
DOCUMENTS

SGVTDOC #
D 211.
3797 %NT O

"NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
"•ethesda, Maryland 20034

0 LAMINAR FLOW CIRCULATION IN A ROTATING

TANK WITH A SPINNING COVER

Hans J. Lugt, Henry J. Haussling, Samuel Ohring

H

0 < Approved for public release; distribution unlimited.

H

z

0

COMPUTATION AND MATHEMATICS DEPARTMENT

0

P4J f "0 i972

z February 1972 Report 3797

[t S, NAVAL ACADEMY



The Navel Ship Research and Development Center is a U. S. Navy center for laboratory
effort directed at mchievin(i improved sea and air vehicles. It was formed in March 1967 by
merging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering
Laboratory at Annapolis, Maryland.

Naval Ship Research and Development Center

Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

NSRDC

COMMANDER 0R

TECHNICAL DIRECTO%,1
SREPORT ORIGINATOR

SYSTEMS

DEVELOPMENT
DEPARTMENT

SHIP PERFORMANCE AVIATION AND
HPARFMANCE SURFACE EFFECTS
DEPARTMENT 15 DEPARTMENT

16

STRUCTURES COMPUTATION

DEPARTMENT AND MATHEMATICS
17 DEPARTMENT

I PROPULSION AND
DSPACONTIC AUXILIARY SYSTEMS

19 DEPARTMENT 27

MATERIALS CENTRAL
DEPARTMER S INSTRUMENTATION

28 DEPARTMENT
29

NDW-NSRDC 3960/44 (REV. 8/71)

GPO 9t7-872



DEPARTMENT OF THE NAVY

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
Bethesda, Md. 20034

LAMINAR FLOW CIRCULATION IN A

ROTATING TANK WITH'A

SPINNING COVER

by

Hans J. Lugt, HenryJ.. Haussling, Samuel.Ohring

Approved for public release; distribution unlimited.

COMPUTATION AND MATHEMATICS DEPARTMENT

February 1972 Report 3797



TABLE OF CONTENTS

Page

ABSTRACT ............................. ......... 1
ADMINISTRATIVE INFORMATION ................... 1

1. INTRODUCTION ................... ..... .......... 2

2. FORMULATION OF THE INITIAL-BOUNDARY
VALUE PROBLEM ............... . ...... ........... 4

3. NUMERICAL INTEGRATION ....................... 7

4. RESULTS ....................... ............ 12

a. TheAlmost Steady Case..................... 12

b. The Transient Case ............ , ............... 30

5. CONCLUSIONS ................................... 41

ACKNOWLEDGMENT ................................ 43

REFERENCES.. ................... . .o . . .. 43



LIST OF FIGURES AND TABLES

Page

Figure I. Grid system with 41'x 41 mesh points and

stretching factors a:= 0.2, b=0.1 o.......,. 8

Figure 2. Lines of constant i, •, and v for 6 = 1,

SRo= 10- 4 , Ek=0.01 andRo= 10- 5, Ek=0.001
at almost steady state ... P., ........ 15

Figure 3. Comparison of the Ekman solution with the
numerical results. -(v/r) 0 is plotted
versus z., 17

Figure 4. Analytic and numerical results for the
Stewartson layer. -v is plotted versus rat z = . . . .............. I ............ ,. 19

Figure 5. Analytic and numerical results for the
Stewartson layer. w is plotted versus r at

Figure 6. Lines of constant 0, •, and v for Ro 1,
6= 1, Ek = 0,01 and Ek = 0.0025 at almost
steadystate f . . . * . . . . ... 22

Figure 7. Lines of constant p, •, and v for Ro = 1,
6=1, Ek = 0. 00125 and Ek = 0.001 at
almost steady state .......... 23

Figure 8. Lines of constant tp, C, and v for Ro = 1,
6= 1, Ek=0.0002 andRo= 10, 6= 1,
Ek = 0.01 at almoststeady state ...... .2,... 4

Figure 9. Lines of constant b, C, and v for Ro = 4,
6= 1, Ek = 0.01 and Ek =0.004 at almost
steady state 25

Figure 10, Lines of constant C, t, and v for Ro = 1,
Ek=0.01, 6 =3 and 6= 1/3 at almost
steady state ...... , .......... , ............. 26

Figure 11. Lines of constant i C, and v for Ro = 1,
Ek = 0,001, 6= 3 at almost steady state ..... 27

iii



Page

Figure 12. -(v/r)r=0 as a function of z for various 6 .... 28

Figure 13. Pathline for Ro = 1, Ek = 0.0002, 6=1.
Perspective view at almost steady state ...... 29

Figure 14.( v/Z=l as a function of 1-r for
r 1

various Ro, Ek, and 6. 31

Figure 15. Lines of constant 0 and v for Ro = 10"5,

Ek = 0. 001, 6 = 1 at various t. The almost
steady state at tFINAL = 103 is included in

Figure 2. .......... 000......,*.**... . 33

Figure 16. -(C/r)rr=0 at bottom and cover as a function

of t for Ro= 10 5 , Ek=0.001, 6=1........ 34

Figure 17. -(C/r)rr=0 at bottom and cover as a function
-5

of t for Ro=1= 1 Ek=0.01, 6= I° . ...... 35

Figure 18. -(v/r)r 0 at z = * as a function of t for
.. o=10-5 6=1 Ek=0001 and0. 01......... 37

Figure 19. Lines of constant 0 and v for Ro = 1,
Ek = 0.001, 6=1 at various t. The almost
steady state at tFINAL = 102 is included

in Figure 7 .. ...... . * ......... . . . ..... 38

Figure 20. Lines of constant p for Ro = 1, Ek = 0. 0002
8=-1 at various t. The almost steady state
at tFINAL = 245 is included in Figure 8.... 39

Figure 21. Lines of constant v for Ho -17 Ek = 0.0002,
6= 1 at various t. The almost steady state
at t FINAL=245 is included in Figure 8.... .o . 40

Figure 22. Lines of constant 4, •,and v for Ho = 10,
Ek 0.01, 6 = 1 at various t. The almost
steady. state at tFINAL = 50 is included in

Figure 8 .................. ........... ,v... 42

AiV



Page

Table 1. Compilation of theC4aculated Examples..,.. . 13

Table 2. Data for the i, , and v PatternS in
the Figures. 16



NOTATION

A, B, C, D,l Abbreviations introduced in Equation (18)

a, b Stretching factors defined by Equation (15)

c - Constant -defined -in Equation (299)

Ek Ekman number

f Frequency

H Height of the tank

k Summation index

k Unit vector in the direction of rotation

L Radius of the tank

l, m Eigenvalues

pt Pressure

p Dimensionless pressure

Ro Rossby number

r', 4, z' Cylindrical polar coordinates

r, 4, z Dimensionless cylindrical polar coordinates

t' Time

t Dimensionless time

u, vT, pwt Velocity components corresponding to r',4,z'

u, v, w Dimensionless velocity components

alp Abbreviations introduced in Equation (18)

Yk Abbreviation introduced in Equation (28)

6 Ratio H/L

Dimensionless vorticity vector

Azimuthal component of

•, e Stretched coordinates z, r

vi



v Kinematic viscosity

p Density

a, T Abbreviations introduced in Equation (28)

Dimensionless stream function

× k Function introduced in Equation (28)

a Angular velocity of the tank

a c Angular velocity of the cover

w = CI- 0 c

Sub- and Superscripts:

ij Location of grid point in the (tj, 8)-plane

n Location of grid point in time
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ABSTRACT

A study has been made of axisymmetric

incompressible fluid flows in a rotating tank when the

angular speed of the cover changes abruptly. From

the initial solid-body rotation a meridional and an

azimuthal circulation relative to the moving tank

develop. This problem is solved numerically by

means of a stream function-vorticity formulation

for the meridional flow. Local fine grids are used

in the Ekman and Stewartson layers. No finite gap

between tank and cover is considered. The singular

behavior at this point is investigated. The parameters

considered are the Rossby number, the Ekman

number, and the ratio of height to radius of the tank.

Temporal and spatial oscillations of the laminar

flow field as well as the occurrence of cell flows are

discussed.
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1. INTRODUCTION

In recent years the study of rotating fluids has found widespread

interest from both the theoretical and practical point of view.

Applications of this subject range from lubrication problems to

centrifuge design to geophysical questions. Physically, rotating

fluids can behave quite differently from nonrotating ones, a fact which

has important mathematical implications. In the Computation and

Mathernatics Department the program to simulate viscous fluid flows

by means of computers includes the study of rotating fluids. The

present analysis is an outgrowth of this effort.

We consider the following laminar flow problem. A circular-

cylindrical tank, completely filled with an incompressible fluid, is

rotating around its axis with a constant angular velocity. The cover

is a disk which can rotate co-axially with the tank but at a different

rate. Initially, both tank and cover rotate with the same angular

velocity, and the fluid inside behaves as a solid body. At a certain

instant, the angular speed of the cover abruptly changes to a rate

which is different from that of the tank. As a result, a meridional

and an azimuthal circulation relative to the moving tank develop with

time and approach asymptotically a steady state. A numerical

computation of this flow is the subject of the present study.

A number of finite-difference solutions, obtained with the

stream function-vorticity formulation for the meridional flow, have

recently been published in the literature. Steady-state integrals for

flows within a fixed tank with a spinning cover were found by
1 2

Dorfman and Romanenko and by Pao2. The steady motions in a

1 References are listed on page 43.
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3
rotating tank with a fixed cover were studied by Pao and by

4 3Farris et al . Pao also computed the initial phase of the flows

after the abrupt change of the cover's rotational speed. Flows

with sources and sinks on the boundaries were investigated by

Farris et al4 for the steady-state case and by Krause for the

transient case. Small deviations from solid-body rotation allow the

linearization of the equations of motion. This approach was chosen

by Rasmussen. The spin-up and spin-down of a cylindrical tank

without relative rotation of the cover was studied by Briley and Walls7.

A wealth of literature exists for limiting cases which permit

similarity assumptions or the use of perturbation methods. The

solutions obtained are valuable as a means of checking the accuracy

of the numerical techniques. Older papers are recorded in
8. 9

Schlichting's book , newer papers in Greenspan's monograph . In
10particular, attention is called to the paper by Pearson . The spin-up

9
and spin-down problems were studied by Greenspan and by

Euteneuer et al1. Details of some of the papers are discussed in

context with our results.

The problem outlined in the beginning of this section is solved

by means of a stream function-vorticity formulation. The numerical

technique is essentially that presented by the authors in Reference 12.

Grid systems of 41x41 = 1681 and 51x51 = 2601 mesh points with

unequal spacing represent the flow field. Thus, local fine grids can

be used in regions with high vorticity gradients. The parameters of

the problem are the Rossby number Ro, Ekman number Ek, and

the aspect ratio 6 of the tank.

The assignment of values to these parameters is guided by the

objective of studying flows in a tank with nonvanishing angular speed.

It is of advantage to solve the equations of motion in a rotating frame

3



when studying the elliptic or hyperbolic flow behavior in space or in

time for small Rossby numbers. This can be seen immediately for

the linearized case, Ro = 0. Then the nondimensional vorticity

transport equation takes the form

2 2 2V4 2V
(--2Ek -- V + Ek2 C+(2k. C=0,

where k is the unit vector in the direction of rotation. The other

quantities are described in Section 2. When Ek is small the hyperbolic

form of the equation in time is revealed. For steady motions we

arrive at the Taylor-Proudman theorem if Ek = 09

2. FORMULATION OF THE INITIAL-BOUNDARY
VALUE PROBLEM

We assume a laminar axisymmetric flow of an incompressible

fluid in a circular-cylindrical tank of radius L and height H, which

is spinning with constant angular velocity n. At time t'=0 the

cover impulsively starts to rotate with a different but constant

angular velocity Qc" Cylindrical polar coordinates r', 0, z' are

used with the corresponding velocity components u', v', w' in a

reference frame rotating with the tank. Under the restriction of

axisymmetry, /b -0, the Navier-Stokes equations and the equation

of continuity are

u't'+u'u' ?+w'uz -v'(20+ •-i-) - pr, V[U I'r,r,+ (,) +U'z ,], (1)

v't,+u'v'r,+w'v'z,+u'( 2 0+p-) = vv rr,+(-)r, + Vzzt, (2)

4



wt,+u'w' w'w'-p 1 +V, w ,+ I+Wz z 1, (3)
rt+ W+ W = P z 'r r r z z

r' + u? +w1z 0. (4)
r r .1 Z

Here, p., p, and v are the pressure, the constant density, and the

constant kinematic viscosity, respectively. Prior.to the sudden

change of rotation of the cover, the entire fluid is at rest relative to

the spinning tank:

t < 0: u'- 01 v?-0 P W= 0. (5)

After the change of rotation, t'• 0, t'he boundary conditions are

z?=0, 0 gr':L: u=0, v?= 0, w'=0,

z'=H, 0 r'i-5 L: u' 0, v'= -wr', w'= 0, (6)

"r'=LP0sz' <H: u' =0, v' =0, w' =0,

where w= - . .It is convenient to introduce the following

dimensionless variables;

t'=t/Q, r'=Lr, z'=Hz,,.(u!,v')=wL(u,v), w'=wHw, p'=pw(1L2 p (7)

and the characteristic numbers

Ro = (Rossby number),

Ek - 2 (Ekman number), (8)
flH2

" 8= H (aspect ratio),

The axisymmetry of: the motion permits the stream function-vorticity

formulation of the meridional flow, If 0 designates the dimensionless

stream function and € the azimuthal component of the dimensionless

5



vorticity vector •, where

S 1 1u=10 ,W=- A 0 (9)
rz r r

=u - 6 w (10)

Equations (1) through (4) are reduced toV2
C: + R°[(UC)r+(WO) (--)-22z=•E8(r C)' + C +zz I (1

4 r, r+ v~ 2 v.__y v (Vrr+1V

vt+Ro[(uv)r+(wv) +2r]+2u = 2 1v-+)IVz v(1+y

r
1 652 1r)+ 0z (3
r (err " r Or zz (13)

The corresponding boundary conditions for t > 0 are

z=0, 0 r,! 1: O=0, Oz 0, v=0,

z=1,0 r 1: 0b=0, r. =e0 = -r, (1z (14)
r= 1, 0 Cz< 1: O==0, Or 0) v=0,

r =O 0 r z < 1: =0, = 0, v =0.

The last conditions for the values on the centerline follow from the

axisymmetry of the flow, which allows restriction to half the

meridional plane.

At the corner r = 1, z = 1. a discontinuity in v occurs which

causes the shear stresses lim vp(T) and lim vp(T) to
r-1 z=1 z-1 r=1

be unbounded at that point. In reality, a small gap between cover and

container always exists. Thus, this singularity is avoided. The
: -- 13 .

matter was discussed by Schmieden for slow motion with no
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meridional flow. If the gap is taken to be infinitesimal (as in this

work), the torques exerted on the cover and the tank are always

logarithmically singular. Although the singularity becomes more and

more localized with decreasing Ekman number, the torques are always

infinite. The implications for the finite-difference scheme are

discussed below.

3. NUMERICAL INTEGRATION

For finite-difference techniques it is of advantage to lay out a

network which is dense in regions of high vorticity gradients. Such

regions usually occur as boundary layers near solid walls. For the

present problem the following coordinate transformation is introduced:

r = e+ a sin T,
(15)

z =- b sin 21, 77

where the stretching factors a and b are chosen from the intervals

0 t a g 0.26 and 0.10 ! b g 0.13. The region of integration is

represented by a grid with mesh points at t= 7i = (i-1)AW ,

6=j= (j-1)A6, where i, j = 1,..,, 41 or 51. (See Figure'l.)

After the equations of motion are transformed according to

Equation (15), they are solved with the following finite-difference

scheme. The linear differential operatbrs of Equations (11) and

(12), except for the Coriolis terms, are replaced by the Dufort-

Frankel approximation. The term -2v and the nonlinear operatorsz
are expressed by central-difference formulae. Then, Equations (11)

7
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Figure I Grid System with 41 x.41 Mesh Points
and Stretching Factors a 0.2, b 0.1

8



and (12) yield, for the. (n+i)th time step,

Un n n n
c n+ (I -2 EkeatCi )if + 2,&t Ro(u o ii I-i.+ cj

i~i ijj i) i2Ae

wn n wn n n n n
w-i 1J i- 1J-i+ 12J i+11j +ýW , j -'i1

+12At7 r.i AT

n n

n nn

n+1-1 n-i U Vl j- i-- ýJ1v 1
vi, =(1i- 2 E kAt CiJ) jv~ + 2 At Ro (o. i 2- Ae Ji ~

n. n ~n n
+ i-i1 v i-1, j i+1, j i+1, j 2 n n 2.

n n n-i n n+ k( iv jj~ B vi j1+C i vW +Divi~ +E v1 1 i J4 (17

Here, the following abbreviations are used:

11

r. a .+ asinnO.e

~22 3 26ot 2 7r6 a sin~l 6r

Ae 2Ae2rA

2 23 26o.2 1 6.a asiniT S. .
Bj &e2AS 

-riA

9



6 3j 2 62 2

1,3 2r.

3
1 2

P. 2 27r .b sin 27T1 ,
1 1 7

P. 2 27r 2 3 b sin 2ff t.iq +i -- 1+ (18)

The velocity components of the meridional flow are obtained from

. i *i+1,j- i-l,.j P '1 i,w+_l-ij-1
I, j r. 2' wrj r. 2A83 3

The Poisson-type'Equation (13) is approximated by the five-

point formula which yields, for j

1 6oe. 2 P. 2 -1
+,j~ [(• +--jW-) [D.i0i+l j + E i~i-l

2 2

+ (Aj r )0i, j+(B.+r )iL-r! J (20)j r .~e i, j± j . , rri j-1- j i~J

This system of algebraic equations is solved with Gauss-Seidel line

overrelaxation applied along lines of constant e. The overrelaxation

factor is 1. 78. The iteration is halted after the kth iteration if, at

each grid point,

1i 1 3 < 101, (2 1)

At the solid boundaries a one-sided first order difference equation is

used to compute the vorticity •. Two such equations were tried,

10



the simple one which is used by most authors (at the bottom of the

tank, for instance),
S2

SJ = (- ) : 2". (22)

and another, which was found in a study involving curved boundaries 1 2

to be superior with regard to numerical stability,

1 2 
(

!,4r. - -- (2,j + 4 - (23)

In this paperEquation (23) is used although it showed no advantage

over Equation (22).

It can be seen from Equations (16) through (20) and Equation

(23) that the computations at the inner points do not require knowledge

of quantities at the singular point.' (The subscript i+1, j+1 does not

appear in these equations.)

The integration process is carried out in the following way: The

n+ 1 n+ 1
vorticity C and subsequently the azimuthal velocity v are

computed at the inner points according to Equations (16) and (17).

n+ 1
The calculation of i, follows with the aid of Equation (20). The

cycle then concludes with the calculation of the surface vorticity,

The maximum stable time step, Atmax , beyond which numerical

instability occurs, is determined by increasing the time step until

oscillations from point to point in the C -values appear.

The accuracy of the computations is checked by using different

space increments. This is easily done by varying the stretching

parameters a and b defined in Equation (15). It is found for the

two cases Ro 1, 6 = 1, Ek = 0. 01 and 0. 001 that solutions obtained

with different stretching values agree well except near the singular

11



point. The influence of this singularity on the solution is discussed

in Section 4. Another way to change the space increments is to

vary the number of grid points. For Ro = 1, Ek = 0.001 two grid

systems, 41 x 41 and 51 x 51, are used. The agreement is good.

4. RESULTS

As already noted, our main interest is focused on fluid motions

in a rotating tank, that is flows with Ro < . The examples selected

for computation are compiled in Table 1. All cases are started

from solid-body rotation at t = 0 anrd are continued to an almost steady

state at tFin where t is the earliest time at which

1,n _ n-1 I<104n-1

iJ -4oi i~ 11° 4 iiJ . (24)

is satisfied throughout the field. The computations were performed

in double precision on an IBM 360-91 computer and in single

precision on a CDC 6700 computer. Pictures of the flow field were

made with a Stromberg- Carlson SC-4020 charactron plotter.

a.. The Almost Steady Case

Two cases may be distinguished if the nonlinear inertial terms

are neglibible. For large Ekman numbers the pressure force is

essentially balanced only by the friction force (slow motion). For

Ro << Ek << 1 a balance is maintained among the Coriolis, friction,

and pressure forces.

Slow-motion solutions have been obtained by Hort14 for Ro = 1,
1 36= 1, Ek= ,. Pao checked numerically for Ro = 1, 8= 1 that the

12



TABLE I

Compilation of the Calculated Examples

No. Ro Ek 6 a b GRID

-5
1 10 0.01 1 0.2 0.1 41 x 41

2 10-5 0.001 1 0.2 0.1

3 10-4 0, 01 1 0.2 0.1

4 1 0.01 1 0.0 0.1

5 1 0.01 1 0.26 0.13

6 1 0.005 1 0.15 0.1

7 1 0.0025 1 0.2 0.1

8 1 0.00125 1 0.2 0.1

9 1 0.001 1 0.2 0, 1

10 1 0.001 1 0,26 0,13

11 1 0.001 1 0.0 0.0 51 x 51

12 1 0.0002 1 0.2 0.1 51 x 51

13 1 0.01 3 0,0 0.1 41 x41

14 1 0.001 3 0.2 0.1

15 1 0.01 1/2 0.2 0.1

16 1 0.01 1/3 0,2 0.1

17 4 0.01 1 0.2 0.1

18 4 0.004 1 0.2 0.1

19 10 0,01 1 0,2 0.1

13



slow-motion approximation is applicable for 0. 125 < Ek .

The linear theory predicts, for the case Ro << Ek << 1 three

distinct regions: The Ekman layers at the cover and at the bottom of

the tank, the Stewartson layer at the side wall, and the geostrophic

interior, for which the Taylor-Proudman theorem of inviscid fluids

holds 16. Numerical results verify this notion and reveal its

limitation. Figure 2 shows lines of constant i, •, and v-values for
Ro=10 4 , Ek=0.01, 6= 1 and forRo=10 5 Ek=0. 001, 6= 1.

The increments of the p, •, and v-values are recorded in Table 2.

The case Ro = 10-5, Ek = 0. 001, in particular the lines of constant •,

illustrates clearly the existence of the three regions predicted by the

linear theory. Additional results obtained for Ro = 10-5, Ek = 0. 01,

6- 1 agree so well with the case Ro- 10-4, Ek= 0.01, 6= 1 that

the patterns are indistinguishable. The increase of the Ekman

number from 0. 001 to 0. 01 shows that the (almost) inviscid interior

has vanished. If we neglect the influence of the side wall, an analytic

solution from the linear theory is available. • This is the well-known

Ekman solution. ý In Figure 3 the numerical values for v at the

centerline r = 0 are compared with those of the Ekman solution.

Again, the analytic values agree well with the numerical output for

Ek = 0. 001, whereas for Ek = 0. 01 the numerical data reveal the

influence of the side wall. A distinct asymmetry is displayed between

cover and bottom for Ek = 0.01.

The Stewartson layer at the side wall is studied with a

perturbation method9 and compared with the numerical output. Two

different layers, one inside the other, must be distinguished: a

layer of thickness Ek1/4, and a layer of thickness Ek1/3 inside the

first layer and adjacent to the wall. The Ek1 /4 -layer is represented

14
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TABLE 2

Data for the 4, •, and v Patterns in the Figures

Sign of $ Sign of

No. Figure Near r=l, z=1 60 on the Cover A 6v

2 2 - 0.001 - 1.00 0.05
3 2 - 0.001 - 0.25 0.05

5 6 - 0.001 - 0.25 0.05

7 6 - 0.001 - 0.25 0.05

8 7 - 0.001 - 0.50 0.05

10 7 - 0.001 - 0.50 0.05

.12 8 - 0.001 - 1.00 0.05

19 8 + 0.001 + 0.50 0.05

17 9 + 0.001 + 0.25 0.05

18 9 + 0.001 + 0.25 0.05

13 10 - 0.0001 - 0.25 0.05

16 10 - 0.001 - 0.25 0.05

14 11 - 0.001 - 0.50 0.05

2 15 - 0.001 - -- 0.05
110 19 - 0.001 - 0 005
12 20 - 0.001 - -- -

12 21 - 0.001 - -- 0.05

19 22 + 0.001 + 0.50 0.05

The stream function 0 is specified to be zero at the boundaries. The

vorticity C is zero on the centerline. The azimuthal velocity v

is zero at all boundaries except at the cover, where v -r.

16



1.0
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Figure 3 - Comparison of the Ekman Solution with

the Numerical Results. -(v/r) is
Plotted versus z. r
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by a closed-form solution, whereas the Ekl/3-layer must be

expressed by a series expansion. For simplicity, the velocity

components are presented for 6= 1:

U=1 Ekl1/2 eCA~c a Ekl1/2 00 (X~ cos kv z ,(25)

k=l
r 1 -/2 a 1 Ekl/6u=-E+k e k+ (x) o kO k rz , (5

v = - + !e + Ekl/ k= kcosk z (26)

1 Ek1/2 1 1Ek/4 (z - 1 -e/2 aw=-•E -¢ Ek (-)e a

+ Ek1/6 - ksink7z, (27)
k=1

where

k 2/3 -Yk/ 2 TXk =" "-l k 7r k "k sin (T'•-k T )Xk (l e

a = (1 - r)/Ek1 4 = ( - r)/Ek

y = (2k7) 1/3 . (28)

The first term in v and w is the geostrophic mode of the interior.

In Figures 4 and 5 the v- and w-components are plotted against r.

The numerical results are compared with the analytic data for

a) the geostrophic mode and the Ek 1/4_-aw, and b) the geostrophic

mode, the Ek 1 /4- 1aw, and the first two nonzero terms of the

Ek 1/3-series. For the v-component both analytic curves are in good

agreement with the numerical data. For the w-component the

Ek 1 /4-law alone is insufficient to describe the Stewartson layer. In

18
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1 Ekl1/4_la
fact, at z = ., the contribution of the Ek law vanishes.

The inclusion of the nonlinear terms into the equations of

motion modifies the flow characteristics. Figures 6 through 8

show flow patterns for Ro = 1, 6 = 1, and various Ek. The output
3

for Ek = 0.01 can be compared with Pao's computation . The

overall streamline patterns agree well with each other, although

deviations occur near the singular point. This problem is discussed

in more detail below. In Figures 8 and 9 flow patterns are displayed

for Ro = 10 and 4, 6 = 1, and two different Ekman numbers. Cell-

type motions occur which are expected around Ro = 4 according to
17

similarity solutions . Results in Figures 10 through 12 exhibit the

effect of various 6, In the limit 6-* 0 the solutions approach the
15

similarity solutions obtained by Lance and Rogers . This is

demonstrated in Figure 12 by a graph of -v/r versus z at r = 0.

The results for different Ro, Ek, 6 have one common feature.

Below a certain value of the Ekman number,, spatial undulations of

the streamlines occur indicating the transition from an elliptic-type

to a hyperbolic-type solution. This distinction is most apparent in

the two linear cases discussed at the beginning of this section. The

slow-motion solution is clearly elliptic, whereas the Ekman solution

and the geostrophic mode are parabolic (as an asymptotic limit of

the hyperbolic time-dependent flow). For Ro = 1, 6= 1 the critical

Ekman number, at which the transition occurs, is 0.005. This

value decreases for Ro > I and increases for Ro < 1. Variation of

6 appears to have only a minor effect on the value of the critical

Ekman number.

In Figure 13 a pathline is displayed for Ro = 1, Ek = 0. 0002,

I= in the rotating frame. The starting point is arbitrarily chosen

at r = 0. 489, z = 0. 959. The fluid particle follows a trajectory which

21



L&4J

0)

'-4

i-4i

22H



InI
C4I

0
o4 c

H41

0

4J

414

0 w4

r44

I- CD

23



NA

o -o
00

lii0 4J.

0 C

44
0

00

24J



S '
Ro

c i D-

CC

I4I

, I .

Itd

0

10

• . t.MII

0 M

41

KP0

>co

0)

,J4

cmc

25



01

r

=1/3

6= 3

r 1

Figure 10 - Lines of Constant ~P ,and v for Ro 1,
Ek = 0.01, 6= 3 and 6 =1/3 at almost Steady State
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0 r 1

Figure 11 - Lines of Constant p, t, and v for Ro = 1, Ek 0.001, 6 = 3
at almost Steady State
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consists of a downward spiral with almost no radial variation and

an upward spiral near the side wall with only one revolution. The

time for the particle to return to the vicinity of its initial position

is about 22 revolutions of the tank (t = 140).

The singularity of the flow at r = 1, z - 1 requires special

attention. In Figure 14 the function - r ( ) is plotted against

r bz z=l

(1-r) on a double-logarithmic scale for various values of Ro, Ek, and

6. The dimensional quantity bv'/a z' becomes unbounded at the

singular point (r' = L, z' H) according to

av? C Lw (29)

lim -- ) =Hc r c• 0.73 (
r'ýL z=H L-r

where c does not depend on Ro, Ek, or 6. Hence, the singularity

is a local effect which can be considered in a numerical scheme by

building in a local series expansion. On the other hand, the torques

exerted on the cover and the wall are always logarithmically singular.

Figure 14 reveals that for Ro = 1, Ek = 0. 01 the grid system with

a = 0, b = 0. 1 gives a poor representation of the near-corner region.

b. The Transient Case

Unsteady rotating flows exhibit parabolic or hyperbolic

properties in time. The slow-motion solution 14, for example, is

a pure diffusion process and is, thus, parabolic. The linear theory

of inviscid flow, in which the pressure gradient, the Coriolis force,

and the local acceleration balance each other, reveals flows of
9

hyperbolic nature9. This can be seen immediately for the vorticity

equation cited in the introduction. If Ek = 0, an infinite but countable

number of modes can be obtained. Their frequencies are
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f = (30)

where k and m are the eigenvalues for the r- and z-components,

respectively. The waves connected with these modes are called

"inertial waves"9o The zero mode, which is time-independent,

represents the geostrophic motion.

Modifications of the inviscid flows occur in the Ekman and

Stewartson layers in order to satisfy the boundary condition of

no-slip. In Figure 15 a sequence of 4 - and v-patterns for Ro = 10"5

Ek = 0. 001, 6 = 1 over the transient period is presented. A more

detailed time history for the same case is recorded in Figure 16,

where -(C/r)r=0 at the cover and at the bottom is plotted against

time. After the sudden change of the cover's angular speed, a

boundary layer on the cover develops whose -(C/r) r=0 -value reaches

a peak at t = 1. 5. This time agrees with the spin-up theory which
9

estimates t g 1 for the initial phase . Afterwards, inertial

oscillations are visible. They appear in the streamline patterns in

the form of temporal oscillations and produce cell-type motions in

the center of the tank (Figure 15, t = 3. 98, 9. 98). With increasing

time the inertial oscillations are damped, the local cell vanishes,

anf the flow reaches a steady state, Both curves in Figure 16

approach asymptotically the value I Ek-1/2 = 15. 811 of the Ekman-
2'

layer solution.

With increasing Ekman number the influence of viscosity is

felt in the interior. In Figure 17 the function -(C/r)rr= 0 at the

cover and at the bottom is plotted against time for Ro = 10-5

Ek = 0.01, = 1. Inertial oscillations have almost vanished. In
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Figure 18 the flow behavior away from the boundary layers is

displayed. The function -(v/r) at z = I is plotted against time for
2

both Ek •: 0. 001. and Ek r 0. 01 (Ro = 10-5, 6= 1). Inertial oscillations

are observed only for the flow with the smaller Ekman number. No

single mode can be identified. This indicates the existence of nonzero

eigenvalues t in Equation (30).

As long as the Ekman number is sufficiently small, that is,

Ek << 0. 01., inertial oscillations also occur if nonlinear effects are

present. For Ro ý-, 1, Ek 0. 00 1, 6 A a time sequence of 0- and

v-patterns is shown in Figure 19. Again, a cell is visible in the center

of the tank as in the linear case Ro - o0-5 , Ek 1 0. 001. A new

phenomenon in Figure 19 is the appearance of a local region of
Pa3

positive v. Pao computed the case Ro 1, Ek - 00 001 up to t = 4.2.

His streamlines agree well with ours, but his picture does not show

the local cell at t 4C2.

For Ro ; 1, Ek - 0. 001, 6= 1 a computer-generated movie

has been made which shows the transient stage for 0 and v. The movie

clearly reveals the time oscillations which cannot easily be detected

in Figure 19.

Higher order modes are observed for decreasing Ekman

number. In Figures 20 and 21 the $- and v-patterns are displayed for

the transient period of the case Ro , Ek = 0.00021 6 1. At t = 4. 50

and 110 25 two cells at the centerline are visible. The whole sequence

shows three distinct time periods when local cells are present. It

may be mentioned that Pao3 computed this case up to t = 3. 0. His

strong undulations of the streamlines near the singular point are not

verified by our calculations.
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Finally, a time sequence of constant 0, C, and v curves

is presented for Ro = 10, Ek = 0.01, 6= lin Figure 22. At this

high Rossby number the oscillations are shifted toward the sidewall.

5. CONCLUSIONS

Simple geometrical tank configurations with simple initial and

boundary conditions for the fluid inside can generate complicated flow

circulations. In the transient period inertial waves are visible in the

form of oscillating streamlines and cell motions without preferred

mode. In the steady-state case monotonic and undulating streamline

patterns are distinguished.

The numerical analysis which was developed for nonrotating

motion also works well for rotating flows with hyperbolic features. The

numerical calculations have been restricted to flows with Ek • 0. 0002

(for Ro = 1) since the assumption of axisymmetry does not seem to be

justified for smaller Ek°

The linear theory developed in literature on the basis of

perturbation methods is restricted for the case Ro << Ek << 1 to

Ek ,• 10-3 (for 6 = 1) and for slow motion according to Reference 3 to

Ek> 0.125 (forRo= 1, 6= 1).

As 6 -. 0 the computed values approach the similarity solutions

for two infinite disks.

The infinitely thin gap between side wall and cover causes a flow

singularity which, although local and very weak, results always in

an infinite torque. For practical applications a nonvanishing gap width

must be considered. The strength of the torque appears to depend

crucially on this width (see also Reference 13).
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