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ABSTRACT

The accuracy of ballistic density departure tables is examined, starting
with the earliest available sets in 1934. The extension of the tables
(originally developed for the US) to encompass the entire Northern Hemi-
sphere is discussed and the shortcomings of the current climatological
regional zones described.

New tablesP based on current data and used for a more I;mited geographical
area, are shown to be accurate to one half of one percent, hence furnish
excellent back-up information when a current sounding is not available
for artillery firings.

A procedure for minimizing ballistic density errors that accrue between
observational periods is also presented.
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INTRODUCTION

One of the basic premises of all firing tables is the "Standard Atmos-
phere" - one whose properties are enumerated in the "1962 Standard At-
mosphere" [I]. With such a density distribution and zero wind through-
out, the shell should describe the calculated trajectory given in the
firing tables. Those conditions are never encountered on earth, hence
corrections for nonstandard conditions are always in order. Artillery
Meteorological Sections, organic to the Army Artillery, provide meteoro-
logical information on winds and density to permit such corrections.

Accurate,.representative, fresh observations are the best method of cor-
rection available today. There are, however, occasions when these mea-
surements are not availabl;e, and alternate methods are necessary to
provide th- requisite information. In the case of atmcspheric density
such an option is available.

Air density at ground level can always be deTermined, the only equipment
required being a good barometer and wet- and dry-bulb thermom&-ers. If
the upper ai: density can be inferred from the surface measur~iment, the
ballistic density can be furnished for correction of artillery fire. The
vital question is: Is the assumption justified that the surface density
is a good predictor of ballistic density aloft?

To test the theory, some 3000 radiosondings from Vietnam and 2000 f om
the Korean region were examined. Figure I shows the mean of ballistic
density aloft as a function of surface density over a wide range of
surface values.* Values of ballistic density are expressed as a percent
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[I] US Standard Atmclsphere, US Govt. Printing Office, Dec. 1962.
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of standard with the ordinate being the normal NATO zones (Table I).

TABLE I

BALLISTIC ZONES, STANDARD ATMOSPHERE

Height at
Top of Zone 3

Line No. (Meters) Temperature (*K) Density (g/m3)

0 Surface 288.2 1225.0
1 200 287.5 1213.3
2 500 28:.9 1184.4
3 1000 283.3 1139.2
4 1500 280.0 1084.6
5 2000 276.8 1032.0
6 3000 271.9 957.0
7 4000 265.5 863.4
8 5000 259.0 777.0
9 6000 252.5 697.4
10 8000 242.7 590.0
II 10000 229.8 467.0
12 12000 216.8 364.8
13 i4000 216.7 266.6
14 16000 216.7 194.8
15 18000 216.7 142.3

As can be seen, the ballistic densities are a function of the surface
value. The various curves do not intersect, although the spread between
the extremes continually decreases. The values all seem to trend to-
ward a common value at some higher level, beyond the limit of our data.
The curves do show that ballistic density is more independent of the
surface value at the high line numbers than at low line numbers. Thus,
a climatological value of ballistic density at high altitudes (line 10
or above) would have a very small error for all ranges of surface den-
sity. This is most fortunate since the range errors due to an incorrect
assessment of ballistic density are greatest for high maximum ordinates.

In absolute values, the ballistic density curves exhibit a behavior sim-
ilar to that of the Standard Atmosphere (Figure 2). Again, the conver-
gence of all curves is seen with increasing altitude. It should be
noted that the curves for the tropical region (Vietnam) converge toward
a different value than those from the nontropical Korea. This difference
indicates that one set of values is not satisfactory for the entire

2
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globe, regional tables being required to minimize the error in the esti-
mate of the ba• listic density.

It has been shown, therefore, that a surface density measurement can
be used to categorize ballislic densities aloft for a particular geo-
graphic region; that a climatological value of ballistic density becomes
more accurate with increasing height (at least to the levels of interest
for conventional tube artillery); and that all geographic localities
cannot be accurately described by a single set of values.

Once the feasibility of the proceoure is established, it is necessary
to determine the accuracy of such a technique. It may well be tha+ even
though the mean curves of ballistic density do not intersect, the disper-
sion within each set is so great that the probability of an accurate
estimate from the mean is quite small. This involves, of course, the
study of the standard deviations of density for aiiy given surface value.
A portion of the computer ana;ysis for both Vietnam and Korea is shown
in. Table 11.
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The standard deviations (STD) are seen to be of the order of 0.5% or
less, which suggests that ballistic density aloft can be estimated to
about 1/2% from a measurement of surface density alone. Since density
is calculated from measurements of pressure and temperature from the
radiosonde, the accuracy of the density measurement is dependent upon
the accuracy of the pressure and temperature sensors. By use of current
specification criteria, the error of the density determination is found
to be 0.3 - 0.4% at low iine numbers and greater than 0.5% at high line
numbers. An assessment of ballistic densities to about 1/2 to 1% by a
surface measurement alone is an excellent back-up systpm that is always
available where a radiosonde observation of upper air aensity cannot be
made.

Historically, the use of density tables for the assessmlent of ballistic
densities was the standard procedure before radiosondes were available.
The earliest manual available for this rerort was TR-1236-I, "Meteoro-
logical Message for the Artillery," 1934. At that time it was stated:

"It is impractical to actually measure the temperature, pressure, and
moisture content of the atmosphere at various heights, compute the bal-
listic densities, and get the computed data to the Artillery without
the elapse of considerable time. As. atmospheric conditions are contin-
ually changing, there must be as little delay as possible between the
times that meteorological observations are made and the times that tne
completed reports are available to the Artillery. No attempt is made,
therefore, to determine air densities from observations made at various
heights above the ground. Instead, the air density is determined near
the ground at the meteorological station and the air density is assumed
to decrease at a definite rate in height above the ground." [2]

Three decades of technological advances have, of course, made it possible
to obtain an atmospheric measurement of temperature and density and
transmit it to the Fire-Direction Center. The other statements concern-
ing atmospheric variability and the necessity for fresh metro informa-
tion are as true today as when the original words were written.

The tables given in TR 1236-I were meant to apply to the US only (page
24) and values of ballistic density were given for station elevations
near sea level, and at 1000 and 2000 feet above mean sea level. For
higher elevdtions, the data given in the table for stations located
2000 feet above sea level may be used [3].

[2] TR 1236-I, pp 23-24.

[3] Ibid., pp 82, 92.
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The data, in part. are shown in Figure 3. The plot shows recognition
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FIG.3 BALLISTIC AIR DENSITY FROM TRI1236-I (1934)

of (I) the convergence of all values of ballistic density at higher
levels, (2) the difference in behavior of ballistic densities with in-
creasing station elevation.

The main sources of error in the tables are (I) use of the "alues at
2000 feet for stations at higher elevations, and (2) assumption that
one set of values will suffice for the entire US. To correct t.'ese
errors, a study was carried out by the Signal Corps General Development
Laboratory, Fort Monmnourh, New Jersey, to revise and extend the tables

L [4]. The results of this study appeared in Sep 1942 as Change 4 to
Technical Manual TM 4-240 which superseded TR 1236-I in Dec 1941.

As a result of that study, the US and its Western Hemisphere territories
(Alaska, Hawaii, Canal Zone, Puerto Rico. etc.) were divided into six
geographical regions*• The boundaries of the regions in the US were

[4] "Preparation and Evaluation of Revised Ballistic Density Tables,"
BrasefielId, C., SCL Eng Report #760, SigC Gen Dev Lab, Ft. Monmouth,
New Jersey.

**Region 7, the Pacific Northwest, is not mentioned in Ch 4 to TM 4-240,
17 Sep 1943. It first appears in TM 20-240 which superseded TM 4-240
in Nov 1944. No data are available on the introduction of this new
reg ion.
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the same as shown in the current FM 6-16. Appendix I, Change 4 to TM
4-240 dated 17 Sep 1943, extended the valid geographical lim.its of
the density regions to include the entire Northern Hemisphere. Figure
4 below, a reproduction p 10, shows the revisions.

TX 4-W0
0 4 'TECHNICAL MANI'AL

ArIL•iDX I

METEOROLOGICAL TABLES

Table X-In (added by CJ1, 7 Sept. 1942), change title to read as
follows: FOR ANTIAIRCRAFT ARTILLERY AND OTHER
IIIGII-ANGLE FIRE: VALID DURING TIlE NIGHT IN
REGION I (EASTERN U. S. A, BRITISII ISLES, COAST OF
NORTH AFRICA, AND EUROPE. EXCEPTING ALPINE
REGION, SCANDiNAVIAN PENINSULA, AND RUSSIA
NORTH OF LATITUDE 55" N.).

Table X-la (added by C 1, 7 S 1942), chiaen .otIe to read is
follows: FOR ANTIAIRCRAFT .. RTILLERY AND OTIHER
IIIGII-ANGLE FIRE; VALID DURING TIlE AFTERNOON
IN REGION I (EASTERN U. S. A., BRITISH ISLES, COAST
OF NORTH AFRICA, AND EUROPE, EXCEPTING ALPINE
REGION, SCANDINAVIAN PENINSULA, AND RUSSIA
NORTII OF LATITUDE 5s. N.).

Table X-3n (added by C 1, 7 Sept. 1942), change title to read a
follows: FOR ANTIAIRCRAFT ARTILLERY AND OTIIER
IIIGII-ANGLE FIRE: VALID DURING TIlE NIGIIT IN
REGION 3 (W\ESTERN U. S. A. AND ALPINE REGION OF
SOUTIHERN EUROPE).

Table X-3a (added by C I, 7 Sept. 1942), change title to read as
follows: FOR ANTIAIRCRAFT ARTILLERY AND OTIIER
IlIGlI-ANGLE FIRE; VALII) DURING TIlE AFTERNOON
IN REGION 3 (WFSTERIN U. S. A. AND ALPINE REGION
OF SOUTIIERN EUROPE).

Table X-5 (added by C I, 7 Sept. 1942), change title to read as
folloss. FOR ANTIAIRCRAFT ARTILLERY AND OTIHER
IIIGII-ANGLE FIRE; VALID IN REGION I (ALASKA, ICE-
LAND, SCANDINAVIAN I'ENINSULA, AND RUSSIA NORTII
OF IATITUDE 550 N.),

Table X-rn (added by C 1, 7 Sept. 1942), change title to read as
follows: FOR ANTIAIRCRAFT ARTILLERY AND OTHER
IIIGII.ANGLE FIRES; VALID DURING TIlE NIGIIT IN
REGION 6 (WEST INDIES, CANAL ZONE, HIAWAII, AND
SOCUTHIWEST PACIFIC AREA).

Table X-6a (added by C I, 7 Sept. 1942), change title to read as
follows: FOR ANTIAIRCRAPT ARTILLERY AND OTIIER
IIIGI-ANGLE FIRIlI; VALID DURING TIlE AFTERNOON
IN REGION 6 (WEST INDIES, CANAL ZONE, HAWAII.
AND SOUTIIWEST PACIFIC AREA).

10

Figure 4. Meteorological Table (from TM 4-240)
C4

An examination of the current Chart I (pp 5-6, FM 6-16, Ma, 1961)
Figure 5 shows an apparent inconsistency. Note the wording for Region
I "Eastern USA. ..... and Europe, excepting Alpine Regions, Scandinavian
Peninsula, and Russia north of latitude 550N,"1 and that for Region 5,
"Alaska, Iceland, Scandinavian Peninsula, and Russia north of latitude
55°N." Clearly the intent was to place Scandinavia and Northern Russia
into Region 5, and exclude those areas from the rest of Europe which
were included in Region I. The numbers I anJ 5 in the Eastern Hemisphere
are misplaced. Likewise the limits of Region 3, "Western USA and Alpine
Region of Southern Europe" has been rather broadly interpreted - the
eastern Mediterranean and Iraq are scarcely Alpine regions of Southe-n
Europe. Corrections to the current regional density map will be proposed
for inclusion into the next revision of FM 6-16, tentatively scheduled
for the second quarter of FY-73.
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The1 departure tables themselv have. been only sltly modified through
the ear, te geatst hane ocuringwith the issuance or FM C-16 in
May196, oingto he hane i unts romyards to meters, and the

adoption of a new standard surface density, 1225 g/rn3 instead of the
older value of 1203.4 g/m3.

Some of the ballistic density profiles from TR 1236-1 and the revision
are shown in Figure 6. Surface densities 5% above the mean and 5%
below the mean were chosen to emphasize the difference in high and low
surface density conditions.***

***Prior to 1961 (FM 6-16) the mean surface density of a meteorological

station at sea levei was 103%. Currently, the standard mean surface
density for a sea-level station is 100%.
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BALLISTIC DENSITIES FROM TR 1256-1
ROMAN NUMERALS REFER TO GEOGRAPPHICAL
REGIONS IN FM 6-16.
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FIG.6 BALLISTIC DENSITY VARIATIONS

The profiles show wide variations between regions, in the example, as
high as 3%. The profile from TR 1236-I falls between the extremes and
is not coincident with any single region - nor is it the mean of all
regional values. For 98% and 108%, the old profile is closest to
that of Region 5, the Alaskan area. The figure clearly shows that a
geographical area the size of the US cannot be adequately described
with a single density profile. Thus, it is difficult to comprehend
why almost the entire Eurasian Continent from the Baltic Sea all the
way to the Sea of Japan was considered a single region, or why the
Northern Siberian regions were adjudged similar to Eastern US rather
than the Polar Regions of North America, or why the mountainous Western
US is similar to the lands around the northern borders of the Mediterranean.

The revised tables do show, however, that the profiles are dependent
upon the elevation of the station, since a given surface density may
represent mean conditions, above-normal surface density, or abnormally
low surface density depending on whether the station in question is at
sea level or at an elevated location. The behavior of the profile of
100% surface density at a sea-level station, at 1000', and at 20001
above MSL is shown in Figure 7 for both old and revised tables, Region
5 being used since it appears closest to the values in TR 1236-I.
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The figure clearly indicates that ballistic density aloft decreases
most rapidly in the cases of high surface densities and increases aloft
when surface densities are low. Meteorologically, this is known as
compensation, where lighter air overlays dense surface air, and below-
normal densities at the surface gradually disappear aloft to be replaced
with higher-than-normal densities. This emphasizes again the fact noted
earlier, that at some altitude the atmospheric density is independent
of surface density, and at this level horizontal density gradients are
minimal .It

The distinction between atmospheric density and ballistic density should
be emphasized here. The atmospheric density at any height is dependent
on the pressure and temperature of the atmosphere at that elevation.
The pressure at that height Is the weight of the column of air above
that level, irrespective of conditions below.

The ballistic density at any line "n" is the sum of the weighted densi-
ties from the surface up to line "n" in question, where the weighting

tThis is the so-called isopycnic level of the atmosphere. In middle
latitudes, it occurs near 8 km and was first discovered by A. Wagner
in 1910 and more closely investigated by F. Linke in 1919.

10
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function is described by

j=n
Z a.=l

j=l J

and listed in Table III.

TABLE III

DENSITY WEIGHTING FACTORS, IN % (from FM 6-16)
Height at Top of
Zone Zone #

Line 7#e-ters 1 2 3 1 4 5 61 7 "8 9 1 011 2 13 14 15
1 200 100 1
2 500 43 7I
-3 1000 22 31 47
4 1500 15 21 . 32 32:
5 2000 II - 17- 25 22 25

6 .. . 30'00 8 II 17 17 15 32
_400_ 8T 1413: 12 22 25

8 5000 5 6 11 11 10 19 17 21---
9 6000' 4 6-7- 9--9 _8 17 15 14 18"-

10 8000 3 7 7 73 12 II 11 25
il 10000 1 3 5 5 6 12 11 '9 9 16 23
12120 7 -7 -- - 5 Ti I I0 9 8 14 12 16
13 T4000 2 27 4 -5' 5 11 9 9 8 14 10 9 12
14 6000 -7- - -- 75 5 110 9 87 13 Ii 8 6 8
15 180 F 0 9 8712 9 8I 5 54 6'

Hence, while the atmospheric density at the isopycnic level is nearly
constant around the globe, the ballistic density at the same level will
vary somewhat, although far less at that level than at lower altitudes,
since the weighting factors are greatest at higher line numbers, as
noted earlier.

It is undoubtedly true that each air mass has a distinctive density
structure, since the source region determines the temperature and moisture
content of the air mass. With cold frontal passages, the air mass changes
and density changes at low levels (generally line 5 and below) are
greater than normal for a short period of time. It would thus seem
logical to categorize surface densities in terms of air mass, or rela-
tion to other meteorological factors (highs, lows, position in relation
to a cold front, etc.). However, this technique would require trained
meteorologists for each metro section, a luxury the current Army Table
of Distribution and Allowances (TDA) cannot afford. Hence, the simplistic

II



climatological approach, that determines the values of ballistic den-
sity aloft from the surface density without regard to other meteorolog-
ical conditions, was adopted.

The ultimate success of such tabies - accurate assessment of ballistic
density aloft - will be dependent on restriction of geographic extent
of the regions to insure uniformity of conditions, adequate sample of
data on which to base the tables, and diurnal or season breakdowns where
requi red.

As an example, note the curves in Figures 8 and 9 that show the differ-
ences in density for night and day conditions for high and low line numbers.

98

96-
95LINE 10 •

>. 95
-NIGHT

S941
W

P 93 1 95 6

SURFACE DENSITY LE)

FIG. 8 VIETNAM BALLISTIC DENSITIES

12



104

103

102

j-I01

az,'100-
_o 99

i-

97- A

96- LINE I10 G

95.LINE I N10

95 97 99 10I 105

SURFACE DENSITY M'

FIG.9 VARIATION IN BALLISTIC DENSITY (KOREA)

In both the tropical Vietnam and temperate Korean regions, there is a
significant difference in upper air density for a given surface condi-

tion. Hence, separate tables are needed for nighttime and daytime, a

fact realized in the first revision of the old tables in TR 1236-1.
However,, significant changes in day and night sounding are noted in all
lines, not only in line 4 as promulgated in the revised tables ([41,

pp 3-4).

Similarly, plotting the densities as a function of season reveals the

necessity for constructing density tables on a seasonal rather than an

annual basis. In Vietnam (Figure 10), the difference between summer
and winter is significant at all levels above line 2, whereas a combin-
ation spring-fall table could be developed that would fit these traný-"

sitional seasons.
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Figures II and 12 show the seasonal density profiles for Korea. The
contrast between summer and winter could not be depicted, since there
were no corresponding surface densities (lowest surface density in
winter 102%, highest in summer, 100%). There is, however, sufficient
spread -to make separate seasonal tables worthwhile.
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FIG.Il SEASONAL VARIATION IN BALLISTIC DENSITY (KOREA)
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FIG,I2 SEASONAL VARIATION IN BALLISTIC DENSITY (KOREA)

The third factor, geographical extent of a region, is harder to define.
For the Vietnam area, the density profiles from the most northerly sta-
tion (near 160501 N) and the most southerly one (near 100201 N) were
so nearly alike that it was obvious that all of South Vietnam could be
included in a single region. Data were not available from North Vietnam
to delineate the northern extent of the region. It is most probable
that the tables can be extended to 20 0 N and possibly to 250 N. The west-
ward extension to the Bay of Bengal is also probable but must await
further checking with data from upper air stations in that area.

For the Korea Region, the ballistic densities in the southern portion
(near Pusan) differ markeuly from those in the north (around Pyongyang).
The separatior. ;s niost pronouneed in winter (Figure 13) where variations
of more than 1% gre possible between the extreme limits of the Korean
area.
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FIGI13 VARIATION OF BALLISTIC DENSITY (KOREA-WINTER)

The one-sigma values shown as vertical lines between the northern and
southern curves indicate that the differences are significant between
lines 3 and 7. For that reason, three separate tables were constructed
- one for the southern island$ TO 36'N; the second valid between 36*N
and the DMZ; and the third to be used from the DMZ to 40 0 N.

Construction of the Tables

Once the differential criteria for the tables are established, the actual
construction largely depends on the availability of the data. Where
large numbers of Artillery Metro Sections are in operation as in South

VieTnamr, ihe problem is simplified. In fact, zone and ballistic densities
are available on Forms DA 6-57 and DA 6-59 for processing by computer.
Frequency distributions of upper air densities as a function of surface
density are produced, and tables are constructed for surface density
steps of 0.5%. Abrupt changes in slope of the profiles are avoided
both from zone to zone for a given surface density and for a given zone
as the surface density varies. Such smoothing rarely changes the tabu-
lar values by more than 0.2 - 0.3%, much less than the standard devia-
tions of the values themselves.

Where sources other than Artillery Metro Sections are used, radiosonde
data are available only at mandatory or significant levels. In those
cases, the densities must be computed from the sounding (see Appendix).
After this has been completed, the procedure follows that is stated above
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for the Vietnam data. Recognizing that variations in station altitude
cause the greatest difference in density piofi.les (see Figures 3 and 7),
the original tables in TR 1236-1 specified density factors for sea level,
10001 above MSL, and 2000' above MSL. A similar procedure, incorporating
metric rather titan English units, was followed for the new Vietnam
tables as sufficient data were available. Tables were constructed for
stations whose altitudes lay between sea level and 200 meterstt Another
set was valid for those stations in the range of elevation 200 to 450
meters, the next 450 - 650 meters, etc. This procedure has the advantage
of allowing for discrimination between density profiles due to elevation
while keeping the number of tables within reason. In Vietnam, five sets
of tables covered all operational station elevations.

The question naturally arises: Can a density profile be constructed
for an elevated station if a nearby sea-level station is available? A
special series of Vietnam flights was made every three hours for a week
at a pair'of locations separated by approximately 20 kilomete's, one 30
meters above sea level, the other 770 meters above sea level. These
flights were ideal for determining if ballistic densities from *the sta-
tion near sea level could be used to construct a density profile for
the elevated location.

A simplistic approach was attempted. The difference between the surface
densities of the two stations was computed and the difference subtracted
from the ballistic densities of the sea-level metro message. The re-
sulting values were compared with tne actual ballistic densities from
the higher station. The results are shown in Table IV below.

TABLE IV

ERROR IN BALLISTIC DENSITY

Line No. 1 2 3 4 5 6 7 8 9 10

Density
error in .3 .4 .5 .5 .5 .6 .7 .7 .8 .9
percent

It is readily seen that the error increases with height and becomes
greater than 0.5% above line five. More complex schemes were tried.
The most successful involved subtracting the sum of the difference in

It is believed that by presenting the density for each zone as a tabular

value, rather than a departure from the mean (which involves algebraic
addition before the ballistic density is obtained), arithmetic errors
will be reduced.
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surface densities and one tenth of the line number from each ballistic
density at sea level to give the corresponding ballistic density at 770
meters. The results of the computations are shown in Table V.

TABLE V

ERROR IN BALLISTIC DENSITY

Line No. 1 2 3 4 5 6 7 8 9 10

Density
error in .3 .4 .5 .6 .4 .6 .6 .6 .6 .5
percent

The errors for high line numbers have been reduced, but the results are
still not encouraging.

Neither of the two techniques is as accurate as the results obtained
using the new climatological density tables as shown in Table VI.

TABLE VI

DENSITY ERRORS USING CLIMATOLOGICAL TABLES

Line No. I 2 3 4 5 6 7 8 9 10

Density
error in .2 .2 .3 .3 .4 .4 .4 .4 .4 .4
percent

The mean error is seen to be less than 0.5% in all cases and does not
continuously increase with height. It appears, therefore, that ballistic
densities from a climatological table are superior to values obtained
from extrapolating density profiles from a sea-level station.

It has been shown that climatological tables are feasible, seem to be
reasonably accurate in one sampie case investigated, and are easy to use.
It remains to bE seen whether they are accurate for a much larger sample
and whether they are better or worse than the existing tables.

Since only the data from Artillery Metro Sections in Vietnam are avail-
able for direct comparison of tabular and actual ballistic densities,
the analysis will be confined to those data. It should be noted that
the absolute value of the error is the important factor in the applica-
tion of the ballistic density to an actual firing. The resulting effects
from a shell whose trajectory is 150 meters too short, for example, are
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just as bad as those from a thell whose trajectory is 150 meters too

long. The algebraic error is a measure of the amount of bias it) the
tables and indicates whether the tables could be improved by changing
the individual values to eliminate the bias. Ideally the algebraic
error should be zero, but, owing to the inherent inaccuracies in the
determination of density, small biases of a few tenths of a percent
appear. These, however, are insignificant.

Tables VII and VIII show sample distribution of errors for the new Vietnami
tables. Shown are the errors for the summer daytime and the winter
nighttime tables for stations below 200 meters elevation.
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TABLE VII

It can be seen that the mean absolute error is 0.5% or less for all
lines in both seasons and the bias error is not significant. All sea-
sons and altitude ranges are similar, although the number of data points
decreases markedly with increasing elevation.

Table IX shows a corresponding error distribution using the density de-
parture tables in FM 6-16 for region 6. Since the older tales are in-
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tended for use in all seasons, there is no differentiation for surraer
and winter, and the tables include all data for all months.

DISTRIBUTION or OERRORS . '5.L. BALLISTIC DENSITY DEPARTURE TABLES

*'0lIOS* I 0n 1,
0114111r'"- fl " .... ..0 (IS

270 1.00'0 '0 .0 7. •T400-.r", n 000 Bun

20 0 , I 2 31 Ia 2 I? I 0 S0"I9 0 I I I I9 23 40 IO .2 0 118

"140 I ; 2 0 I0 33 091 67 34 6 0 744
1 0 0 2 6 I? 09 87 III 44 0 0 533"16 0 3 6 I 71 1a, 141 1 00 0 0 450

I. 2 is?2 2 5 211 201 111 12 0 .1,
*13 0 3 16 40 A3 197 301 334 213 20 0 0740"7 3 1 14 00 71 214 3? 6 357 289 3- 0 143'"*II 2 | I • I 106 )3 70, 364 11 20 . I IIl:

.11 &L |7• pil |I 54 3A. -5 1) 4 2 75l 1*9 O )6
160 , 7' 410 ;52 3 101 4'6t 43 2 90 10 0 M004

-•5 19 •1)+• "Il, l 1 10 .4 1 2 3 T
=/I .1T 561411 7n 293 . I93 $10 620 0 11 0 2971

0 IS 17 27.0 310 109 4.7 w )39 S14 279 0 3| 61

° I 3t 3 4 .6 4 59 49 01 T7ý 40. 31 330i 4 0 3900

2 4S 0 51-0 04 490 310 3)0 290 744 20 000 I O 4047
1306- 0 66 43 .44 '32? 2.% 719 207 501 0 4033

0 007 581 409 490 34 307 3W 0 21 6 I 11 30?1 0 319
I 400 '.4 4 3 2"1 lo 153 340 0 31307 $A0 A49 490 300 300 711 173 11. 111 30A 7* 14161

0 n9 401 2P0 232 243 I5l s 09 3 i 16 7 0 2131"6 607 137 700 770 P T0 3 is 24 I03 10 5 1440
3 9 71 0 " 19 I I' 70 29 14 24 10 2 I190

0 419 1. 3 1 11 I$ I- 1? 01 4 1140

II 10 6) A# 45 40 II 4 4 3 3 21 0 T 0
12 AS 40 30 49 30 1. , 6 I 3
13 74 3. 1 le 9 6 2 0 7 I. "0' 7,0
14 10 5 06 73 13 I 0 I 0 9 173 739

2 1+ 1Zz ' = z ) 0 ,i 1 o 1 - " 1 r tIA II IS 03 I I I I 0 ' 11

11' 5 1 0 7 I 0 0 0 0 3 73 300
19 0 I 0 0 I 0 0 0 a 17 ' 54
0 I I 3 3 0 0 0 0 7 304 3

6091 .416 0914 '401 890t6 640 .944 6042 A1m4 0•30 41)4 0000t3
0 041944In t101 63 •.43 0 147044441 de•.0t11 40700 X 10

0•.4 6.4 0.4 0.0 0.0. 0.0 0. 0.0• 0.7 0.4 7.7l 4004948 r O•GTl ool+l(.~)

0.3 0.1 0.0 ' "0.I 4 0.2 10. 0,0. QO .0 40".417. 7. • 407
4
4. t : '? 990ll

"--7O0•P0'7'04,-70T5- -.

TABLE IX

It is obvious that the absolute errors are greater and that there is a
significant bias in many zones. Note especially line II, which has an
average error of more than 2%! It can be seen that fewer than 2000 of
the 4334 values in line II have errors less than 2.0%, all the others
are off range as far as the table goes. It is all the more surprising
that lin( 10 is excellent, with mean errors as low as lines I and 2,
and no significant bias!

If one wishes to compare the tables on a yearly basis, the seasonal
errors can be combined to give an annual figure. Table X shows the
breakdown into four categories of error.

Cases with errors from 0 to 0.5% can be ciansified excellent, those
from 0.6% to 1.0% can be called fair; those from 1.0% to 1.5%, poor;
and greater than 1.5% would be disastrous.

20



-'

TABLE X

ANNUAL DISTRIBUTION OF DENSITY ERRORS (SEA-LEVEL STATIONS)

c ENew Tables Old Tables
Percent Error Day Night Day Night

0 - 0.5 72.6% 77.1% 50).1% 53.5%
0.6 - 1.0 22.4% 19.2% 28.1% 28.5%
1.1 - 1.5 4.3% 3.3% 12.5% 10.5%

- 1.5 0.7% 0.4% 9.3% 7.5%

We see that the number of cases of very poor assessment of ballistic
density when the new tables are used is less than one-tenth the number
with the old tables; the probability of obtaining an excellent ballistic
density has increased bý more than 20% and an acceptable density profile
is obtained in 95 of every 100 cases. There is no doubt that the tables
offer an excellent back-up system for obtaining ballistic densities in
Vietnam in the absence of a direct radiosonde observation.

The lack of a direct measurement may be due to outage of equipment,
communication difficulties, or it may be that it is the period between
scheduled balloon releases, usually every six hours in Vietnam.

Earlier studies have shown that the variation of ballistic density in
a I-to-8-hour period is not significant [5]. Should the tables be used
when the latest metro message is 3, 4, 5, or 6 hours old?

To answer this question one must examine the diurnal variation of den-
sity. The special 3-hourly data from Vietnam (mentioned earlier) are
ideal for this analysis. Even though the period is short, about one
week, the changes in density throughout the day will give some clue as
to those periods in which the temporal variation is greatest. Figures
14 and 15 show the density for the various ballistic zones throughout
the day for the station near sea level and the elevated location. The
shape of both the curves is the same although the amplitude of the den-
sity fluctuation is greater at the lower station. About 2100Z (0500LST).
well before sunrise, the surface and ballistic densities decrease rapidly,
fluctuating between 0300Z and 0900Z (llO0-1700LST) to a minimum a little
before 090OZ. The decrease over this 6-hour period is greater than 3.0%
at sea level and more tnan 2.0% at elevated stal'ions.

[5] Lowenthal, Marvin J., "Applications of Accuracy of Upper Air Data
to Artillery," ECOM-3122, May 1969.
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Thus, the ballistic density obtained from a sounding made at OOOOZ and
used at 0500Z (before a new measurement is customarily made) would be
in error by more than 1%. Similarly, a sounding made at 0600Z and used
at IIO0Z would contain an error almost as great, whereas the ballistic
densities from a 1200Z sounding used at 1700Z and from a 1800Z sounding
used at 2300Z would be in error by less than 1%. While these values
are for the tropics, similar curves, although with different amplitudes,
obtain for the other climatic regions. This means that the time of day
is the determining factor for the time variability of ballistic density
for periods of less than 6 hours.

To decrease the error in ballistic density in the interval between
soundings, the curves of Figures 14 athd 15 may be used to correct the
earlier measurement. Even though the daily curves of ballistic density
variation may not coincide absolutely, the trend is the same. Thus a
diminishing of the OOCOZ ballistic density by 1% for use at 0300Z
would give a much better estimate of the density than the use of the un-
corrected OOOOZ value. A table could be constructed giving such cor-
rections for each measurement hour of the day and the time of usage.

This could be supplied to the Fire-Direction Center to decrease the
range error due to improper ballistic density corrections. A sample
of such a table for one location in Vietnam is shown in Table XI.
While both location and altitude are different from Figures 14 and 15,
the trend is the same.
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CONCLUDING REMARKS

In this report, the development of ballistic density departure tables
has been traced over the last three decades from their earliest begin-
nings, where elevation of the battery was the only parameter considered,
through the promulgation of climatic regions where geography and time
of day were added, to the latest tables that are constructed for a limited
geographical area far smaller than the previous regions in FM 6-16.

In addition, the possibilities for minimizing interdiurnal density
variations have been pointed out, as well as impossibility of pre-
dicting ballistic densities at elevated locations with sufficient
accuracy for Artillery purposes from measurements at sea level.

The new tables constructed from individual radiosondings have been shownto be much more accurate than the older ones derived mainly from mean
values at selected locations.

Use of the tables can effect a considerable savings in expendables, as
wind measurements can be made every two hours by tracking a balloon
alone (without the more costly radiosonde), since the density can be
corrected by the tables and associated techniques.
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APPENDI X

COMPUTER DETERMINATION OF METRO MESSAGES
FROM RADIOSONDE DATA

By

Hope S. Perlman
U. S. Army Electronics Command

Computer reduction of radiosonde flights to give thermodynamical quanti-
ties is common where a large number of flights must be handled or
where checking of manual operations is required in data repositories.
Less common is the computer determination of NATO or computer meteoro-
logical messages since ballistic meteorology is less extensively re-
searched than pure synoptic meteorology.

Secondly, the recent change in the format of the computer met message
has necessitated a change in the reported quantities. That, in turn,
requires a program change in any computer routine that produces the
artillery met messages.

This paper outlines the procedure for computer determination of ballis-
tic and computer met messages, with especial detail given to the evalua-
tion of the two new elements of the compuier message - mean virtual
temperature and pressure at the midpoint of the zone.

Procedures

Since data for research purposes is most often obtained from World Data
Centers, the analysis begins with the data in the usual card (or tape)
format of the mandatory pressure levels - the customary way in which
data are archived. It must be remembered that heights on the cards are
expressed above mean sea level (MSL). Since artillery met data are con-
cerned with heights above ground, the elevation of the station must be
subtracted from all given heights of the standard pressure levels. That
-is the reason for Steps I and 3(c) below. A complete computer program
is available upon request.

Method of Solution

I. Read in surface height (SZ) of station.

2. Read in complete data for one flight. This will include n sets
of pressure (P), height (Z), temperature in *C(T) and relative
humidity in %(H).
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3. Adjust data and number of levels (n) as follows:

a. If H < 0, set it equal to zero.
b. Eliminate any level where temperature is missing.
c. Subtract SZ from all values of Z.

4. Calculate virtual temperature, in °K, (Tv) at each l6vel, as
follows:

T V -= P(T+273) 25.22T
(.O0378I2)(H)(6.iO5)exp( 5.31 In

5. Print out adjusted data (P, Z, T, H, TV) for each level.

6. Set up ballistic zone top heights (ZLT) and standard tempera-
tures (ZLTMS) and densities (ZLDNS) at these heights.

7. Print all surface information.

8. For each zone (ZL) compute ZZTM, zone temperature and ZZPR,
pressure at the top of the zone, using intermediate data level
values of P, Z and Tv, indexed from 0, the bottom of the zone,
to d, the top of the zone.

a. Obtain a starting value of Tvd, virtual temperature at the
top of the zone, by interpolating linearly, using values of
Tvd+l, Tvd-l, Zd+l' Zd, and Zd-I.

b. ZZTM is calculated by selecting a starting value (1/2 the
sum of the maximum and minimum of the Tv values within the
zone), and moving it toward the maximum or minimum until

d-I

1/2 Q (Z -, Z i) (Tvi + Tvi+l - 2ZZTM)%O* (2)
1=0

In practice, the process is continued until two successive values of
ZZTM differ by less than .10K.

c. Pd is found by solving the transcendental equation

29.27 ZZTM I (p Zn - Zo(3)

The rationale for Equation (2) is found in Appendix I.
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d. A new value of Tvd is computed by interpolating linearly,
using iVd+l, TvdIl, Pd+l' Pd' and Pd-l"

e. Steps b, c, and d are repeated until two successive values
of ZZTM, ca!culated in step d differ by .2°K or less.

f. ZZPR = Pd (4)

9. For each zone level, compute

a. ZZTMPZL zone temperature (% of standard)

ZZTMPzL = 00(ZZTMSZL (5)

b. ZZPR 2 L , pressure at the midpoint cf the zone, is found
by sotving the following transcendental equation:

S(ZZPRzLI )I

29.27(ZZTML) In (ZZPRzLI = 1/2 (Z - ZO) (6)'ZL (ZZPR2ZL d o

c. ZZDNZL, zone density

ZZDNzL = 348.384 ZZPR2zL/ZZTMZL (7)

d. ZZDNP zone density in percent of standardZL'
I00(ZZDN
= ~ZL 8ZZDNPzL ZLDNSzL

10. For each zone, calculate ballistic weighted temperature (ZZBTL)
and ballistic weighted density (ZZBDZL), using temperature
weighting factors (TWF) and density weighting factors (DWG) for
that zone.

/
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APPENDIX I

CALCULATION OF ZONE TEMPERATURE

T vd, Z d

zone top

T Tv2, Z 2

zone bottomTvo' Z0€4

ZZTM

Given: Tv0 , Z , Tv., ZI -. Tvd, Zd, where the zero subscript denotes
the bottom of ?he zone and the d subscript the top of the zone.

Find: ZZTM, the zone temperature, such that the areas to the right of
ZZTM equal the areas to the left of ZZTM, or ZZTM is correct to .['K.

Analysis:

I. Between any successive reading of Tv., Zi and Tvi.l, Zi+I
the figure is either a trapezoid or ý'triangles.

a. If a trapezoid, Area = 1/2 h (a+b)

= 1/2 (Zi+ - Zi) [(TviMl- ZZTM) - (Tv, - ZZTM)j

= 1/2 (Zi+I - Zi) (Tv, + Tvi+l - 2ZZTM)

and will be positive or negative depending on whether Tvi

and Tvi+l are greater or less than ZZTM.

b. If two triangles, the area equals area of triangle

(Tvi, Zi) (Tvi+I, Zi+I) (Tvi+I, Zi)

minus area of rectangle

"(ZZTM, Zi) (ZZTM, Z i+I) (Tvi+I Zi+I) (Tvi+l Zi)
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or 1/2 (ZQ Zi) (Tvi - Tvi+)- (Zi+ Zi) (ZZTM- Tvi+)

*.the area of the trapezoid equals the area of the two
triangles, and is

1/2(Zi+ - Zi) (Tvi + Tvi+l - 2ZZTM)

2. ZZTM is calculated by selecting a starting value of ZZTM (half
the sum of the maximum and minimum values of the Tvts) and moving
it AT toward TV min until

d-I
1/2 Z iM i (Tvi + Tvi+l - 2ZZTM) n 0.

i=o
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