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ABSTRACT

In this work a number of semirigorous and numerical techniques
are presented for analyzing the microstrip transmission line corfigurations.
The methods of quasi-TEM as well as hybrid-mode analyses are presented
in some detail, A discussion of the higher-order modes in such
transmission lines is alsc included,
In addition to analyzing the uniform line configurations, the
problem of evaluating the effect of losses, end loading, etc,, are

examined and methods for handling these problems are discussed.

ii

szm Lot

_aN




ACKNOWLEDGEMENT

This technical report was made possible through the support of

a U, S. Army Research Grant DA-ARO-D-31-~124-72-G77. The work reported

herein was also partially supported by National Science Foundation

Grants NSF GK-15288 and NSF GK-25074.

The authors want to express their thanks to Mrs. M. Burns for

her excellent typing.

iii

N




AR
£ ARSI Y

joperEs

T4 ROy

WS e T

Rl

2.

pQoRar v LA SRR L

e

S SRR

ST

e N EING
A

I.

I1.

111,

iv.

VI.

V1iI.

TABLE OF CONTENTS

INTRODUCTION , & « ¢ « & s o & &

QUASI-TEM ANALYSIS FOR MICROSTRIP LINE STRUCTURE

2,1 Preliminary Discussion. . ., .+ « + « ¢ ~ :

2.2 Modified Conformal Mapping Method: . . .

2.3 Finite-Difference Method (Relaxation Method). . -
2.4 Variational Method in the Fourier Transform Doma;n.
2.5 Integral Equation Method. . « . ¢ ¢ » ¢ &

2.6 Generalized Wiener-Hopf Techniques. . .

WAVE THEORY ANALYSIS OF MICROSTRIP LINES . .,

3.1 ‘Preliminary Discussion, . , N

3.2 Shielded Microstrip Lires . . , +» . . .

L L L] € L ~

. s & - 0

¢« ¢ =

o ¢ a

s ¢ ¢ ¢ o

¢ * k4 L]

¢t e t & ¢

L .

¢ - < ¢ A

3.2,1 Various methods for solving the shielded

microstrip lines . .,
3.2.2 Numerical resulrs. .

3,3 Open Microstrip Line. + + + + & 4 ¢ o ¢

g:g. Galerkin's method in
domain + . + .+ . . .
HIGHER-ORDER MODES . . . . ¢ .
LOSSES IN MICROSTRTIP LINES . . .
RADIATION AND END LOADING. . . .

6.1 Radiation Conductance . ., .
5.2 Edge Susceptance, . . . o .

6.2,1 Matrix method, . . .

s a

L)

.1 Integral equation method .
2

the

* *

LR

6.2,2 TFourier transform method

CONCLUSIONS., « + & = v ¢ o « + o

REFERENCES + v o ¢ 4+ « v 0 ¢ v v v

DOCUMENT CONTROL DATA ~ R & D

iv

s & &t e

» 3 e *

« xon

Fourier

¢ 2 e 3 &

I I

£ L] 13 [ [
transform

« s oz

. 12
« 17
+ 35
« 38

. -'07
- 49

-+ 50
¢ 65




i

A

A SR O A AN

T

oo o it R AR

1'?.'.'{ Ewhe

LIST OF EIGURES

Figure
1. Cross section of some microstrip-type transmission lines. . .
2. Cross section of the right-nand half of an cpen
microstrip 1ine . . . < e * * L] L » * L] L] L4 ~ b L] * [ L4 [ 4 . L4
3. Cross section of the open microstrip line after
cenformal mapping and its approximationS. o « « « o ¢ 4 o a4
4, Net-points for finite difference approximation. . . . « + + &
5. Surface of integration for calculating the total charge
on the s rip conduCtor. « « & 4 « ¢ o « & o a o o o » ¢ o .
6. Characteristic impedance of the microstrip line
Calculated by Stinehelfer (1968)0 LI ) * . L L t e v A "
7. Shielded double-layer microstrip line . . . ¢« + ¢ « « o » « &
8. Line capacitance versus strip width and strip height. . . . .
9., Calculated result for characteristic impedance znd
comparison with the results by Wheeler (1963) . . . . . + « &
10, Theoretical and experimental characteristic impedance
for various dielectric comnstants. Experimental.results.
are those of Dukes (1956) [AAAA] and Arditi (1955)
[xxxxx] L] . . L] * ¢ . . * [ » . . L] . . . L L) . (] . . [ [] L] .
11, Guide wavelength versus strip width and strip height. . . . .
12, Theoretical and experimental results for the effect
of strip thickness on characteristic impedance with
e*¥ = 11,7, The experimental results are those of
HYItin (1965) . . . . . . . L . s A . . . . L * » . L} . e .
13. The calculated characteristic impedance. ef =.9.9
(Sapphire); e§ =13 8=05 £t =00 . 4 0 ¢ 70 v e v s oe e
14, The calculated characteristic impedance. e¥ = 9.9
(Sapphire); sg =13 =03 t=0.02h. » + .70 v v v v b v o4
15, The calculated guide wavelength, ¥ = 9,9 (Sapphire);
1
8* = l; s = 0; t.- = 00 * . . - 1] . . * . » . . . . ~ L] . . . .
3
16.

*
The calculated guice wavelength. € = 9.9 (Sapphire);
e§ =13 8=0; t=0,02h, .. ...

. e o« s 2 o 2 e . 3 LI}

Page

10

13

18

19
21

26

27

28

29

30

31

31

32

32




Figure Page

17, Cross-~sectional view of thick-strip transmission line
with multi-dielectric layers and shielding structure . . . 36

18, Characteristic impedance of thick-strip line of
Figure 17; e% = €% = 1; €% = 9,35; h, = h,'= 0.4b;
hy= 025 w=036, .. 2, L0 T o e
19. The charge distribution on the strip and the potential
distribution at y = h. ef = 9,9 (Sapphire); sg =13
S=0;h=d;‘v=dii.0...‘...‘l.l..". 45

20, .Cross section of the microstrip line in a shielding case . 48

21, Cross section of the right-hand half of the microstrip

line with a finitely thick strip conductor . . . . . + . . 62
22, Dispersion diagram of the dominant mode in.the.shielded
microstrip line shown in Figure 20 . . . . . « « v v & + & 66

23, Variation of guide wavelength with frequency of the
dominant mode in the shielded microstrip.line shown
in Figure 20 o v v o 6 v 0 v b e e h e e e e e e e e e e 67

24, Relative magnitudes of the Ex and E components
as a function of frequency in the structure shown
in Figure 20 . + 4 v 4 v 4 4 s c s h e e e e e e e e e s 69

25. Configuration of an open microstrip line . . . + + + « + . 70

26. Effective dielectric constant versus frequency, e, = 11.7;
W/d = 0‘96; d = 0.317 Cm . . . . . . [ * [ . * . * . . . [ 77

27. Typical plots of D(B) in Equation (74) versus EQ e e e e 84
28. Dispersion diagram of the dominant and a number of

' higher-order modes in the shielded microstrip
g line shown in Figure 20. . . & v « + s 4 4 o v o o o o o » 85

29, Relevant to the derivation of conductor attenuation, . . . 91

30. Theoretical conductor attenuation factor of microstrip

k&

h as a function of w/h, calculated by Pucel et al. (1968). . 94
E 31. The attenuation constant due to the conductor surface

: resistance of the microstrip line. [The.other.theory

5 results are from Pucel et al, (1968).] . « . . + + . + . . 95
&

32. The attenuation constant versus the conductivicy of
the dielectric substrate of the microstrip line. e*=11.7.
(The experimental results are those of Hyltin (1965).] . . 95

vi




IR T BTy o B s T F R

TIPS

o S AR A RS R A L

Sy

R

R S R TR R PERFOTI

Figure

33.

36.

37.

38.

Experimental attenuaticw data for.microstrip

on rutile
substrates « ., o

2 < > * ? - L] e “ ° . o > L] < Ll . [

Geometry for open~circuvited microstrip line. . « . . -

Ratio of radiation lass to total less for 50-0 line as
.a function of stub length. o o ¢ » o o + o ¢« 2 o s s «

Ratio of radiation loss to distributed loss for 500

line as a function of substrate dielectric.censtant
and frequency,. -~ o« ¢ » 5 6 o A 6 5 s 0 5 e ¢ & 4 2 o a

Finite section of microscrip line. . .

L4 & s > o ¢ 2

Fringe capacitance of a semi-infinite microstrip . . .

vii

Page

. 102

. 1.02
« 104

« 109




I. INTRODUCTION

The microstrip line as it is found today in microwave integrated
circuit designs represents the second generation of printed transmission
lines. The original version, called the stripline, was introduced
around 1949, more than two decades ago! As early as 1955, a

special issue of IRE, published .in March 1955 as Transactions on

Microwave Theory and Techniques, was devoted entirely to the subject

of microwave strip circuits. The topics covered in this issue included
the analysis of strip vransmission lines, computation of mutual
impedance of coupled lines, radiation effects, evaluation of discontinuity
effects, as well as several other related subjects. Though much interest
was expressed in this new form of line for a few years immediately after
its introduction, .%s use in microwave design did not become very popular
until quite rer~=at.y when new, low-loss dielectric and ferrite substrate
materials became available, The evolution of the stripline led to
several difrerent versions of the microstrip line, viz., open, shielded,
and boxed lines, all of which make use of dielectric or ferrite
materials as low-loss substrate,

In this work we will be concerned with the analysis of several

of the above configurations of the microstrip line. We will describe

a number of semianalytical and numerical techniques that have been
; developed for analyzing these lines. 1t is interesting to point out

that the conformal mapping technique used extensively in the fifties

to analyze the stripline is not convaniently applied to the microstrip
line, since the latter is an inhomogeneously filled structure, However,

as will be shown in Section II, a modified version of the conformal
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mapping technique can still be used to derive an approximate but
accurate solution to the microstrip problem,

Two other important factors have prompted the development of
new techniques for analyzing the microstrip line. The first of
these iz the advent of high-speed digital computers that have made
it possible to apply numerically rigorous techniques to the solution
of electromagnetic and quasi-static boundary value problems. The
second factor is the increasing use of microstrip lines in the giga-
hertz frequency range where the effect of dispersion in the line is
no longer negligible, This, in turn, requires a full bybrid-mode
analysis of the boundary value problem. The method of formulation
as well as the solution of such problems differs substantially from
the TEM or quasi-TEM approach, which are valid at lower frequencies.
We will illustrate this point more fully in Section III, where we
will present a hybrid-mode analysis of the microstrip line., Finally,
the problems of evaluating the effects of end-loading, discontinuities,
and losses in the microstrip line, etc., also require the development
of techniques that have to be tailor-made for such problems. A
discussion of these problems is also included in the following
sections.

The topics covered in this work have been and still appear to
remain very popular subjects for publications, as evidenced by the
prolific number of papers published in the microwave literature., It
1s physically impossible even to attempt to describe all of the
contributions that have appeared in the literature during the past
five years on the analysis of microstrip lines and related problems,

We will only present herein a discussion of some of the representative
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II. QUASI-TEM ANALYSIS FOR MICROSTRIP LINE STRUCTURE

2.1 Preliminary Discussion

Having presented a brief historical review, we will now proceed to
discuss a number of quasi~TEM techniques suitable for theoretically
determining characteristics of the microstrip line. As will be evident
later, these analyses are valid only in the low frequency range where
the free-space wavelengtih is much larger than the strip width and the thick-
ness of the substrate. A more complete analysis, valid for arbitrary
operating frequencies, will be presented later.

Figure 1 shows some typical cross sections of microstrip-type
transmission lines. Before we proceed with the details, however,
it will be useful to explain why the quasi-TEM analysis is restricted
to the low-frequency region only. Though the comments are applicable
to all of the geometries shown in Figure 1, we will illustrate our
argument by reference to the structure shown in Figure la. The electric
and magnetic field components of the characteristic solution in this

structure may be expressed in terms of a scalar potential ¢ which is

required to satisfy
vi¢ + (k2 - 32)¢ =0 in the air, (1a)

Vi¢ + (Erk2 - 62)¢ = 0 in the substrate, (1b)

where k = 2n/\ is the free-space wavenumber, and B is the propagation
constant. In the limit of Er = 1, the lowest-order solution for (1)
is TEM with 8 = k. Tor this limiting case, the pecieutial ¢ satisfies

the Laplace equation in the cross section and does not ge:.e¢rate longitudinal
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electric or magnetic field components. For the practical case of
€. # 1, Equation (1b) may be regarded as a perturbation of the limiting
case e = 1. The effect of this perturbation is small when the
operating frequency, i. e., k is small., The quasi-TEM approximation
may then be regarded as a zero-oxder solution to the exact equations
shown in (1). Though much simplification in the analysis results with
the use of the quasi-TEM approximation, it should be kept in mind that
the results obtained via this method .are not accurate for larger values
of k,

Under the TEM approximation, the microstrip line is adequately
described in terms of two basic parameters, viz., the characteristic
impedance Z and the propagation constant y. It is well known that

for a low-loss transmission line

L 1, R _ G
Z2=¢ B +3 G - Je0] (2)
Y = 4 jB (33}
a=—12‘/—£(%+%), 8 = w/iC (3b)

where R, G, L, C are the resistance, conductance, inductance, and
capacitance per unit length, respectively, of the infinitely long
transmission line; w is the angular frequency; and « and B are the
attenuation and phase constants, respectively, For a lossless line
R=G=0, and hence, a = 0,and Z = /L/C is a real quantity. The
values of B and Z can also be expressed in terms of the phase velocity

v = 1/VLC as

B = w/v, 2 = 1/(vC). (4)
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It should be mentioned that dispersion effects are neglected in the TEM

approximation; hence, the phase velocity is equal to the group velocity.,
Next we will show that for the lossless TEM system the boundary

value problem associated with the determination of B (and Z) reduces

to that of calculating the capacitance per unit length C. Consider the

two configurations of the microstrip line shown in Figure la. Note

that one of these has a dielectric substrate with relative permittivity

€. while the companion structure is a homogeneous TEM line obtained by

removing the substrate, i. e., by letting €. = 1. It is easy to show

that for the latter case

B, = w/e, Z2 = 1/(cC°) (5)

where ¢ is the velocity of light in free space., The subscript 0 in
(5) serves to distinguish the line from the inhomogeneous microstrip
line in which €. # 1, If the substrate is nonmagnetic, the value of

L, the inductance per unit length, is assumed to be identical for both

z/io_.l
oY C

c/CC

N T )
o\ C c C
o o

where Zo and Bo are given by (5). Equation (6) implies that Z and B

lines. Hence

o~
[}

(6)

l

are obtainable from the capacitance per unit length, C and Co’ of the

microstrip and unloaded lines.

Next we will describe a number of quasi-TEM techniques for

evaluating the capacitance of microstrip lines of the type shown in
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Figure 1. The discussion below will include material from a number
of papers that have appeared in the literature since 1965. As-mentioned
earlier, a more rigorous analysis based upon the hybrid-mode approach

will be presented in a later section.,
2.2 Modified Conformal Mapping Method

This method was introduced by Wheeler (1965) for computing the
capacitance per unit length of microstrip lines of the type shown
in Figure la. The concept of the so-called "filling factor," also
introduced by Wheeler, is considered to be a rather convenient and
useful way of describing the parameters of microstrip structures,

The right half of the cross section of the microstrip line is
shown in Figure 2 where a magnetic wall is placed along the axis of
symmetry, the y~-axis. The strip thickness is assumed to be infinitesimally
small,

The first step in Wheeler's technique entails the application of
conformal mapping to the geometry under consideration with the result
that a simpler, parallel-plate geometry is obtained in the new domain,

For the wide strip, the mapping function is chosen to be

z= jn + d tanh % z' - 2! (7)

with d = g' for g'/2 >> 1 where g' is the effective width of the
parallel plate in the mapped plane shown in Figure 3a.
Note that the mapping from z to z' transforms the original
microstrip line into a parallel-plate structure bounded by two
vertical magnetic sidewalls (x' = 0 and g'). Also, the planar dielectric-

air interface® -(® in Figure 2 maps into a curved surface® -@ in




Figure 2.

z - plane
X+jy=2

@ @

b

b= DIELECTRIC BOUNDARY
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0 a

Cross section of the right-hand half of an open microstrip line.
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Cross section of the open microstrip line after conformal
mapping and its approximations.
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Figure 3a. Although the geometry in the transformed plane is seemingly

simpler to amalyze, it should ‘be resiized that the space between the
parallel plates is now inhomogeneougly fiiled with a dielectric which
has a curved boundary. Since an exact sclution is difficult to obtain

for the partially filled ecapacitor problem in Figure 3a, it is necessary

at this stage to introduce some approximations. In Wheeler's approach,

the approximation is introduced in -the following manner. Let the

area éenclosed by the curve() —:@,, and the lines® -Gl and & ~-@ in
Figure 3a be ws', Let this area be approximated by two rectangles with
areas ns" and w(s' - s") as shown in Figure 3b. The area ws" effectively
adds s" to the width of the completely filled region on the right

(a' < x' < g') and hence is termed the "parallel" portion. The other
area n(s' - s") is effectively in series with the free-space region
LEN Combining these two effects we can approximately replace the
original, partially filled rectangular region bounded byCQQQGDG) in
Figure 3a by an equivalent gecmetry(:CbCDG) shown in Figure 3c, in
which the dielectric f£illing has the width s. It is obvious that the
capacitance calculation is strailghtforward in the equivalent geometry
due to the planar nature of the dielectric filling.

The effective width s may be expressed as
s = 5" + ———Zm | (9)

The effective filling factor can be defined by

q=-g.'_L.§..:_-i‘_§.. (9)

The effective dielectric constant €opg MAY MOV be expressed in terms

of the filling factor q via the relation
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€aff = (L -q + qe_. (10)

-

Finally, the capacitance per unit length is given by C = Eeffco where <,
is the capacitance per wunit length of the unlcaded TEM line. It is
evident that the problem is now reduced to that of deriving approximate
values of the quantities s', s", or q.

An approximate expression for wide strips has been provided by

Wheeler that reads

s' = 0.732 [a' - cosh™1(0.358 cosh a' + 0.953)]  (lla)
s" = 0.386- 1/2(d - 1). (11b)

The effective dielectric constant E.pg SN be derived by the use of
(11) in (8), (9), and (10). Also, he has shown that in the case of
narrow strips, the effective dielectric constaunt is given by

e+ 1 g'(e. - 1)

- r L
Corp = — 35—+ 2 [2n /2 + : &n 4/n}.  (12)

2.3 Finite-Difference Method (Relaxation Method)

This method is strictly a numerical technique for determining the
cross~sectional field distribution; this knowledge allows one to compute
the desired characteristic parameters of the transmission line., The
essential step in this method is to quantize the unknown field distribution
at discrete intersections of coordinate grids called the net-points or
mesh-points. The relaxation method is a numerical algorithm for solving
the unknowns at a large grid of the net-points by applying the method
of successive approximations.

Figure 4a shows a portion of the distribution of such net-points.

Let the potential at the net-point A be ¢A. Now let the potential
12




Loy

Retang

B A TR YO AT CPas

TNy T F 4 T

S PP R 2753

2 Aeiiy

P RN e R g b R

R e, I

SR

HBEEL AN

E3%4

S Evs ot w5 T,

RO T

L
N

T e ey WO RIS [ A A S I N DN e 3 S50 AR C R RS 1

y+h

y-h

x-h X x+h

A

7

Figure 4. Net-points for finite difference approximation.

13

|
y




¢(x, y) be exXpanded in Taylor's series sbout the point A to find the
potentials at the adjacent net-points B, C, D; and E, The expressions

raad

2
- I
bg = +hl )+ h?‘{é—%)+0(&)
ex /A
3 1 .2]8%
h{a +3r h --%) F 0(hY
° oy i a
(13)
op = 9 5% 2t )

where O(ha) implies the terms in h4 and higher. Adding the above

expressions for the potentials, we obtain the equation

¢3+¢C+¢D+¢E=4¢A+h2 ; )+0(h) (14)

9xX ay
Utilizing the fact that the potential ¢ satisfies Laplace's equation,
we note that the coefficient of h2 in the right-hand side of (14) is zero

Further, if we neglect the terms of 0(h4), Equation (14) reduces to
$y =T (bt +op+00) (15)
A 4 B C D TE

The numerical solution to this equation can be obtalned by
systematically assuming the net-point potential at each of the points
where the potential is unknown, numerically testing the residual error
in this assumption, and using the residual error in the following
way to update the assumad potential. The pertinent equations for

applying the relaxation method are
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(atl) _ ,(n)

(n)
N ¢, - ol, (16b)

where the quantities with superscript n are to be associated with the
th | , (n) .

values obtained after the n  iteration and PA is the so-called

residual at the net-point A. Equation (16b) represents the updated

estimate of the net-point potential for the (n+l)th iteration and the

constant o is called the accelerating factor. The iteration equatious

“in (16) are repeatedly used until the values of the residual Pgn) become

smaller than some prescribed value for all the net points.

The iteration method is convergent as long as 0 < a < 2, The
range 0 < a < 1 is referredto asunderrelaxation whereas 1 < o < 2
is called the range of overrelaxation for the acceleration factor.
The convergence of the procedure is most rapid for o somewhere between
1 and 2 (Green, 1965) and the iterative procadu~¢ with o in this range
is referred to in the literature as the method of successive over-~
relaxation (SOR).

The expression for the potential re¢juires a modification at the
interface between air and the dielecuric substrate (see Figure 4b).

The appropriate equation to use instead of (15) (Green, 1965) is

=1 1

Finite difference equations at the various boundary points have been
tabulated by Green (1965) and some general discussion can be found
in a paper by Wexler (1969). Interested readers are encouraged to

consult these publications for further details.
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It is worthwhile to mention that the method of solution of
Equation (15) is by no means the only one available to us. 1In fact

one can derive a matrix equation of the form

©-
[}
o

(18)

L— —_— e .

by applying either (15) or its variants [e.g. (14) I! to all of the
net points in the cross section. The matrix equation (18) can now
be inverted to obtain the solution. However, the disadvantage of this
approach is that a large coefficient matri: is required to obtain a
reasonably accurate solution. Furthermore, since a large number of
the elements of the coefficient matrix are zero, the matrix is very
sparse; the direct inversion of Equation (i8) is numerically inferior
to the SOR technique.

Once the potential at each net~point is calculated, it is relatively
straightforward to calculate the capacitance of the line.

One uses the formula

Q=f o db =f er%gdz (19)

L L
for calculating the charge per unit length where L is the contour sur-

rounding the center strip, n is the outward normal, and €. is unity
if the net-point is in the air and equal to the relative permittivity of the

dielectric otherwise . Equation (19)may bewritten in a discretized forr

as

16
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G P, (20a)

¢, = ¢
3, _'B A "
Ga'p LT @wm (20b)

Irn this case, the prime on the summation in (20a) indicates that the first and
the last terms in the summation are to be halved in order to approximate

the line integral by the trapezoidal rule. The summation over s

implies that the contour is subdivided into s straight sections. The

point Pi is taken along the dotted line (contour) shown in Figure §

(Green, 1965). The capacitance per unit length is readily obtained

from the value of @ by using
c =3 (21)
t

where Vt is the potential difference between the strip and the ground
plane., To evaluate the characteristic parameters, say the characteristic
impedance Z and Ehe pha§e constant B, we need to calculate Co for the
case where the substrate is removed. Equation (6) may then be used
to obtain Z aund 8.

Figure 6 shows a few examples of calculated curves (Stinehelfer,
1968) of 2 for the microstrip line enclosed in a shield (see Figure
1b). For comparison purposes, Wheeler's results for a flat (open)

microstrip line are also shown in Figure 6,
2.4 Variational Method in the Fourier Transform Domadin

This method, which uses a combination of variatiomal technique
and the Fourier transform approach, was first introduced by Yamashita

and Mittra in 1968 for calculating the characteristic parameters of

17
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microstrip lines and other related structures (Yamashita and Mittra,
1968; Yamashita, 1968). It has been shown by the above authors that
the method is numerically very efficient.

For the sake of illustration we consider the shielded double~

layer microstrip line shown in Figure 7. The conventional microstrip

* * %

17 %20 %3
* % * . . .

and d + », where €1s €, and €q are the relative dielectric constants.

line may be obtained from this structure by letting € =1,
Once again we will compute the capacitance per unit length along

the uniform microstrip line. To this end, we first write Poisson's

equation for the potential distribution ¢(x, y) in the cross-sectional

area of the line, For an infinitely thin strip,

vi¢(x, y) = —'% p(x) 6(y = h -s - p)
(2L)

p(x) =0 x| » w/2
where p(x) is the charge distribution on tne strip, ¢ is the permittivity,
and § is the Dirac delta function., Inictially it is assumed that the
spacing between the center strip and the dielectric sheet is p. The
original structure is recovered by letting p = O after applying the
interface and boundary conditions. This artifice is convenient for
separating the boundary condition at the dielectric interface and the
continuity condition at y = h + s.

Next, we introduce the Fourier transform via the equation

¥B) = & f(x) I5% 4y (22)

and transform Equation (21) into the form
d2 21 1\
——5 — B 4B, y) =~ < p(B) 8(y ~h -5 -p) (23)
dy
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where $(B, y) is the Fourier transform of ¢(x, y) and g(B) is the
transform of p(x).
The general solution for y # h + s + p is a combination of
exp(By) and exp(-By). For the limiting case of d¢ » », only the
exp(-By) type of solution is retained in the unbounded region,
Returning to the case of finite d, the boundary and interface conditions

for the transformed potential are given by

$(B, 0) = 0 (242)

(8, h+0) = $(8, h-0) (24b)

k d _ xd _

(8, hts+0) = §(B, hts-0) (244)

* d ~ - :':_d_n.. oy

€q ay ¢ (B, htst0) = €, ay ¢ (B, hts-0) (24e)

$(B, h¥s+pt0) = (8, hstp-0) (24)

* d A _ % d A P

€4 E; ¢ (B, hts+p+0) = 3 3y $(B, htst+p-0) ;. 0 (B)
(24g)

$(B, htstd) = 0 . (24h)

After incorporating these boundary conditions into the general
representation of the solutions, we obtain a set of linear inhomogeneous
equations for the unknown coefficients of potential functions. Letting
p > 0 the solution for the potential on the strip is found to be

§, irs) == 3(B) £(8) (25)
o

where €, is the free-space permittivity and

22




TG RN L2 S

St AN

be
b

TV Ty S R 14 AL o

1
Es
e
S

SRS AT IS T SN i B A o

Dy i PR S

n,
g(B)=

*
!

*

coth(|8|h) + €,

coth(|B]s)

IBI{GI coth(|8|h)[e; coth(lBId)-i-e; coth(IBIS)]+€;[€;+€;COth(IBId)COth(IBiS)]}

(26)

The quantity given by (26) is actually the transform of the Creen's
function evaluated at y = h + s. Also, the product appearing on the
right-hand side in (25) corresponds to the convolution integral in
the space domain. To compare Equation (25) with the corresponding

equation in the space domain, the companion equation is included

w/2
¢(x, hts) = éL'Jf p(x")g(x, x'; ht+s, h+s)dx'.
0 < w2

(27)
The value of the line capacitance, which is the desired quantity,can
be obtained in the following manner from the variational expression.

In the space domain we have

w/2
% = J%- p(x) ¢(x, hts)dx (28)
Q -w/2
where
w/2
Q= f o (x)dx (29)
~w/2

is the total charge on the strip per unit length. Using Parseval's

formula, Equation (28) can be converted into the transform domain

[

- — f p(8> §(8, ts)ds. (30)
21Q

Ol

—-»

The above formula is numerically more efficient to handle than the
corresponding space domain version (28), because $ in (30) is just

a product of two functionrs while ¢ in (28) is a convolution integral

23




represented by (27). This is, in fact, the major advantage to be
gained by the use of the transform technique,
So far, we have considered only an infinitely thin strip.

However, it is possible to approximately extend the method to the

case of finite t providing t is not too large., This is done by replacing

$(8, hts) in (30) by the average of ¢ (B, hts)and ¢ (B, hts+t) where
g(S, h+st+t) is the potential distribution at y = h + s + t. The

expression for the transform of this potential is

Bi6, meste) - SLLEHE - OL 3ip, ). (31)

The line capacitance may now be expressed as

o«

; f S(B) §(8, hts) K(p) dg (32)

-00

1
27Q

Q=

where

e =%{1 . sinh[]8l(d - 0l

sinh([B[d) (33)

The final form of the line capacitance including the strip thickness

is

o

- f (3@1% 58 e) ds. (34)

Qe
Qe, 7,

Q=

The unloaded line capacitance C0 is obtained by letting

* *
€, = €

* =1 in (34
l - 11‘1( )o

27 %3
Although 3(8) is still unknown, the variational nature of (34)
introduces only a second-order error when an approximate form of

3(8) is substituted into it. Since the stationary expression (34)

gives an upper bound of 1/C, the calculated value of C is always

24
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smaller than the correct value. Hence the choice of 3(8) that
maximizes the value of C clearly yields the result that is closest
to the exact value for the capacitance. Several trial functions for
this problem have been tested by Yamashita and Mittra (1968) and
Yamashita (1968),and numerical results have been reported for two

different trial funccions. These are

], -Lcxcd
1) o(x) = -2 2 (35a)
0 otherwise
Ny
p(B) _ 2 sin(B w/2) |sin(B w/4) | 2
Q B2 *[ B wik ] (35b)
1+ |2x/w|3, -%f_xf_-‘é’-
(2) p(x) = (36a)
0 otherwise
oy
p(8) _8 |sin@®@w/2){ __ 12 cos (B w/2)
Q 5 { B w/2 } 5(8 w/2)2 {
2
_ 2 512(5/3/2) 4 sin (B w/4) ‘ (36b)

8 w/4)?
Figures 8-12 present the numerical results for the microstrip
lines where e: = e; = e*, eg = 1 and d + », The trial functiom in
(35b) has been used for computing these data. Figure 9 presents a
comparison of the results obtained by this process with those of
Wheeler. In addition, a comparison with the experimental results
obtained by Arditi (1955), Dukes (1956), and Hyltin (1965) is
exhibited in Figures 10 and 12. Numerical results for the shielded
microstrip line were calculated using the expression in Equation (36b)
for the trial charge distribution. These data are presented in
Figures 13-16, Typical computation time was less than 10 seconds

on an IBM 7094 computer. 25




L e

R

(F

VWAL,

[ e e g A IR LA ST SRR Lo e AL R i S R AT P o, ...‘.cstﬁ,“yfﬁ \’?ﬁ ﬁg 5’% RGN
s
.

“/

T TTTIY

cre,

Figure 8. Line capacitance versus strip width and strip height.

.

26

PO

e

_ =%




e e B SRR R S TR I TN B A o] My i o
- - oy a LR P (R IRt i Taw e

- THIS THEQRY
- .
230 €+ 100 -+—— MODIFIED
N CONFORMAL
|, MAPPING
200} ts 0
z 150} €tan7
, [
5 "
\ 100 -
b
80 |
L
o- L2t aan] Lt 1 181} [ I N R
0’ 0" ' 10
W/ly

Figure 9. Calculated result for characteristic impedance and comparison

with the results by Wheeler (1965).

e e ou S S A T

AT I I PR T SRR R O RPN ISR TN
e ORYPLET .

27




» a
€263 €10 e THIS THEORY

AbLAA EXPERIMENT
(L))
XAXXXX  EXPERIMEINY

(€"v4 20)
200 |- *

teO

(1)}

100 |—

| |Lllll| | I I_LLuI
2 -1

10 10 I 10

Figure 10. Theoretical and experimental characteristic impedance for
various dielectric constants. Experimental results are
those of Dukes (1956) [AAAA] and Arditi (1955) [xxxxx].

P o s Se er s IR

LA CDRFRWRAEY

ST

TR

AT ETRAPGE

28

2
‘
i

t
.

B




10
i te 0
oree
€ r420
Ao €990
L " ai7 \
€' r200 T —— ]
\
L 1310
° 1 llllllll 1 1 lllllll 1 1.1 124t
10° 0! 1 10
W/h
X
£
5%

Figure 11, Guide wavelength versus strip width and strip height.

29

. o

i




8 € onr e THIS THEORY
100 |-~ VA0 00 sosses  EXPERINENT
002
] 004
i
5 W%
4
193]
5 L
rd
4 b
B I3
* 0 1 Ll it 4 11 311 t1 1] 11 L el
16° 6 1 10
w/h

Figure 12. [heoretical and experimentzl results for the effect of strip
thickness on characteristic impedance with e* = 11,7, The
experimental results are those of Hyltin (1965),

RIS RS

(A

30

e

SN A R L

Wi

0 A

A




Figure 13.

00

(9)

The calculated characteristic impedance.
sg =13 s =0; t =0,

ei = 9,9 (Sapphire);

17heQ 02

Figure 14. The calculated characteristic impedance. si = 9,9 (Sapphire);
e§ =1; s = 0; t = 0.02h,

! T Sl

31

. R - ST g %L";""W” - -, 27w
N s - Sa N - SRR ) B A R g, i 3T D
L %%ﬁﬁ%&”i}éﬁﬁﬁzﬁﬁﬁﬁé%WQﬁﬁﬁﬁﬁﬁﬁﬁftufﬁfz_ﬂ__gﬁi}>abw

4

"
- B
1= P O oL o O TN L PP tgu it
A T A ,«ﬁ‘«.nm& DR A Ee bl St 1
2t T iy AW

S
L .
ST RN




i

SEA

PRSI
i int
B ]

el

e G

=

T
ANt iin

&

VA ik
EE i gt

S

.

)

0s

, Tno v
o4 = o
M, otz ===
d/hes P
03 d/hs @
02 1 1 dowwdenlodod 12 L i e
[o]] | (o]
wh
Figure 15. The calculated guide wavelength, ef = 9,9 (Sapphire); ¢
s=0; t=0.
[+}-]
1/hs002 a/het
pd
04— ——
AN, d/n’-ﬁ%:
.7/ €]
o3f " d/he o
, e g .
020' 1 10 .
w/h .

Figure 16.
s = 0; t = 0.02h.

%,
AR e s, T e A INELERES ag SR s o R e b

The calculated guide wavelength, e¥ =

1

9.9 (Sapphire); eg =1

*

w

=l;

.
b




Before terminating this discussion, it will be useful to present
4 a systematic procedure for improving the approximate solution for the

charge distribution., This is accomplished via the application of

5 Galerkin's method or Rayleigh-Ritz procedure in the transform domain
; (Ward, Mittra, and Itoh, 1971)., The procedure is outlined in the following.

E Let us first rewrite Equation (25) as follows

n, Y
| §5(0, bts) 6 @, n+s) = == 5(B) E(B)  (37)
4 0
8
? where
: w/2 )
s 31(8, hts) = o(x, hts) eIF* ax (38a)
: ~w/2
5 -w/2 ®
¥ $0(8, hts) = ¢ (x, hts) eIB% Gy 4 J( é(x, h+s)eJSX dx.
?
3 - w/2
: (38b)

TR

It should be noted that $i is known since ¢(x, hts) is given for

n,
|x] < w/2 on the strip. However ¢,» the transform of |x| > w/2, is not known

BN

I
Eriisert,

since ¢(x, hts) dis as yet unknown for ]xl > w/2 (outside the strip).

P

b The next step is to apply Galerkin's method to Equation (37). To this
1

3 N

; end p(B) is expanded in terms of known basis functions Sn(s) with the
% following unknown weight coefficients

N

> N - a

0 (B) ) c, 0. (B). (39)

K n=1

i We choose the basis functions Sn(B) such that their inverse transforms
3 have finite support in the space domain, i. e.,

; L Ve 3B o N

£ P (¥) = o= f 0, (B) e dg = 0, x| = w/2,

3 -

(40)
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Next Equation (39) is substituted into (37) and the inner product is
taken of both sides of the resultant equation with En(e), n=1, 2, « ¢+ -,

This leads to the following matrix equation

N
bm=21<mncn m=1, 2, « ¢ *N (41)
n=1
where
@ W/2
. 5 (8) §.(8, hts)dg = == h+s)d
b = pm(B) ¢1<B’ s)dB = e pm(X)cbi(x, s)dx
- ~w/2 (42a)
_ _1_ N ny n,
n - : f om(B) g(B) on(B)dB- (42b)

It should be mentioned that (42a) has been derived via the use of
Parseval's formula. An application of this formula helps to eliminate
unknown $o which is no longer present in (42a). The integral of the
product 30 and 3m does not contribute to (42a) because the inverse
transforms of these functions are nonzero in complementing regions
only, and hence their product is identically zero.

The next step in the solution is to invert the matrix Equation (41)

and solve for the coefficients h The line capacitance can then be

obtained in terms of the <, by using the formula
LN w/2
o Z . pn(x)dx (43)
t n=1
-w/2

C =

where Vt is the potential difference between the strip and the ground

plane.

It is well known that the expression in (43) gives a stationary

value of C and that the accuracy of the result may be improved by
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increasing N. Experience has shown that the increase in the accuracy
is usually rather slow after initial improvement when N is increased

from a very small value.
2.5 Integral Equation Method

So far we have discussed three different techniques for determining
the characteristics of the microstrip line. Two of these, viz., the
modified conformal mapping and the variational methods find their
principal use in the cases where the center strip is thin. However,
for some practical microwave integrated circuit structures, the effect
of finite thickness of the center strip cannot be neglected.

Since the relaxation method is principally a numerical technique,
it can be applied to the case of the arbitrarily thick center strip.
However, as mentioned earlier, the drawback of this method is that
its numerical convergence is rather slow.

In this section, an integral equation approach will be presented
that can be used to solve the thick-strip problem in a numerically
efficient manner (Yamashita and Atsuki, 1970). Consider the cross
section of the transmission line shown in Figure 17. The potential

satisfies the Poisson's equation.
2 1
Vo, y)==celx, ¥). (44)
Define a Green's function G(x, y,; X s yo) via
v26(x, ys x , y) = - 8(x -x) 8(y -y)  (45)
t s Vs o’ yo e o y yO

where G satisfies the same boundary and continuity conditions except

for the source condition. The Green's function is the potential at
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Figure 17, Cross-sectional view of thick-strip transmission line with
multi-dielectric layers and shielding structure.
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the point (x, y) due to a unit charge located at &0, yo). Applying
the superposition principle, the potential function ¢(x, y) in (44)

may be expressed as

o(x, v) =S G(x, y; X yo)p(xo, yo)dio (46)

where the integral is defined over the conductor surface.

To find the Green's function we proceed as follows: First, we
expand the Green's function in a Fourier series in the x-coordinate.
Next, the partial differential equation (45) is reduced to a set of
ordinary differential equations of the variable y. The solution of
each ordinary differential equation in each region of dielectric
materials is a linear combination of hyperbolic functions. When the
boundary and interface conditions are applied to each of these solutions,
the amplitude coefficients of these functions generate a set of linear
inhomogeneous equations which are subsequently solved for the unknown
amplitude coefficients. Substituting these coefficients in the equation
for the Green's function completes the derivation of the desired
expression for the Green's function. When the source located in the
range hl + h2 SV, L b and the boundary condition at the outer conductor
is G = 0, the expression for the Green's function is given by (Yamashita

and Atsuki, 1970, 1971)

A (y -h, -h,)
2 2 b~y
(%, yiXys ¥o) = ) nue¥ - OA (hl) sinh | - a ) :
n=1 3 3

k™ nmx
+sin (—) sin (=), hy+hy <y <yb
S N\ S RAIIRLY
= ) —~3 TN sinh [ — ]

n=l 773 n 3

% nnx

sin (——) sin ( —;—L hy+hy o v oy b
37 (47)
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where

nrh mrh2

—=) sinh (1‘?)

% % nnh1 mrh2 nay.
9€3 sinh ( 5 ) cosh ( P )} cosh ( 2 )

% % nth nrnh

+ ¢,.e, cosh (

1 2
371 a ) sinh ( a

-) cosh (E’all’)

%2 nwh nrh
+ €y sinh ( 3 1 ) sinh ( 2

a

) sinh (1‘21).

(48)
The representations of the Green's functions for the first- and second-

*
dielectric regions have been omitted here as they are not needed for
subsequent derivation.

By following the conventional methods for deriving the integral

equation for the charge distribution, one arrives at the desired equation

$(x, y) =V =171 G(x, y; xO’ yo)p(xo, yo)dzoo
(49)
The equation can now be transformed into a matrix form by the counventional

discretization procedure. The results obtained by solving this matrix

equation are presented in Figure 18,

Typical computation time of the characteristic impedance per one

structure is about 30 seconds when the strip conductor was divided into

30 sections (Yamashita and Atsuki, 1971).

2.6 Generalized Wiener-Hopf Techniques

2
e b

In contrast to some other approaches, the method to be described

28 s n

However the interested reader may find the pertinent expressions in
Yamashita and Atsuki (1970).
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Figure 18, Characteristic impedance of thick-strip line of Figure 17;
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below is useful for deriving accurate numerical results for both the
charge and the potential distributionsfor the microstrip line shown
in Figure 7. The technique was presented in a recent paper by Mictra
and Itoh (1970). The starting point is the equation for the charge
distribution p in the transformed domain. This equation, which was
derived earlier in Section 2.6, is reproduced here for reference

purposes, The transformed equation reads

L S@®E® = 8, hts). (25)

)

A semirigorous rather than variational method for solving this
equation will now be discussed. Note first of all that the potential
of the center strip is one volt. Thus, we can write the potential

function at y = h + s, 1. e., in the plane of the strip, in the form

d(x, hts) = h(x-3) Ux = 3) + [U@x + ) - U&x -] + h(=x - ) U(-x = 3)
‘ (50)
where h(x) is an unknown function representing the potential distribution
at y=h+ s for lxi > w/2, Also, U(x) is the unit step function with
the usual definition y(x) = 1, x » 1 and zero, otherwise. The Fourier

transform of ¢ (x, h+s) can now be written as

sin(B8 w/2) + eij/Z ~jBw/2

38, hts) = 2 -

H,(8) + e " “H (-p)

(51)
where H+(B) is the Fourier transform of h(x)U(x). The subscript +
has been introduced to indicate that H+(8) is regular in the upper half
of the complex f~-plane. We also pote that in view of the symmetry
in the space domain % is symmetric in B in the transform domain.

Substituting (51) in (25) we get
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-jBw/2

H (8) + e H,(-8)  (52)

which is the desired equation to be solved for the two unknowns p(B)
and H+(B)o This can be done by an extension of the Wiener-Hopf
technique introduced by Mittra and Lee (1971). In order to extract
the solution for the two unknowns from a single equation, we must make
use of certain additional information available to us. Firsrt, 6(8),
which is the Fourier transform of a function with a finite support

in the x domain,must be regular in the entire finite regicn of the
complex B-plane. Second, the othar unknown H+(B) must have all of its
singularities only in the lower half of the g~ plane. We will now
show how these analyticicty properties of the functions involved may
be put to advantageous use for constructing a matrix equation that

is capable of yielding accurate solutions in an efficient manner,

As a first step, §(6) is rewritten as follows

l_&.z_ 1_§E

B2 Yz

n n

é(e) =K 5 (53)
n=1 1 - &
2
(s

n

where K0 is a known constant; lm(an) - 0, Im(Bn) 0, 1n(yn) > 0, = a
are the poles; and B, Y, are zeros of g(ﬁ). Since both o(R) and

the first term of the right-hand side of (52) are regular in the finite part
of the B-plane, the lower half-plane singularities at 8 = ~an c¢i the
lefrc-hand side of (52) must coincide wich the poles of H+(8) Likewisre,

the singularities at B = +an must be coincident with the poles of H+(-B)'

Furthermore, H+(B) and H+(-B) can have no other singularicies.
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Substituting (53) in (52) and evaluating both sides of the

resultant equation at B = Bm, B=y ,m=1, 2, + + « » ye obtain

m
E cn : cn l- J\m
—n 4y 7 = — (54a)
n=1 an - 6m n n=1 0n + Bm JBm
m=1, 2, ¢« ¢ ¢+
E ch g c, 1l - &m
- + £ = (54b)
n=1 0(n Ym n n=1 0ln + Ym ij
where
jB w jy w
- m - m
Am = e R gm e . (55)

The solutions of the simultaneous equation of the type (54) have
been discussed in a number of recent publications (Mittra and Itoh,
1970, 1972; Mittra and Lee, 1971) and will not be elaborated on.

The essential step in deriving the solution entails the construction

of a complex function f(w) with the following properties:

(a) f(w) has simple poles at w = @, 0= l, 2, « ¢« « » and at

w = 03

it
o

() £(8,) + ) F(-8)
m:]_’z’oo-oc

f(Ym) + Emf(~ym)

|-3/2

1]
o

for |wl - «j

(c) f(w) |w

(d) the residue of f(w) at w = 0, say Rf(O), is -j. If such a

function is available, then
C'ﬂ = Rf (U-n)n (56)
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The function f(w) may be expressed as (Mittra and 1Itoh. 1970)

f(w) = Kf (w)P(w) (57a)
° poafy o
Lw * Bn \ Yn
f (W) =¢e n (57b)
© n=1 (l i
"
n

where K is a constant determinable by the application of condition (d)
above, and P(w) is
F

P(w) =1+ | “w +
n=l 1 - B
n

G
n

n=l 1 -2
Y
n

. (58)

HEe- R

Fn and Gn are as yet undetermined. The factor eLw in (57b), in which
L is a known constant, ensures the algebraic nature of fo(w), viz.,
ORI

There still remains the task of determining the infinitely many
unknown constants Fn and Gn' However, the summation in (58) can be
effectively truncated at a finite number, say n = N, with N small,
because xnandgm decrease exponentially wath m as gnandgm have positive
imaginary parts. Hence, for n > N, the condition (b) can be satisfied
by f(em) = f(ym) = 0., There are now 2N unknowns Fn and Gn These
may be obtained by substituting f(w) in the condition (b) followed
by the inversion of the resultant matrix equation for Fn and Gn.
Typically, highly accurate solutions are obtained with a matrix size
2N equal to 10 or less. This is due mainly to the fact that the
asymptotic nature of the function £(w) is incorporated in the solutiun
process making the series representation a highly convergent one

Once the function f(w) has been generated, ¢, can be obtained by

taking the residues of f(w) at w = e H+(B) and ¢ (B) may be readily
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obtained once the coefficients c, are known. The potencial distribution,
e. g. at y = h, and the charge distribution on the strip are obtained

by taking the inverse transforms, specifically

® janx
h(x) = -5 } c, e {59)
1=l
p(x) _ L I R RN A (/R0 B N U )
=x ti 4 Py £(-8 ) |e +e
Fo o n=1 g(8)
B*Bn
Y, o B8 an[(w/2)+x] jyn[(w/Z)-x]
+ A : f(-Yn) e + e (60)
g(8)
&*Yn

Figure 19 shows the potential and charge distribution in the shielded
microstrip line (Mittra and Itoh, 1970).For a shielded line (60)

becomes

+ ) = ¢(-5 )
n=1 \ jh Qn

- [ 38 [/ 2)4x] j%[(w/Z%x]]
T e + e

+

S;Ym iv, [ (w/2)+x] ij[ (w/2)-XJ]

34 f(-Ym) [e + e (61)

The infinite series in (59), (60), or (61) converges very efficiently
because of the decaying exponential multicative factors appearing

in the summation terms. It is interesting to note that the first

two terms in (61) correspond to the parallel plate capacitance while
the infinite summation represents the edge capacitance. Thus, the
fringing effect is accurately estimated by the application of this

method.
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Figure 19. The charge distribution on the strip and the potential distribution
at y = h, ef = 9,9 (Sapphire); sg =1; s=0; h=d; w=d.
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Furthermore, a knowledge of the rate of fall~off of the potential

away from the center strip is useful in estimating the coupling

between two adjacent lines on the same substrate.
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III. WAVE THEORY ANALYSIS OF MICROSTRIP LINES

3.1 Preliminary Discussion

In the last section a number of quasi-TEM techniques were presented
for calculating the characteristic parameters of microstrip lines,
However, strictly speaking, since the wave velocity in the dielectric
is different from that in free space, it is aot possible to support
a TEM mode in the structure. In fact, one zan show that not even
pure TE or TM modes can exist in the structure but that it can
only support a hybrid mode (i. e., one in wiich both the longitudinal
electric and magnetic components are nonzero} This can be seen
rather easily from the following consideration Consider the cross
section of a shielded microstrip line shown in Figute 20. 1If the
center strip 1s removed from the waveguide, it reduces to a partially
filled guide that can support longitudinal section electric (LSE) or
longitudinal section magnetic (LSM) types of mode (see for instance
Collin, 1960), but not a pure TE or TM mode. The insertion of the
center strip in the waveguide causes currents to flow in both the x-
and z- directions on this strip. These, in turn, serve to couple the
LSE and LSM modes so that the final mode configuration in the shielded
microstrip line is hybrid in nature.

Although this fact has been ! ecognized for quite some time
(Deschamps, 1954; Wu, 1957), a rigorous full-wave analysis of the
dispersion characteristics of the microstrip line was not carried out
until quite recently, The following paragraphs will describe a
number of these full-wave techniques suitable for calculating the

dispersion characteristics of microstrip lines at arbitrary frequencies.
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Figure 20. Cross section of the microstrip line in a shielding case.
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We will begin with the hybrid-mode analysis of the shielded

version of the microstrip line and follow this with a discussion of

the open microstrip line. The important steps in this analysis are

(i) Representation of the field components in terms of E~
and H- type of scalar potentials;

(ii) Application of boundary and interface conditions to the

field components;

(iii) Derivation of a characteristic equation for the propagation

constant in the guide; and finally,

(iv) Solution of the characteristic equation and computation of

the dispersion (k -~ B) diagram.

3.2 Shielded Microstrip Lines

Figure 20 shows the cross section of the shielded microstrip
line. The center strip is assumed to be infinitely thin and

perfectly conducting. In addition, the dielectric material and the

metal shielding are assumed to be lossless., It is well known that
the hybrid field components can be expressed in terms of a super-
position of the TE and TM fields, which are, in turn, derivable from

scalar potentials W(e) and W(m) (Harrington, 1961). The total field

can be written as follows:

K2 . g2
— i (e) -jBz
E ;=3 —F— ¥ (x, y) e (62a)
2 2
k, - B8 .
P | (h) -jRz
Hzi = j 3 Wi (%, y) e (62b)

(e) -jBz _ wu . (h) ~jBz
ti Vtwi (X, ¥) e -3 2x VtWi (x, ye (62¢)
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E Hti = —Ei zZ x Vtwie)(x, y) e 8z + VtW§ )(x, y) o sz. (62d)

The parameter § in the above equation is the unknown propagation constant,

2 is the z-directed unit vector, w is the operating frequency

kl = W [e €U, k, = w\/eouo R (63)
€, is the relative dielectric constant of the substrate, and € and
u, are the permittivity and permeability of free space, resvectively.
The subscript t in Equation (62) denotes the transverse coordinate

variables x and y and the superscripts (e) and (h) are to be associated

!
b
A
x4
)
“
o
s

7a

%

with the T™ and TE types of fields, respectively, The subscripts i =1, 2
serve to designate the regions 1 (substrate) or 2 (air).

From the symmetry of the structure, it is clear that two orthogonal
sets of modes exist, one of which has a symmetric Ez and an antisymmetric
HZ component (Ez even - Hz odd) while the other is characterized by Ez odd -
H2 even, The dominant mode is the lowest order Ez even - HZ odd mode which
approaches the quasi-TEM solution for low frequencies. In what follows
we consider only the EZ even - HZ odd modes, although the methods

presented here are equally applicable to the other types of modes as well.

3.2.1 Various methods for solving the shielded microstrip lines

4 (a) Integral Equation Method
§ The scalar potentials Wie) and Wih)satisfy the two-dimensional

wave equation in region 1 and 2 as well as the requirement that the

et

total tangential electric field derived from them vanish on the

TR

: metallic periphery of the box. An additional boundary condition is

- that “he total tangential magnetic fields vanish at the plane of
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symmetry x = 0, In view of the boundary conditiouns on the side

walls, it is appropriate to write

Wie) = E Aﬁe) sinh ail)y cos an (64a)
n=1

wge) = nzl Bée) sinh aiz) (h - y) cos ﬂnx (64b)

Wih) = 2 Aih) cosh aﬁl)y sin ﬂnx (64c)
n=1

v - nzl B cosh ol (n - y) sin k x (64d)

where ﬂn = [n - (1/2)) #/L,
a(l) = ///ﬂz + 82 -¢€ k2 .
n n ro

a(z) - ///kZ + B2 _ k2 :
n n o
with ko =W /aopo,the free~space wavenumber. The coefficients

A(e), A(h)
n

n Bée), and Béh) are as yet unknown,

The total fields derived from Wée) and Wéh) must satisfy the
interface conditions at y = d. Imposing these on the symmetry

conditions with respect to the y axis, one arrives at the following

four conditions which are mutually independent.

(1) Ezl = E22 0<x <L
(2) Exl = Ex2 0<x <L
(3) (a) Ezl=0 0<x<t
(b) Hx1=Hx2 t < x<L

51

St s oS i B L el ‘g&’ﬁ‘ e ows h e R R AR Rl

eSS

1
H




%) (a) Exl=0 0<x<t
(b) Hzl = 132 0<x<VL,

These conditions are now imposed on the field components derived
from (62) and (64). By using continuity requirements at y = d and
applying the conditions that Ez and Ex vanish on the center strip,
one obtains a pair of coupled homogeneous Fredholm integral equations

of the first kind (Zysman and Varon, 1969). These are given by

T @) 1 b cos hede + @) £ b (E) sin kgdelsin hx = 0
=1 0 o 1 n n ¢ 2 n ) n
(65a)
E [G(B)(B) ft h, (&) cos ﬂ £d€ + G(4)(B) IL h,(£) sin ﬁ £dg]cos ﬂ x =0
=1 P o 1 n n . 2 n n '
(65b)

Here Géi)(B),i =1, 2, 3, 4 are known functions of B, and the

functions h1<g) and hz(&) are unknown functions of §. These

equations may be transformed into a matrix equation algorithm. The roots
of the determinantal ‘equation of the resulting matrix may be

sought with the aid of a digital computer to yield the desired values

of B.
(b) Singular Integral Equation Method

The singular integral equation method is known to provide
efficient solutions to a number of diffraction grating and waveguide
discontinuity problems, e. g., an iris diaphragmin a waveguide.

Recently, it has been shown that this technique can be advantageously

employed to solve the problem of dispersion in a shielded microstrip
f line (Mittra and Itoh, 1971). The beginning stages of formulation
: in this method are identical to the one presented in the previous

section; in fact, the starting point of this method is Equation (64)
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of the last section. However, from that point on, the singular
integral equation method deviates fundamentally from the conventional
integral equation approach. A matrix equation is also derived in
this method but it is totally different in character and much more
efficient for extracting numerical solutions than the one obtained
from (65).

The first step in the singular integral equation approach is
to employ the conditions (1) and (2) to express B( e) and B(h)

of Aé e) and Agh). The imposition of conditions (3) and (4) then

in terms

leads to the following coupled equations for the coefficients A( e)

and A( n)
n

m -~
X X(e) cos kx=0 0<x<t (66a)
nel B n

A(e) k P (B) cos k X Z A(h) k T (B) cos k X = 0

B~ 8

n=1 n=1 (66b)
t<x <L
o] o]
z (e) k sin k % 2 Kﬁh) kn sin knx =0 0<x<t (66c)
n=1 n=1
S T(e) . ) .
—(e . - . _
nzl An Qn(B) sin knx - nzl o Wn(B) sin knx =0
(66d)
t <x <L
where
2@ _ale) iih o g (67a)
n n n
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o
A Jew m () oDy (67b)
n B K n n
n
and Pn(B), Tn(B), Qn(B), and Wn(B) are expressed as follows:
a(l) ) £~ EQ a§2> )
P (B) = ¢ An coth o'~ ’d L — coth o (h -~ d)
n r n =2 n
k 1- 8"k
n n
ﬂ l-¢
+ EQ ?2) —*—f:g coth aéz)(h - d) (68a)
1-8
k k
_=2|"n (1) n (2) , _
Tn(B) =B a(z) coth o d + B) coth o (h - d) (68b)
n ®n
Q l1-¢
Qn(B) = ?2) _? coth aéz)(h - d) (68c)
e 1 -8
€ B’ lA‘n 1) 1A‘n (2)
W (B) = coth ¢ " ’d + —=+ coth o (h - d) (68d)
n 1 - 75-2 a(:) n 0Lr(12) n

where B = B/ko is the normalized propagation constant.

At this point Equation (66) may be transformed into an infinite

set of homogeneous simultaneous equations for Kﬁe) and Aéh) via the

conventional technique of taking a scalar product with a complete

set of functions appropriate for the various ranges in x. The

solution for B8 may then be determined by seeking the zeros of the

;; determinant associated with the above matrix equation,

2: We will, however, depart from this conventional procedure and
instead transform (66) into an auxiliary set of equations with

s rapid convergence properties. To this end, (66a) is first differentiated

with respect to x and the resultant equation is substituted into (66c).
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This yields

]
o

© __( ~ ~
z A‘e) k. sin k x 0 <x <t (69a)
n n

=] n

~

[+ _.h -
) al ) k sin k x
L " n n

1]
[}

O<x<t, (69b)
Similarly, differentiating (66d) with respect to x, we have, after
some rearrangement

) Kﬁe) k, cos k x = £(x) t<x<L (70a)
n=1

Z Kﬁh) iu cos ﬂnx = g(x) t<x <L (70b)
n=1 ’
where
o _ - h N
fx) = mzl (amAée) + bmAé )) cos kmx
g(x) = mgl (cmzée) + dmxéh)) cos ﬁmx
and
N P (B)W(B) ~ T(B)Q (B)
a = k 1 --1 Qm ] (71a)
" P(BYW(B) - T(B)Q(B)
b ek Em(B)W(B) - T(B)Wm(B) (71b)
™ p(RW(R) - T(RQ(R)
. ot P(B)Qm(B) - Pm(B)Q(B) _
TN P(BW(B ~T(B)Q(B)
R P(B) Wm(B) - Tm(B)Q('B)
d =k |1 - . (71d)
moonm P(RW(R) - T(B)Q(B)
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The functions P(B), T(B), Q(B), and W(B) are the asymptotic limits of Pm(B),

Tm(B), Qm(B), and Wm(B) as m > », Explicitly,

€ - EQ - l-¢
P(B) = ¢ + —% — + B _; (72a)
1 -8 1-8
T(g) = 28° (72b)
1l - er
Q(R) = =) (72¢)
1-8
e - B
W(B) = ———5 + 1 (724)
1-8

It should be pointed out that Equations (69) cud (70) -ce similar to
those obtained in connection with the quasi-static formulation of the iris

discontinuity problems in a waveguide (Lewin, 1966). Their most important

characteristic is that the pairs (6%9a), (70a) and (69b), (70b) are exactly

invertible via a singular integral equation approach. That is, it is

possible to express the coefficients Kfe) and Kﬁh) in terms of integrals

involving functions in the right-hand side, viz. f(x), g(x). In the

capacitive discontinuity problem, the right-hand side is known and the

unknown coefficients are determined in this manner., In the present case
the functions f(x) and g(x) themselves contain the unknowns Kﬁe) and
Xﬁh) and the result of the inversion of (69) and (70) is a homogeneous

set of equations, leading in turn to an eigenvalue equation.
Following the standard technique of solving the singular integral

equations with the requirement that the tangential E fields are zero on the

strip, we obtain the following equations:

©

~

o]
J (k6 =-aD -MKIE®D -7 oD +8KIEAM =g
m=1 P PM m pm mp m ae] T PR np’n

(73a)
p=l,2,"'
©

<]
) SRR )Kﬁe) *f ks - 4 Den = YK )Zﬁh) =0
m=1 1 n=1 149 (73b)
q=1, 2, + »
where Gpm is the Kronecker delta, and all other quantities are as follows:
L
D =f f (x) sin k_x dx
nm m n
t
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L X
9 cos 5 ~
Kn = T sin 6 sin knx dx
t
2 ™= m-l cos O
fm(X) = i cos E[qzl qu sin q6 - Pmo m]

The relation between X and & is given by

at

1% _ 1 oos TE . 1y 4+ L
cos - =3 (cos A 1+ 2 (cos I

+ 1) cos 83

the coefficients P are
mq

~

m-1 cos kmx
Z Pm cos q8 = ————— .
q=0 4 cos klx

All other quantities Mm, Nm, Xm’ and Ym are constants proportional

to a s bm’ C o and dm. The detailed derivations of these quantities

may be found in Mittra and Itoh (1971). !

The solutions of the determinantal equation corresponding to

(73) are the desired values of B — the propagation constant.

s
3
Y
.
ol

Although (73) comprises a doubly infinite set of equations, we can

BSCEOCY

- - R T T AT R TR N TP R R S e s
R T T ST T, AP O R R R -

truncate the associated matrix to a small size since as bm, € dm

as well as Mm’ Nm’ Xm, and Ym decrease extremely rapidly with m.

This can be seen by observing that the asymptotic behavior of these

coefficients predicts an exponential decay. For instance, a contains

difference terms of the type P(B) - Pm(B) and Q(R) - Qm(B) in the

numerator. For large m,

a(l) 0‘(2)
P(B) - Pm(B) =€ 1 - ﬁm coth a;l)d te, {l L COdléi%h - d)
m m

a exp[— -Q—HLT——]'—)-E d] + exp [- -(—2—m—;——lﬁ- (h - d)]>~ {-26r + 0(m~2)),

The behavior of Q(B) - Qm(B) is similar and it follows that a

decays exponentially for large m., Similar comment: apply to the other
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coefficients as well.
As will be demonstrated shortly, retaining only a single
equation from each set is sufficient for accurate computation of

numerical results. Using the fact that D,, = 0 (Mittra and Itoh, )

11
1971), the determinantal equation of the truncated set may be

explicitly written as

~

B B KIh - 1.3 B X (3 & =
D(B) = [k, - M, (B) K [k - Y,(B) K1 - N(8) X, (8) Ky = 0. (74)

Clearly, this equation is much easier to handle than the
determinantal equation of a large-order matrix that results from
conventional processing of (65). Though the derivation of (74)
requires advance analytical processing, this effort is more than
compensated for by the numerical efficiency that results due to
the simplicity of the characteristic equation.
(¢) Fourier Analysis Method

In this method, the imposition of the interface conditions to
Equation (64) is carried out as follows (Hofﬁsby and Gopinath, 1969a):

The continuity condition on EZ for 0 < x < L is satisfied by choosing

«% - 8% Aie)sinh ar(ll)d = &2 - 8% Br(le) sinh aflz) h - d).
(75)

The remaining interface conditions (2) - (4) [see paragraph following

Equation (64)] can be satisfied by equating the functions Fl’ F2, ?
and F3 to zero. These functions are given by :
BHzl 2
F,(x) = {(H; - H ,) D(x) + 3y (1 - D(X)]}}7=d (76a) :
8Hzl
F2(x) = {(Hyl - Hyz) D(x) + 3y (1~ D(x)]}},=d (76b)
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F3(x) = {G&l - sz) D(x) + E2 i - D(x)iid (76¢)

where D(x) is a function which is zero on the strip and unity outside oi
the strip. The required conditions are met by constructing a complete
set of functions and requiring each Fi(x),i =1, 2,3 to be orthogonal

to every member of the set., A suitable complete set of functions

may be chosen as

mnx mrx

sin I s cos - m=20, 1, 2, « ¢« »

and the orthogonality condition is

L sin
mrx

S P, ('—I:—) dx =0 i=1, 2, 3. an
-L . cos

In the actual computation the infinite series in W(e) and ?ih), given

i
by (64), are truncated at some finite value of n, say N, Substituting
the expressions for Fi(x) into Equation (77) and performing the

necessary differentiations and integrations, there results a homogeneous

set of 3(N + 1)/2 linear equations for the unknowns A(e), Aéh)

» , and
5 ()
n

. In order for a nontrivial solution to exist, the determinant
of the coefficient matrix must vanish. Since this matrix is a known
function of 8, the dispersion relation can be derived by seeking the
value of B that makes the determinant vanish. In actual calculation
by Hornsby and Gopinath (196%9a), N was chosen to be 10 and 20, The

deviation between these two choices of N i'as found to be less than

2 per cent,
(d) Finite Difference Method

The finite-difference method, which was discussed in connection with
the quasi~TEM solution of the microstrip line problem, can be easily
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extended to apply to the shielded microstrip line being investigated
in this section (Hornsby and Gopinath, 1969b). As a first step toward
applying the finite difference method to this problem, the cross
section of the microstrip line shown in Figure 20 is discretized into
a lattice form with the separation between the adjacent net-points
equalling Ax and Ay in the x- and y-directions, respectively., Next,

one defines the discretized potentials as

Wéﬁ) = w(e)(mAX’ ndy), Wég) = W(h)(mAx, ndy)

and uses these definitions in the wave equations

vfw(e) + (ki - 82) y(® g (78a)
i=1,2
vﬁw(h) + (k?L - g%y (™ g, (78b)
This leads to the discretized equations of the form
(e) _ 2y yle} _ y(e) y(e) (e) (e)
Aivmn =2(1+RY) Yo m+1 n m-l n - & wm n+l R li’m n-1
(79a)
(h) _ (h) (h) {h) (h) _ ,2,(h)
i = 21 + R ) Yo m+1 n lym-—l n R ym, ntl. R wm,n—l
(79b)

where

= (ki - 62) 8> s R = ax/ay.

The expressions in (79) are appropriate for the interior netwpoints.,

The boundary conditions and the resulting equations must be modified

when applied to the net—points that are located on the boundary or

at the interface.

After properly applying the discretized version of the wave equation
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and the boundary or interface conditions at all of the net-points, one

obtains a matrix equation of the form

Adp = 2o (80)
. (e) (h) . .
where ¢ is a vector whose elements are ¥ or¥ sand A is A, with
mn mn i
i =1 or 2, The coefficient matrix A is sparse and has the size

2(MN ~ 1) x 2(MN - 1) where MAx = L, NAy = h, The matrix eigenvalue
equation (80) can be solved by one of several standard algorithms,
e, g., the relaxation method.

As pointed out earlier, there are two main advantages of this
method: (i) the algorithm is straightforward; (ii) it requires
a negligible amount of analytical preprocessing. However, the
disadvantage is that the size of the matrix which has to be inverted
is rather large. In fact, in using this method, Hornsby and Gopinath
(1969b) worked with a matrix size of 100 x 100 or larger, but the
results they obtained were not comparable in accuracy to those derived
by using a much smaller size matrix equation formulated by one of the
other methods described earlier.
(e) Mode-Matching Method

The method, to be presented below, has been developed by Kowalski
and Pregla (1971) and is capable of handling the case of the finitely
thick center strip.

The cross section of the right-hand half of the microstrip line is
subdivided into five subdivisions, as shown in Figure 21.
(e) and kP(h) th

The E- and H-type scalar potentials Wi i in the 1

region can be written as follows:

i

B

5
‘o
- -
L i
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Figure 21. Cross section of the right-hand half ~“ the microstrip line with
a finitely thick strip conductor.
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s
=

N+1
(h)
v = 7
! n=1
N
(e)
¥l = 7
1 n=1
N+1
wéh) = 7
n=1
N
(e)
¥, = ]
2 n=1
N+1
(h)
vl = ]
3 -1
N
(e) \
vl =
3 nil
where

7/

An sin 5él)x cos nél)(y - h) (81a)
Bn cos E(l)x sin néii(y - h) (81b)
n+l

{Cn cos %El) (x ~ L) cos nél) (y - h) + &’n cos &;éz) (x -~ L)
* cos néz)(y - h)} (81c)

{Dn sin gﬁii (x ~ L) sin néii (y - h) + Bn sin géi;(x - L)
+ sin néi&(y - h)} (81d)

{En cos Eéz)(x - L) cos n§2>(y -d) + Fn cos Eéz)(x - L)
+ sin néz)(y - d)} (81e)

{Gn sin Eﬁii(x - L) sin néii(y ~-d) + Hn sin ggii(x - L)
+ cos nﬁii(y - d)} (81f£)

(1 _ ,.2 2 1)2,1/2
En = (ko -8 ~ n, ) (82a)

(1) _ (n = Dn
" “h-d-3 (820)
n152) - (ki _ 62 - €§2)2)1/2 (82d)

k0 is the free-space wavenumber and B is the unknown propagation

constant in the guide. The scalar potentials in regions 4 and 5 can
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s be similarly written with coefficients 6;, 8n’ R, X , Sn’ and Tn‘ The

n’ n
2 wavenumbers in the x- and y-directions are denoted by —ﬁl), Eéz), ﬁﬁl),
? and ﬁﬁz), and are defined as follows
(1) _ 2 _ .2 —(1)2 1/2
E &n = (kO B n, ) (83a)
g —(1) _ (n = D
5
L —(2) _ 2 2 _ ,.(2)2,1/2
% n, (erko 8 €n ) . (83c)
; It should be noted that in Equation (81), N of the TM components
;: and N + 1 of the TE components have been retained. It should also
ti be noted that the tangential electric field derived from the scalar

o

potentials in region 2 satisfies the boundary conditions of the guide

E . N
i periphery BCD as well as at the point I for any coefficients Cn’ LN Dn'
5

}f The next step is to match the tangential field components across

2 the interfaces between the regions and take inner products with a

'j suitable set of orthogonal basis functions. The appropriate basis

A functions are

3 sin (1)

("), d+d3y<h, x=t (84a)

3 ) : cos

4 sin 2)

9 (gn x), y=d, d+4, t<x<L (84b)

cos

‘ sin -

@My, 0y, x=r (84e)

- cos

E: The above procedure leads to a homogeneous set of equations for
9 the unknown coefficients An’ N Tn. Since the orthogonal functions

are identical to those used in the series expansion of the scalar
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potentials, many of the submatrices in the matrix equation become

ERERIT

diagonal. Hence, it is possible to eliminate certain sets of

S8 rad 2

coefficients without having to invert the entire matrix. After

3 y Y Y] "]
3 eliminating all of the coefficients except Cn’ Dn’ Qn’ and Rn’ one
f obtains a (4N + 2) x (4N + 2) matrix which is the final equation
? to be solved.
[

In the actual calculations by Kowalski and Pregla (1971), i = 10

was found to give a reasonable accuracy. The convergence of the solution

was checked by increasing the matrix size up to N = 20.
4 3.2.2 Numerical results

In this section we will present a few representative numerical

TR

f results obtained by the various techniques described in earlier

? sections., Refer to Figure 22 which shows the numerical results obtained
% by Mittra and Itoh (1971), and by Hornsby and Gopinath (1969b). The

"% effect of dispersion is evident at high frequencies where the k - B

‘ diagram deviates from the linear curve representing the quasi-TEM

5 solution, The variation of the guide wavelength with respect to frequency
i is plotted in Figure 23 for a number of different dielectric materials.
z The theoretical results on this curve have been obtained by Zysman

% and Varon (1969) and Mittra and Itoh (1971). The experimental results

€ are for an open microstrip line and are included here for convenience

; of comparison. It is seen from Figure 23 that the guide wavelength

é converges to the quasi-TEM value at low frequencies and approaches

; the wavelength in the substrate material as the frequencies increased.

? An ingenious empirical equation for the normalized wavelength

E of the lowest-order mode in the microstrip line has been developed

S by Schneider (1972). His equation reads
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2

&2
ig _ 1 €etf Snt/ &r (85)

X 2
o ,/ sreeff fn + 1
where

4d €~ 1

fn = -——————-——A (863)
o

e +1 e -1
T

~ by 1
€uff = 5+ 3 //1 To 8 (86L)
t

and AO is the free-space wavelength.

Before closing this section it will be useful to offer some
numerical evidence that the hybrid mode solution approaches the
quasi-TEM limit as the frequency is decreased. Refer to Figure 24 which
shows the magnitude of the ratio of the longitudinal to the transverse
electric field components as a function of frequency (Loadholt, Mittra,
and Itoh, 1971). It is evident that this ratio continues to decrease
as the frequencies decrease such that in the low frequency limit

the solution approaches the quasi-TEM form which has zero longitudinal

field components.

3.3 Open Microstrip Line

Having discussed the shielded and boxed versions of the microstrip

NN T e Y

line,we will now present a number of techniques for analyzing the

open microstrip line shown in Figure 25, Even when an open microstrip

line is placed in a shielded environment, the effect of the enclosure

RTINS

may be negligible in the event that the walls are far removed from the

e

TR

83,

a3

center strip. In this case the open microstrip line solution corresponds

gk

TS TR,
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Figure 24. Relative magnitudes of the E and E_ components as a function
of frequency in the structur8 shown?in Figure 20.
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Figure 25. Configuratic. of an open microstrip line.
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to a good approximation of the solution for the enclosed case. Of course,
the open microstrip line is an important structure in its own right; it will
therefore be useful to discuss the details of the solution for this structure
particularly since some of the methods to be described below (the integral
equation method, Galerkin's method) are sufficiently different from the ones

employed for the other microstrip structures considered earlier.

3.3.1 Integral equation method

An integral equation formulation for this problem has been given by
Denlinger (1971) and the development presented below will be based on his
work. The starting point in this method is Equation (62) from which it is
possible to represent all of the field components in terms of the E~ and H-
type scalar potentials, However, in contrast to the closed region problems,

X e h . .
the scalar potentials Wi ) and Wi ) can no longer be expressed in series
forms,as the geometry under consideration is infinite in the x direction.

(See Figure 25.) It is necessary instead to express the potential in an

integral form as follows

(e) .. -1 v (e) ~jax
‘i’i (2, y) = o _ofo vy (a, ¥) e da (87a)
o () .
wgh) oy = 1 ¥ () e (87b)

and where i = 1, 2 designate the region 1 (substrate) and 2 (air),

respectively. It can easily be seen that the transform potentials satisfy

the following differential equations

2
( d—'g - Y% i}jie) (a0, y) =0 (88a)
dy ’
d2 21 a(h)
- Yi) V@, v = 0 (38b)
y
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where

Y; = o + B -ki i=1, 2 (89)
2 2
kl = we M e (90a)
2 2
k2 = weM . (90b)

The next step is to write the following solutions for the transformed

potential in the various regions involved

yie) (@5 y) = A(@) sinh vy (91a)
"iyée) (¢; y) = B(a) exp[-y,(y - d)] (91b) ’ a
'\Fih) (@5 y) = C(e) coshyy (91c) ’

¥V (@, y) = D) expl-v,(y - D)1, (91d)

Note that the above representaiions satisfy the appropriate boundary

cenditions at y = 0 and the radiation condition at y + +«, The unknown

coefficients A(x), B(a), C(a), and D(a), will be determined by applying 3
the following continuity conditions at the interface y = d in the

Fourier transform domain.

E G ) =E @, (92a)

E o @) =E @, ) (92b)
H G, &) -8 G, @) =3 (@ (92¢) j
B -8 @ =Y @ (92d)

where 3x and 32 are the Fourier transforms of unknown current components
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on the strip. Application of the continuity conditions (92) leads
to four simultaneous equations from which the coefficients, A(a),
B(a), C(e¢), and D(a), can be obtained in terms of the two components
of current on the strip and the unknown propagation constant 3. The
expressions for the real field quantities can then be derived by the
use of (87) and (62).

We now return to the space domain {x, y) and apply the final

boundary condition on the strip in the form

Ezz(x, d) =0 (93a)
[x] < w/2.
d -
iy sz(x, d) =0 (93b)
The use of these equations allows us to represent E22 and sz in terms
of the coefficients B(a) and D(a) only.
” kg - g2
E,(x, ¥) = J_[- I B(a) exp[-v,(y-d)Jexp(~jox)da
- (94a)
K> - 8
sz(x, d) = J‘[- BEra— D(a) exp[-yz(y-d)]exp(—Jax)da.
- (94b)

The coefficients B(y) and D(¢) are, in turn, expressed in terms of

3;(a) and 3;(a) as follows

R aB 1
BO) = Ger P2 * 77 P1od 3,0 + 57 byyd, @
1 (95a)
1 o8 1 A
Dla = 5¢ [Fibyy *+- 2.2 byl T + 355 byy 3, (@)
! (95b)

where
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ks - 8
b, =-b,, = ja ( - 1)
11 22 W2 - g2
WH Y Y kz-B2
b —ol —2—+u Z tanh v,d
12 T AT B 1
1
we Yy Yy k% - 8’
bopp =7 |7, T & T2 3 cothvd
1 kS - B
1
det = by;byy = byobyy
Wy Uy
F1 = ———%—E—li— tan Yld.
502 - 6H

Our objective is to derive a set of equations for the unknowns }X(a)
and 3Z(a). This is accomplished by substituting (95) into (94) and
applying the boundary conditions (93) to (94) resulting in the folloing

coupled integral equations for the two current components.

o] (2]

Y -jax v =jox, _
Ixo_i Gll(a, B) Ix(a) e do + Izo —i Glz(a, B) Iz(a) e do =0
(96a)
® uY jox ol a jo
=J 4 =JaexX -
Ixo _i Gzl(a, B) Ix(a) e da + Izo _i Gzz(a, B) Iz(a) e do =0
~W/2 ¢ x < w2 (96b)
where
- 1 —oB
G13(0 B) = 35¢ [Fybyy + =55 b1 (97a)
k1 -8
b
) -
Glz(a, B) = dot (97b)
G,, (o B)=~Y-2—[Fb + =28y ] (97¢)
21'%» det 172177 _ 2711 ¢
- B
1
Y,b
P11
Gzz(a, B) = dot (974)
J =1 T () (98a)
Jz(a) = Izo Iz(a). (98b)




For simplicity, we have used a one-term apprgximation for the unknown
current distributions and have written them in the form of (98a) and
(98b). We have also assumed that %% and %z have known forms,and
the only unknowns in their representation are the amplitude coefficients
Ixo and.IZO.

The unknown propagation constant g can now be solved by
equating the determinant of the coefficient matrix for the unknowns
Ixo and Izo to zero., Obviously, within the one-term approximation
being used here the results are critically dependent on the choice of

the Yorms of the current distribution. The distribution chosen by

Denlinger (1971) is in the following form,

2 2
% (@) = '%'< 2 3 + 3[(aw) - 8] cos ( %? ) + [ Caw) —212] sin (ﬁr)}
z T\ (o) (o W) (ow)
(99a)
v @ = [sin Gl(a) i sin Gz(a) N cos 0.4 G3(a) - cos 0.5 G3(q)
X Gl(Ol) Gz(a) GS(O.)
cos 0.4 G, (a) - cos 0.5 G, (a
+ e 99b)
4 ()
where

Gl(a), Gz(a) = 0.4 ( 6%7 £ ow)

G3(a), G4(a) ow 57,

Equations (99) are the Fourier transforms of

1+ 23 Ix] < w/2
w -
IZ(X) =
¢ otherwise
X .
sin 55 [x] < 0.8 w/2
Ix(x) =( cos 3%%5 0.8 w/2 < x< w2,
0 othervise
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It may be noted that the trial distribution for “he current Iz(x) in
Denlinger's work is identical to that used by Yamashita (1968) for
calculating the quasi-TEM line capacitance,

Wher the strip width is small as compared to the wavelength, i. e.,
w/A < 0.1, and when we are considering the lowest order hybrid mode, it
is a good avpproximation to neglect the transverse current and to
satisfy (93) only at the center of the strip. The above implies that
the boundary condition on the strip is imgosed only at the midpoint
X = 0 instead of the entire range -w/2 < x < w/2, This artifice allows
one to reduce the coupled pair of integral equations (96) into a
single integral equation contzining the unknowa propagation constant
B as a parameter. Note that the above approximation also implies the
setting of Ixo equal to zero and X = 0 in (96a). In addition, Equation
(96h) now becomes trivial by virtue of the fact that G21%z is an odd
function of «a.

This approximation is made because a complete solution of the
coupled pair of integral equations (96) requires a rather large
amount of computer time. Nevertheless some test calculations have
been carried out using the complete equations in (96), aund it hais
been found that the approximate solution obtained by letting Ixo equal
zero is in excellent agreement with the more exact solution, in the
zero frequency limit as well as in the finite but moderate frequency
range. This is true as long as the normalized strip with w/X is less
than 0.1,

Fie.re 26 shows tne dispersion diagram computed by the single

integral equation approximation. The definition of € off is (Ao/kg)z

where Ag is the guide wavelength. A study of the curve shows that its
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behavior agrees quite well with the experimental results of Hartwig,
Massé and Pucel (1968) even beyond the frequency range over which the
transverse current is negligible. The curves also show that the
effective dielectric constant appnroaches €. in the high frequency
limit, indicating that at high frequencies all of the energy tends to
be confined in the dielectric substrate. Recall that this phenomenon
is similar to the one observed in the case of the shielded microstrip

line discussed in the previous section.
3.3.2 Galerkin's method in the Fourier transform domain

In the previous section we discussed a solution of the coupled
integral equations for the open microstrip line. An inherent step
in the solution was the assumption of a suitable form for the components of the
current on the center strip. Obviously, the result obtained by this
method is critically dependent upon the accuracy of the assumed forms
of the distribution for the curvents. A method is now presented for
circumventing this difficulty and systematically solving for the currents
to the desired degree of accuracy. The method is basically a modification
of Galerkin's appraoch adapted for application in the Fourier transform
domain, developed by Itoh and Mittra (1971a). It is quite similar to
the one discussed earlier in Section 2.4 in connection with the derivation
of line capacitance in the quasi-TEM approximation.

We start with Equation (95) which relates the unknown coefficients
B(a) and D(o) in terms of the two current components }x(a) and }z(a).
Rather than applying the boundary condition (93) on the strip in the
space domain as was done in the previous section, we impose this ccndition
in the Fourier transform domain instead. As a firs: step we rewrite

(23) as
78
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0 -w/2 < x < w2
EzZ(x’ d) = 9 9 (100a)
k2 - B
j__B u(x), otherwise
0 -w/2 < x < w2
E; H 2(x, d) = kz ) 32 . (100b)
i _Z_E___ v(x) ,otherwise
The Fourier transforms of the spatial functions in (100) are
¥ d) = j E;.:.Ei ¥, () + U, (a) 101
g0 d) =] g [U; () 5(@)] (101a)
2 2
ky, - B
4 % s 2 ¥ 13
3y Bl @ =35 [Vl(a) + ¥, ()] (101b)
where

-w/2
Y@= 7 uw %% gy
Uty = f u(x) 3% gx

z

w/2
" -w/2
ﬁl(a) = [ v(x) ejax dx
vz(a) = S v(x)eJax dx.

w/?2

Using the expressions given by (62) and (95) we obtain the following

coupled equations for the two current components

Gyq (s 6)3x(a) uOPICE 8)3z(a) ﬁl(a) + ﬁz(a) (102a)

Gy (o e)}x(a) + 6y, (as e)BZ(a) Wl(a) + %z(a) (102b)
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Where(;ll’ G12’ GZl’ and G22 are given by (97). Note that the two

equations in (102) actually contain six unknowns altogether. However,
four of the unknowns, viz., ﬁl’ 62, Vl, and vz,can be eliminated from
these equations by using a technique that was outlined in Section 2.4.

LY Ny
As a first step we expand Jx and Jz in terms of known basis

functions } and } as follows:
xn zn

ny M ny

Jx(a) =n21 c an(a) (103a)
A 23 a3 0

T (@) -nzl 0 I @) (103b)

4]
The basis functions an(a) and Rzn(a) must be chosen such that their
inverse Fourier transforms are nonzero only on the strip -w/2 < x < w/2.
After substituting (103) into (102) we take the inner products with

the basis functions };n and }zn for different values of n, This yields

the matrix equation

M N
) gD oy T2 4 <
n=l ™

m=1, 2, « « + M
n 5. mn n
n=1
(104a)
M N
z Krgtzl’l) cn +z Krﬁi’z) dn =0 ms= 1’ 2’ e o « N,
n=1 n=1l
(104b)
where
K’ﬂ(\i,l) = _i }xm(a) Gll(a, 8) 3{Xﬂ(a) da (105a)
K;iaz) = _i E%m(a) Glz(a, B) yzn(a) da (105b)
xéi,l) = 13 6y, 8) Y (@ da (105¢)

=00
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22 _ :\fzm(a) Gyy(as B) ﬁzn(a) dot . (105d)

mn

&

An application of Parseval's theorem will verify that the right-haad
sides of (102) are indeed eliminated by this procedure. Using this

theorem we can show that

]

f ?r’xm(a) [ﬁl(a) + 'ﬁz(a)l da

-0

«©

=L — B8 z
T 2w Jxm(x) [. 2 2 EzZ(x’ d)] dx = 0
2 o Jky = 87)

The above relation is true since Jxm(x), the inverse transform of me(a),
and Ezz(x, d) are nonzero in the complementary regions of x.

The next step is to solve the simultaneous equation (104) for
the propagation constant B8, by setting the determinant of this set
of equations equal to zero and seeking the roots of the resulting
equation,

It may be of interest to note that the technique just described
is useful for solving the problem of the slot line (Itoh and Mittra,
1971b) which is another useful transmission line structure used in

microwave integrated circuits.
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IV. HIGHER-ORDER MODES

Until now we have restricted ourselves to the discussion of the
dominant mode in the microstrip transmission line, In this section
we will briefly take up the subject of higher-order modes that can
propagate in these lines. Although much has been written on the
characteristics of the dominant mode, relatively little has been
reported on the subject of higher-order modes.

Let us first consider the open microstrip line. Since the
geometry of this structure is an open one, its modal spectrum is
comprised of two parts — discrete and continuous. The discrete part
of the spectrum corresponds to a finite number of propagating modes
which are essentially surface-wave-type in nature. Since the
propagation constant B for these modes is real and greater than the
free-space wavenumber ko’ they are referred to as slow waves. In
contrast, the continuous spectrum is associated with the radiated
field or the fast waves. As the frequency of operation is increased,
leaky modes or pseudomodes which are alternate representations of
portions of the continuous spectrum, can exist simultaneously with the
surface-wave—type modes. These leaky modes represent radiation losses,
and the use of the microstrip line becomes rest;icted when these
pseudomodes appear.

In addition to the leaky modes, there are higher-order, surface-wave-
type modes that also appear as the frequency of operation is increased,
The occurrence of these higher-order, surface-wave-type modes may
be heuristically explained as follows. If che center strip of the
open microstrip lines structure is removed tiie result is a conventiocnal,

dielectric slab, surface-wave line supported by a conducting sheet.

82




Such & surface-wave line supports the even TM and odd TE type of

mode (Collin, 1960). The insertion of the center strip perturbs

these surface waves, but their modified versions remain similar in
character to the dielectric slab modes. The existence of these
higher-order modes is undesirable and the use of the microstrip line

is typically restricted to frequencies below fc, the cutoff

frequency of the TEl surface wave (Denlinger, 1971),which is given

by the formula

f

=____C_:_’
¢ 4d/e’r_-1

Let us now turn to the problem of higher-order modes in a shielded

¢ = velocity of light in vacuum.

microstrip line (Figure 20). As expected, this closed waveguide

structure only supports an infinite number of discrete modes and
the propagation constants for these modes are obtained by solving the

characteristic equation derived in Section 3.2.

Figure 27 shows typical plots of the value of the determinant versus
the normalized propagation constant B (Mittra and Itob, 1971). The

curves for increasing frequencies are shown from (a) through (d). It is

evident that the number of zeros of the determinant increases with

increasing frequency indicating the appearance of higher-order modes.

Figure 28 presents the dispersion diagrams for both the dominant and

the higher-order modes, It should be mentioned that this mode spectrum

is not complete since only the EZ even--Hz odd type of modes are

exhibited in the figure, Calculation of the dispersion characteristics

of higher-order modes have also been carried out by Daly (1971) and

Kowalski and Pregla (1971). A comparative study of thece works reveals

that some disagreement exists between the results that are reported
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V. LOSSES IN MICROSTRIP LINES

The discussion of tue microstrip line thus far has been based on
the assumption that the losses are negligible. However, in practice,
losses are always present and it may be quite important to obtazin a
quantitative estimate of these losses in order to reliably design the
microstrip line circuits, It will therefore be pertinent to include
here brief descriptions of two methods that have been found useful for
evaluating these losses. We restrict our attention to the dielentric
and ohmic skin losses only and assume that magnetic losses in the
substrate are either absent or negligible.

The analysis will be based on a perturbational approach which ie
valid when the loss per unit length is small. Except for the case
when the substrate material is a semiconductor, the assumption that
the losses in the line are small is certainly valid for most practical
microstrip structures. The line loss can be quantitatively described

in terms of an attenuation constant o defined as

P(z)

Po exp(~202z)
(106)

P(0)

]
jae)

where P(z) is the power transmitted along the line at the distance

2z from the origin. Letting a = oy + s i, e., identifying the total
attenuation as the sum of the contribution due to dielectric and
chmic losses, we obtain the following relationships

_ _ dp/dz N Pc + P
2P(z) ~ 2P(=z)

(nepers/m) (107a)

and
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d __ Power loss in dielectric material
%4 & 2P(z) 2 x Power transmitted (nepers/m)
; (107b)
4 P
3 ¢ _ Power loss in conductors
? & n () 2 x Power transmitted (nepers/m). (107c)

T

e

The perturbational analysis for loss calculation is based upon the

assumption that the field distribution in the structure is not

AL 36 B S eie At

altered due to the presence of losses. Assuming further that the
dominant mode is quasi-TEM, the following formula may be written for

the two components of a(Yamashita and Atsuki, 1970)

iN) ad(V¢)2dxdy
0. = : (108a)
2 ff ve(V)“dxdy

SR 1 2d£
o = 28 5 (108b)
¢ 21ys ve (Vo) “dxdy

4
s pSV \lOBC)

[EN
n

where the double integrals are defined over the cross section and the
line integral is taken around the center strip and along the ground

conductor surface. The various quantities appearing in (108) are

Py = charge distribution on the conductors

¢ = potential distributions

v = phase velocity (equal to the group velocity)
04 = conductivity of dielectric material

RS = vYou/20, = surface resistance of conductors.
The quantities ¢, Pgo and v in the above expression are calculated by
one of the methods presented in Section II with the assumption that

there is no loss in the microstrip line.
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Also, it has been assumed in writing (108) that % and Rs are

e

sufficiently small (o, << we; and R_ << Z, the characteristic impedance).
d s !

E: An alternative approach has been followed by Pucel, Massé, and
g Hartwig (1968) who have developed formulas that express @, and oy in
S terms of structural parameters of the guide and the filling factor

introduced by Wheeler (1965). The expression for &g the contribution

due to dielectric losses, is given by

3 o, v 4.3 ——/26 (dB/cm) (109)
¢ d~ . €, d

3 eff

3

;< where q is the filling factor and €off is the effective dielectric

é constant. These quantities were defined earlier in Section 2.2, The
9

b factor 4.34 represents the conversion of nepers into decibels,

} Equation (109) is applicable to an open microstrip line with a

single laver dielectric substrate below the center strip and free

E: space above.

; To obtain the ohmic attenuation constant e Pucel et al. used
a technique based on the so-called "incremental inductance rule’
(Wheeler, 1942)., This rule expresses the series surface resistance
2 RS per unit length in terms of that part of the total inductance

g per unit length which is attributable to the skin effect, i. e., the
inductance Li produced by the magnetic field within the conductors,

i It is well known that the surface impedance
Zs = Rs + X (110)

has a real part RS (surface resistance) which is equal to the

imaging part Xs’ where
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Xs = wLi. (111)

According to Wheeler, Li can be inferred from the external inductance
L per unit length as the incremental increase in L caused by un

incremental recession of all metallic walls carrying a skin current

(see Figure 29). The amount of recession is equal to hal{ the skin

TN R

depth § = V2/wuoc . An assumption underlying this rule is that the
radius of curvature and the thickness of the conductors exposed to

the electric field be greater than the skin depth - pra.rrakly several

RS AR e R P Sk

skin depths. According to Wheeler, we have

B §
_ m oL m
L, = z—u = 7 (112a)
m o m,
R
- sm JL
R, = Z—u e (112b)
(o] m

where the derivative aL/Bnm denotes the derivative of L with respect
to the incremental recession of wall m, o the normal direction
to this wall, and R_ = wu$ /2 is the surface resistance

sm

of wall m. Thus, from the definition (107¢)

2
|T|"r s
(!c = 25 = zul - Z Rsm —‘—zk (ll3)
2|1]%z o' m m

where Z is the characteristic impedance of the micrestrip line
calculated under the quasi-TEM approximation for the lossless case,
and I is the total current per conductor.

We assume that the inductance per unit length for the inhomogeneous
dielectric case (microstrip line) 1is approximately the same as that
of the unloaded TEM line. This assumption implies that the stored

magnetic energy is not affected by the presence of cthe nonmagnstic

90




0

GROUND PLANE

Figure 29. Relevant to the derivation of conductor attenuation.
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dielectric substrate. This 1s a reasonable assumption as verified
experimentally by Pucel, Massé, and Hartwig (1968).
The remaining task is to derive the expression for the inductance

L of the lossless line., From the approximate resuits by Wheeler (1965)

we get
L =22 [ﬂlgh = (% 'y2 4 v .], whe<2  (ll4a)
T 27 h ! -
U
L= L - wh>2  (ll4b)
ot Qn[Zne( - 0.94)]
B
where
w'o= vt Ean (Y4 w/h < 1/2n  (115a)
(2t/h < w/h, 1/2m)
sw+ o (B w/h > 1/2n. (115b)

Assuming that the surface resistance of both the center strip and

the ground plane are identical to Rs’ we obtain the following result

for the ohmic attenuation constant

o Zh
¢ _8.64 _owl 2 h . h 4nw - t/w
RS T 2n [l ( 4h ) ]*{i Tt [ ( - l + t/4nw]}b

(116a)
w/h < 1/2w
5 Zh
P g4 w' |2 b, h_ 2h 1+ t/h
Rz [1 - () J-{} Tttt [2“ (T+V -7% t/2h]}
(116b)

/21 < w/h < 2

ath _ 8.68 Ei_ w'/nh 4+ + B
R w2 w' h w! W'
s T = 2n[2ne(2h + 0,94)] o + 0.94

(116¢)

.[m(%'*l)-'%} w/h > 2




where @, is in dB/cm. From the above expression it is evident

3 that for a fixed characteristic impedance which implies fixed t, w,
h ratio and €0 @, decreases inversely with the substrate thickness
h, and increases with the square root of the frequency. The latter

results from the fact that RS is proportionul to the square root of

AT e AT

the frequency.

SV Vg

Figure 30 shows some numerical results calculated from (116).
Figure 31 shows the plots of the results for o, obtained by Yamashita
§ and Atuki (1970) using Equation (108b)., In their paper a comparison
was made with the curves in Figure 30. Also, the dielectric attenuation
E: constant ay was calculated and compured with the experimental results
. by Hyltin (1965). These are plotted in Figure 32 (Yamashita and Atsuki, 1970).
It is evident that the agreement between the theoretical and experimental
¢ results is quite good.
;g The total attenuation constant ¢ was measured by Pucel, Massé,
4 and Hartwig (1968) for a practical microstyxip line. The results
for the case of a rutile substrate are reproduced in Figure 33,
Because of the scatter in measured data points, a curve was drawn
through the points by "eye-ball" averaging where possible. The

agreement of the experimental data with theory appears to be quite

:

%ﬁ good, The sharp upturn in Figure 33c berween 5 and 6 GHz was claimed
"f to be caused by the excitation of the TEl surface wave which produces '
é a loss through propagation of energy out of the edges of tne substrate,
.% This mode has a cutoff frequemcy f = c/(4h)JE:_:wI v 5.8 GHz.

ﬁﬁ Indeed, Pucel et al. observed radiation from the sides of the slab in

and about this frequency range.
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substrates.
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VI. RADIATION AND END LOADING

In the previou sections we have concentrated our attention on
infinitely long microstrip lines. In practice, however, the line
sections are necessarily finite in extent, Thus, it is necessary
in practical designs to evaluate the effects of discontinuities or
junctions introduced in uniform microstrip lines. Typical discontinuities
of interest are T-junctions, gap in the center of the microstrip,
truncated microstrip sections, etc, In this section we discuss the
open-ended microstrip stub as a typical example of such junction
problems.

The open~ended microstrip stub is frequantly used as a component
for a2 filter or a matching network. An ideal lossless stub, with a
true open circuit at the end, appears as a pure susceptance at the
input junction where it is connected to the main line. However,
due to radis'ion and fringing effects that are always present, a true
open cir. .:t is never realized at the end of the stub, The effect
of the radiation can be represented by a finite conductance G, whereas
the fringing effects as well as the effect of higher-order modes
generated at the end of the stub may be described by a shunt susceptance
B. The combined effect of these is a finite, complex terminating
impedance at the end of the stub. This and the distributed losses
in the stub (see Section V) cause the input admittance as seen from
the junction of the stub to the main line to be complex. In order to
evaluate this input admittance accurately in the presence of the end
effects just described, it is necessary to calculate the load

admittance at the end of the stub. In the following sections we present
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a number of techniques for evaluating this load admittance.

6.1 Radiation Conductance

The problem of radiation at the truncated end of the microstrip
line has been considered by several workers (Lewin, 1960; Denlinger,
1969; Sobol, 1971). Here we follow a method introduced by Sobol (1971)
£or calculating the equivalent conductance of an open-ended stub. The
geometry under consideration is shown in Figuvre 34, In addition to
the quasi-TEM approximation the following assumptions will be made:

1. h/x << 1;

2. The field distortion &t the end of the line is negligible;

3. The center strip is infinitely thing

4., Only the effect of the dominant mode needs to be considered

at the discontinuity.

Itis also assumed that the x component of the electric field
Ex 1s a constant, equal to Eo in the region |z| < w/2 and |x| < h/2
and that it is identically zero outside of this region. The fringing
effect of the field is introduced via the use of the effective
dielectric constant € off defined by Wheeler (1965) and discussed
in Section 2.2, The problem of calculating the effect of radiation
from the aperture plane y = 0 may be convenientiy attacked by first
replacing the aperture electric field by a sheet of conceptual magnetic
current M, The magnetic current can in turn be used to calculate the
magnetic radiation vector L. The only nonzero component of the
magnetic current turns out to be Mz, and the corresponding magnetic

radiation vector L6 is given by
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Geometry for open-circuited microstrip line.
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w/2

Le = - h gin 6 Jr EX exp[j > /ereff z cos 8]dz 17
-w/2

where Ao is the free-space wavelength and 6 is measured from the z-

axis. The total radiated power W, and hence G, is given by

n 2%
1 2 _ 1 2 .
W=3G(hE )" = — j j |Le| sin 6 d¢ de (118)
8\"n
o o
where
120w

/fz;eff

It should be noted that we have made the assumption that h/)\o << 1 in

deriving the above expression for W,

The radiation conductance G is explicitly written as

Y Creff W

G = —— I( £ ) (119)
240n2 AO reff
where 9 T/ ereff 3
. sin — w cos 6} sin” 6
- o
I= j > do . (120)
o cos 6

It can be shown that I, and hence G, varies as (w/)\o)2 for w/)\0 << ]
as w/)\0 for w/)\° »> 1, For instance, for 7 /ereff w/Ao much less than

unity

3/2
(e )
Gy -————————rigg (%";)2 (121)

This approximation is quite accurate for (w/An) / € off less than 0.5,

The asymptatic behaviors of G with respc:t to w/ko are consistent

with the ones reported by Lewin (1969) and Marcuvitz (1951).
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The driving-point admittance of the stub can be calculated in

terms of the radiation loading G, susceptance B due to end effect,
and distributed line losses expressed in terms of Qo(unloaded Q.
The real pari g, of the driving-point admittance, normalized to the
stub characteristic admittance, is approximated by

g, 1.6 sec26 - tan 6 + b tan 0 + b2(6 sec2 § + tan 6) + ¢ sec26
1w 2Qo (1 - b tan 9)2

=gy *g, (122)

where g and b are the normalized values of G and B, respectively,
and 6 is the electrical length of the stub., The iicrmalized conductance
84 results from the distributed losses and gr,the radiation losses,

The ratio of the radiation loss P /P

for a 50-Q line on
rad

total
an aluminum substrate is plotted in Figure 35 as a function of the

stub length., It is evident that the radiation losses play an important
role for a short stub, The effective length of the stub used in

these calculations is obtained by extending it by 0.4h. The

justification for this approximation appears in Section 6.2,

For a quarter-wave resonator the ratio of the radiation loss

Prad and the distributed loss Pdist is given by
Prad Qoz(sreff)yz(w“o)2
P o . (123)
dist

h
4571 + 1.6 K;' /Ereff

Figure 36 shows this ratio as a function of frequency and € s the
dielectric constant of the substrate. The results agree very well

with the data presented by Denlinger (1969).
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6.2 Edge Susceptance

We next turn to the calculation of the lumped loading susceptance
at the truncated edge of the microstrip. The susceptance is often
described in terms of an edge capacitance which is represented by a
hypothetical extension A% of the microstrip. The range of A% is
approximately 0.2 to 0.5 of the substrate thickness (Napoli and Hughes,
1971; James and Tse, 1972). A simple theory for infinitely wide plates
indicates an extension of the length by 0.44h.

Recently a number of attempts have been reported for calculating
the edge capacitance by solving the equivalent static problem., Figure
37 shows a finite section of microstrip line of width w and length 2.

The edge capacitance for a semi-infinite line is calculated by first
obtaining the capacitance for a finite section of the line and subtracting
from it the contribution of the uniform line., The latter is equal to

the liue capacitance for unit length multiplied by £, the length of

the line section. The excess capacitance is then associated with the
fringe effects at the end. In the following, two methods will be
presented. The first method is based on the conventional matrix equation

approach. On the other hand, in the second method the analysis will be

done in the spectral domain,

6.2,1 Matrix method
We begin with the three-dimensional Poisson's equation

V2¢(x, y, 2) = --g—p(x, z) 6(y)
(o)

p(x, 2z) =0, |x] > w/2, |z| > 2/2.

The Green's function G may be defined as the potential at (x, y, z) due to

(124)

the unit charge at (xo,yo,zo). Applying the superposition principle, it is
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(d - b) + //EC ~-a) "+ (d - b) 4-Kn

fn(a, b; ¢, d) (c - a) n

(d + 4d - b) + y/Qc - a)2 + (d + Ad - b)2+K§

(d +Ad - b) + //Ec+Ac—a)2+(d+Ad-b)2+Ki
g (a, by ¢, d) = (c + Ac - a) ¢n
" // 2 2 2
(d-b)+ /(c+Adc-a)" + (¢ -b) 4-An
g (a, bs ¢, d) = (c-2)(d - b)
’ // 2L @-m?+i?
Kn (c-a)"+ (-0

n

Kn = (Lﬂ - 2)h

Equation (126) is now solved for the unknowns o.,. After letting

Vi =1 for all 1 =1, « - - N, the total capacitance of the rectangular

microstrip section of length £ is given by

cQ) =
N

[ o 284

ca 12
. 3 (129)

The value of the fringe capacitance of the open-circuited microstrip

is given by

=L e )
C,, = 5 lim [C(A) - 2C ] (130)
e

where Cu is the line capacitance per unit length of the infinitely
long microstrip lire, and the factor 1/2 accounts for both ends of

the rectangular section. The limit appearing in Equation (130) is

numerically computed as follows. The total capacitance for a rectangular

section is computed for the sequence of increasing values of %, until

convergence is reached for the computed value of the excess capacitance

ex
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easily shown that 8/2 w2

$(x, y, 2) = G(x, y, z; X 0, zo) p(xo, zo)dxo dzo.

-2/2 “-w/2 (125)
In the method due to Farrar and Adams (1971, 1972) the charge

distribution p(x, 2z) is calculated by numerically solving

Equation (125) in the manner described below. The finite strip is
subdivided into N subsections of elemental area ASj. It is assumed
that the charge distribution °j is uniform in a subsection.
Equation (125) is then discretized under this approximation and

yields the matrix equation

N
) D,,o0, =V, i=1,2,¢ ¢ +«N (126)
j=1 ij 73 i

where Dij’ the potential at subsection ASi due to a uniform charge

density of maghitude unity on ASj, is given by

D,. = G(xi, 0, 2.3 xj, 0, zj) Ax

1 Azj. (127)

3

1 has been derived by using the exact expression

for the potential due to a uniformly charged rectangular plate, and

The explicit form of D

applying the imaging technique successively across the dielectric
boundary and the ground plate to generate an infinite series of

images., The final expression for Dij is

© kn-l(_l)n+l
Dij = nzl EFE;?E_;_E;T {fn(xi’ yii st yj) + gn(xi’ Yy Xja yj)

-1
+ fn(yi’ xi’ yjs XJ) + gn(yi’ Xi’ yja XJ) - Kn[tan gn(xi’yi’xj’yj)
+ tanulg (x,, y.3 %, + &x,, y, + Ay.) - tan—lg (X.y V.3 X,y V.H+AY,)
n i 7it Ty i’ 73 3 LI SRS A M R

-1
- tan sn(xi, Yy % + ij, yj)]) (128)

where
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6.2.2 Fourier trxansform method

An alternative approach to the edge capacitance may be developed
by extending the Fourier transiorm techaique presented in Section 2.4

(Itoh, Mittra, and Ward, 1972), The extension is necessary since we

2
g
%
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&
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z
5
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9
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H
A
5

are now dealing with a two-dimensional problem as opposed tc a one-

dimensional case diScussed in Section 2.4.

TS

The method proceeds by defining the two-dimensional Fourier

transform of the potential function via the equation

R RATEA

2"(0‘9 y, 8)- = [ f ¢(xg Y, z) ej(ft?i+82) dx ¢z. (131)

SAUE AN T LN

Also, taking the Fourier transferm of (124) we obtain

2

Ly - 6?81 § v 8 = - e s) (132)
y o

where 3 is the transform of the charge distribution

2/2 w/2
S(a, 8) = o(x, z) o @¥B2) 4 4, (133)
Z9/2  =w/2

In view of the boundary conditions at y = ~h and at y = », the form of

the solution of Equation (132) is taken to be
9
ACe, 8) sinh /o +8% y  ~h ey <0
$G, y, 8) = o (134)
ST
B(a, B) exp {=/ o + 8y} y > 0.

TS mm-mWMW}?W‘W‘J&%T’WW%V&&K*\»~f

By proceeding in exactly the same manner as in Section 2.4 and applying
the boundary ccnditions on the strip, we obtain after eliminating A(a, B)
and B(a, B) the following equation for the transform of the charge
distribution

Gas 8) 6Ca, B) = $(x, 0, B) (135)
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where
1

€y a2 + 62 [1+ e, coth /az + 82 h]

Note that G is the transform of Green's function and that the algebraic

G(a, B) = . (136)

product in the left-hand side of (135) corresponds to the surface
convolution integral in (125)., This {eature is very useful in the
actual numerical calculation because the computation of the surface
convolution integral is a time consuming operation.

Equation (135) is transformed intc a matrix equation via the
application of Galerkin's method, which is similar to that discussed

in Section 2.4. The matrix equation may be written as

N
bm=ZKmncn m=1, 2, « « « N (137)
n=1
where
A, n, Ay
Kon = f f a5 B8) Glay B) P, (a; B) do dB
o o0 fi/z W/2
b= 5 (@, 8) $(a, 0, B) da dB= == (x, 2)dx d
n pm 0, ¢ia, s o = o pnx, z)dx dz,
00 -00 -2/2-W/2
The functions Sn are the basis functions of g(a, B) and 31 is the
transform of the potential on the strip. pn(x, z) is the inverse
transform of é;@, B). The total charge on the strip is given by
N /2 w/2 N
c(r) =n£1 c, pn(x, z) dx dz = 2n nzl . bn.
-2/2 -w/2
(138)

Figure 38 shows the fringe capacitance of the open-circuited micro-

strip line calculated by the two methods presented in this section.
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The values of ‘the fringe capacitance can in turn be used to compute

the loading susceptance due to the end discontinuity.
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VII. CONCLUSIONS

In the preceding sections we have discussed a number of features
of microstrip-type transmission lines for microwave integrated
circuitry, Approximate as well as rigorous analyses for the
characteristics of the infinitely long microstrip lines have been
presented, Brief discussion of some practical problems encountered
in the actual design, such as computation of losses, radiation and
junction effects, etc., has been included.

Although much has been written on the subject of microstrip
lines, there still remain a number of theoretical as well as
practical problems yet to be solved. Some of these problems include:
(1) comprehensive analysis of higher-order modes; (ii) complex junction
problems; (iii) radiation from a uniform section of open microstrip
line; and so on. It is felt that a simultaneous development of both
the theoretical and experimental techniques will be needed to

successfully resolve these problems.
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