFT-based interpolation

Digital time-shifting is useful mainly in multichannel processing

for beam steering purposes., However, it may sometimes be an

*For a given IR length there is a block size for which the computing time is
minimum [ Ref, 8 ]

A}

Note that the IOFT of {exp(-j2na n/N)} decays with sin x/ x for non-integer a
ad therefcre the order of the filter is lass than N for practical purposes.
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attractive technique for interpolating a single bandlimited signal.
Suppose that a bandlimited signal was sampled at the time instants
nAt, where At is small enough to satisfy Nyquist's condition,
and that one wishes to increase the sampling rate and find the
samples at nAt/K. This problem is normally solved in practice by
DFT!ing the N given signal samples, adding zeros to the DFT to
obtain a block size KN, and inverting [Refs. 11 and 15]. The
"expansion factor" K dis chosen as a power of two for ccnvenience
in using the most common FFT programs., This procedure is equivalent
to passing a trigonometric polynomial through the samples. The
same result can be obtained by a slightly different computational
technique., For concreteness take K=4. Interpolating is
equivalent to delaying the signal by 1/4 of a sample, 1/2 sample,
and 3/4 of a sample, and then combining the partial resuv'ts

(see Fig, 6). This can be done by DFT'ing the signal, multiplying
by {exp(-j2Mn/KN)}, inverting, etc. It is shown in the Appendix
that this proccdure is easy to program using only 3N words of

core memory, while straightforward implementation of the conven-
tional technique requires KN words. The running time is about the

same in the two cases.

A final important remark is that the time-delaying filter need not
have a DFT {exp(-j2mn/KN)}. Indeed, for specified frequency-
domain tolerances, a filter with shorter IR will often be acceptable,
and proceeding as indicated e,g. in section 1.3 will lead to faster

processing and lower memory requirements,




o S oAbk S NG S]

/_r\ . /‘/ SIGNAL SAMPLES

ﬂ\ . ﬁ’ 1 SAMPLE DELAY

/)/I/ 1 SAMPLE!DELAY
/I/\ — /ﬂi Z SAMPLE DELAY

m - m INTERPOLATED SIGNAL

FIG. 6 INTERPOLATION BY SUCCESSIVE TIME-DELAYING

L6




— N . » - - Lo I kT R R B ST s e e T

2, DIGITAL BEAMFORMING. USTNG FIR FILTERS
. 2.1 -General

This chapter discusses the design. of digital processors for
steering broadband arrays, under the assumption that some of

the sensors! outputs must he shifted by non-integral number of

: samples. If oniy an integral number of samples time-shifts are

% needed, a straightforward shift-register type of implementation

is usually to be preferred, unless complicated filtering operations

besides beamforming must also be performed by the array processor,

ST

Examples of applications involving multichannel filtering include
constant~beamwidth arrays [ref. 51 and "optimal" arrays [Ref. 12].
The discussion in this chapter is relevant to this type of

applications, even though no fractional delays may be needed.

VYRR

P

TSR

Because of the large number of possible alternatives, some of
which may be advantageous in particular cases, no attempts at
being exhaustive will be made, and only twe techniques will be

. described, These suffice to illustrate the principles of time-~

domain and frequency~domain beamforming.

An underlying assumption throughout this chapter is that the
sampling frequency is the same for all sensors. It should be

noted, however, that in systems with very large bandwidth such

R RE T RO N TR W IR R AR R T Y

T P TERT

as those described in Ref. 5, wherein some sensors are effectively
3 cut-off at high frequencies, it may be desirable to have different
1 sampling rates,

=

Consider an array of M sensors placed at arbitrary locations
{zi} on a line (Fig. 7)%, and suppose that B beams are to be
formed, It will be assumed, for simplicity, that the desired beam

; distribution is symmetric with respect to the axis of the array

Sl b via R S AN

3%
The techniques described in section 2.2 below can be applied also to planar

and volume arrays with only minor modifications required.
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(broadside), In a self-explanatory fashion the beams will be
labeled by assigning them the numbers ~(B-1)/2, ..., =1, 0, 1, ...,
(B-1)/2. (B is assumed to be odd.} Tc steer the array at an angle §
from broadside one must time-shift the output of sensor i by

zi.sin 8 /c, where ¢ is the sound speed. It is convenient to

form the beams at equal increments of sin 8, because then it

suffices to design only one time-shifiing filiter per sensor. For
example, beam number 2 can be formed by passing the sensors!

outputs twice through the filters needed for beam number 1.

The design of time-shifting filters has been treated in Chapter 1.
For broadband arrays, such as those used with explosive sound
sources, the linear phase characteristics must be approximated
over a large portion of the available bandwidth, from close to DC

to 3/4 of the Nyquist frequency, say.

The first step in the design of a beamiormer consists in choosing
the maximum errors admissiblc in the filters! amplitude and phase
characteristics (AA+As, respectively). This choice depends on

‘the desired performance and will not be discussed in this paper.

The percentage P of sensors requiring delays of non-integral

number of samples for the first beam can then be determined, P
depends on the phase and amplitude tulerances, the sensor locations,
and the beam resolution. To simplify the discus<ion, it will be
assumed in the sequel that the same sensors need non-integer delays
for all beams. Filters can be designced by the techniques outlined
in Chapter 1 to introduce the time-shifts required by the PM

sensors to form beam number 1, Note that the tolerances for these
filters should be A% and AA divided by (B-1)/2, if the different
beams are computed "recursively" as indicated above, It will be
further assumed that FIR filters are used, and that the order of
the filters, D, needed to achieve the spucified tolerances, is the
same for all filters.

Program organizations and estimates of rum ing time and core
memory requirements are considered in the following section. Two
cases of inbterest ave discussed: 1) beamforming when no prior
filtering is necess 'ry, and 2) beamforming preceded by digital
filtering,




It will become apparent that the most economic solution, in terms
of computing time, depends on the number of sensors, the number

of beams, the percentage of sensors that require fractional delays,
the tolerances (reflected on the order of the filters), and also

on whether prior Tiltering is necessary. An example will show that
frequency~domain processing is .indeed a competitive technique for

certain application,

2,2 Computational considerations

2.2,1 Time-domain processing with no prior filtering

A program organization, schematically indicated in Fig. 8, will
now be described. Let S! be the total time-shift (in samples)
between the two outermost sensors for beam (B-1)/2, and denote

by S an integer greater or equal to S. For each sensor S+D
samples are kept in core. If the sensor needs no fractional delay,
it suffices to scan the respective buffer, and to transfer the
appropriate samples to another buffer of length B, If a fractional
delay is required, for each beam D samples arc taken out of the
sensor buffer, convolved with an interpolating filter of length D,
and the result stored in a buffer of length B. Once this is done
for all sensors, one output sample per beam is obtained simply

by adding the contents of the M buffers of length B, The sensor
buffers are then shifted to the right by one sample, the rightmost
sample is discarded, a new signal sample is introduced at the

leftmost position, and the beamforming operation is again performed.

Let Ka be the real addition time, and km the real multiplication
time for the machine being used., A rough estimate of the running
time can be obtained by neglecting the time neceded for input/output,
addressing, and transfer of data. For cach of the sensors that need
fractional delays, D real muliiplications and additions are required
per beam and data point. Noting that forming beam zero does not

involve delaying, the total time for the above operations is,
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approximately,

(km+ka)PMD(B-l)

per data point, Taking into consideration the time needed for the

addition of the M buffers of length B, one obtains finally the
total time per output sample-'f

= Aoad +
Tl (km+ka)PMD(B 1) kaBM

Assrming that an integer is represented by one computer word, the
total amount of core required is

M(S+D) + MB + PMBD

words,

It was implicitly assumed that the term PMBD above is small,

implying that it is easy to keep in core the various filter IR's,

of length D samples. each. Note that, in this assumption, each

filter can be designed for the tolerances A3, AA.

2,22 Frequency-domain processing with no prior filtering

Taking the center of the array as the reference for measuring

phases, beamforming involves delaying or "advancing'" the outputs

of the various sensors, The maximum time-shift needed is 5/2

samples (S is assumed even, Ffor simplicity). All the time-ghifting

filters needed can be implemented by the "select-save! technique

taking L=R=(S+D)/2 (c¢f. section 1l.3). Some of the filters could

be implemented with lower values of L and R, However, the program

organization is facilitated if the same values are used for all
sensors,

P

ty

The beamformier output is to be interpreted as a vector of B components, each
of which is a time-series corresponding to a be¢ a. Thus, Tq is the time
necessary to generatz B samples, one per beam,
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The procedure will now be described, The DFT of the time~shifting
filters needed for the first beam and each sensor are first
computed and stored (on disk, say). The time required for this
computation will not be taken into account, since it need only be
done once for each array. For sensor number 1, N signal samples
are read in, together with its filter DFT. The signal is DFT'ed
and then multiplied by the filter to yield the DFT of the sensor's
contribution to the first beam., This last operation takes a
complex multiplication, i.e., four real multiplications and two
real additions, per frequency point. Because there are only
N/2+1 distinct fregaency points, the time required for phase-

shifting beam number 1 is
( 4k _+2 ka) (N/2+1)

per sensor and per block of data. Beam number 2 can be obtained
by multiplying the DFT of beam 1 by the filter characteristics,
and so forth,% Beams numbered -1, -2, etc., can be obtained by
successive multiplication of the signal DFT by the complex
conjugate of the delaying filter DFT. The total phase~shifting

effort is
(4km+2ka)(N/2+1)(B~1)

per block and per sensor., Suppose that the B frequency-domain
blocks, which are the contribution of sensor 1 to the various
beams can be kept in core. One can then take a block of signal 2
and its filter, and proceed as indicated for signal 1. For each
beam the contribution of sensor 2 should be added to the contri-
bution of sensor 1, and the result accumulated in core. It is

casy to see that only B+ 3 blocks of core are used in this

* By using an additional I/0 operation (read a block from disk) per beam, the
interpolating filters can all be designed for the tolerances AA, A3
(cf. end of section 2.2.1 for a similar discussion in time-domain processing).
This involves more initial design effort and more disk memory.




.implementation., The procedure is continued for all sensors.,

The total time required for phase-shifting and adding is
(4km+2ka)(N/z+1)(B-1)M-+Zka(N/2+1)B(M-1)

Each beam is subsequently inverse transformed, and S+D-1
samples discarded (see section 1.2). Thus, M signal DFT's and
B beam IDFI!'s are needed per block. Denoting by kfft the
computation time for a FFT with block size N, the total

transforming and inverting effort per block is

kpp, (MHB)

Because the signals are real, kgp 1is approximately [Ref. 8]
1
5(2k_+3k,)Nlog,N

Recalling that only N-(S+D-1) points are regarded as valid

data, the total computing time per output sample is therefore

T,=[§(2k +3k,) (NlogyN) (M+B) + (4k +2k ) (N/2+1) (B-1)M

+—2ka(N/2+1)B(M—1)]/[N—(S+D~l)]

The block length N should be choscn so as to minimize the
computing time T2. As in the simpler case of single-channel
filtering [Ref. 8], as long as N is not too small, the running
timz is not strongly dependent on the block length (see

section 2.2,5 below).

The timec necessary to perform the I/0 of 2M+B blocks of N samples

was neglected in the above estimates,

The procedure described uses (B+3)N words of core for its data
manipulations (of course other arrangements arc possible). If no
external storage device such as a disk is available, frequency-
domain processing takes a prohibitive amount of core and will
not be feasible unless a very large computer is used. Because

of the large number of variables involved, an attempt at
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comparing time- and frequency~domain processing in general
terms will not be made., However, a :liscussion based on a

specific example will be given in section 2,.,2,5 below,
2,2,3 Time~domain processing with prior filtering

Suppose now that the signals must be filtered prior to

beamforming by means of FIR filters with IR!s of length Q
samples,

The time required to implement the filtering in the time domain
by direct convolution is

(km+ka)Q
per sensor and data point. Using the results and assumptions of
section 2,2,1, the total computing time for filtering and

beamforming is

= o —
T3 (km.ka)QM-i- (km+ka)PMD(B 1) + k_BM

TR SR DT ETE ST PR I YT, R T

Since additional buffers are needed for the filtering, the

memory requirements are increased by 2MQ words,

AT

f 2.2.4 Frequency~domain processing with prior filtering

The procedure is similar to that described in section 2.2.2,
cxceplt that one should take L=R=Q+S+D for the "select-save®

TN ETRONTTIT

technique, and an additional complex block multiplication,
together with an I/0 operation are needed per sensor. Thus,
vach block requires an additional

(4km+2ka)(N/2+l)M

P

The total time per output sample is now

S P - ' . : $
r, [3(2k, *3k, ) (N log,N)(M+B) + (4k +2k_ ) (N/2+1)MB +

i T

2k (N/2+1)B(M-1) 1/[N=(Q+S+D~1) ]

s
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N should be chosen by minimizing the above expression. Note
that the optimal value of N is now also dependent on the order
of the filters Q. ;

The core memory requirements remain the same as in section 2,2,2,.

It is apparent that the running time is only slightly increased
by the filtering operation when the processing is done in the
frequency domain., In time-domain processing, however, the

increase may be substantial.
2,2,5 Example

The computational considerations of the preceding sections will
now be applied to a specific array, which is presently being
studied at SACLANTCEN [Ref. 5].

The array has 20 unequally spaced hydrophones, the beam-width is
approximately constant at about 1l5°over the 3% octave band of
operation, and it is desired to form 5 beams at -30°, -15°, 0°,
15°, and 30°,

For a sampling frequency FS and array length d, the
quantity S!' defined in scction 2.2 is given by

St'=sin @ .Fs.d/c

M

where ¢ 1is the sound speced, and 6 is t!e largest steering

1
angle desired., For the exampie undei consideration St'==84., To
achiceve constant beamwidth [Ref. 5] it is necessary to filter the
sensor outputs by means of FIR filters of order Q=256, The
outer hydrophones in the array are cffectively cut-off at high
frequency and do not neced fractional delays. However, the

8 central hydrophones require non-integral time-shifts, whence
P=8/20., The interpolating filters for the central sensors are

of order D=16, The relevant parameters for the array are




therefore:

Il

20
=5

= 8/20
16
84
256

o v w o X
Il

It

The processor is implemented in a Hewlett-Packard 2116B mini-
computer with disk storage and extended arithmetic unit, whose
Kl

. . ~ . .
multiply and add times ane , in microseconds,

k = 25.6

k= 9.6

The running time for time-domain processing, found by direct

substitution in the expressions of section 2,2,3, is
T3 o2 180 + 18 + 1 =< 200 msec/sample.

The largest contribution to T3 comes from the filtering
operation.,

For frequency-domain processing N must be chosen so as to make
T, small (see section 2,2.4). Substitution into the expression
found in section 2.2,4 yields (in microseconds)

T, = (1000 log,N +:6080 + 810) .N/(N~355).

T4 varies slowly with N, when N is above a "threshold", and

* These figures include fetching a word, fixed-point multiplying or adding,
and storing the result, and are thersfore somewhat psssimistic, On the
other hand, the computing effort involved in checking and correcting for
overflows is not taken into consideration in the estimates.
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therefore the choice of block size is not critical. (A similar

result obtains for single-channel filtering [Ref. 8].) Table I

shows values of T4 corresponding to various block sizes (powers
of two),

TP RD R

R ROy

A TABLE T
i N _14 (msec/sample)
3 512 49
; 1024 26
3 2048 22
R 4096 21
: It is apparent that the running time is about the same as long
f as the block size is larger than 512, Thus, 1024 is a good
3 choice for N, since the amount of core memory needed is smaller,
? Still, about 8k words of core memory are used in this implemen-
; tation, while time-domain processing only requires in the order
p: of 3k, Frequency-domain processing is about 8 times faster than

time-domain processing for this particular example, This is

3 not so surprising, since a large effort must be put into the

filtering operation., If the order of the filters were lower

and the number of beams to be formed higher the cconomics of

¥ the process might change.
1 Consider now the same example, but assume that no prior filtering
. is required,

The computing time for time-domain processing is now
3 T, &= 19 mscc/sample,

and the memory neceded under lk. For frequency~domain processing

the choice of block length must be reconsidered.

The computing
£ time now becomes

T, = (1000 Jog2N+-48004-8L0),N/(N~100).




T2 is given in Table II for various block sizes,

TABLE IT
N T, (msec/sample)
; 256 22
1 512 18
1024 17.5
; 2048 17.5
%

Somewhat unexpectedly, the computing time for FFT processing is
less than for time-domain processing in this example, even if

no filtering is needed, This fact should not be taken as a general
result, but rather as evidence that FFT processing can indeed be

a competitive technique for beamsteering.,

AR PR TR T S TR AR

s A final comment is warranted. For a sampling frequency F =24 kHz

the array described above will take in the order of 6 minutes to

process a signal of length 1 sccond, Since the operation can be

BINTIFR " FERRITFILRY

accelerated by using a faster computer, a hardware FFT transformer
and careful programming, the use of broadband arrays for explosive

echo~ranging scems possible with state-of-the-art techniques, It

bk oSt O T

should be noted that the computing time estimates given throughout

this chapter are very rough and should be considered as order-of-
magnitude values,

RIRGRA TN

The ratio between running time for frequency
domain and time-domain processing is likely to be more accurate

than each of the sceparate estimates. Mcasured values for the

IR FTF ORI

running time of the overall processors arc not yet available,
However the time for computing a 1024 point FFT using routines

supplied by Hewlett-Packard has been found to be about three times

T

TR

longer than the values used in the estimates of this chapter., The
discrepancy is believed to be due to book-keeping and scaling

operations nceded by the fixed-point routines., Errors of the same

order of magnitude may well be present in all the given estimates,

SOTERTT A RO T
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RECAPITULATION & CONCLUSIONS

Digital filtering theory provides convenient and powerful means
of treating broadband digital beamforming, especially when
time-shifts of non-integral numbers of samples are needed., This
problem arises when the sampling frequency is too low for accurate
beamsteering to be possible by using only time-shifts of an
integral number of samples. Keeping the sampling frequency as low
as possible is necessary when minimaldata acquisition rates are
desired%as often happens in experiments with hydrophone arrays and
explosive sound sources. The digital filtering approach is also
advantageous when the sensors'! outputs must be filtered prior to
beamforming, especially if the filtering operation is fairly
complex, as e.g., iLn constant beamwidth arrays [(Ref. 5], and
"optimal" arrays [Ref. 127,

Time-shifting (interpolating) filters form the essential part of
the steering processor. FIR filters are particularly attractive
as interpolators, because they are quite simple to design given
phase and amplitude tolerances in the frequency domain.**
Implementation of these filters is also straightforward, and no
restriction on signal duration is necessary. It is shown in
Chapter 1 that high accuracy can be obtained with low order FIR .

filters without recourse to sophisticated design techniques.

Beamforming procedures based on time~domain and frequency-domain
implementataon of FIR filters are discussed in Chapter 2 and rough

estimates of running time and core-memory requirements are given.

* A trade-off exists between the complexity of the data acquisition
equipment to achieve a certain data rate and the complexity of the processing.
If the data acquisition system and the processor are being designed simulta-

neously, this trade-off should be taken into consideration in the choice of
the sampling frequency.

%%
How to specify these tolerances dspends on the particular prcblem being

consadersd, and is not discussed in this papsr.
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The estimates depend on the number of sensors, the number of

beams, the percentage of sensors needing fractional delays, and
the prescribed accuracy. For each particular case these procedures
can be compared by simple substitution of the relevant parameters
in the formulae derived, Refinements of these techniques, as well
as "hybrid" processing (partly in the time domain and partly in

the frequency domain) are easy to evaluate along the same lines.

Sample calcilations performed for an arrvay of interest in
SACLANTCEN's work involving explosive sound sources indicate that
frequency-domain processing can be competitive,in terms of computing
time, for beamforming alone and may give 1:10 savings when compli-
cated prior filtering is needed. Frequency~domain methods are
disadvantageous from the memory use viewpoint, The order of
magnitude of the running time for the example considered shows

that directional arrays using in the order of 20 or 50 hydrophones

for broadband echo-ranging are within present day's digital
processing technology.

The problem of estimating the power spectrum of a signal using an
array [Ref. 3] is not discussed in this paper. Suffice it to say,
however, that the array can be steered and the output obtained to
any prescribed frequency-~domain accuracy by the techniques described.

From the array output the power spectrum can then be estimated by
standard techniques (see e.g, Refs, 13 and 14).
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APPENDIX

INTERPOLATION USING THE FFT

3 Estimates for computing time and core use are derived in this
3

: appendix for the two FFT interpolation techniques described in
section 1l.4.3.

B

1. DFT-add zeros—IDFT
; The computing time is, usinrg the same notation as in section 2,2,
3 - :
: T-%(ka+3ka)a[N log,N + KN log,(KN)],
¥ and KN words of core are neecded for a straightforward implementation.
i . 2, Successive delaying
4]
i The procedure is as follows. First compute and store in core the

g phase-shifting filter {exp(-j2mn/KN)}. Then, DFT the signal,
l phase-shift, storec, and invert. The IDFT can be written onto

disk, say, if the amount of available core memory is small, A

4 second phasc~shift and inversion can then be done, and sc forth,
4 K-l phase-~shifts are nccessary to obtain all the interpolated values.

Hence, the running time dis

Trah(2k 3k )KN.logyN + (4k +2k ) (K1) (N/2+1)
i if the time to compute the filter characteristics is neglected.
= The amount of core memory nceded, 3N words, is less than in the

previous method, Of course some unscrambling must be done in this
procedure, to sort the samples in the correct order, The time

required for this operation is usually small and is not taken into
account in the assumate above,
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Assuming that ka<<km, KeeN, and log,N>>2, it is easy to see
that T4 T'., Therefore the two techniques lead to about the
same computing time, When the expansion factor K is large, a
recently proposed modification of the FFT algorithm (Ref. 17)
may lead to considerable time-savings and make the "DFT-add
zeros~IDFT" technique more attractive. Succesive delaying is
advantageous from a memory requirements point of view. It
should be noted, however, that it is possible to compute a FFT
of block size KN, without using KN words of core (Ref, 16).

The above discussion shows, incidentally, that a straight-
forward IDFT interpolation technique is inferior to "DFT-phase
shift-IDFT" for beamsteering purposes, both in running time and
core use, In fact, it would only be about as good if all the
KN samples generated were needed in the bheamforming algorithm,
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