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ABSTRACT

To support SECEDE II data analysis and interpretation, EG&G

g’ (Bedford Division) is analyzing phbtographic data from the Spruce Event.
i - Fourier analysis of digitized data frames will produce power spectra,

' autocorrelation functions, and other such data as is appropriate for event
P interpretation and correlation. The concept of Fourier analysis is also

being examined to establish the validity and usefulness of the analysis

g results.
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SECTION 1 | , l
INTRODUCTION

The Bedford Division of EG&G has channeled its efforts on the SECEDE
program in two directions. F1rst, it is attempting to character1ze the struc-
tured environment (i. e., striations) created in a late-time bar1um cloud.

Second, it is acquiring and correlatmg all such data from: SECEDE I, II, and
IlI, BIRDSEED, certain pre-SECEDE releases, and from other environments. -
This is a first semi-annual technical report descr1b1ng some preliminary work

in both of these areas.
|

In the first area, EG&G has been asked to proceed w1th a d1g1ta1 analysis
of appropriate photography. In‘particular, selected frames of data from
| ! i )
Technology International Corporation (TIC) photography are being scanned on

a Mann Trichromatic Microdensitometer, and the density and/or radiance ‘

profiles generated from the scanned data are being digitalfy analyzed using
Fourier techniques to produce power Spectra, auto-covariance, and auto-

correlation functions, and other such data as might prove useful. ,
! |

In parallel with the analysis of photographic data, EG&G is also under-
taking an examination of the appiicability, validity, and limitations of such
i !
analysis. Tt has become apparent that members of the SECEDE community

not knowledgeable in the areas of photographic data analysis, digital an’alysis,|

and Fourier techniques would find such a study ef considerable interest. In .
particular, EG&G will attempt to examine the realistic and practical limits of
such analysis work, and will attémpt to give the user a basic understandmg of
the meaning of, and validity of, power spectra, Fourier transforms and other |

such data.
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In the second area, EG&G 1s rev1ew1ng all available SECEDE docu-
mentation and will organize pertment information in tabular and/or matrix
formulations ito faq111tate correlatlon and 1nterpretat10n of results. It is
currently anticipated thatthe results of this effort will be presented in EG&G's

final report, when all available data has been acquired,
' 1 }
Sectlon 2 herein presents the radiometric data which is being Fourier

analyzed Pertment frames ‘of data from the Spruce Event of SECEDE II are
identified for analys1s and radiance profiles presented. Section 3 begins the
detailed examination of Fourler analysis as applied to microdensitometer

) data.’

! Appendlx A contains notes prepared during the SECEDE Summer Study.
Thése notes detail some of the assumptions, tools, and relationships used by
EG&G in obta1n1ng radiometric information from photographic data, It is

' reproduced here for the benefit of those members of the SECEDE commumty

who did not receive it at the Summer Study.
‘ . |




SECTION 2

SPRUCE STRIATIONS

The EG&G striation analysis effort will be directed at Eveﬁt Spruce,
In particular, four frames of data (Table 1) will be analyzed in the Fourier
domain for spatial frequency content. These frames were selected because
they best bracketed the sphere and beacon track times, and because the data
generated could potentially be used to correlate with the sphere and beacon
data,

Table 1. Event Spruce Striation Anaiysis.

T.1.C. Film No., 71723

Frame Time (after release)
146 16 min, 5 sec
164 17 min, 52 sec
185 20 min, 28 sec
193 23 min, 36 sec

The referenced frames and generated radiaﬂce profiles (across the
striations) are shown in Figures 1-4, One hopes, with Fourier analysis
techniques applied to the digitized radiance profile, that the small scale
structure seen superimposed on the overall cloud background can be charac-
terized in a power spectrum pPresentation. These profiles are currently being
digitally processed; the results of the analysis will be presented in the final

report, -
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I , The Spruce 1on cloud at approximately 20 minutes is shown in
I Figure 5 as Frame 187, from T. I, C record 71721 (or1g1na11y a color record
. | printed here in black-and-white). Thls record was exposed from Tyndall

* and assuming an ROA (range along the optical axis) of 300 km, a d1mens1ona1

, scale was' ‘placed on the photograph to indicate relative cloud and striation '
' . i : ! I i

i)

gx. 1 dimepnsions. |

Of particular concern here is the striated regmn indicated by the \

\ | ' %

: g arrow Are these characteristic and/ or repetitive strlatlon d1mensions and

!- o spacings which can be measured from photography quch as this? If not, what !

[
J

i data can be gleaned from records such as these, and what does this data
"i
indicate about the spat1al and temporal history of str1at1ons per se. Section 3 -
ﬁ 3 - . begins a detailed exam.lnatlon of this questlon and presents the 1mplicat1ons e

! of the answers to ,that question, : |

- - ! \
3 !

‘e ! , ) | !
i}

§c j ,

= : : : |

-e [ |
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Figure 5.

Event Spruce as seen from Tyndall on T,I.C.
record 71721 at 20 minutes.
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SECTION 3

SOME PRELIMINARY THOUGHTS ON DATA PROCESSING
FOR STRIATIONS

3.1 INTRODUC TION

Shortly after the high-altitude release of barium, the ion cloud is
observed to form striations — highly structured "tubes" roughly parallel to the
geomagnetic field. The striations are visual/ photographic. They map the
local geomagnetic field, and their formation is the result of interactions
between the geomagnetic field, the E.-field, ionospheric winds, and the ion

cloud.

In order to interpret the available SECEDE data and to predict future
data, it is necessary to describe the striations, at least statistically, A
major portion of the SECEDE effort is thus directed toward developing in-

formation on the growth and formation of striations.

One part of th2 overall striation analysis effort is directed toward
the generation of spatial frequency-domain power spectra of striated ion-cloud
radiance profiles. It is generally believed that such information will assist
in the assessment and interpretation of SECEDE data, although the detailed
connection between the spatial frequency content of visible striations and
the various signal degradations has not been established. Perhaps the con-
nection could be established if good spatial frequency descriptions were

available.

But what do we mean by "good"? Ideally, we would mean descriptions
permitting an exact prediction of any future event; that is, deterministic

relations or equations into which we would insert the various experimental

-10-
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parameters (height of release, quantity of free barium, etc.). Those equations

would then be solved to determine such characteristics as the time and location
at which striations would form, their size, brightness, and distribution in space.

Apparently such equations are presently beyond our grasp. In fact, the SECEDE

experiments suggest that the distribution and size of striations are the result
of a random physical process. If that is the case, completely deterministic

equations are unattainable.

It does not matter whether the apparent randomness correctly reflects
the funcdamental nature of the process, is a consequence of an uncontrolled
(random) systematic parameter such as the local —G.-field, or simply reflects
our lack of theoretical understanding of a deterministic process. Our best
current theory is that the size, location, and intensity of striations are the

results of a stochastic process for a given event.

What we can mean by ""good'' descriptions, then, are those from which
an accurate statistical "prediction" of the striations which might be observed
in some future event can be made. Suppose, for instance, that the radiance
profiles of individual striations have the same waveform, but that amplitude
and spacing are random. In that case, a good description would consist of
(1) a description of that waveform, (2) an amplitude description (at least the
mean amplitude), and (3) spacing statistics.

3.2 STATIONARITY AND ERGODICITY

Stochastic processes are analyzed through the examination of various
ensemble averages; that is, the same experiment is repeated, in principle,

an infinite number of times, and the results of each are treated as one statistical

sample of the random process. However, for certain restricted classes of
stochastics it is possible to obtain the desired statistics with considerably
less than an infinite number of identical experiments, perhaps with as few

as one,

-11-
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A classification tree for stochastic processes is shown in Figure 6.
Processes classified as ergodic have the property that the statistics of a single
sample are identical to the ensemble statistics. In reality, we never observe
a complete sample (since it' s infinitely long) but rather some fraction of the
complete sample which might be called the sample record. From one such
record, we can obtain an estimate of the statistical parameters of the process.
The accuracy of that estimate is related to the record length. That accuracy
can be improved by analyzing a longer record or by combining data from

shorter records.

Random
|

l 1

Stationary Nonstationary
|
I | =

Ergodic Hoverpec classifications of
nonstationarity

Figure 6. Classification of Stochastic Processes.

3.2.1 Classification of Stochastic Processes

Figure 7* shows part of an ensemble of sample records. If we read the
value of x at tl for each record and divide by the number of records, we obtain
the ensemble average, designated ux(tl), at t x In general, ux(t l) will take on
different values as tl is changed. In the same way, we may define the ensemble
average autocorrelation function, Rx(t 1 t 1 +7), which will generally be a
function of both tl and . The equations are

b Y

*Many illustrations use ''t" to denote the independent variable and x as the
stochastic. The origin of most of this work is in communication theory where
t is time. The reader is expected to make the appropriate mental substitutions,
such as t-<x and x-=N(x).

-12-
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If these averages do, in fact, vary with the choice of tl‘ then the process is
said to be nonstationary. But, if it should happen that the ensemble average

and ensemble autocorrelation are independent of the choice of t., the process

10
is said to be stationary. * In that case, we may write ux(t 1) = H, and
R (t,t +7) = R (7).

It is also possible to form a mean and autocorrelation for a single sample

function:

T

1

ux(k) éi_r.n T f xk(t) dt
- 0

T

b}

Rx(f, k) 'Il‘i-:.:: Ly f :&((t) xk(t + ) dt
0

where k denotes the k-th sample of the (stationary) process. If both ux(k)
and Rx(r, k) have the same value for all k's, then the process is said to be
ergodic. In that case, the various sample averages and ensemble averages
are equal; i.e., ux(k) "M and Rx(-r. k) = Rx('r).

*Strictly, if u and R are independent of t,, the process is "weakly stationary".
If all higher order moments and joints moments are also independent of t 1» the
process is "strongly stationary" or "strictly stationary'.




! i
I The concept of stationarity relates to the ensemble averaged,properties
I of a random process. In practice, however, data in the form of individual
' time-history records for a random phenomenon are frequently referred to as -

I stationary or nonstationary. A sl1ghtly different concept of stat1onar1ty is
involved here. When a single time-history record is referred to as bemg

stationary, it is generally meant that the properties computed over short

-

time intervals do not vary 31gnif1cantly" from one interval to the next. The |

word "significantly"” is used here to mean that observed var1ations are greater

$—4

than would be expected, owing to normal statistical sampling varlations. Hence

“f' the single sample record is stationary within itself. This concept of sta-

- tionarity is sometimes called self- stationarity to avoid confusmn with the

T more classical definition. ‘ ! | ; |

ur \ !
To clarify the idea of self-stationarity, consider a single sample record

i X (t) obtained from the k-th sample function of random' process x(t) Assume

that a mean value and an autocorrelation function are obtained by . tune averaging,

over a short interval T with a starting time of;t1 as follows.
\ i

. i . |
4T . o

1 ! .
“x(tl’ k) = T f :ﬁ‘(t) dt f \ |
tl ~ o ' , ‘

:o-'r ' ' o
) : tl ' r i
f xk'(t) X, (t +7) at ’ *
t [
1 . | i '

e U

Rx(tl’ t1 +7,k)

For the general case where the sample properties vary significantly as the
starting time t1 varies, the individual sample record is said to be self—

nonstationary. For the special cas!e where the sample properties do not !

vary significantly as the starting time t 1 varies, the sample record is said to
be weakly self-stationary. If this requirement is met for all higher order '

moments and joint moments, the sample record is said to be strongly self-

stationary. '

-15-




an ergodic random process will be self- stationary Furthermore, sample

records from most physically mtere sting nonstationary random processes

I -' g An 1mportant point here is as follows: A sample record obtained from
|
1 w111 be self- nonstationary. Hence, if an ergodic assumption is justified

(as it is for most a¢tual stationary physical phenomena), verification of

I ' self- stationarity for a single sample record will effectively justify an assump-
# tion of stationarity and ergodicity for the random process from which the

I : sampleI record is obtained.
‘8 ! |

| Ergcdiq random processes are clearly an important class of random
‘;i,: ' processes since all properties of ergodic random processes can be deter-
mined by perfcrming time averages over a single sample function. Fortunately,
a.' ; | in actual practice, random data representing stationary physical phenomena
' are generally ergodic. It is fqr this reason that the properties of stationary
g. * random phenomena can be measured properly, in many cases, from a single

ohserved time history record.

™ 3.2.2 Nonstatignary Stochastics

Nonstationary random prccesses"include all random processes which

do not meet the requirements for stationarity. Unless further restrictions

'
H

] | 1
! are imposed, the properties of nonstationary random processes are generally
time- varying functions Whlch can be determined only by performing instantaneous

averages over the ensemble of sample functions forming the process. In

t

I
I |
I

practice, it is often not feasible to obtain a sufficient number of sample records
to permit the accurate measurement of ,pro'perties by ensemble averaging.
This fact has tended to'impede.the development of practical techniques for

mea suring’and analyzing nonstaticnary random data.

in fact, a totally adequate methodology does not as yet exist for the

analy51s of all types of nonstationary data, partly because of the fact that a

A wm em o=

, nonstationary conclusion is generally a negative statement specifying the

lack of stationary Iproperties, rather than defining the precise nature of the
[ ] | .

-16-




nonstati.onarity. On the other hand, when a process is deemed stationary,
certain positive results are known which apply to all stationary data. For
nonstationary data, special techniques must be developed which apply only
to limited classes of these data.

Iustrated in Figure 8 are the three basic and most important categories
of nonstationary data: (a) time-varying mean value, (b) time-varying mean
square value, and (c) a combination of (a) and (b). As we shall see, the
radiance profile of the striated ion cloud is probably nonstationary (category c);

however, it may be possible to treat the striations, per se, as ergodic.

]

o)

Time
|

l L
Time

(i}
= Time

Figure 8. Examples of nonstationary data.
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3.3 SECEDE-TYPE STRIATION DATA

Figures 1 through 4 contain typical radiance profiles for striated
barium ion clouds. To the extent that these scans are, in fact, typical, it
is evident that the ion cloud radiance profile data has a distance varying mean
and mean square. (Compare with Figure 8.) The data is nonstationary (thus,
nonergodic). We are not, however, particularly interested in the S-uss
behavior of the ion cloud, nor do we care about gradation in the general sky
brightness. If we could subtract these two effects* from the radiance profile,

we might be left with a data record which is ergodic,

To the best of our knowledge, such a subtraction has not been attempted
for SECEDE-type striation data; thus, we do not know exactly how to proceed.
We are inclined to try simple procedures first, and the remainder of this
section will be concerned with one fairly simple approach which also has
considerable flexibility; that is, to subtract a running average from the data
record. The average should be centered on the data point being operated upon.
This process is essentially high-pass filtering, with a "turn-on" frequency
determined by the averaging interval. The data of Figures 1] through 4 suggests
that the background radiance level (basically interpreted to include gross ion-
cloud radiance, sky brightness, and striation DC) occurs at much lower fre-
quencies than the striations, so this simple subtraction process may provide

satisfactory results.

*It will also be necessary to suppress the DC term required for physically

meaningful radiance. That suppression is desirable for other reasons dis-
cussed later. If desired, the DC power can be added directly to the spatial
frequency power spectra.

-18-
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A Cautionary Note

A literal high-pass filter applied to the Fourier transform
will not give equivalent results to those obtained using the
subtraction process. We are working with sampled,
digitized records of finite length. In consequence, the
numerical Fourier transform at each frequency contains

a contribution from all other frequencies. The numerical
transform is the convolution of ideal transform and a sinc-
function* corresponding to the length of the data set. The
sinc-function propagated by DC will affect all higher fre-
quencies and may, in fact, dominate the power spectrum

(as is discussed further herein).

The effect of the convolution occurs simultaneously with
the transform. It cannot be unfolded. If high frequency
data has been modified substantially, a high-pass filter

cannot retrieve the ideal data.

Basically, what we are doing is writing the total signal N(x) as the sum

N(x) = B(x) + S(x)

of a nonstationary background, B(x), which is of little or no interest, and a
. dc suppressed striation term, S(x), which we hope to treat as ergodic. For

a single record, the Fourier transform is

Nw = Bw +3w)

so that the ideal power spectrum is

P(N,w) = N(o)Nw) = P(B,w)+ PGS, w) +

[cross terms in B and S]

*sinc (x) = (sinx)/x

-19-




lli‘-ﬂl--ll""'lﬂ’

']

If B and S are disjoint in frequency space, the cross terms are identically
zero. The ideal power spectrum of a single record would simply be the sum of
the power spectra of B and S. Since, however, the actual spectrum contains a

convolved sinc-function, ‘it is not possible to simply separate P(S, w) out.

On the other hand, a prescription can be given which hopefully separates
B from S directly and which essentially guarantees that the resulting functions
are frequenc.y disjoint. Since P(B, w) and P(S, w) can be formed from the
separated functions, it appears that no information on the total power spectrum
of the record is lost. However, one is able to treat the interesting part,

P(S, w), separately.

3.3.1 Ergodicity of S(x)

Suppose, then, that the separation is effected. One must ask whether
anything has been accomplished; that is, does the k-th record power spectrum
Pk(S, w) tell us anything about the power spectrum of striations as a general
class. Once again, the answer isn't clear. It depends on whether some

apparently reasonable assumptions are correct.

If we assume that the radiance profiles of individual striations have the
same form and that their location and amplitude are random, then it can be
shown that the striation record waveform, S, is ergodic. And, in fact, if v

is the striation ensemble average waveform, then
P(S, w) = P(v, w)

We must be careful in interpreting this expression since we are dealing with
statistical quantities. Once tke constant of proportionally, k, has been
determined, P(S) and kP(v) are statistically indistinguishable. But that does
not mean that they are numerically identical at each wavelength, w. As the
length of the record s(x) increases, the statistics improve, which is to say the
variance [(P(S) - kP(v))2] decreases. Only in the limit of an infinite record
length is the variance of power estimates at each wavelength reduced to zero;

ne

thus, only in that limit is a numerical identity obtained. For records of
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finite length, the variance of the estimate at each wavelength can be determined.
Thus, the power spectrum of an ergodic record of finite length gives an estimate,

with known variance, of the ensemble average power spectrum.
i

To illustrate how the constraint of proportionality is obtained, consider, a

restricted case of the above assumption in which the individual striation radiance

profile amplitudes are fixed and identical The striations however occur

i (replicate) with random spacing. Let the waveform to be replicated be' A(t)

(In sketching the waveforms; Af(t), will be taken'to be a square pulse, The

&

, formalism is general, however. ) The Fourier transform of the replication

element is A(w) (Figure 9) - ' ' ;

W s

(-}

~ - 1 =
A‘w) o i ‘/Tﬂ / A‘t), e dt .

-y P : ' '

-
WA
L 2 s

L ]

Wiy
"

i
and is in general a complex quantity. The power spectrum of the waveform is

' 1
' |

T . ' ~ % ~ -
% P A(w) A(w) A(w) , , | | |
1l which is a real function of w. The phase relations between the various wave-
] H ‘ L |
= lengths has been lost.
i
} ! |
o L ol
: Alw) ' '

= Alt) o |
& | o -

} > t w oo

Figure 9, A siﬁgle featore and its transform,

I m— I

Now, let a replication‘.of A(t) occur at a later time. The wavetorm is

B(t). The total waveform is A(t) + B(t), .as illustrated in Figure 10. Since !
. 1 i

-21- o

- el ey



|
|
1
|
1
l
1
i
L
I
1
I

l
|
I
I
1
1
'

b '
t

’\

M s o ; . |
3

- 1{3) | Alt)eBin)|

' ]
Figure 10, The addition of a second feature. -
! ‘ i ' i ; '
. Fourier transformation is a linear process, the transform of the sum is '

i . | ;~ ~ E
ATE) = - [a®+Ben e gt = X + Blw) ,
[ on ;

]
!

)
| ' ' | :

Because A(t) and B(t) do not oc'cur at the same time, Z(u) alnd §(u) are not

jdentical. However, since A and B are:identical except for the time of :

occurrence, one expects A and F to be related, and in fact they are. Note

that ' . | | b

B(t) = At-t)) - o : | e

. i

* where tl is the time between identical portions of the waveforms (e. g., the

ieading edge of a pulse). Now:

' Blw)' = /Tl, fB(t) e 1% g - f.}; fA(t-tlie"““ dt.

and ietting't' =t -itl 8o that dt = dt' b P ' ]

" B . /z f A') o1t e""’"l at' .

, . N .- 1 iut . w'
| L fA(t)e * at
; ! '

E(d) = K(w) o 1oty i
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Thus, the transforms of B and A are identical apart from phase factors.
(‘learly then, if the total waveform, Z(t), consists of replication of A(t) at
ti'mes characterized by t, t gr oo t (see Figure 11),

()

3
e

Figure 11. The total record of randomly replicated features.
The transform is

Z(w) . x(w) 1+ e.“tl + eq“z +... ¢ e-i“n ]

ami the power spectrum of Z(t)

Z42 = K*K(l +e7iuty e itz vee + e'i“‘n )

[1+ el 4 2, +e"‘""]
N N
= A%A E e’imi E ei“l
j=0 i=0
‘vhere we have defined t = 0 so that e tuto = 1, Since the sums are over

different indices

N N
ZsZ = A*A Z Z e ulty - ty)

j*0 {0
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We can consider that the sum is over a two-dimensional array of the
“i' tj }, where, for instance, "1" is a column index and "§" a row {ndex.

|
EEEEE

Break the double sum into three pieces, one piece consisting of all terms
on the diagonal, the second all terms above the diagonal, and the third all
terms below the diagonal

N

~ a ~ o "w“ "t) "U“ "t)
292 = A%A Eo "+Zo L
{2520 Y

j=0
N
-fwl(t, -t)
S R
1<y
j=0

Each element of the first 3_ is identically 1, and the second and third
terms are complex conjugates. Thus

N
~ m ~ my "w“ "t)
Z9Z = A N+28¢Eo 31

§>1

j=0

N
Z*Z = A*AIN+2 Z coou(tj-t‘) |

351
i=0

.3‘.
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To this point, the derivation is rigorous. If the time at which the
replications occur is random, the argument of the cosine is also random.
If N is large enough, one expects to see as mary negative terms as positive
terms in the remainiag summation. Thus, if N is large enough, the remaining
summation goes to zero and

Lim
N large

Z*Z = NA*A

In words, if enough randomly spaced replications are included, the
power spectrum of the total waveform is simply N-times the spectrum of a
replication unit,

To complete the analysis, consider that the real waveform consists of
randomly timed replications of A(t) plus some other signal C(t):

N
2(1) = C(+ DAt - ¢

i=0
Then
Z(W) = Cw) + Alw) 2 e
i=0
:
and
~ oy -~ o ~ oy -~ o N -Mt‘ ' as N Y +wtj
Z%Z = C*C + NA*A + C*A e + CAs Zo
i=0 j=0

The last two terms are complex conjugates, and their total contribution is
just twice the real part of either term. In this case, it is not possible to
write the real part in a simple form; however, it is possible to write a
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superficially simpler form as a basis to argue that the term is negligible,

Let
-~y Lo d Ny -~y -mt‘
D=C*A-d+16 andG= Y e =g+ia,

i

then the last two terms contribute

2Re DG = 2(dg +6a)

since

g" Ecoo 'ti w 0
and

a® Enin «.»ti L N

By the same argument, the last terms are negligible to first order and
Z9Z = CoC + NA®A

In words, the power spectrum of a waveform containing, among other
things, N randomly spaced replications of a particular signal (A(t)) will
contain (to first order) N -times the power spectrum of A,

The more general assumption which we wish to make about striations
is that the amplitude is also a random variable. (This is sometiines termed
"Impulse Noise'.) In that case, S(x) is the sum of many similarly shaped
transient pulses (see Figure 12),

Figure 12, Sample functions x (t) for five examples of random processes.
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S(x) = Z & vix-x)

k=1

whose shape s given by v= v(x), with
-]

/ vix) 1" 4. V(w)

while the pulse amplitude & is a random variable with finite variance,
and the x's are random locations determined by the state changes of a
Poisson process with mean count rate a@. The process is stationary
and ergodic if started at x = - ®; one has

®
u= E{Sxi} = oE {ak)/ vix) dt
-8

®
Rg(x) * u+ aE {Ik) /v(x) vix+1) dt
-8

P(S,w) = ub (u)+£— E (lk} ,V(t-))l2

where E {u) denotes the expr.cted value of u,




APPENDIX A

RADIOMETRIC INTERPRETATION
OF
PHOTOGRAPHIC RECORDS

A.1 INTRODUCTION

These notes present a brief outline of the mathematical formalism
and the concepts used by EG&G to obtain source radiance and power infor-
mation from photographic records. The notes were prepared during the
1971 SECEDE Summer Study.

A.2 BASIC CONCEPT

Radiometric interpretation of photographic records is based on the
assumption that the measured density of an element of film is a monotonic
function of the effective exposure, as defined by Eqs. (1) and (2), provided
that other variables which affect density are held constant (e. g., exposure
duration, processing, etc.). Therefore, if a calibration curve (a D-log ~
curve) is generated by measuring the densities, Dl' of known exposures,
E‘. on film of the same emulsion as (and processed with) the data film,
the effective exposure on the data film, EI (x,y), associated with a
measured density, Dl (x,y), may be obtained from this curve.

A.3 DENSITY DETERMINATION

Density measurements may be made with any of the severa. com-
mercially available microdensitometers, with the understanding that
calibration densities, Dl’ and image densities, Dl (x,y), be measured with
the same microdensitometer, using the same optics, and as close together
in time as is feasible. This will eliminate all problems created by specular
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versus diffuse measurements, ind reduces the measurement toa comparilon
one in which the calibration and image densities are used only as transfer

1

measurements of exposure. 1

!

! . : ) '
1

A.4 CALIBRATION PROCEDURE , .

A.4.1 Step Wedge Exposure : . . . ! |
! ! ' ! o
As a minimum, each data record should receive four step-wedge

exposures in a calibrated sensitometer (two pre-shot and two post-shot),with
each pair placed head-to-head. Senlitometer estpolure times should be chosen
to most nearly correspond to data film expolure times. 'l'he ltep wedge
exposures should be processed at the same time as, and adjacent to, the . '
associated film record. _

A.4.2 D-Log E Curve ‘ !

The effective exposure, Ei’ for the ith step of the step wedge is
taken to be . ' !

E, - f ud) T,0) SQ) dir) erge . ! )
0 cm

where

u(d) - spectral energy depsity on the sensitometer
platen (ergs/cm2-A),

T,(\) - :!titr‘nenlionleu diffuse transmittance of the | ‘
step, and ' . '
S(A) = dimensionless film sensitivity. '
EG&G generally scans each of the four step wedges three times along
parallel paths to produce twelve sets of density data (thirt'y-ilx for color
film). Trial D-log E curves are constructed for each of the twelve scans,

und these are reviewed in order to make adjustments and to eliminate
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inconsistent data. A final b- ~log Ei curve is generated as an arithmetic
rpean of the acceptable trail curves,

4 gy

' A.5 RAm,zl\NCE, 'POWER, AND ENERGY EQUATIONS

)

0 .
- A.5.1 Radiance , ,
[ * .
4 !. ' For an imaging optical system focused at infinity, the effective

!
*
exposure at, (x, y) on the film is given by
R
: , ' o

i

Banggmen §
e .

7
10 rt i
4 o E (x,y) = ex NQ)SO) TN d\  ergs ., (2)
LI ool —yt f 2
. . 4/ , 0 cm
|

[ ) B ey
2
o
-3
(11

, NQ) = spectral radiance of point (X, Y) in the object
‘ pPlane corresponding to point (x,y) in the image
\ plane (watts/cm2-ster-4),

e T(A) the total epectral transmittance along the optical
1 ! . path, |

(f/) = the aperture of the optical system (focal length
divided by the diameter of the lens aperture), and

texp = the exposure time at point (x. y) (seconds).

To unfold Eqn. (2) for N(N), assume that the relative shape, N(x). | 5
I of N is known but not its magriitude, NO' Then, '

.-.~|
e

L e )
L4

4 | o
’ | ' NG), - N N, 3)
. and Eqn. (2) yields ’
5 , T R
' B VRS 4t} A E, (x.y). 4)

S | ' "exp f NOJ TO) SO da

Ooptical axis. |

! - .
I ' Eqn (2).assumes thnt the source area considered is on or near the
i -30-
¢
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The total radiance in the wavelength range (a,b) is then
b

Nab X,Y) = / N(Q) dx
a
b
- 107" 4(f/)-2 a‘/ NO) E (x,y) watts (5)
4 texp j ﬁ(k) TN S(A) dx cmz-ster
Note that T(A\) may be written as
TQ) = TA(X) TW(X) TF(X) TP(X) TL(». (6)
where
T A(» = gpectral transmittance of the atmosphere,
TW(» spectral window transmittance,
TF(X) = gpectral filter transmittance,
TP(X) = gpectr:l prism transmittance, and
TL(X) = gpectral lens transmittance.

For black and white film, the limits of integration (a,b) are usually 3800 -
6800 1‘\ For color film, each layer is treated separately with the limits
usually taken as 3800 - 4800 X. 4300 - 5800 Z\. and 5800 - 6800 ;\
A.5.2 Power

Assume that the radiating source is located on the optical axis and
that its dimensions are small compared to the distance between the source
and the camera. Then, if the source is (1) an optically thin volume rather

or (2) a spherical Lambert surface radiator, the total radiated power in the

wavelength interval (a,b) is given by

P =4r / / N . (X,Y)dX dY )
. ab ab
X v
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=4 =9

2
- ROA / /
Pab 4r ( FL ) { Nab (X,Y) dx dy wafts (8)

where the integration is performed over a designated area of the film

or,

(perhaps the entire frame), and

ROA = range along the optical axis and

FL = lens focal length. .
Once N, (X, Y) has been evaluated from Eqn. (5), Pab may be calculated
from Eqn. (8). When the above assumptions do not hold, special calculation
procedures must be followed.
A.5.3 Total Energy

Through a consideration of successive frames of a record, the time
dependence of Pab may be determined. Thus, the total radiated energy in

the range (a,b) and in the time interval (tz-tl) may be written as
t

2

Up ° / Pab (t) dt joules. (9)
Y

Equations (5), (8), and (9) are the basic equations employed in obtaining

radiometric information from photographic records.
A.6 FACTORS IN THE EQUATIONS

A.6.1 Exposure Time

The exposure time (texp) should be measured directly or computed

from measurements of film velocity and camera characteristics.

A.6.2 Lens Spectral Transmittance/Optical Aperture

EG&G obtains the lens spectral transmittance (TL(A)) from
measurements of the actual lens at the nominal setting. The curve thus
generated is not the true spectral transmittance of the lens, but includes

any differences between the nominal f/ and the effective f/. The curve
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generated is

(/)% nominal

T_(O) =T,
L £/ )2 effective

1

where Tl()‘) is the true spectral transmittance of the lens. The nominal f/

is used in the radiance equation.

A.6,3 Atmospheric Spectral Transmittance

. The atmospheric spectral transmittance (T A(7\)) can be a unique
quantity for each photograph. Ideally, measurements of T A(7\) should be
made for each exposure, or, since this is almost an impossible task,

a mathematical model of atmospheric transmission can be constructed so
that T A(A) can be calculated as both a spectrally and spatially varying
quantity.

A.6.4 Spe “val Transmittances

The several spectral transmittances used in Eqns, (5) and (6)

should all be measured values.
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