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INTRODUCTION

R

"

é THE PRIMARY responsibility of the air traffic controllerx
is to insure the safety of the vehicles under his control,

He does this, usually, by providing adequate separation at
all times. What is adequate separation? The answer to this
question is coming under increased scrutiny as the number of
vehicles in the air increases and as efforts commence to
automate the controller's task. In terminal areas, partic-
ularly, techniques for increasing airport capacity, such as
closely-spaced parallel runways, curved approaches, speed

control, and V/STOL operation, are limited, ultimately, by

e

the closeness with which vehicles are allowed to approach

& each other. Flight paths must be such as to make most

1 efficient use of the limited airspace available without

2 incurring an unacceptable risk of collision. Vexry often

the actual or proposed flighic paths of two vehicles are

such that the relative separation vector follows a compli-
cated curvilinear path with no well-defined point of closest
approach. A systematic design of new procedures, then,
requires a quantitative relation between any prescribed set

of flight paths and the risk of collision.

TR T
1
[
1
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There are at least two ways to go about assessing collision
risk between aircraft in motion: worst case analysis and
statistical analysis.

A typical worst case analysis1 combines initial position
and velocity uncertainties, pilot control uncertainties, and
possible changes in flight path due to pilot or controller
intervention to determine the limits of the airspace within
which the vehicle may be located in the time interval of interest.
A conflict of volumes for two aircraft indicates that a collision
may occur; and a warning is issued. This type of analysis is
particularly well suited to a real-time collision warning system,
Since it makes no assumptions about pilot or controller inten-
tions, it can handle VFR as well as IFR traffic. But because
great latitude must be allowed for the intentions of VFR air-
craft, the volumes calculated expand rapidly in time. This
limits the period of applicability to the order of seconds of
time. Therefore it is usually impractical to use worst-case
analysis to design most terminal or enroute traffic patterns; its
major utility is in detecting and resolving potential conflicts
in real time,

The statistical analysis of collision risk assumes that the
pilot will proceed approximately along the path qu which he has
obtained clearance from the controller, and that ﬁhe controller
will not direct sudden, unsafe maneuvers., For these reasons,
the method applies well to IFR traffic over a period of several

minutes or even hours. The method has two aspects: (a) the

collection and analysis of data to determine the statistics of

t
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vehicle position and velocity deviations from the prescribed
path, and (b) analysis of the distributions thus obtained to
give the probability of collision. The first aspect requires
combining equipment performance estimates with the results of
pilot-vehicle simulationsz. Very often the only information
obtained about the distributions are their variances. As a
result, the second aspect, which this paper treats, usually
employs probability distributions based on analytical con-
venience rather than fact. Nevertheless, a series of analyses

5'4'5'6, based on assumed distributions, have developed risk

estimates for parallel airways and, recently, for parallel
runways7. A large number of cases, however, cannot be handled
with present theory. Present theory deals directly with air-
craft flying parallel, straight-line paths, and cases reducible
to that. It cannot handle curved relative paths, ascending or
descending airways, or crossing airways, although such cases

are very common in the critical terminal areas in which most

of the present congestion occurs. It is the purpose of this
paper to provide the theoretical basis for calculating collision
probabilities from the statistics for any two given paths in
space. It is hoped that, as data are gathered for better
definition of the distributions, the formulas here presented
will assist in the development of improved terminal area traffic

procedures and rules.
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STATEMENT CF PROBLEM AND OF ASSUMPTIONS

Assume that two aircraft start on prescribed flight paths
at time tO' Due to navigation and control uncertainties the
actual paths deviate from the prescribed paths. The gquestion
is: what is the probability of collision from time t0 to some
later time, tl?

The following assumptions are made:

(1) All possible flight paths are random samples from
ensembles of known statistics; the means of the
ensembles are the prescribed paths.

(2) Each vehicle may be represented as occupying a
bounded, closed region of space.

(3) Vehicle position is a differentiable function of time.

(4) The mean separation is always large compared to the
diameter of the regions occupied by the vehicles.

The first assumption is the basis of the statistical-
probabilistic analysis _.f aircraft collision hazards; its
advantages and disadvantages already have been discussed.

The second assumption is neededlto define a collision
mathematically. But it is more than a mathematical nicety, for
by appropriate selection of the vehicle volumes one may take
account of wake turbulence, or calculate near-misses or air-
space conflicts instead of actual collisions.

The third assumption is justified by the finite accelera-

tion of aircraft.
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" ANALYSIS
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It is de51red to find'the probablllty of at least one

]

colllslon between the two vehlcles in the interval t1 - to.

{(More than one collision, although practically impossible, is
i

not explicitly éxcluded by the assumptions. To do so would
make the use of probablllty dlstrlbutlons extremely complicated.)

Let N be the number of c011151ons between the two vehicles in
 time t; - t,. The desired prebability is PI[N 2 1]:
' i

JPIN 2 1] =P[N =11 + P[N = 2] + P[N = 3] + +¢¢ |,
} L] .

The terms P[ (N = 1)N(N = 2)], etc., do not enter because N
) . I

cannot have two 'values at once.
|

Instead of calculating.P[N 2 l] directly, it is easier

»

to approximate it by N, the averagé of N taken over a large

number of trials’which are identical except for statistical
fluctuations in the two paths. (The tilde (~) above a quautity
.indicates the ensemble average of the quanvity; a vector is

}

indicated by a bar — above the corresponding scalar magnitude.
i S ' J

The terms mean, average, expected are used interchangeably in

this paper to'refer to the expéctation value of a random

variable.) By definition, ﬁlis the mean of the probability

1 1
. distribution P[N = i]. That is, N = 0+P[N = 0] + 1+P[N = 1]

i

3] + ¢«++« ., The approximation to he

used is B[N 2 1] ~ N. The error in the approximation is, with

o

il, i =1,2,3,'e+ ,

3

P[i] written foq PN
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N-PWN> 1= iPHl- 9 PHl=Q, (i-1) PH]
i=1 i=1 i=1l
=Z i P+ 1] 52 iPlila
1 1
Where a 2 P[i + 1]/P[i]

N-P[N21] £ ) 4 prial

M

o

« b
< 7 i pmoilal, since P[1] = pIN=1)< p N>
Sy >, , since P[1l] = P[N=1]}< P[N>1].
1

The percent error in the approximation is

©o

(N - P[N 2 1))/P[N 2 1] £ E{: iad =a/0-a?
i=]

assuming, a < 1,

The percent error is small prcvided only that a is small.
The ratio a4 is just an upper bound on the probability of N+l
collisions, divided by the probability of N collisions. The
condition on a is assured by qualifying assumption (1) as
follows: The ensemble statistics are such that the probability
of N collisions between the two vehicles in time tl -t is
large compared to the probability of N+l collisions, for N>0.

The problem, then is to calculate ﬁ, the average number

of collisiors. In order to do this, it is necessary to make

precise the notion of collision.




¥
b
kY

b

A

—
e o O

e

e i A GRS
SECL AR SR G

NSO S
PR e R

L5

.., ,
" AT o

Description of "Collision Surface"

By assumption (2), each of the two vehicles may be repre-
sented as occupying a bounded, closed region of space, say
vy and V,- The center of volume of £ is defined as usual to
be El’ ( 2./;151dvl / ~/;ldvl) and so also for V, and 22.
The position vectors 51 and 52 must have a common origin.

The collision surface, Sc, is now defined as the locus of
52 obtained by translating V, such that V, and V, have one or
more common boundary points but no common points that are not
boundary points. In other words, the collision surface is
the center of the second vehicle when translated without rota-
tion to touch but not penetrate the first. A two dimensional
picture of a simple collision surface is given in Fig. 1.
Note that the orientations of vy and V,, and therefore the

shape of S, May vary in time. Also, S, is the boundary of a

c
region Vc' which contains ;l' Finally, it should be noted that
the collision surface obtained by translating Vl to touch v,
is the reflection of S, about the point 52. The subsequent
analysis and the collision probabilities obtained from it are
insensitive to which collision surface is used.

A collision now may be said to occur whenevar the rela-~
tive position vector r (552—51) enters S,. However, this is
not completely satisfactory if Sc has concavities, as shown in

Fig. 2. For if the surface has concavities, the trajectory

may enter Sc more than once in what should be counted as a

single collision. There are at least three ways to avoid the
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Figure 1. Collision Surface In Vehicles V1 and Ve

N

i Figure 2. Collision Surface Typical of Trailing Vortices.
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problem: (a) use a convex surface in place of one with conca-
vities, (b) use a surface with concavities, but allow for the
over-estimate in collision probability that will thus result,
(c) use the collision eross section vector, to be defined
subsequently. The first of these alternatives is preferred,
since it greatly simplifies the computation. But only the
third is rigorously correct.

Average Number of Gollisions in - '0

It is now possible to calculate ﬁ, the average number of
collisions in time tl - tO' The approach to be taken, follow-
ing Rice8, is to construct an expression for dAN/dt, calculate
its statistical mean, dﬁ/dt, and then integrate in time to get
ﬁ. The mathematical legitimacy of the approach need not be
discussed here.

An expression for dN/dt may be built upon the previous
description of colliston: a collision occurs whenever the
relative position vector r enters the collision surface Sc'

At such time, N increases abruptly from zero to unity. Let
¢ (¥) be a step function in r space that is unity for r in v,
and zero for r outside V.

Then N may be defined:

N(t) = ulv.n) d¢(¥)/dt
where v is the relative velocity (=dr/dt), n is the inward

normal to Sc at point of entry and u(x) is zero for x < 0 and

-10-
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unity for x > 0. ‘The purpose of u(G-;) in this expression is
H i

to exclude exits, for which ven < 0, but to'include entries
. ' * Y | '

! ¢

(ven > 0) and mere touches (ven =. Q) :

The time derlvatlve ¢(r) may be wr1+ten as d¢/dr, whlch 1s

a delta function, tlmee dr/dt prov1ded the posmtlon, r, is a dlff-
erentiable function of time. Since this is so, by assumption

i 1 H \
(3), it follows that ;

3 . 1 A\l ! ]
.

= u(ven) (d¢/dr) (Ar/dt) = u(Ven)v-9.
|

%

To obtain the ensemble averade N, it 1s necessary to cop-
sider, instead of tbe SLngle relative trajectory,.an ensemble '

of traJectorles. At any 1nstant,-the probablllty density

. H i
distribution W(r,v,t) of the relative position and velocity is

known, by assumption. Therefore, the ensemble average may be

found as H

u/ﬁd(v) ./rd(r)nW(r v,t) u(ven) v-v4. o I

Here d(v) and d(r) are elements of velocity space and posxtmonl
space. The in:egrations are understood to cover the spaces
completely. 'By utilizing the 1deat1ty V (¢x) = x-Vw + ¢V x,l
where ¢ is a sca}ar and % a vecter, say X T-v u(ven) w(xr,v,t),

the above is .written ' n

/d(v) /d(r)xV‘ ' o .
SR
fd(v) fd(r) Ve (%) -¢V>’] ' o

.
R !

H
/d(\';)[/d(f) V. (¢x) - fam ¢ V;i], :

' H

N

-11- i




1 § . : \ \ . : .
E . By' the divergence theorem the first integral in the braces,

e o .
2 Nkt o
LA AN A o

t ' whiich is over the volume of T space, is converteéd to a surfdce
' . .: * . \ ' . !

D . 1 integral over a sphere SR of increasingly large radius R, cen-
- i -

3 tered at r = 0: )

H '
]

. | ' J/}(E) Ve (9%) = lim:./; s+ (¢%) . o
E 1 : : ¢ R0 R’ ‘ .
| .

]
3

N ]

Qi : As R+= the surface Sy eventually lies wholly outside of Sc.
g -% Since ¢ = 0 outside So/ the limiting’value is zero.
s : !
3 I " The second volume integral in the brackets is zero in the
. l i . 1 : .
N | space outside Sc’ bizcause ¢ is zero there. It has a non-zero
E: § ' , ! i ‘
g I value only within the collision volume bc"‘wherg o = 1, ;
E: ; : P ' '
P ! Therefore ! L : !
; 3 - - oL . .
- ' N=- d/;(v) ;/; d(r) (1) v-x .
g i C ! c Coa '
K i . !
F - | i .
ke ; ) ' : . i
e = /d (v) fs dsex, 'where ds = (ds)n |,
' c i
% . ! .
7 :z . . ! H \ . . i
3 \ ' - - = o= = | :
E ' o= .J/;(v) ./g (ds*v) u(ven) W(rc,v,t)'
! . C \ ' ) . 1
H i !
, ‘ [l
S = ',J{;(G) W(0,v,t)ve ‘jg ds u(ven)|. \
) ' . c
] | ] . '
1 I . !
. ~ 1z ! ' - '
' N = f Ndt . |, ' \ .
1 tO x ' ’
A . 1 ’ '
, Two notes regarding the above are in order. \
; ; ' A ,
i . va 5 B };n I
N .
g ! :
2 '
2 ; -12-
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First, Ec, the relative position vector drawn to the
collision surface Sc has been replaced by 5, the null vector
in T space. The reason is that the distributicn W in r will
have a mean large compared to Ec in all practical cases, as
stated in assumption (4). The difference in the density W for
¥ =r, and r = 0, therefore, is small. As a result, W may be
taken outside the surface integral.

Second, the surface integral ,/;c ds u(v.n) may be inter-
preted as a  “ision cross~section vector with respect to v,
and written Z§E(b;~ If So has no concavities, the vector ng
has the property that its compcnent in the v direction is the
area of the orthogonal projection of Sc onto a plane perpendi-
cular to v, If S, does have concavities, then this property,
rather than the surface integral, sexves to define E§;. In

either case one has

t

~ 1
N = f at [/d(x?) W(,v,t) \'}.Zfs'c(x?)] . (1)
t

0
The general formula thus derived is a three-dimensional
form of the well-known expression for the mean number of times
a random function y(t) crosses a given level Yo in a time

intexval tl - to. The one-dimensional formula, originally

derived by S.O. Rices, is
f1 o L
ft dt f wl(YoIYIt) lYl dy
0 -0

-13--
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where Wl is the joint probability density of y and Q. The
three~dimensional formula gives the average number of times a
random vector r(t) enters a given closed surface Sc in time
tl - e The major difference between the two forﬁulas is
that the one-dimensional case requires specification of a
level, Yor while the three-dimensional case requires specifi-

cation of an entire surface, S_. The term |y| of the former

case becomes the more complicated integral §°Z§é:

338, = a.fs u(-R) 7 ds
c
Special Case: Large Relative Velocity
The simplest case, mathematically, occurs when the mean
relative velocity is large compared to the spread in the dis-~
trzibution of velocity. Fortunately this.case covers many
practical situations, such as curved landing approaches,
crossing airways, climbing and holding patterns and over-
flights of landings or takeoffs. The situation may be approx-
imated by assuming the density W(ﬁ,?,t)~to be a delta functiocn

in velocity space at the mean velocity v. In that case,
./‘d(‘-f’) v W(b',;',t) = G(t) Wr(-dlt)

where Wr(f,t) is the density distribution in ¥. As a result,

~

N becomes

-14-
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N =/; at ¥ (¢) - 55_ wW_(3,¢)

0
£ _
=f at (dar/at) - E5_ W_(0,t)
t
0
r(t)
=[. dr - IS W!(r,t), (2)
r(to) (o] X

where W is W_ with mean translated to 0.

In this formula, ﬁ may be visualized as the volume swept
out through the position distribution Wr by the collision sur-
face S o in going from %(to) to %(tl). Such a picture is use-
ful if ‘the relative path is irreqular or if the density distri-
bution is time-dependent. In such cases it is practical to
program the integration of (2) on a digital computer using
relatively large step sizes and simple integration algorithms.
An order of magnitude estimate of ﬁ is usually adequate.

If the relative path is a straight line and if the den-~
sity distribution is time-indepen@ent and analytically conven-
ient, further analysis of equatioﬁ (2) can be carried out.

The following analysis assumes straight line paths and time-~
invariant Gaussian statistics, a case treated ad hoe in the

literaturel'3’4.

Let the vehicles be represented by two right circular
cylinders with parallel bases cof diameters dl and dz and
heights h; and h,. Let the mean paths El(t) and Ez(t) be

horizontal straight lines going to infinity in both directions;

-15=-
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finally, let the actual positions r, and §2 be normally and
independently distributed with stationary statistics about the

mean positions:

Wy (F)) = (2m) 732 x| % exp - % [(El-il)Tx;i(El-El)] ,
W, (F,) = (2m) ~3/2 |Kr2|‘1/2 exp - 3 [(r2 2) K_ (:?2-.7”:2)] .

Here subscript T denotes transpose and K;i and K;% are the

inverses of the covariance matrices Krl and Kr2' These vo~
variances are assumed to be known in the (xlylzl) and (xzyzzz)
coordinate systems illustrated in Fig. 3. In the figure,

the position errors (fl - %1) and (52 - %2) have components

Xy and X, in the direction of travel, zq and Zy along the
vertical and Y1 and ¥y normal to the other two components. In

these coordinates, assuming the position errors are statisti-

cally independent in the three directions, the covariances are

ot 2 -1 r 2 -
O1x 0 0 Ooy 0 0
_ 2 _ 2
Krl =] 0 oly 0 Kr2 = 0 °2y 0
2 2
0 0 olz 0 0 Oon
ho -l b -

To calculate ﬁ in this case, it is necessary first to com-
pute the distribution of Ez - 51 and then to compute the por-
tion of that distribution swept out by a right vertical circu-
lar cylinder, height hl + h2 and diameter dl + d2, moving on
the straight line gz - gl'

-16<
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The distribution of Ez - El is normal, being the sum of
normal random variables. If the position errors of the two

vehicles are independent, as assumed for this example, then

[ 2 2 2
I% %y Txz
= . 2 2 2
Ky = Kpp # Kpy = oyx Oy Oyz
2 2 2
bazx Y2y Y2 “ .

The 02 terms here are determined by writing K. and Kr2 in the

same (x y z) coordinate system, whicl: is yet to be seleccted,
and adding. The distribution Wr(B) is

-3/2 -1/2 1

z -1
K| exp - 3 [(-r) K.

Wr(o) = (27) (‘"r),l,]

w;(r).

The portion of this distribution swept out by the collision
surface is given by formula (2). Choosing x to be along the
relative velocity vector, y horizontal and perpendicular to x,

and z upward, as shown in Fig. 4, formula (2) leads to:

N = (hl+h2)(dl+d2)/(2n czoy) exp - 1/2 ((?z/oyz) + (22/022))

where
2 - 2 2 2 2 2. ..2 2 ..2
°x = olxcos a + ozxcos B + oly51n a + 02y51n B
2 .. 2 2 2 2 2 .. .2 2 2
oy E: Glycos a + ozycos 8 + 0y4Sin“a + 02xsin B8

2
Y

Q
1

1l 2 2 .. 1 2
Xy §4°1y - olx)31n 2a + 5(62 - ozx)sin 28

-]8=
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!
!
3

N . i
N

3 ' 2 _ 2 2

: O, =015 % 92

H : ! ]

|- 2 _ 2% a2
; | ‘°xz'°yz‘° u-oxy/oxoy .

For the'special case of Vehlcles pas51ng on the same level in

' OppOSlte dlrectlons with mean path separation Sy,

i

! I . - - — f 2 — 2 H 2 .
§, y - Syt’ a- - ki ’ ~ GYI b Ozy + Oly (2
- : | 2 2 2
. | '
A I N = ; 2,1/2 2 1/2
a . | N = ((1:11"'}12) (d1+d2)/2“)/((°12 22) (0' y+02y
' ¢ Ly

I
exp - 3 [(s )/ (yat 132,’]

. ! - - 2 _ 2
E b 'If, further, it is assymed that hl._ h2, dl = dz, oly = °2y'
E . and 01§‘= 022, then the value of N ‘coincides exactly with that
3 - N 4

obtained by R2ich™ and Taylor.
. Speciai Cass: Nen-Zere Relative VQIocilty

”i o " If the mean rélayive velocity is not large compared to
;% ! the hiqher moments, the delta-function-approximation for the
,veloczty dlstrlbutlon cannot be made. This situation occurs

f when there 1s a small (but non-zelo) relatlve velocity, as, for

example, when two lairctraft are controlled to be in train pre-

‘paratory to final approachz, or to be following parallel en-

roﬁte airwéys but with slightly different spéeds.

i vree R sl S g e e a5
o ARt il Sreallingtosekosan ] St

: it will be agsumed for ;the present case only that the
mean re}atiye velocity and ‘the higher QOenﬁs are all different
from zero and that the position errors are independent of
velocity errors. Then the joint distribution for each vehicle

may be factored: '




. M
Yy ST WP Fa B

wl(rl,vl,t) er(rl,t) le(vl,t) '

w2 (rzlvzlt) = wzr(rzlt) Wzv(vzlt) .
Since relative position r and relative velocity v are sums of
random variables, they are independent if (§l+§2) is independ-

ent of (§l+52). If so, W(r,v,t) also may be factored so that

formula (1) is

t
-] o ] _
N i/C at J(é<e> W, @,t) V85, | w (@3,t) . (3)
0

If the cnllizion cross-section and the velocity distribu-~
tion are independent of time, the portion in square brackets
may be taken outside the time integral. Nevertheless, a com~
puter solution is usually necessary. One case that can be
handled analytically is that of one aircraft slowly overtaking
and passing another on a parallel airway, with normal statistics.
The analysis9 is tedious and hence only the result will be given
here.

If the statistics are normal and if the vehicles are repre-
sented by vertical circular cylinders of heights h1 and hz'
diameters d1 and dz' (see Figure 3) moving on horizontal

straight paths, then the collision probability is approximately

! ] N
(dl+d2)2xz+(dl+dz) (hy+h,) V2V ‘+Ay £(u,k)/ (420 9,0, 19])

s exp - 3| G0+ (2%/02)
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Q.

;i where

ﬁ £(u,k) = e ¥ (1 + u) T (ipy) + ¢ J (in)

&

-1 k2cos 26 [uadra, in) + ww-Da, )
3 1 ~,2 )‘,2)+ ~,2 }\,2]

,i WE o7 (Vx / % (VY / y )

ﬁ

;_ 2 - |2 - '2 '2 |2

3 SR CAE S VAN St S S

? ; Jn = Bessel Function, order n, first kind; i = V-1
~ = 1 ] Vo ]

X ; tan ¢ = vy Ax / vx Ay (A / A ) tan @

7 . ~ ~ ~

k i 1 = - = o

: ; vy ¥V, cos (B + 9) vl cos (a + 9) v cos 6
% ’ o= oo . - . - o ai

i Vy 3V, sin (B+6) -vy sin (a+6) =vsin 6
4 2.1 2, ,2,.2,,2

: My 35 Qgg * hop + A1y + Agy)

- 212 . 12 _,2 42

: 2‘("‘1y Mx) Tt (gyAdy)

P 1/2

é ! + 2()\1y lx)(A2y 2x) cos 2(a-B)

4 2 2L 32 4 42 L 2, 2

1 A v 3 (Alx Ao * Aly + A y)

3 32 )2 42 )2

(O‘ly M) 0‘2y Aax!

1/2

E + 2(A1y 1x)(A 2x) cos 2(a=B)

% ' ox'oy'cz’oxy'oxz’cyzz as in the case of large relative velocity
2 = 42 2

p: Az E 2 * gy

t ]

f,. an 26 [(Aly A2.) sin 2a + (A2 2y 2) sin 23]/[(;\1y
2 2 2

4 -Aix) cos 2a + (AZY—AZX) cos 23]

EQ -22-
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In the above, vehicle 1 has position variances oli, 01;,
2 . . 2 2 2 . .
012 and velocity variances Alx' Aly’ Alz which are along its

track (x), across its track (y), and along the vertical (z); its

mean velocity 51 makes an angle a with the mean relative velocity

w2 - . . 2 2 2 2
vector v. (See Fig. 4) Analogous terms Ooy? UZy' Oopt AZx’
Azi, Azi, 52, g hold for vehicle 2. The mean vertical path

separation is ;, the clnsest horizontal approach of the mean
paths is §. The six position and velocity errors of a vehicle
have been assumed uncorrelated with each other and with those

of the other vehicle.
Special Case: Zero nelative Velocity

When two aircraft using the same airway, or in train to
the same landing approach are controlled so that (on the average)
their separation is constant, then the mean relative vclocity
is zero. This case must be handled separately, because if in
the preceding result, the mean relative velocity % is allowed
tc approach zero, the value of ﬁ increases without bound.
Physically, such a result is expected, since R is constant in
time, andU/Pdt ﬁ must be unbounded. The infinite limits of
timé should be replaced by the more realistic limits t, and t,.
If the statistics are stationary with velocity independent of

position, the formula for N is

1]
N =f dt fd(\';) wr."é,%‘r)i‘r-z‘s‘c
%
= (t; - tg) fd(v) W (V)V-E5 [ W, (D) . (4)

-23-
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To illustrate an analytic solution in the case of zero
relative velocity, the same geometry will be assumed as for
the two preceding cases, i.e., two right cylinders moving on
the mean straight horizontal paths shown in Fig. 3. (The
statistics are assumed to be gaussian and stationary, with no

correlation between vehicles.) The result obtained9 is:

© 2n ~ ~ ~
(£ -~ &) 3 1.3.5... (4n-3) fk? 1{ %2, y2. 22
0xY Oy H t- [2-4-6---2n]2 ;- ) o 2'0 2'0 2
Y n=0 X 'y z
where
22 _ 1, 2 2 2 2
A¢ = 5 (Alx + AZx + Aly + Azy)
2 . 1, 2 2,2 _,2 ,=2
K = 3 (Aly + A2y Ay T Agg) /A
2 2 2
O% = Y1x + Oox
2 2 2
= 0.° +
y 1y ¥ %y .

Special Case: Spherical Collision Surfuce

When the collision surface Sc is spherical the collision
cross section vector A§c is Gnaz where v is a unit vector in
the direction of v and a(t) is the radius of the sphere at

~

time t. Then the expression for N is

t
~ 1 A
N =f dt fd(v) W(o,V,t) Vev T a? (t)
t
0
£
- ~ 2
= jf dt Wr(o,t) vit) 7 a® (&) (5)
%
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‘ where v(t) is a scalar, :equal 'to the average magnitude of dr/dt.
! ' ' '

This quantity, v(t), is just 'the mean relative speed; it is

never negative and is zero only when the velocify distribution

has zero mean and no spread (a delta function at:the.origin). 3

R R e TN,

Unlike (2), formula (5) is not restricted to large relative
' } 5 A}

velocity. Its-only limitation is'that it applies to spherical

1 . .o
“ . i

collision surfaces.’ ,

In many' cases an actual collls&on surface may be replaced
by a spherical one of equal aréa wlthout serlously 1mpa1r1ng
E . the usefulness of the result. This occurs,nfor‘example, in |
3. determining the probability of near misses, or in obtaining
an order—of-mpgniéude answer. If such an approxlmatxon may: !
i

be made then the COlllSlOn probablllty is given by (5) thh

A(t), one fourth ‘the area of the actual collision surface

at time t, in place of ma (t). ' !
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" APPLICATION TO PARALLEL RUNWAYS.

.The use of closely spaced, independently operated,
H
H N ) !
parallel runways is one means to fhcrease airport capaoity
. . E ,
that was recommeﬁded for further investigation by the Air

I 1
Traffic Advisory Committee Report.10 The scheme involves
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multiple curved precision approaches to two or more parailel
: i

:runwayé spaoed;at less than the present 5000-ft minimum. No

. b
R Ty WL T

ey

o il B SN

| . r i
1 time synchronism is assumed between aircraft on different
I
4 tfacks. The safety of such approaches depends on at least
24 1 !

; four factors: the probability of missed approaches,7,

ehergency (e.gu,'eﬁgine out) procedures, accuracylof guidance

' ! } | \ !
of each aircraft relative to its runway, ‘accuracy of guidance
E ' ' . N b :

3 , of each aircraft relative to the other. The last oﬁ these

L]

factors was analyzed in detail by the method developed ip
! this paper, and that analyéis will be described next.

i

:i A computer program was written'to calcula“e the
3 f ;

colllslon probability for two alrcraft maklng the simultaneous

.i v curved'apgroaches to parallel runways shown in Fig. S. ‘Oné
! o o : :
£ aircraff was assumed . to be’relatively fast (approabh speed

y 1 120 knots), the ofher relatlvely slow (approach speed 80

' )
b ' ' knots) ?he details of the approaches are glven in Table 1

Syt

and Fig. 5. The aircraft volumes were taken to be right
; ] !

circular cylinders. .

! \

! The statistics were assume§ to be Gaussian ‘and the

standard devxatlons of p051tlon in the y and z directions
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were assumed to diminish as they approached the runway (see

Fig. 6). This 'improved accuracy occurs, in practice, for
e, ' | )

1 Y ! oot _ !
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TABLE 1.~ DETAILS OF CURVED APPROACHES

. Vehicle 1| Vehicle 2 | Units
A ‘ Path Segment 1
duration 315. 60, sec
ground speed 133. 200, ft/sec
descent rate 10. 13.3 ft/sec
initial altitude 6600, 9200. ft

Path Segment 2

: [ duration 45, 180. sec
y ground speed 133. 200, ft/sec
: .i descent rate 10. 13.3 ft/sec
{ initial altitude 3450, 8400. ft

A Path Segment 3

; duration 450. 600. seq
Q% i ground speed 133. 200. ft/sec
E | descent rate 6.7 10. ft/sec
3 initial altitude 3000. 6000. £t

Path Segment 4

v duration 90. 60. sec

; deceleration 1.48 3.33 ft/sec/sec
.i ' descent rate 0. 0. ft/sec

5 initial altitude 0. 0. £+

-27-
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several reasons: The ILS errors are approximately angular
errors, and diminish as the source is approached. In addition,
aircraft control errors diminish with length of time on the
beam and, finally, visual cues improve as touchdown is
approached. None of these circumstances, however, improves
positional guidance accuracy in the direction of the runway,

so the standard deviations of the errors in the x direction
were assumed constant at 6000 ft for each vehicle.

The formula for the large relative velocity case given
by (2) was found to be adequately accurate even though the
relative velocity passad through zero shortly after the
touchdowns. This accuracy was verified by comparing the
result of using (2) with that obtained from the exact
integration of (1), which does not contain any assumptions
on relative velocity. The two answers agreed to within 8
percent, Since the computation time for the large relative
velocity case (2) is about 1/20 that for the exact integra-~
tion, formula (2) was used throughout the runs. It shculd

: be noted that formula {2) does not assume independence of

| position and velocity statistics and, in fact, requires no

| velocity statistics at all. Further, although Gaussian
position statistics were assumed, any other statistics may
have been used in the computer runs with little change in

the program.
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RESULTS OF COMPUTER RUNS

The results of the computer runs are shown in Figs., 7
through 9. The data of Figs. 5 and 6, and of Table 1 apply
to all runs except as noted in the following discussions.

Fig, 7: (Variation of collision probability with time
between touchdown.) If the two aircraft come abreast at the
touchdown point (T=0) the collision probability is very small,
less than 10-38. As T increases, the slower aircraft (vehicle
1) touches down later than the faster aircraft (vehicle 2)
and the point of passing occurs farther up the glide slope.
Since the lateral position errors increase with distance from
touchdown, (Fig. 6), the collision probability increases as
the point of passage moves away from the touchdown point.

The sharp drop in collision probability beyond T = 100 is due
to the geometry of the turn-on for vehicle 1.

In order to obtain conservative estimates, the runs of
Fig. 8 and Fig. 9 were made with T = 80, which maximizes the
collision probability. If the runways were truly independently
operated, the times between touchdowns would be distributed
uniformly between 0 and the time, v, between successive landings
on the same runway. Since Tt often is about 120 seconds, the
assumption is not overly pessimistic.

Fig, 8: (Variation of collision probability with runway
separation.) The Figure shows that cutting the runway separa-
tion from 5000 ft to 2500 £t increases the probability of a
collision by a factor of 6000, other things being equal.

-3]-
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This result is reassuring or alarming, depending on one's
view of the safety of the present 5000-ft separation and one's
belief in the applicability of Gaussian statistics to the
problem,

Fig. 9: (Probability of collision vs lateral navigation
error.) The lateral, or y, component of position accuracy
was assumed to be the same for both aircraft and was chosen
to be 750 ft for the runs of Figs. 7 and 8. In the present
case, however, it is allowed to vary. Fig. 9 shows that the
collision risk drops drastically when lateral placement errors
go below 750 or 500 ft. This suggests a trade-off between
the cost of lateral guidance equipment and the cost of expanded

airports.
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CONCLUSION

The formulas derived allow the calculation of collision
probability between two aircraft flying arbitrary curvilinear g
paths. They represent a generalization of the statistical-~
probabilistic method of analysis, which heretofore has been
available only for constant altitude, rectilinear paths. The
analysis results in a general integral expression for the
collision probability; simpler integral formulas are derived
for the cases of large relative velocity, zero relative ve-
locity, and a spherical collision surface. In only the simplest
Gaussian cases is an explicit formula available. Because high
accuracy is not essential it is possible to compute by machine
the appropriate integral expression formula (2) for practical
cases such as curved landing and takeoff paths.

The computer calculation of formula (2) for curved
approaches to parallel runways shows how the collision proba-
bilicy varies with time between touchdowns, runway separation,

and lateral position error.
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