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FOREWORD

This technical note describes the Numerical Variational
Analysis (NVA) program used at FNWC Monterey to prepare upper
air analyses of wind and temperature for the Global Band Grid.
The grid has a mesh length of 2.5 degrees at the Equator and
extends around the world covering latitudes between 40S and
60N. (The tropical grid used at FWC Pearl Harbor is a sub-
set of this one.)

The program is unique to Naval Weather Service analysis
effort in the tropics in that it couples wind and temperature
through thermal wind constraints thereby automatically ensuring
vertical consistency. It is designed to make maximum use of

all source data--especially over sparsely sampled ocean areas,
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ABSTRACT

An upper air objective analysis of wind and temperature
has been developed fof.operational use at’Fleet Numerical
WeatherFCEntral. The primary feature of this analysis scheme
is the vertical and horizontal extrapolation of information
into the data-sparse regions from the data-rich surface and
jet aircraft level. The extrapolation is based on Sasaki's
recent extensions of the variational analysis method. The
hydrostatic equation and horizontal momentum equations are
used as dynamical constraints and these equations are combined
to relate temperature and wind through a generalized thermal
wind relationship. The governing analysis equations are
elliptic and amenable to solution by the relaxation process.
Vertical coupling of both wind and temperatﬁre is demonstrated
through the detailed examination of a case study in the North

Pacific.
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1. INTRODUCTION
The synoptic analysis of meteorological fields at

mid-tropospheric levels has been plagued by the scarcity
of conventional data. The data coverage over.the densely
populated continents of Europe and North America has general-
ly been adequate for the definition of the large-scale or
extra-tropical cyclone features. For ocean operations,
however, the conventional data is strikingly inadequate to .
define. even these large-scale features. To augment the .
info;mgtion at these mid-levels, the relativeiy rich sources
of data at the surface have been used. Yanai (1964) achieved
a_cpnsiderable improvement over standard methods when he
relied heavily upon the surface data.to build upper-air
analyses of wind in the Caribbean. . His success stemmed from
the ability to éonstruct an accurate surface wind analysis
from relatively abundant ship and island reports. Adjoining
upper air charts were then builf stepwise by differential
analysis using the successive corrections method (SCM), an
operationally attractive scheme formulated-by Bergthérsson
and D66s (1955) and modified by Cressman -(1959).

_ Another approach that has been successful at the National
Hurricane Research Laboratory (NHRL) is the layer mean analy-
sis. In this analysis, the data base for the lower tropo-

sphere (1000 - 600 mb) and the upper troposphere (600 - 200 mb)




is effectively increased by amalgamating the information
from the individual mandatory levels. The apparent success
of this scheme is based on the two-layer structure of the
tropics during most of the year (Wise and Simpson; 1971).

In addition to increasing the data base for each’
meteorological: variable, the ability to couple variables
through dynamical or empirical relations is germane to
analysis in data-sparse regions. Thus, the observation of
a particular variable can indirectly produce information =
about another variable. Sasaki (1958, 1969) has developed
a scheme based on variational calculus which couples the
meteorological fields by constraining the analysis to
satisfy'a4governing.éet of diagnosfic or prognostic equétions.
‘This methodology has been used at Fleet Numerical Weather -
Central (FNWC) to produce surface winds and pressure on a
glbbal‘bandlgfid which encompasses the tropical belt (Lewié'
and  Grayson, 1972)., The work of Yanai (1964) also coupled
the fields at the surface by using a statistical-dynamical
model proposed for use at the Japan Meteorological Agency
(JMA) and reported by Masuda and Arakawa (1962).

The coupling of data in upper-air analysis has received
considerable attention in recent years. This interést has
"been stimulated by the necessity to define observational

networks for numerical weather prediction (D&és, 1970). The




operational centers have traditionally used geostrophic

theory in conjunction with the successive corrections method.’
With upsurge in global forecasting, however, the analysis
technidues have incorporated ageostrophic effects. The
National Meteorological Center (NMC) now analyzes heights
and winds by spectral methods which use Hough functions
(eigenfunctions of Laplace's tidal equation) for horizontal
modes and empirical orthogonal functions for the vertical
modes (Flattery, 1971). The results indicate that reasonable
height and wind fields are obtained, even at the equator.
Since the Hough functions are derived from equétions which
neglect the nonlinear advection terms in the momentum equations,
there have been some problems when the analysis is used for
" initializing the.ﬁrimitive equation forecast model (Flattery,
1970). Gradient wind corrections have been made in an
attempt to account for the nonlinear imbalance.

The proposed upper-air analysis scheme at FNWC is designed
for operational use on a global band grid extending from
40S to 60N which has a mesh length of 150 n'mi at the equator
and 75 n mi at &ON. The change of mesh size is a consequence
of the distortion inherent in the Mercator secant projection
(true at 22.5N and 22.5S) used for the analysis. The flight
support for ‘turbo-prop aircraft has been a primary considera-

tion in the development of this scheme. These planes cruise




in the vicinity of the 400 mb surface and flight support

and guidance at this level are necessary. As mentioned
previously, the data-rich levels are the surface and the jet
aircraft level (vicinity of 250 mb). The extrapolation of
data from these data-abundant regions into the mid-troposphere
is accomplished by using Sasaki's numerical variational
analysis (NVA) method. This approach reduces the analysis
problem to a boundary value problem where the upper and lower
surface are specified and the interior is determined subject
to the governing elliptic analysis equations. Since there

are scattered observations between the surface aﬁd 250 mb,

the analysis scheme must have the capability of weighting

this .local information as well as incorporating the extrapolated
information. The Qariational analysis séheme provides a
natural way to accommodate both the observations and the
dynamically extrapolated information.

The surface analysis which is used to provide boundary
values for the upper-air analysis is based on the operational
scheme reported by Lewis and Grayson (1972). This analysis
has been subjected to a two-dimensional adjustment by NVA,
The momentum equations used as constraints for this surface
analysis are consistent with the upper-air scheme except
that they contain the effects of surface friction. The

250 mb analysis is found by the SCM. A two-dimensional




.adjustment could be performed at this level, but has been
postponed until the general features of the extrapolation
procedure are clarified. In order to incorporate dynamical
information at this level, the forecasted wind from the FNWC
primitive equation model (Kesel and Winninghoff, 1971) is
used as the guess field for the SCM between ZON - 60N.

Since aircraft rarely report geopotential (D-values) and,
moreover, because of the limited credibility of these observa-
tions, the coupling of temperature and wiﬂd has been used
to build the upper-air analyses. The subjective or manual
analysis of upper-air wind has heavily relied upon fhis
coupling or thermal wind relatibnship (see Saucier, 1955).

In order to couple these fields over the tropics and ektra-
tropical regions, a more general form of the thermal wind
relation which includes ageostrophic effects must be employed.
Forsythe (1945) developed graphical techniques which.enabled
the hand-analyst to account for ageostrophic effects between
the temperature gradient and wind shear. It is precisely

this traditional synoptic rule connecting temperature gfadient
and wind shear that provides the vehicle for extrapolation

in the objective scheme.




2. BASIC INGREDIENTS FOR THIS ANALYSIS, OBSERVATIONS

AND THE GENERAL THERMAL WIND RELATION

The operational approach to numerical variational
anaiysis (referred to as NVA in future discussion) adopted
at FNWC is: (1) irregularly distributed observations of
each variable are independently interpolated to grid points
by the SCM, (2) a reliability is attached to the variable
at each gtid point and is dependent upon both the number
of oBservations affecting this point and the distance of the
oBservations from the point, and (3) an adjustment of the
"observations" (the analysis resulting from the SCM) by the
NVA equations which have incorporated the model constraints.

‘The analysis is performed every 6 hr and the natural
candiaété for the guess field of SCM is the previous analysis
or; équivaiently stated, the 6 hr persistehce field. 1In
addifion to the persistence field, however, the FNWC primitive
equafibn model produces a forecast every 12 hr over the
Northern Hemisphere. The guess field for the wind is 6 hr
péréistence'south af 20N. Between 20N - 60N, the 6 hr and
12 hr férecaéts'are alternately used. That is, the 06 GMT
and 18 GMT global-band analyses use the 6 hr forecasts from
00 GMT and 12 GMT, respectively. Similarly, the 00 GMT
and 12 GMT analyses use 12 hr forecasts from 12 GMT (previous

day) and 00 GMT, respectively. The temperature guess field,




however, is strictly the 6 hr persistence field. The feed-
back from wind to temperature occurs in the NVA scheme.

Only when the '"observations' (SCM analyses) are independent
can the variational adjustment process guarantee maximum
likelihood estimates (Cramér, 1955; Lewis and Grayson, 1972).

Four successive scans are made to correct the guess
~field. For the analysis of temperature, the radii are 600,
300, 200 and 100 n mi, respectively. Grid points which are
600 n mi or further from a report are unmodified, i.e.,
the 6 hr persistence becomes the current analysis. It is
precisely this kind of event that often causes the SCM
to produce "unmeteorological" fields, i.e., the data-Sparse'
areas adjoining the data-rich areas show discontinuities
which are characteristic of the mathematical weighting func-
tions of the SCM and are not attributable to meteorological
events.

In a similar fashion, three scans are used by the SCM
for wind analysis. Here the two component directions are
analyzed together. In addition to speeding the analysis
procedure, the decision to accept or reject wind data is
based on the vector rather than the separate scaler components.
The radii for the wind analysis are 450, 300 and 150 n mi,
respectively. The successively decreasing scan radii are

designed to capture the larger scale features on the preliminary




scan and then include the smaller scale features on the

following scans.

Stephens (1967) has discussed the relation-

ship between characteristic meteorological scale and the scan

radii under the assumption of uniformly distributed data.

The second ingredient to NVA is the model dynamics

which will be used to couple the variables and provide the

path to extrapolation from the data-dense to data-sparse

regions.

The governing equations are modified in

consistent with the NVA.at the surface (Lewis and

1972).

by the distributions resulting from the SCM.

Namely, the nonlinear advection terms are

The

a4 manner

Grayson,

approximated

primary

advantage is the simplification of the Euler equations and

the guarantee of an elliptic differential equation system

regardless of the weights used in the variational formulation.

The guaranteed ellipticity leads to rapid convergence when

the relaxation process 1is used.

Mercator coordinates are:
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where: t : time

X : east-west coordinate (positive eastward)
y : north-south coordinate (positive northward)
o : vertical coordinate (positive upwards)
vV o= ui + vj : horizontal velocity
i : unit vector along positive x
j : unit vector along positive y
W = 41 + ¥#] : velocity from SCM
T : temperature
¢ : geopotential
f : Coriolis parameter
m = coseo sec® : 1image scale factor for Mercator

projection true at 22.5N and 22.5S

8 : latitude (6, = 22.5 degrees)
o reference pressure (1013 mb)
R : gas constant for dry air
V = nm g%-l i+m %é—l j : gradient operator

To simplify the notation, the nonlinear advection terms

are denoted by:

A= W.vd (5)

B = Wev¥ (6)

The general thermal wind relation is derived by eliminating

the geopotential from the momentum equations, (1) and (2),




by substituting from the hydrostatic equation, (3). 1In

component .form, this relation 1is

9 /9 9% 0 9T
5t (o) = "gg At fg MRy < F (7)
] oV 9 3 9 9T
3 (55 = "5 B fgg Mgy =G (8)

where the separation of terms by functions F and G will prove

useful in the discussion on minimization.

10




3. THE VARIATIONAL FORMULATION AND ASSOCIATED EULER EQUATIONS

The timewise localized version of NVA (Sasaki, 1970) is
adopted for the upper-air analysis and the functional to be

minimized assumes the form:

r=\\\([au-u)? + av-9? (9)
2
v + [B(T-T)"]
f ey A2+ e @2y g 2o a¥
. at ‘a0 . ot ‘a0 ' X,y
where
a Gauss' precision modulus for wind
‘E Gauss' precisioh modulus for'temperature
o : Dynamical weight | N
Xe : east-west coordinate on earth
Ye * north-south coordinate on earth
(*Y : analysis resulting from the SCM
e’Ye . . ’
J( X,y ) Jacobian of transformation from earth to
¢ H

Mercator coordinates

‘d¥ : ‘incremental volume (dxdydoc)

The relafionship between earth and map coordinates is

XerYe
dxedye = J( X ) dxdy . : - (10)

Consequently, (9) implies that equal weight is given to

11




equal earth areas, not equal map areas. For the Mercator

pro;ectlon

xe’ye -2

30 xy ) =™ - an

By virtue of (7) and (8), the functional can be rewritten

r 3
a[(u-i)Z + (v-?)
. . X_,Y,
- { + BL(T-2) I V. ap
2 2
& L+ af[F® + G"] )

The first setldf bracketed terms force the analysis toward
the SCM velocity in proportion to d. Similarly, the second
bracketed term forces the temperature toward the SCM
temperature in prbportion to 8. The weights & and B are
called obgefvational weights or Gauss' precision moduli

and specified beforehand, i.e., before the minimization
process. They are a measure of the confidence in the.
respective SCM fields. Following the discussion of these

weights in the paper by Lewis and Grayson (1972), let
a = 1/0w , B = 1/ch.‘ o (13)

where o is the mean-square difference between the separate
wind components of NVA and SCM and O is the mean- square
dlfference between the NVA and SCM temperatures.

In analogy with the observational weights a and'E,.the

dynamical weight o is' expressed as

12




a = 1/<Jt (18)

where Oy is the mean-square value of local time rate of
change of wind shear as calculated from (7) and (8). Alter-
natively stated, o is a measure of the steadiness or degree
with which u, v, and T satisfy F = G = 0. As a increases,
the analyzed fields are forced closer to the steady state
relationships.

The observational weights & and B should be a function
of space (and time) and generally distinguish between (1) grid
points that benefited from néarby observations and (2) grid
points unaffected by observations aﬁd consequently reflecting
6 hr persistence after the SCM analysis. A method for speci-
ficétion'of & and B in terms of the distancé-depéndent weighting
implicit in the SCM has been discussed'by Lewis and Grayson
(1972j. 'During the development stages of the upper air analy-
sis, the weights have not varied as a function of space but
have Been chosen to reflect only typical variance of the
wind and temperature. |

As mentioned in the Lewis and Grayson (1972) paper, the

separately specified values of o, O and o_ are not preserved

t
in the minimization process. However, the ratios between

these values are preserved. This fact will be obvious when
the Euler equations (Eqs. 17-19) are examined. If a, b and

c are chosen for 00 O and o the final analysis produces

t,

13




values d, e and f, respectively, where a:b:c = d:e:f. Rather

than specifying 0w O and o_., it is sufficient to specify

£
cw/ot and oT/ot. v

A necessary and sufficient condition for minimization
of (12) is the vanishing of the first variation, denoted by
6I. The sufficiency of this condition is directly attributa-
ble to the quadratic nature of the integrand (Lanczos, 1970,
p. 41). Using integration by parts and the commutative
.properties of the §-process (Lanczos, 1970, p. 56), the
functional takes the form

_ _ terms evaluated on
0 =48I = FPGU + Qév + W6T) d@’ * {surface boundaries} N (15)

..V

The expressions P, Q and W are differential expressions which
will be explicitly written later, |

The Boundary terms indicated on the right-hand side of
(15) involve integrals over the bounding surfaces, viz.,
the walls at 40S and 60N, the 250 mb level and the earth's
surface. The east-west boundaries are cyclic because of the
360°A10ngitudina1 span of the analysis region. The conditions
necessary to cause these integrals to vanish are called the
ﬁatural boundary conditions. There is generally more than
one set of acceptable boundary conditions. The simplest
boundary conditions are: 6T = 0 on the north and south,

walls and 8u = év = 0 along the upper and lower surfaces.

14




These are Dirichlet conditions and allow no adjustment ofA
temperature and velocity along the boundaries where the
respective variations vanish. Alternative boundary condi-
tions can be found by examination of the integrals given

in the appendix. The simplicity of the Dirichlet conditions,
especially in regard to the programming of numerical methods
for solution, has led to the adoption of this set of boundary

conditions.
Having disposed of the terms evaluated on the surface
boundaries and because of the independence of the variations

of u, v and T, the solution to (15) is

P=Q=W=0 (16)
where
- ~
2 .
£ o R OICED
P= < o p =0 (17)
2~
3 T 3°B
+ mfR (=) + f
L 30 3y ;;T )
[ 2 32 7 b
Vv a ~
f ;0—2' - (a) (v-v)
Q= 9 , > =0 (18)
3 8T 3°A
- mfR 56 (H) - f a—o—z-
\ _

15
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LNCE SRR VRN COTe o)
W= X =0 (19)
-3V (g ) ¢ T (T)

©, ®

and

Q
oo}

>
+
>

) (20)

|
Qx>
|

Q

The local vertical unit vector is ﬁ and the dot and cross-
products have been incorporated in (19). Equations (17)

and (18) can be combined to produce the vector representation:

~ @ © h

2 3w

3 I

ﬁ F =0 . (21)
~ a A a
+ fRkx 35 VT - fkx 35 C

®  ®

The equations, (17)-(19), or equivalently, (19) and (21), are

called The Euler equations. Together with the Dirichlet
boundary conditions, they constitute the governing equafions
for the upper-air analysis.

The derivation of (17)-(19) has assumed that o is invariant
in space. A variable a'can easily be included in the equations,
‘but the applicability of the model constraints over the entire

analysis region dictates the constancy. The ratios B/a and

16




d/a are the controlling factors in (19) and (21), respectively.
As the reliabilities of the SCM wind and temperature increase,
the ratios &/a and B/a increase, respectively. Consequently,
term C) in both (19) and (21) forces the analysis toward the
SCM analysis in proportion to these ratios. ‘

Terms <:) and C) in (21) represent the geostrophic
coupling between wind and temperature. In fact, except for
the differentiation with respect to o, this is the geostrophic
therﬁal-wind relationship. Interpreted physically, the verti-
cal change of horizontal temperature gradient contributes

2

to the curvature, i—gz , of the wind profile. Term ()

90
brings the nonlinear advection of momentum into the process

and is generally an important contributer in the regions of
strong horizontal shear such as in the area neighboring the
jet stream. Although this term is apprdximated by the SCM
analysis, the approximation is improved by a "re-cycling"
technique explained in the next chapter.

2T, and the

The horizontal curvature of temperature, V
vertical variation of vorticity, %E (ﬁ-vx V), are related by
terms @ and @ in (19). Again, these terms stem from a
strict hydrostatic-geostrophic balance. The nonlinear

advective effects are contained in (:) and are associated

with vertical variation of streamline curvature as expressed

d a"u . .
by u 55 (527), etc. These nonlinear terms are subject to

17




improved approximation by the re-cycling method mentioned
above.

In the development of the finite-difference analogs of
the Euler equations, a departure from the exact form has
been made. As shown by Forsythe and Wasow (1960, p. 182),
the construction of symmetric operators follows directly
from the finite-difference form of the functional, Eq. (12)

in this case. Assuming that a centered difference is used

,
to approximate'%gl in the functional, e.g.,
> W) _ V50 = Vo0 ' )
90 400 mb In(700/7250) °
3 W

then the finite-difference analog to — should include
a0

values at both the second level above and the seﬁond level
below the one in question. Because of the limited vertical
extend of the discretized analysis space, oﬂly the first
level above and the first level below are used in calculatiné
the second derivative. This departure from rigorous form
introduces some discrepancy between the exact minimum for
(12)-and the Value obtained by using the solution to the
assumed finite-difference form of (17)-(19). However, the
basic conceﬁt of coupling the variables and extrapolation

remains intact,

18




4, METHOD OF SOLUTION

The sef of Euler equations are coupled elliptic
differential equations (Helmholtz type) subject to
Dirichlet conditions. The form of the equation lends
itself to a vertically staggered grid arrangement, viz.,
an alternating sequence of temperature and wind fields
along the o-axis. Equation (19) associates the vertical
gradient of vorticity, term (:), and vertical gradient of
momentum advection, term (:), with the horizontal tempera-
ture distribution. Consequently, the finite-difference
evaluation of %éy can be constructed using only the levels
adjacent to the temperature. A similar evaluation is possible
in connection with (21) and the finite-difference form of
%%. A principal advantage of the staggering scheme is the
reduction in both computer memory and time requirements.

The staggered system with the assignments for temperature
and wind is shown in Fig. 1. The operational sequence of
events in the analysis package is (1) the surface wind and
pressure field are analyzed by the two-dimensional NVA
scheme (Lewis and Grayson, 1972), (2) the SCM upper-air
analysis’is used for temperature and wind and (3) the varia-
tional anal&sis is accomplished through the solution of

(17)-(19). The solution of these Euler equations is schematical-

ly represented in Fig. 1.

19




An elaboration upon the cycling process is instructive:

STEP 1. The 850 mb temperature is found by solving (19) -
by the accelerated Liebmann method (Miyakoda, 1961).
On the first cycle, the available wind field at the
adjacent upper level is the SCM analysis.

STEP 2., The 700 mb wind field is found by solving (17) and
(18), again by the accelerated Liebmann method.
The temperature field at 850 mb found in STEP 1 is
now uséd in conjunction with the SCM temperature
analysis at 500 mb to calculate %%. The wind fields
at 400 mb (SCM on this first cycle) and the surface

. XA
are used to estimate — .
o0

STEP 3. The temperature at 500 mb is found-by solving (19),
which 'uses NVA fields below this level and SCM
fields above.

STEP 4. The wind field at 400 mb is found by solving (17)
and (18), which use NVA fields below and SCM fields
above.

STEP 5. The temperature at 300 mb is found by solving (19);
which uses the NVA fields at all levels except 250
mb where the wind analysis is derived by the SCM
scheme.

With the completion of this complete cycle through the
o-lafers, a re-cycling process is performed. Now, the adjusted

fields from the first cycle are used as forcing functions in
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(17)-(19). As expected, the convergence of the Liebmann
method is much faster during the re-cycling (see Table 3).
The nonlinear advection terms, A and ﬁ, are also re-calculated
and these improved estimations are used in (17)-(19). The
process of re-cycling could be continued indefinitely but
obviously at the expense of computer time.

One re-cycle fhrough the levels accounts for most of
the adjustment which is fortunate from an operational
viewpoint. A more rigorous criterion for termination could
be based upon the ratios of observational to dynamical weight.
Thus, having specified cw/ct and 0.1;/0t beforehand, the final
analysis should approach these ratios as the number of cycles

increases.
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5. APPLICATION

The analysis scheme has been tested using data collected
on 15 February 1972. Although the objective analysis was
performed over the entire grid (~7000 points at each level),
the synoptic discussion will concentrate on the Pacific Ocean
region between 20 and 60N. The jet-aircraft flights between
the Pacific islands and mainland (Asia and North America)
provide credible winds for the upper boundary condition.
Additionally, the ship traffic and island density anchor
the surface analysis.

Figure 2 depicts the sea level pressure analysis via
two-dimensional NVA (Lewis and Grayson, 1972). The data
coverage 1is uniformly dense and both pressure and wind
reports have been superimposed over the pressure pattern.
The surface wind analysis obtained simultaneously by the
NVA scheme is shown in Fig. 3. This analysis serves as the
lower boundary condition for the construction of the upper
air analysis. The wind has been expressed in knots to
conform with the standard operational format.

The upper boundary condition is the SCM analysis of wind
at 250 mb. This field is displayed in Fig. 4 and wind
observations incorporated into this analysis are shown in
Fig. 5. The primitive equation forecast (12 hr) is used as
the guess and accounts for the definition of features in

data-void areas. For example, the pronounced ridge near
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160-170E and extending from 30-45N is virtually the
unadulterated guess field.

With the specification of the boundary conditions and the
assignment of the weight ratios a/a and E/a, the Euler
equations can be solved. The solution is accomplished by
using the accelerated Liebmann method in the level-by-level
sequence discussed in Chapter 4. The convergence rate of
this iterative method is strongly dependent upon the weight
ratios. As B/a and d/a increase, the rate of convergence
increases. Essentially, term (:) in both (19) and (21)
becomes increasingly important and the coupling between the
wind and temperature is weakened. Operationally, the range
of values for these ratios must be restricted to prevent
the usage of unreasonable amounts of computer time. The
chosen ratios, however, should guarantee a feedback or coupling
between the wind and temperature. The results discussed in

this paper have been obtained with the following ratios:

a/o = ot/ow 1.5

(23)
B/a = ot/cT = 250

where the implied space, time and temperature units are n mi,
hr and °C, respectively.
In order to attach physical meaning to these weights,

the root-mean-square difference between the SCM fields and
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the adjusted fields must be examined. Representative values
at 500 mb and 700 mb are displayed in Table 1. It is signifi-
cant from an operational viewpoint that the-major adjustment
occurs within two complete cycles through the o-layers. This
table also depicts the root-mean-square value of the shear
tendency, S(F) and S(G). Since Ao ~ 0.9 for the layer between
the surface and 400 mb, values of S(F) and S(G) can be
roughly interpreted as the 400-1000 mb wind shear change over
a one hr period.

A measure of the overall convergence (distinguished from
the convergence at a particular level on a given cycle) can
be formulated in terms of the difference between calculated
and hypothetical ratios. From the form of (12) and the
definitions for the weights given in (13), the following

relationship should hold:

~-1, o-1, ~-1, -1, -1
R P a o " o
(24)
= SZ(T):Sz(u):SZ(v):SZ(F):SZ(G)
where S is the root-mean-square designator. From (24) we
get
(
= [s(F)/S(T)]*
B/a ﬁ | (25)
- [5(6)/s(T)1*
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and

[S(F)/S(u)]?

[S(F)/S(v)]?

'&/a ﬂ (26)

[5(6)/S(u)]?

u [S(G)/S(v)]?

Average values of a/o and E/a based on (25) and (26)
'aré éisplayed in Table 2. The marked improvement within
two cycles is eviden;. However, the theoretical values can
never.be obtained because of the truncation error introduced .
by the finite difference analogs to (17)-(19). Additionally,
the license used to formulate the second derivative in terms
of adjacent levels (see end of Chapter 3) ultimately causes
some discrepancy. |

As expected a priori, the amount of computer time necessary.
to solve for u, v or T at a particular level decreases with
evefy cycle through the o-layers. Table 3 shows the number
of iterations for both temperature and wind at 500 and 700 mb,
respectively. The convergence criterion was established to
yieid solutions accurate to 10°2 - 1071°C and 107! - 1 kt
for temperature and wind, respectively. These values are
substaﬁtially below the accuracy of the observations.

In order to reveal the magnitude of adjustment in the

wind field, a vector difference between the NVA and SCM -
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analyses is displayed. Figures 6-7 show .the vector difference
at 700 and 400 mb, respectively, after two complete cycles
through the o-layers. The SCM analysis at 700 and 400 mb
is shown in Figs. 8 and 9, respectively. An encouraging
result that appears on both Figs. 6 and 7 is the organization
of the adjustment. That is, the scale of the adjustment is
the same order of magnitude as the synoptic scale disturbances
and does not exhibit two or three mesh-length oscillations.
The maximum adjustment.at 700 mb occurred in connection
with the cyclone at épproximately 40N, 175W. The SCM
analysis shows definite cyclonic circulation above the surface
low pressure center, but the adjustment basically increases
the intensity of this vorticity center. Whereas the SCM
analysis indicates wind speeds the order of 10 kt to the
west of the center, the NVA schemé has speeds around 30 kt.
There were no 700 mb observations in this area to verify the
adjustment, but the strength of the surface system lends
support to both the sense and magnitude of the modification.
Another interesting adjustment occurred east of the Japanese
Islands in the vicinity of the col in the sea level pressure.
The magnitude of 700 mb wind above this area is decreased by
NVA and the cyclonic vorticity is weakened. The cyclonic
vorticity is increased, however, directly above the two
low pressure systems. Generally, the circulations at the

surface have been incorporated into the 700 mb chart.
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The scale of adjustment at 400 mb-appears to be larger
than at 700 mb as expected. For example, the upper-air
circulation accompanying the mid-Pacific low is adjusted
in the cyclonic sense but over a much larger east-west
extent. A conspicuous amplification of the ridge along 145W
can be seen by examination of the 400 mb adjustment field.
Again, this seems to reflect the feedback of information
from 250 mb.

_ The coupling between the temperature and wild fields
is displayed in Fig; 10. If the model constraints were
strictly geostrophic-hydrostatic, the direction of the
shear vector would be along the isotherms and its magnitude
would be proportional to the isotherm gradient. There are
some noticeably ageostrophic regions especially in the
vicinity of weak thermal gradients. The correlation between
the shear and the thermal pattern is evident in the baro-
clinic regions, e.g., the extensive SW-NE flow from mid-
Pacific to the Canadian border and the SW-NE flow just east
of Japan.

With the weight ratios given by (23), the influence
of the wind field on the temperature field is not as con-
spicuous as the reverse coupling, i.e., the influence of
temperature on wind. This statement is further substantiated

by the results in Table 1 indicating that the NVA temperature
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is very close, in an rms sense, to the SCM temperature.
Stated mathematically, term (:) in (19) dominates the other
terms inAthis equation. In order to isolate the influence

of wind on temperature, an experiment was conducted in which
g = 0. Thus, term (:) vanishes in (19) and the temperature
at any level is a function of the wind field and the boundary
values of temperature on the north and south walls.

As expected, the rate of convergence is slowed down
considerably in this case; in fact, the number of iterations
increased by a factor of 7. The 850 mb temperatures for
the case 8 = 0 and the control case, i.e., weights given by
(23), are shown in Figs. 11 and 12, respectively. The
maximum or minimum values or ''central' values are in obvious
disagreement., Effectively, the 8 = 0 case has no anchoring
information on the interior. It is very encouraging, however,
to see the coupling between isotherm curvature and the wind
shear vector. Especially interesting is the cut-off feature

in mid-Pacific.
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6. CONCLUDING REMARKS

The primary results based on this study are- (1) -the
variatidnal.methqd can incorporate detail into the 400-700 mb
wind fields via vertical coupling and (éj the iterative | ’
techniqug for solving the analysis equations is efficient
enough to withstand :the rigid time requirements of operational
an;lysié and prediction. Based on information from the case
study, the estimated time for solution to the Euler equatiﬁﬂs
is 15 min [Central Processor Unit (CPU)] on the CDC 6500
computer. The SCM analysis takes approximately iS min also,
yielding a combined time of 30 min for the entire analysis.
The analysis will be routinely transmitted (every 6 hr)
to the outlying weather centers in June, 1972,

Considerable effort is currently concentrated on increasing
the data-base for the analysis. In particular: (1) the
incorporation of pibals (pilot balloons) information will
ultimately strengthen the low-level wind field; (2) the
winds derived from satellite photographs will provide support
at both the upper-level (~250 mb) and low-level (~700 mb);
and (3) temperature information from SIRS soundings will be

added to the conventional temperature reports.
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TABLE 1. Root-mean-squére differences between adjusted

~fields (NVA) and SCM fields denoted by S(T), S(u) and S(v)

where the differences are calculated at 500 mb and 700 mb
for the temperature and wind, respectively.

values of F and G (see Egs.
by S(F) and S(G).

The mean-square
7 and 8) at 500 mb are denoted

Cycle > S See) ke o1 e pp-
1 0.324 3.83 4.34 7.68 5.75
2 0.325 3.82 4.02 6.39 5.12
3 0.323 3.85 4.01 6.20 5.02
4 0.322 3.88 4.03 6.16 5.07‘
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TABLE 2. Ratio between observational and dynamic weight as
a function of cycle number. The hypothetical ratios are shown
in parentheses and the calculations based on values from
TABLE 1.

3 ~ B |
Cycle s (1.5) o (250)
1 ' 2.78 424
2 , 2.18 - 327
3 : 2.06 305
4 : 2.04 308
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TABLE 3. The iterative solution to the Euler equations is
accomplished by the accelerated Liebmann method. The number
of iterations required for convergence is displayed as a
function of the cycle. These numbers represent the calcula-
tions at 700 mb and 500 mb for wind and temperature, respectively.

Cycle Temperature : Wind
1 | 11 9
2 6 8
3 5 6
4 4 5
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APPENDIX: NATURAL BOUNDARY CONDITIONS

The right hand side of (15) has categorically grouped tﬁe'

terms involving integrals over the boundary surfaces. These
integrals originate from the last set of bracketed terms in
(12). The mechanics of extracting the surface integrals

from the functional is explained in Lanczos (1970). Before
writing the explicit form of these integrals, it is convenient

to adopt the following notation:

boundaries of analysis space in east-west
direction :

boundaries of analysis space in north-south
direction

boundaries of analysis space in vertical
direction

Realizing that the global-band is cyclic in the longitudinal

or east-west direction, the relationship

o(x') = o (x") , (A1)

holds, where ¢ represents any of the variables, u, v or T or

derivatives of these variables. The explicit form is:




© ®
2 1"
{B%Z?izry} o [T - %li- dydo + aR% [§T - 2—1:]

® © .
aR - . 9B,y" aR oA, x"
+ & [6T %]y, dxdo + = [8T - =], dyd
@
aRf 0T 0' f 0T
v 22 [6u + 5310+ dxdy - = [6v == g, dxdy
2 ® 2 CB
f ) f d
+ S‘in_lz [6u 5219, dxdy + °‘_mz [6v « £217, dxdy
" of 9B, 0" f A
*m‘zyléu-mlo'dd'%«r [ov - 3515 dxdy
where [¢(x,y,c)]§? = ¢ (x",y,0) - ¢(x',y,0) in conformity with

notation of integral calculus. The terms @), @ and @
vanish by virtue of (Al). If 8T = 0 along the north and south
walls, then (2), @ and (5) vanish. When Su = §v = 0 on the
upper and lower boundaries, then terms @ - @ vanish.
These are the Dirichlet conditions for the formulation and

they have been adoptéd.
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