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ABSTRACT

The accuracy of ballistic density departure tables is examined, starting
with the eerliect available sets in 1934. The extension of the tables
(originally developed for the US) to encompass the entire Northern Hemi-
sphere is discussed and the shortcomings of the current climatological
regional zones described.

New tables, based on current data and used for a more limited geographical
area, are shown to be accurate to one half of one percent, hence furnish
excellent back-up information when a current sounding is not available
for artillery firings.

A procedure for minimizing ballistic density errors that accrue between
observational periods is also presented.
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3 INTRODUCT 1ON
One of the basic premises of all firing tables is the "Standard Atmos- ; ;
4 phere" - one whose properties are enumerated in the "1962 Standard Atf- ; f
: mosphere” [1J]. With such a density distribution and zero wind through- . ;
4 out, the shell should describz the calculated trajectory given in the z :
Y firing tables, Those conditions are never encountered on earth, hence i f
corrections for nonstandard conditions are always in order. Artillery ; )
? Meteorological Sections, organic to the Army Artillery, provide meteoro- § R
3 logical information on winds and density to permit such corrections. % ;
4 - ’ ;
: Accurate, .representative, fresh observations are the best method of cor- f
4 rection available today. There are, however, occasions when these mea- %
‘ surements are not available, and alternate methods are necessary to . ¢
4 provide th~ requisite information. In the case of atmcspheric density }
such an option is available. !

Air density at ground level can always be determined, the only equipment
required being a good barometer and wet- and dry-bulb thermomec¥ers. If
the upper ai:r density can be inferred from the surface measurcment, the
ballistic density can be furnished for correction of artillery fire. The {
vital question is: |Is the assumption justified that the surface density

is a good predictor of ballistic density alofi?

g

To test the theory, scme 3000 radiosondings fiom Vietnam and 2000 f om
the Korean region were examined. Figure | shows the mean of ballistic
density aloft as a function of surface density over a wide range of
surface values.® Values of ballistic density are expressed as a percent

12 /7

"

&

ART LLERY LINE NUMBER _
[ L O A N ® © O =
T ¥ Y T T T T T

: L X 2 L

90 91 92 93 94 9% 96 97 98 99 100- 101 02 03 104
DENSIT ! (% STANDARD)

FIG.} VARIATION OF BALLISTIC DENSITY I

[1] us Standard Atmcosphere, US Govt. Printing Office, Dec. 1962.

*The values on the abscissa of Figure | represent ip.Z% on each side
of Tthe central value,




of standard with the ordinate being the normal NATO zones (Table 1).

TABLE |

BALLISTIC ZONES, STANDARD ATMOSPHERE

Height at

Top of Zone 3

Line No, (Meters) Temperature (°K) Density (g/m™)
0 Surface 288.2 1225.0
I 200 287.5 1213.3
2 500 285.9 1184.4
3 1000 283.3 1139.2
4 1500 280.0 1084.6
5 2000 276.8 1032,0
6 3000 271.9 957.0
7 4000 265.5 863.4
8 5000 259.0 777.0
9 6000 252.5 697.4
10 8000 242.7 590.0
I 19000 229.8 467.0
12 12000 216.8 364.8
i3 i4000 216.7 266,.6
14 16000 216.7 194.8
15 18000 216.7 142.3

As can be seen, the ballistic densities are a function of the surface
value. The various curves do not intersect, although the spread between
the extremes continually decreases. The values all seem to trend fo-
ward a common value at some higher level, beyond the limit of our data.
The curves do show that ballistic density is more independent of the
surface value at the high line numbers than at low {ine numbers. Thus,
a climatological value of ballistic density at high altitudes (line |0
or above) would have a very small error for all ranges of surface den-
sity. This is most fortunate since ‘the range errors due to an incorrect
assessment of ballistic density are greatest for high maximum ordinates.

In absolute vaiues, the ballistic density curves exhibit a behavior sim-
ilar to that of the Standard Atmosphere (Figure 2). Again, the conver-
gence of all curves is seen with increasing altitude. It should be

noted that the curves for the tropical region (Vietnam) converge toward

a different value than those from the nontropical Korea. This difference
indicates that one set of values is not satisfactory for the entire

B




& ~
T T

HEIGHT (METERS 110%)
o>
T

>
T

STANDARD

VIETNAM

1 1
906G

3.
€00
DERSITY (G/M*) {% OF STANDARD}

NXN%  103%0S%

400

gE— S

FIg2 VARIATION OF BALLISTIC DENSITY

globe, regional tables being required fo minimize the error in the esti-
mate of the ba!listic density.

It has baen shown, therefore, that a surface density measurement can

be used to categorize ballisiic densities aloft for a particular geo-
graphic region; that a climatological value of ballistic density becomes
more accurate with increasing height (at least to the levels of interest
for conventional tube artillery); and that all geographic localities
cannot be accurately described by a single set of values.

Once the feasibility of the proceaure is established, it is necessary

to determine the accuracy of such a technique. It may well be that even
though the mean curves of ballistic density do not intersect, the disper-
sion within each set is so greet that the probability of an accurate
estimate from the mean is quite smali. This involves, of course, the
study of the standard deviations of density for aiy given surface value.
A portion of the computer ana,ysis for both Vietnam and Korea is shown

in Table 11,
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The standard deviations (STD) are seen to be of the order of 0.5% or
less, which suggests that ballistic density aloft can be estimated Fo
about 1/2% from a measurement of surface density alone, Since density
is calculated from measurements of pressure and temperature from the
radiosonde, the accuracy of the density measurement is dependent upon
the accuracy of the pressurs and temperature sensors. By use of current
specification criteria, the error of the densiiy determination is found
to be 0.3 - 0,4% at low iine numbers and greater than G.5% at high line
numbers., An assessment of ballistic densities to about /2 o 1% by a
surface measurement alone is an excellent back-up system that is always
available where a radiosonde observation of upper air censity cannot be
made,

Historically, the use of density tables for the assessment of ballistic
densities was the standard procedure before radiosondes were available.
The earliest manual available for this renort was TR-1236-1, "Meteoro-
logical Message for the Artillery,"” 1934, At that time it was stated:

"It is impractical to actually measure the femperature, pressure, and
moisture content of the atmosphere at various heights, compute the bal-
listic densities, and get the computed data to the Artillery without
the elapse of considerable time. As atmospheric conditions are contin-
ually changing, there must be as little delay as possible between the
times that meteorological observations are made and the times that tne
comp leted reports are available to the Artillery. No attempt is made,
therefore, to determine air densities from observations made at various
heights above the ground. Instead, the air density is determined near
the ground at the meteorological station and the air density is assumed
to decrease at a definite rate in height above the ground." [2]

Three decades of technological advances have, of course, made it possible
to obtain an atmospheric measurement of temperature and density and
transmit it to the Fire-Direction Center. The other statements concern-
ing atmospheric variability and the necessity for fresh metro informa-
tion are as true today as when the original words were written.

The tables given in TR [236-1 were meant *to apply to the US only (page
24) and values of ballistic density were given for station elevations
near sea level, and at 1000 and 2000 feet above mean sea level. For
higher elevations, the data given in the table for stations located
2000 feet above sea leve! may be used [3].

[2] TR 1236-1, pp 23-24,

[3] ibid., pp 82, 92.
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The data, in part, are shown in Figure 3. The plot shows recognition

—— STATION HEIGHT~ SEA LEVEL
—— = —— STATION HZIGHT ~1002>*
12k — == === STATION HEIGHT~2000"

LINE NUMBER
o o N
T T T

H
H

1 1 1
S0 92 94 96 98 100 102 104 I85 1oe
SURFACE DENSITY IN PERCENT OF STANDARD
FI15.3 BALLISTIC AIR DENSITY FROM TRI236-1 ({1934)

of (1) the convergence cf all values of ballistic density at higher
levels, (2) the difference in behavior of ballistic densities with in-
creasing station elevation,

The main sources of error in the tables are (1) use of the values at
2000 feet for stations at higher elevations, and (2) assumption that
one set of values will suffice for the entire US. To correct taese
errors, a study was carried out by the Signal Corps General Deve!opment
Laboratory, Fort Monmourh, New Jersey, to revise and extend the tubles
C4]. The results of ‘this study appeared in Sep 1942 as Change 4 to
Technical Manual TM 4-~240 which superseded TR 1236-1 in Dec 1941,

As a result of that study, the US and its Western Hemisphere territories
(Alaska, Hawaii, Canal Zone, Puerto Rico, etc.) were divided into six
geographical regions*%¥ The boundaries of the regions in the US were

C4] "Preparation and Evaluation of Revised Ballistic Density Tables,"
Brasefield, C., SCL Eng Report #760, SigC Gen Dev Lab, Ft. Monmouth,
New Jersey.

¥*Region 7, the Pacific Northwest, is not mentioned in Ch 4 to TM 4-240,
17 Sep 1943. It first appears in TM 20-240 which superseded TM 4-240
in Nov 1944, No data are available on the introduction of this new
region.

“
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the same as shown in the current FM 6-16. Appendix |, Change 4 to T™
4-240 dated 17 Sep 1943, extended the valid geographical limits of
the density regions to include the entire Northern Hemisphere. Figure
4 bslow, a reproduction p 10, shows the revisions.

S e e e o ok shm—— 7S i

X 4-240
c4¢ TECHNICAL MANUAL

Arrexorx [
METEOROLOGICAL TABLES

Table X-In (added by C 1, 7 Scpt. 1942), change title to resd as
follows: FOR ANTIAIRCRAFT ARTILLERY AND OTHER
HIGH-ANGLE FIRE; VALID DURING THE NIGHT IN
REGION 1 (EASTERN U. S. A, BRITISH ISLES, COAST OF
NORTH AFRICA, AND EUROPE, EXCEPTING ALPINE
REGION, SCANDINAVIAN PENINSULA, AND  RUSSIA
NORTII OF LATITUDE 55° N.).

Table X-la (added by C 1,7 S 1942), change wtle t0 read as
follows: FOR ANTIAIRCRAFT LRTILLERY AND OTHER
HIGH-ANGLE FIRE; VALID DURING THE AFTERNOON
IN REGION 1 (EASTERN U. S. A, BRITISH ISLES, COAST
OF NORTH AFRICA, AND EUROPE, EXCEPTING ALPINE
REGION, SCANDINAVIAN PENINSULA, AND RUSSIA
NORTH OF LATITUDE 55° N.).

Table X-3n (sdded by C 1, 7 Sept. 1942), change title to read as
follows: FOR ANTIAIRCRAFT ARTILLERY AND OTHER
HIGH-ANGLE FIRE; VALID DURING THE NIGHT IN
REGION 3 (WESTERN U. S. A. AND ALPINE REGION OF
SOUTHEKN EUROPE).

Table X<3a (added by C 1, 7 Sept. 1942), changa titlo to read as
follows: FOR ANTIAIRCRAFT ARTILLERY AND OTHER
HIGH-ANGLE FIRE; VALID DURING THE AFTERNOON
IN REGION 3 (WESTERN U. S. A, AND ALPINE REGION
OF SOUTHERN EUROPE).

Table X-5 (added by C 1, 7 Sept. 1942), chango title to read as
follows, FOR ANTIAIRCRAFT ARTILLERY AND OTHER
HIGH-ANGLE FIRE; VALID IN REGION § (ALASKA, ICE-
LAND, SCANDINAVIAN PENINSULA, AND RUSSIA NORTH
OF LATITUDE 55° N.),

Table X+6n (added by C 1, 7 Sept. 1942), change title to read as
follows: FOR ANTIAIRCRAFT ARTILLERY AND OTHER
HIGH-ANGLE FIRES; VALID DURING THE NIGHT IN
REGION 6 (WEST INDIES, CANAL ZONE, HAWAIL, AND
SOUTHWEST PACIFIC AREA).

Table X-6a (added by C 1, 7 Sept. 1942), change title to read ns
follows: FOR ANTIAIRCRANT ARTILLERY AND OTHER
HIGH-ANGLE FIRL; VALID DURING THE AFTERNOON
IN REGION ¢ (WEST INDIES, CANAL ZONE, HAWAIL,
AND SOUTHWEST PACIFIC AREA).

10

Figure 4. Meteorological Table (from TM 4-240)
C4

An examination of the current Chart | (pp 5-6, FM 6-16, May 1961) ‘
Figure 5 shows an apparent inconsistency. Note the wording for Region

| "Eastern USA, ..... and Europe, excepting Alpine Regions, Scandinavian

Peninsula, and Russia north of latitude 55°N," and that for Region 5,

"Alaska, Iceland, Scandinavian Peninsula, and Russia north of latitude ,
55°N," Clearly the intent was to place 3candinavia and Northern Russia

into Region 5, and exclude those areas from the rest of Europe which

were included in Region |, The numbers | and 5 in the Eastern Hemisphere

are misplaced. Likewise the limits of Region 3, "Western USA and Alpine

Region of Southern Europe" has been rather broadly interpreted - the

eastern Mediterranean and lraq are scarcely Alpine regions of Southern

Europe. Corrections to the current regional density map will be proposed

for inclusion into the next revision of FM 6-16, tentatively scheduled

for the second quarter of FY-73,
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Figure 5.

The departure tables themselves have been only slightly modified through
the years, the greatest change occurring with the issuance or FM €-I16 in
May 1961, owing to the change in units from yards to meters, and the
adoption of a new standard surface density, 1225 g/m3 instead of the
older value of 1203.4 g/m3.

Some of the baliistic density profiles from TR 1236-1 and the revision
are shown in Figure 6. Surface densities 5% above the mean and 5%
below the mean were chosen to emphasize the difference in high and low
surface density conditions,¥¥¥

*¥*%prior to 1961 (FM 6-16) the mean surface density of a meteorological
station at sea levei was 103%. Currently, the standard mean surface
density for a sea-level station is 100%.




e BALLISTIC DENSITIES FROM TR 1236-1
ROMAN NUMERALS REFER YO GEOGRAPHICAL
REGIONS IN FM &-16.

1o}

LINE NUMBER

1 X 1 1 1 1 ]
97 98 99 100 103 104 105 106 107 108 109
SURFACE DENSITY IN PERCENT OF STANDARD

FIG.6 BALLISTIC DENSITY VARIATIONS

The profiles show wide variations between regions, in the example, as
high as 3%. The profile from TR 1236-1 falls between the extremes and
is not coincident with any single region - nor is it the mean of all
regional values. For 98% and 108%, the old profile is closest tfo

that of Region 5, the Alaskan area. The figure clearly shows that a
geographical area the size of the US cannot be adequately described
with a single density profile. Thus, it is difficult fo comprehend

why almost the entire Eurasian Continent from the Baltic Sea all the
way to the Sea of Japan was considered a single region, or why the
Northern Siberian regions were adjudged similar to Eastern US rather
than the Polar Regions of North America, or why the mountainous Western
US is similar to the lands around the northern borders of the Mediterranean.

The revised tables do show, however, that the profiles are dependent
upon the elevation of the station, since a given surface density may
represent mean conditions, above-normal surface density, or abnormally
low surface density depending on whether the station in question is at
sea level or at an elevated location. The behavior of the profile of
100% surface density at a sea-level station, at 1000', and at 2000
above MSL is shown in Figure 7 for both old and revised tables, Region
5 being used since it appears closest to the values in TR 1236-1.
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The figure clearly indicates that ballistic density aloft decreases

most rapidly in the cases of high surface densities and increases aloft
when surface densities are low. Meteorologically, this is known as
compensation, where lighter air overlays dense surface air, and below-
normal densities at the surface gradually disappear aloft to be replaced
with higher-than-normal densities. This emphasizes again the fact noted
earlier, that at some altitude the atmospheric density is independent

of surface density, and at this level horizontal density gradients are
minimal.

The distinction between atmospheric density and ballistic density should
be emphasized here. The atmospheric density at any height is dependent
on the pressure and temperature of the atmosphere at that elevation,

The pressure at that height is the weight of the column of air above
that level, irrespective of conditions below.

The ballistic density at any line "n" is the sum of the weighted densi-
ties from the surface up to line "n" in question, where the weighting

+This is the so-called isopycnic level of the atmosphere. In middle
laflfudes, it occurs near 8 km and was first discovered by A. Wagner
in 1910 and more closely investigated by F. Linke in 1919.




function is described by

and listed in Table |11.

TABLE 111

DENSITY WEIGHTING FACTORS, IN % (from FM 6~16)

Height at Top of

Zone Zorie #
Tine # Mefers T T 21 31 41 51 6] 71 8[9[WO[IT[I12Z113114115
I 200 [ 100
500 | 43 | 57
000 | 221 31 |47
4 1500 15| 21 |32 |32
5 2000 T 17125 |22 {25
g 3000 81 1T {17 |17 115 |32 ]
7 2000 B 1 8114 |13:112 22|25
3 5000 51 6 111 {11 [10 [19 {17 |21
5000 7 99 | 81715 [14[18
IO 8000 SV & 71 71 7135112 [ITliT |25
T T0000 T ST 55161211 9911623
T2 T2000 2| 35 [5 5] [0ofol8[14a]1z]]16
I3 T4000 21 2 |48 (5|11 {998 l14]i0] 9 (12
) T6000 Z1 31 5[5 (51019 871131171 81618
5 8000 2] 2|5 |5 |5]I0l9 8711291 875[5

Hence, while the atmospheric density at the isopycnic level is nearly
constant around the globe, the ballistic density at the same level will
vary somewhat, although far less at that level than at lower altitudes,
since the weighting factors are greatest at higher line numbers, as

noted earlier.

I+ is undoubtedly true that each air mass has a distinctive density
structure, since the source region determines the temperature and moistuie
content of the air mass. With cold frontal passages, the air mass changes
and density changes at low levels (generally line 5 and below) are

greater than normal for a short period of time. It would thus seem
logical to categorize surface densities in terms of air mass, or rela-
tion to other meteorological factors (highs, lows, position in relation

to a cold front, efc.). However, this technique would require frained
meteorologists for each metro section, a luxury the current Army Table

of Distribution and Allowances (TDA) cannot afford.

Hence, the simplistic
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climatological approach, that determines the values of ballistic den-
sity aloft from the surface density without regard to other meteorolog-
ical conditions, was adopted.

The ultimate success of such tabies - accurate assessment of ballistic
density aloft - will be dependent on restriction of geographic extent
of the regions to insure uniformity of conditions, adequate sample of
data on which fo base the tables, and diurnal or season breakdowns where
required.

As an example, note the curves in Figures 8 and 9 that show the differ-
ences in density for night and day conditions for high and low |ine numbers.

96~

| LINE 10

BALLISTIC DENSITY (%)

92~ LINE 1

| ! | | 1 | 1 1
9l 92 93 94 95 96 97 98
SURFACE DENSITY (%)

FIG.8 VIETNAM BALLISTIC DENSITIES
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FIG.9  VARIATION IN BALLISTIC DENSITY (KOREA)

In both the tropical Vietnam and temperate Korean regions, there is a
significant difference in upper air density for a given surface condi-
tion. Hence, separate tables are needed for nighitime and daytime, a
fact realized in the first revision of the old tables in TR 1236~1.,
However, significant changes in day and night sounding are noted in all
lines, not only in line 4 as promulgated in the revised tables ([4],

pp 3-4).

Similarly, plotting the densities as a function of season reveals the
necessity for constructing density tables on a seasonal rather thaa an
annual basis. In Vietnam (Figure 10), the difference between summer
and winter is significant at all levels above line 2, whereas a combin-
ation spring-fall table could be developed that would fit these tran=
sitional seasons.
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Figures Il and 12 show the seasonal density profiles for Korea. The
contrast between summer and winter could not be depicted, since there
were no corresponding surface densities (lowest surface density in
winter 102%, highest in summer, 100%). There is, however, sufficient
spread 'to make separate seasonal tables worthwhile.
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The third factor, geographical extent of a region, is harder to define.
For the Vietnam area, the density profiles from the most northerly sta-
tion (near 16°50' N) and the most southerly one (near 10°20' N) were

so nearly alike that it was obvious that all of South Vietnam could be
included in a single region. Data were not available from North Vietnam
to delineate the northern extent of the region. It is most probable
that the tables can be extended to 20°N and possibly to 25°N. The west-
ward extension to the Bay of Bengal is also probable but must await
further checking with data from upper air stations in that area.

For the Korea Region, the ballistic densities in the southern portion
(near Pusan) differ markszuly from those in the north (around Pyongyanrg).
The separatior. is wost pronouneed in winter (Figure 13) where variations

of more than 1% are possible between the extreme limits of the Korean
area,
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The one-sigma values shown as vertical lines between the northern and
southern curves indicate that the differences are significant between
lines 3 and 7. For that reason, three separate tables were constructed
- one for the southern islands to 36°N; the second valid between 36°N
and the DMZ; and the third to be used from the DMZ fo 40°N.

Construction of the Tables

Once the differential criteria for the tables are established, the actual
construction largely depends on the availability of the data. Where
large numbers of Artillery Metro Sections are in operation as in South
Vietnam, ithe problem is simplified. |In fact, zone and ballistic densities
are available on Forms DA 6-57 and DA 6-59 for processing by computer,
Frequency distributions of upper air densities as a function of surface
density are produced, and tables are constructed for surface density
steps of 0.5%. Abrupt changes in slope of the profiles are avoided

both from zone to zone for a given surface density and for a given zone
as the surface density varies. Such smoothing rarely changes the tabu-
lar values by more than 0.2 - 0.3%, much less than the standard devia-
tions of the values themselves.,

Where sources other than Artillery Metro Sections are used, radiosonde
data are available only at mandatory or significant levels. In Those
cases, the densities must be computed from the sounding (see Appendix).
After this has been completed, the procedure follows that is stated above
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for the Vietnam data. Recognizing that variations in station altitude

3 cause the greatest difference in density picofiles (see Figures 3 and 7},
E the original tabtes in TR 1236~1 specified density factors for sea level,
k 000" above MSL, and 2000' above MSL. A similar procedure, incorporating
metric rather tnan English units, was followed for the new Vietnam

tables as sufficient data were available. Tables were constructed for
stations whose altitudes lay between sea level and 200 meterst? Another
set was valid for those stations in the range of elevation 200 to 450
meters, the next 450 - 650 meters, etc. This procedure has the advantage
of allowing for discrimination between density profiles due fo elevation
while keeping the number of tables within reason. In Vietnam, five sets
of tabies covered all operational station elevations.

W*3lmm.

The question naturally arises: Can a density profile be constructed
for an elevated station if a nearby sea~level station is available? A
special series of Vietnam flights was made every three hours for a week
at a pair of locations separated by approximately 20 kilometers, one 30
meters above sea level, the other 770 meters above sea level. These
flights were ideal for determining if ballistic densities from the sta-
tion near sea level could be used fo construct a density profile for
the elevated location.

3 A simplistic approach was attempted. The difference between the surface
g densities of the two stations was computed and the difference subtracted |
from the ballistic densities of the sea-level metro message. The re-
sulting values were compared with tne actual bailistic densities from
the higher station. The results are shown in Table 1V below.

TABLE 1V

ERROR IN BALLISTIC DENSITY

Line No. I 2 3 4 5 6 7 8 9 10

Density !
error in .3 .4 5 5 5 .6 .7 .7 .8 .9 i
percent '

It is readily seen that the error increases with height and becomes i
greater than 0.5% above line five., More complex schemes were tried. '
The most successful involved subtracting the sum of the difference in

e is believed that by presenting the density for each zone as a tabular ;
value, rather than a departure from the mean (which invoives algebraic
addition before the ballistic density is obtained), arithmetic errors
will be reduced.

17




surface densities and one tenth of the line number from each ballistic
density at sea level to give the corresponding ballistic density at 770
meters. The results of the computations are shown in Table V.

TABLE V

ERROR IN BALLISTIC DENSITY

Line No. | 2 3 4 5 6 7 8 9 10
Density
error in o3 .4 W5 .6 o4 .6 .6 .6 .6 .5
percent

The errors for high line numbers have been reduced, but the results are
still not encouraging.

Neither of the two techniques is as accurate as the results obtained
using the new climatological density tables as showr: in Table VI.

TABLE VI

DENSITY ERRORS USING CLIMATOLOG{ICAL TABLES

Line No. | 2 3 4 5 6 7 8 9 0
Density
error in o2 W2 .3 o3 .4 .4 .4 4 .4 .4
percent

The mean error is seen to be less than 0.5% in all cases and does not
continuously increase with height, |1 appears, therefore, that ballistic
densities from a climatological table are superior to values obtained
from extrapolating density profiles from a sea=ievel station.

It has been shown that climatological tables are feasible, seem to be
reasonably accurate in one sampie case investigated, and are easy to use.
It remains to be seen whether they are accurate for a much larger sample
and whether they are better or worse than the existing tables.

Since only the data from Artillery Metro Sections in Vietnam are avail-
able for direct comparison of tabular and actual ballistic densities,

the analysis will be confined to those data. It should be noted that
the absolute value of the error is the important factor in the applica-
tion of the ballistic density to an actual firing. The resulting effects
from a shell whose trajectory is 150 meters too short, for example, are
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just as bad as those from a hell whose trajectory is 150 meters too
long. The algebraic error is a measure of the amount of bias in “the
tables and indicates whether the fables could be improved by changing
the individual values to eliminate the bias. Ideally the algehraic
error should be zero, but, owing to the inherent inaccuracies in the
determination of density, small biases of a few tenths of a percent

, appear. These, however, are insignificant.

Tables VIl and VIII show sample distribution of errcrs for the new Vieinan
tables. Shown are the errors for the summer daytime and the winter
nighttime tables for stations below 200 meters elevation.
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DISTRIBUTION OF ERRORS TABLE Vil
NEW VIETHAM TABLES

TABLE vII

I+ can be seen that the mean absolute error is 0.5% or less for all
lines in both seasons and the bias error is not significant. All sea-
sons and altitude ranges are similar, although the number of data points
decreases markedly with increasing elevation.

Table IX shows a corresponding error distribution using the density de-
perture tables in FM 6-16 for region 6. Since the older tzoles are in-
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tended for use in all seasons, there is no differentiation for summer
and winter, and the tables include all data for all months.
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I+ is obvious that the

TABLE IX

absolute errors are greater and that there is a

significant bias in many zones. Note =2specially line |l, which has an
average error of more than 2%! |t can be seen that fewer than 2000 of
the 4334 values in line Il have errors less than 2.0%, all the others
are off range as far as the table goes. It is all the more surprising
that line 10 is exceilent, with mean errors as low as lines | and 2,
and no significant bias!

| f one wishes to compare the tables on a yearly basis, the seasonal

errcis can be combined

to give an annual figure. Table X shows the

breakdown into four categories of error,

Cases with errors from

0 to 0.5% can be ciassified excellent, those

from 0.6% to 1.0% can be called fair; those from 1.0% to 1.5%, poor;
and greater ‘than |.5% would be disastrous.
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TABLE X

ANNUAL DISTRIBUTION OF DENSITY ERRORS (SEA-LEVEL STATIONS)

New Tables Old Tables

Percent Error Day Night Day Night
0 - 0.5 72.6%  77.1% 50.1% 53.5%

0.6 - 1.0 22.4% 19.2% 28.1% 28.5%
Il - 1.5 4,3% 5.3% 12.5% 10.5%

> 1.5 0.7% 0.4% 9.3% 7.5%

We see that the number of cases of very poor assessment of ballistic
density when the new tables are used is less than one-tenth the number
with the old tables; the probability of obtaining an excellent ballistic
density has increased by more than 20% and an acceptable density profile
is obtained in 95 of every 100 cases. There is no doubt that the tables
offer an excellent back-up system for obtaining ballistic densities in
Vietnam in the absence of a direct radiosonde observation.

The lack of a direct measurement may be due to outage of equipment,
communication difficulties, or it may be that it is the period between
scheduled balloon releases, usually every six hours in Vietnam.

Earlier studies have shown that the variation of ballistic density in
a I-to-8-hour period is not significant [5]. Should the tables be used
when the latest metro message is 3, 4, 5, or 6 hours old?

To answer this question one must examine the diurnal variation of den-
sity. The special 3~hourly data from Vietnam (mentioned earlier) are
ideal for this analysis. Even though the period is short, about one
week, the changes in density throughout the day will give some clue as

to those periods in which the temporal variation is greatest. Figures

14 and |5 show the density for the various ballistic zones throughout
the day for the station near sea level and the elevated location. The
shape of both the curves is the same although the amplitude of the den~
sity fluctuation is greateir at the lower station. About 2100Z (0500LST).
well before sunrise, the surface and ballistic densities decrease rapidly,
fluctuating between 0300Z and 0900Z (1100-1700LST) to a minimum a little
befcre 0900Z. The decrease over this 6-hour period is greater than 3.0%
at sea level and more tnan 2,0% at elevated stations.

[[5] Lowenthal, Marvin J., "Applications of Accuracy of Upper Air Data
to Artillery," ECOM-3122, May [969.
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Thus, the ballistic density obtained from a sounding made at 0000Z and
used at 0500Z (before a new measurement is customarily made) would be

in error by more than 1%. Similarly, a sounding made at 0600Z and used
at 1100Z would contain an error almost as great, whereas the ballistic
densities from a 1200Z sounding used at 1700Z and from a 1800Z sounding
used at 2300Z would be in error by less than 1%. While these values
are for the tropics, similar curves, although with different amplitfudes,
obtain for the other climatic regions. This means that the time of day
is the determining factor for the time variability of ballistic density
for periods of less than 6 hours.

To decrease the erior in ballistic density in the interval between
soundings, the curves of Figures 14 and |5 may be used o correct the
earlier measurement. Even though the daily curves of ballistic density
variation may not coincide absolutely, the frend is the same. Thus a
diminishing of the 00COZ ballistic density by 1% for use at 0300Z

would give a much better estimate of the density than the use of the un-
corrected 0000Z value. A table could be constructed giving such cor-
rections for each measurement hour of the day and the time of usage.

This could be supplied to the Fire-Direction Center to decrease the
range error due to improper ballistic density corrections. A sample
of such a table for one location in Vietnam is shown in Table Xl.
While both location and altitude are different from Figures 14 and 15,
the trend is the same.

Corrections for Ballistic Density -- Yine 1
Station 1LLO7S (Vietnam)

=3

Zivnding Tine (1ST) 00 01 02 03 05 06 o7 08 09 10 11 12 13 ik 15 16 17 18 19 0 1 22 o0
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1] +2,9]+3.11+3.3 r.a+i.6 +3.80+3.61+3.81+3.6]+3.2]+2.6]+2.0]+1.2] +.5 -, 3) -.b] =.2] +.2F +,TRY.2 41 R a0 O42 ¢
15§ +3.21+3.0[+3.6]+3.8] +h.0l +b T T+h.2 P 1]+3.9]+3.5]*2.9]+2.31+1.5] +.9] +.3 -1 *. Y +, 51410 1.5 T2 s1e0.9
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< oply approprizte correction to reasured Bzllistic Pensity to get
corrected velue for use at firing time,

TABLE XL
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CONCLUDING REMARKS

In this report, the development of bailistic density departure tables

has been traced over the last three decades from their eariiest begin-
nings, where elevation of the battery was the only parameter considered,
through the promulgation of climatic regions where geography and time

of day were added, to the latest tables that are consiructed for a limited
geographical area far smaller than the previous regions in FM 6-16.

In addition, the possibilities for minimizing interdiurnal density
variations have been pointed out, as well as impossibility of pre-
dicting baliistic densities at elevated locations with sufficient
accuracy for Artillery purposes from measurements at sea level.

The new tables constructed from individual radiosondings have been shown
to be much more accurate than the older ones derived mainly from mean
values at selected locations.

Use of the tables can effect a considerable savings in expendables, as
wind measurements can be made every two hours by fracking a balloon
alone (without the more costly radiosondes, since the density can be
corrected by the tables and associated fechniques.
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APPENDI X

COMPUTER DETERMINATION OF METRO MESSAGES
FROM RADIOSONDE DATA

By

Hope S. Periman
U. S. Army Electronics Command

Computer reduction of radiosonde flights to give thermodynamical quanti-
ties is common where a {arge number of flights must be handled or

where checking of manual operations is required in data repositories.
Less common is the computer determination of NATO or computer meteoro-
logical messages since ballistic meteorology is less extensively re-
searched than pure synoptic meteorology.

Secondly, the recent change in the format of the computer met message
has necessitated a change in the reported quantities. That, in turn,
requires a program change in any computer routine that produces the
artillery met messages.

This paper outlines the procedure for computer determination of ballis-
Tic and computer met messages, with especial detail given ftc the evalua-
tion of the two new elements of the computier message - mean virtual
temperature and pressure at the midpoint of the zone.

Procedures

Since data for research purposes is most often obtained from VYorld Data
Centers, the analysis begins with the data in the usual card (or tape)
format of the mandatory pressure levels - the customary way in which
data are archived. It must be remembered that heights on the cards are
expressed above mean sea level (MSL). Since artillery met data are con-
cerned with heights above ground, the elevation of the station must be
subtracted from all given heights of the standard pressure levels. That
-is the reason for Steps | and 3(c) below. A complete computer program
is available upon request.

Method of Solution

I. Read in surface height (SZ) of station.

2, Read in complete data for one flight. Thic will include n sets
of pressure (P), height (Z), temperature in °C(T) and relative
humidity in $(H),
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3. Adjust data and number of levels (n) as follows:

a. IfH <0, set it equal to zero.
b. Eliminate any level where temperature is missing.
c. Subtract Sz from all values of Z.

4 4. Calculate virtual temperature, in °K, (T,) at each level, as
E fol lows:
Ty = T T Tz
P - (.0037812) (H) (6. i05)exp| 22575 - 5.31 In 77-3—]
i 5. Print out adjusted data (P, Z, T, H, T,) for each level.

6. Set up ballistic zone top heights (ZLT) and standard tempera-
tures (ZLTMS) and densities (ZLDNS) at these heights.

7. Print all surface information.

8. For each zone (ZL) compute ZZTM, zone temperature and ZZPR,
pressure at the top of the zone, using infermediate data level
values of P, Z and T, indexed from 0, the bottom of the zone,
to d, the top of the zone.

a. Obtain a starting value of Tyy, virtual temperature at the
top of the zone, by interpolating linearly, using values of

TVd+i’ TVd—I’ Zd+|’ Zd, and Zd-l'

b. ZZTM is calculated by selecting a starting value (1/2 the
sum of the maximum and minimum of the Ty values within the
zone), and moving it toward the maximum or minimum until

d-1

/72 ¢ (Z,

i+ -.Zi) (TVi + Ty - 2ZZTMINO¥* (2)
i=o

i+l

In practice, the process is continued until itwo successive values of
ZZTM differ by less than .I°K.

c. Pq is found by solving the transcendental equation

P
(o) .7 _ 7 (3)

29,27 ZZT™ In?ﬁay = Z, o

*
The rationale for Equation (2) is found in Appendix I.
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d. A new value of Tvd is computed by interpolating linearly,

using 'Vg+? TVd-I’ Pd+l’ Pd’ and Pd-l‘

e. Steps b, ¢, and d are repeated untii two successive values
of ZZTM, ca!culated in step d differ by .2°K or less.

f. ZZPR = Pg (4)

For each zone level, compute

a. ZZTMPy zone temperafure (% of standard)

IOO(ZZTMZL)
b. ZZPR2 |» Pressure at the midpoint cf the zone, is found
by so%ving the following Transcendental equation:
(77
ikl A (6)
ZL (ZZPRZZL) d o

c. ZZDNZL’ zone density

29.27(ZZT™,, ) In

ZZDNZL = 348,384 ZZPRZZL/ZZTMZL (7)
d. ZZDNPZL, zone density in percent of standard
IOO(ZZDNZL)

For each zone, calculate ballistic weighted temperature (ZZBTZL)
and ballistic weighted densiiy (ZZBDz| ), using temperature
weighting factors (TWF) and density weighting factors (DWG) for

that zone.
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APPENDIX 1
CALCULATION OF ZONE TEMPERATURE

T Zz

vd’ =d
- zone top
TV3’ Z )“//7'
Na
Lrv ) Z
T Z/ J ' zone bottom
Vo’ o |en
ZZT™
Given: TVo’ zZ, TVI’ Zy === Ty Z4, where the zero subscript denotes
the bottom of he zone and the d subscript the top of The zone.

Find: ZZTM, the zone temperature, such that the areas to the right of
ZZTM equal the areas to the left of ZZTM, or ZZTM is correct to .I1°K.

Analysis:

I. Between any successive reading of Ty., Zj and Ty,

: VA
the figure is either a trapezoid or 2 triangles.

+17 Ti+l

a. |f a trapezoid, Area = |/2 h (a+b)

1/2 (Zi+

-2 DOy, - 22+ Ty, - 2ZTW)]

i

1/2 (Z,

P+ - 2ZZTW)

- Zl) (TV' + TVi+I

and will be positive or negative depending on whether TVi
and TVi+l are greater or less than ZZTM.
b. If two triangles, the area equals area of triangle
Tvir 230 (Tvigps 214y Tvgpr )
minus area of rectangle

Z,, ) (T Z.)

(zzTM, Z;) (ZZTM, Z, L Zi) Tvieg 2

I) (TVi+
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or 1/2 (Zi Zi) (TVi - Ty., ) = (Z

i+ i+ " Zi) (ZZMm - T

+ - Vitl
s the area of the trapezoid equals the area. of the iwo
triangles, and is

|/2(Zi+ - Zi) (TVi + TVi+! - 2ZZTM)

2. ZZTM is calculated by selecting a starting value of ZZTM (half
the sum of the maximum and minimum values of the Ty's) and moving &
it AT toward Ty, min until

d-1

'Y - _
1/2 izo ‘Zi+l Zi) (TVi + Tvi+| 27ZT™M) ~ 0.
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