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FOREWORD
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Richard Harmer, Michael Hartings, Andrew Kraus, Robert Leasure,
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This report covers research conducted between 1 July 1971 and
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ABSTRACT

Mixed intermetallic phases of the type RZ(Col-xFex)H with R = Ce,
Pr, Nd, Sm, Y, and MM (Ce-rich mischmetal) are being studied as potential
permament magnet materials. Except for R = Nd, all show ranges of x in
which the crystallographic c-axis is the easy axis of magnetization. During
the present period, these ranges have been more precisely defined and
quantitative measurements of the saturation magnetization and crystal
anisotropy constants initiated. It is concluded that some of these alloys are
indeed promising candidate materials for improved rare earth-cobalt magnets.

The composition dependence of selected metallurgical and magnetic
properties of phases of the type Ndl-xRxCOS' where R=Ce, Pr, and Y, are

under investigation. Peritectic melting temperatures, lattice constants,

Curie temperatures, and saturation-magnetization measurements are reported.

Single crystals of several of the mixed phases have been prepared and
saturation magnetization and room-temperature anisotropy measurements on
these have been initiated.

New cobalt-rich intermetallic phases have been found in three binary
rare eartn-cobalt alloy systems. Single phase alloys of CeSC %9’ PrSC %9’
and Nd5C019 have been prepared. Lattice constants for the rhombohedral
forms of these phases are reported. The Curie temperatures of these phases

were also measured and found to lie between those of the corresponding RC og

and R2C 07.
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Successful attempts were made to enhance the intrinsic coercive
force of milled RC05 alloys with R = Nd and Di (didymium) by sintering with

Pr-Co and Sm-Co additions. Sintering NdCo_ powders with as-ground coercive

5

force of MHc = 190 Oe with Pr-Co additive raised the coercive force to

MHc = 4000 Oe; the coercive force of DiCo5 could be increased from 130 Qe

to MHc = 10,280 Oe. Sintering of compacts made from sz‘(,‘o17 powder of
M <1000 Oe with Sm60/C 040 yielded magnets with coercive forces of up to

9600 Qe.
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SECTION 1

MAGNETIC PROPERTIES OF RZ(CO’ Fe)l-?. PHASES

A. INTRODUC TION

Mixed intermetallic phases of the type RZ(Col_xFex)” are being
studied as.possible high-energy, high coercive-force permanent magnet
materials. For a férromagnetic substance to qu;lify for this application,
three basic magnetic .properties must be favorable: saturation magnetization
and Curie temperature must be high, and the magnetocrystalline anisotropy
must be such that, ideally, a single direction in the crystal lattice is
strongly preferred by the spontaneous magnetization vector. The inter-

metallic compounds: of the type RCo_ between rare earth metals (symbol R)

5
and cobalt meet these condjtions quite well. The intermetallic phases,

R,.Co (1,2) However,

2€0 0 have even higher saturation values and Curie points.

the first compound in this class on which room temperature anisotropy

Co has a much lower anisotropy constant,

(3,4)

‘measurements were made, Y

27717’

K., than the RCo so that the c-axis

1 phases. Moreover, K

is negative,

5 1

is magnetically hard and the easy directions are in the basal plane. In view
of this discouraging early result and because of the exciting prbmise of the

5 2€01- compounds was delayed for

several years.. It did become known that SmZCo has the favorable

17
e 3 . (5)
easy-axis anis otropy, .

RCo. phases, further study of the R,Co

«but its anisotropy field is only about 25% of that
of Sm§-°5---
-....In contrast to.the RCo_. phases, which have no “RFeS” counterparts,

(6)
17°

5

there is a family of rare earth-iron compounds of the type RZFe While

S——




these have higher absolute saturation moments than their cobalt equivalents,

they have lower.‘Curie points. (7) The RZCo'17 and RéFe17 phase:‘sz of most of

the rare earth elements were recently investigated (8) to find if any, other

thaixi"Sﬁ"nZCol7; 'had the desired magnetic symmetry. It was found that all of

the R 'Fé‘” phases and most of the R

2 C'o17 phases showed easy-basal-plane

2

anisotropy. Only the R Col7-' phases with R = Sm, Er, and Tm were observed

2

to have the ‘c-axis as the easy direction of magnetization.
7+ ‘We were reasonably confident on the basis of theoretical considerations
that by preparing ternary phases of the type'RZ(Co, Fe)17, we could achieve a

favorablé compromise between the high saturation magnetizations of the

R;Fe

‘and the high Curie temperatures of the R Co,. phases. It was also

2

recognized that the key property for permanent magnet applications is a

‘large, uniaxial magnetocrystalline anisotropy and that the mixing of cobalt

and iron in the T-sites of R2T17 compounds in alloying combinations of the

ty'i)“e'RZ(Co1 xFéx)17 should strongly influence the magnetocrystalline

‘anisotropy. We also thought that this mixing of Fe and Co may induce a
favorable magnetic symmetry in these phases even where it does not exist

- for the términal phases of the quasi-binary systems, RZCo and RZFe

17 17

Initial screening tests were concentrated on the Curie temperatures

(9)

and magnetic: symmetries. The results of these tests must be termed
extremely encouraging. ' Our measurements show that while the Curie points
are monotonl.ically lowered by the substitution of iron for cobalt, the absolute
‘Curie‘temperatures rerhain very high; above 600°C, for iron substitution

SR '
FLAO : oo |

H Y



up to 50% or more. Moreover, of the six quasi-binary RZC 017-R2Fe17
systems with R = Ce, Pr,’ Nd,.“an, Y, and MM studied, all except R = Nd
display wide composition ranges in which the c-axis indeed becomes the
easy direction of magnetization. 5

During this reporting period, we have defined more précisely the
compositional ranges in which this easy-c-axis symmetry prevails and have
conducted quantita:tive measurements of the saturation magnetization and
crystal anisotropy constants for alloys lying in these ranges.
B.- EASY DIRECTIONS OF MAGNETIZATION IN TERNARY

RZ(Co, Fe)17 PHASES (Shanley, Harmer, Ray)

The alloys were prepared by arc melting of the elements followed by
vacuum annealing below the peritectic or melting temperatures, as previously

(9)

described. The crystal axis of easy magnetization was determined from
x-ray diffraction measurements on powders aligned in a magnetic field.
Powders of -200 mesh (<78 pm) were prepared by mortar grinding and
sifting. The particles were premagnetized in a field of 26 kOe, mixed with
epoxy resin, and placed in a 6 kOe field to orient the particles while the
binder hardened. The needle-shaped samples so produced were placed in a
Weissenberg camera and rotating-crystal diffraction patterns were obtained.
Vanadium-filtered CrKa radiation was employed. The patterns obtained are
typical of those of a strongly textured sample. The crystallographic nature

of the axis which preferentially aligned with the applied field was determined

by qualitative evaluation of this texture.




~ The crystal-anisotropy studies revealed that the ea.sy-aki's
symmetfy of SmZ(Col -xFex)l7 alloys is retained up to x = 0. 5. Wheﬁ fnore
than half of the cobalt is replaced by iron, the easy direction changes from
the c-axis to the basal plane. Substitution of even small amounts of Fe for
Co in the systems in which the rare earth is either Ce, Pr, or Y brings
about easy c-axis behavior, which again prevails until about 50% of the cobalt
is replaced. (In the Pr-gystem it persists to x = 0. 6.) Because of its
potential interest.in the commercial Production of inexpensive magnets,
cerium-rich mischmetal (MM) was also investigated. Here the easy c-axis
range extends from x = 0.1 to x = 0.45. These results are schematically
summarized in Figure 1. Of the six quasi-binary systems investigated,
only that in which the rare earth is neodymium exhibits easy-basal-plane
symmetry ovar the entire range from x = 0 to 1. 0.

C. MAGNETIC TRANSITION TEMPERATURES OF RZ(CO’ Fe)17 PHASES
(Hartings, Mildrum, Strnat)

We have previously reported Curie temperatures for the six
RZ(Col -xFex)l7 systems with R =Y, Ce, Pr, Nd, Sm and MM determined
mainly by differential thermal analysis. (9) During heating or cooling through
the Curie temperature, a minor thermal event occurs. If one knows where
to look for it, as one does in these systems because of the expected systematic
composition dependence of any of the properties, one can determine the
temperature of magnetic ordering from the first deviation of the cooling

curve from a smooth line. Tc can be precisely located only cn the cooling
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curve. Due to the second-order nature of most magnetic transitions, DTA
heating curves are rather useless in this analysis. The temperature control
and measurement system in our DTA apparatus permits the reliable determi-
nation of magnetic transition temperatures in this manner only above 400°c.
To supplement the DTA results and to extend them to x = 1, where Tc <400°C,
we had previously performed and included in the last semiannual report
seyeral thermomagnetic analyses (TMA) on iron-rich alloys in the Ce-Co-Fe
and Sm-Co-Fe alloy systems. The TMA apparatus and the measurement

(9) A "TMA spectrum is a plot

technique were also described in that report.
of the measured induction voltage (closely ?elated to the initial permeability,
p.i) as a function of temperature,

In the period covered by the present report, TMA of this kind were
performed from room temperature upwards on all the alloys available in the
RZ(Col-xFex)l'? systems where R is samarium or cerium, and from x = 0
to 0. 6 in the system with R = yttrium,

The TMA spectra of the Y-Co-Fe alloys are the simplest. Figure 2
illustrates the behavior of Yz(Co. 9Fe. 1)17 which is qualitatively typical for
all other alloys in this system. The curve exhibits a pronounced Hopkinson
maximum followed by an abrupt drop of the cu.rve on the high-temperature
side, and a minor second step at a slightly higher temperature. The shape
of the major Hopkinson peak is characteristic of a normal, second-order

Curie transition such as that of the simple ferromagnets iron, cobalt or

nickel. The curves are very similar on heating and cooling and show no
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thermal hysteresis. Repeated cycling consistently gives the same results.
In amalyzing the curves, we took the point of inflection on the steep slope above
the major peak as indicator of the Curie temperature. The results obtained
to date are summarized in Figure 3. The Tc data so obtained correspond
very cldsely to those previously dete rmined by DTA.

The position of the minor step has a composition dependence which
is quite different from that of the major peak. The step lies above Tc for
x =0 and 0.1, coincides with it for x = 0, 2, and then drops rapidly with
increasing x to 230°C for x = 0.5. No second step was observed for x = 0. 6.
By extrapolation one might expect it to occur near -ZOOOC, but we have not
yet performed TMA below room temperature. For YzCo” (x = 0), the
second step coincides with the Curie temperature of pure Cobalt. (The
YZC %14 alloy was not analyzed as part of the present investigation. The data
used is from previous work of J. C. Olson. )“0) It had been shown that the
"YzCol7" alloy on which the TMA was performed contained a small amount
of cobalt as a second phase. This suggests that the secondary "TMA event"
in the Yz(Co, I"‘e)17 alloys may also be attributable to a second-phase
impurity which is substantially a cobalt-iron alloy. The "event" would then
be the Curie temperature of the Y-modification of the Co-Fe binary phase.
If this were indeed the case, it would follow that the Fe:Co ratio is greater
in this impurity phase than in the main phase. Furthermeore, the magnetic
results would suggest that the small quantities of yttrium that can be in

solid solution in the Co-Fe are capable of stabilizing the face-centered form
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(austenite) down to ~200°C or lower in the iron-rich Co-Fe alloys. We shall
pursue these questions further, bringing to bear other tools such as DTA,
x-ray diffraction,and electron microprobe analysis.

The TMA spectra obtained on Sm-Co-Fe alloys on both ends of the
quasi-binary system are relatively uneventful and simple to interpret.
Figure 4 is a summary of the results for this system. Again, the DTA and
th.e TMA data for Tc agree very closely in the range in which they overlap.
Only the point for x = 0. 5 deviates from the smooth line of Tc versus x, but
it is suspected that this is due to a mixup in the alloys and that this sample in
fact had x = 0. 4. The analysis will be repecated with a newly-prepared sample.
For some of the samarium alloys in the middle of the system, an additional
rather pronounced step in the TMA curves was observed between 9000 and
1000°C, which is 100° to 300° above the Curic point of the Sm,(Co, Fe), .,
phases. This event also exhibited a thermal hysteresis, which was generally
small but amounted to 50° difference between heating and cooling for x = 0. 3.
This behavior is illustrated in Figure 5, using as an example the alloy
sz(Co. 4FC 6)l7° The physical nature of the transition indicated by this
"TMA event' is not clear at this time, and no corresponding events were
found in differential thermal analysis. It is likely that some of the speculations
made below in connection with the behavior of the cerium alloys apply here,
too. |

In the system Cez(Col -xFex)l'l a much more complex behavior is

observed. For alloys in the middle of the quasi-binary system, several

10
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pronounced steps in the temperature dependence of the initial permeability

are seen in the TMA spectra. This is illustrated in Figure 6, a TMA spectrum
for CeZ(Co. 4Fe. 6)17' We believe the lowest-temperature step to correspond
to the Curie point proper of the rhombohedral 2-17 phase. Note that it is
observed only on heating, not on cooling. It is followed by a minor wiggle

in the curve, and then another pronounced maximum followed by a sharp

step down. This upper transition occurs .on heatiné around 800° to 850°C in
several of the alloys, but 100:_2000 lower on cooling. Figure 7 summarizes
the .various TMA events found in the alloys of this system. This complex

and irreversible behavior is so far unexplained. Some preliminary x-ray

work(l.l) appears to support the reasoning that the 2-17 compound becomes

unstable upon heating somewhere between 750° and 850°C, that is dissociates

into a Ce(Co, Fe)2 phase and an iron-cobalt solid solution alloy, and that this
phase transition is irreversible under the conditions of our TMA cycle.
However, it is also possible that .an oxidation reaction of the powder used in
the TMA plays a major role. Clarification of the matter will require additional
experimentation using metallography, x-ray diffraction and magnetic measure-
ments. However, this problem has so far been neglected because its solution
seems to be of secondary importance for the attainment of the goal of the
contract.

Table I is a listing of all the heating and cooling cycles performed

on RZ(CO’ Fe)17 alloys to date. It gives details of the heat treatment of each

13
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alloy before the start of the thermomagnetic analysis and the highe st tempera-

ture to which the TMA was carried. 'It identifies the alloys by the numbers

aésigned when they were prepared.
D. MAGNETIZATION MEASUREMENTS

(Mildrum, Walsh, Strnat) -

Magnetization measurements were made with the oscillating specimen
magnetometer on loose powder samples of RZ(Col-xFex)H phases.to determine
the room-temperature saturation. Many samples in five quasi-binary systems
were measured. Tentative results are shown in Table II. The comparison

ranges include those for which easy-axis behavior was found.

TABLE II
TENTATIVE RESULTS OF SATURATION MAGNETIZATION
MEASUREMENTS ON RZ(Co1 _xFe;-.)-17 PHASES

R x(Fe Fraction) 1) (emu/g)*
Sm 0-0.5 109 - 143
Pr 0-0.5 128 - 159
Ce 0-0.4 103 - 130 .!
Y 0-0.5 125 - 150
MM 0.1 -0.5 118 - 145

] ' )
Values of ¢ correspond to the listed extremes of x.

For the quantitative study of crystal anisotropy, magnetically
oriented, epoxy-bonded powder samples were made of the same alloys.

Easy-axis and hard-axis magnetization curves were measured on these in

18



fieldsrup to 20 kOe. Figure 8 shows three sets of such magnetization curves

measured on three different alloys in the SmZ(Col xFex) alloy system,

17
namely, the terminal compound SmZC 0y and the alloys for x = 0.4 and 0.5
which are near the end of the easy-axis region. The curves were measured
up to 20 kOe and extrapolated beyond this point. While it was found that

smaller iron additions of x = 0.1 and 0. 2 increased the anisotropy field

» iron additions as high

sliéhtly above the value of HAw 60-70 kOe of SmZCo17

as x = 0.4 and 0.5 bring a reduction of the crystal anisotropy. However, the
aniéotropy field values are very substantial up to x = 0. 5. This indicates that
there is a .i'ealistic chance that excellent permanent magnets may be produced
on the basis of SmZ(Colmeex)17 phases,

Figure 9 shows similar sets of sasy-axis and hard-axis magnetization
curves for three Pr-Co-Fe alloys. Here, the anisotropy field is highest in
the range x = 0.3 to 0. 5. The highest values of the anisotropy field in this
system are only between 20 and 30 kOe, that is, less than half of those found
in the samarium system.

Figure 10 shows magnetization curves for aligned powders of three
mischmetal-cobalt-iron alloys. Here, the maximum of the anisotropy occurs
for x = 0. 3, and even this highest anisotropy field is only on the order of
10 kOe, substantially smaller than the anisotropy fields for the praseodymium
or samarium systems.

For the RZ(Co, Fe)17 phases, as for the RCo_ phases, it appears

5
that samarium has a certain "magic' quality of being able to induce very

high crystal anisotropy. The anisotropy fields measured on these 2-17 phases

19
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are substantially lower than those of the RCo,. compounds. However, if we

5
compare them with the value of the anisotropy field of barium ferrite, for
which HA = 17 kOe, they appear nevertheless quite respectably high.
Considering that barium ferrite has become a highly successful commercial
permanent magnet, we must indeed give the Rz(Co. ]?e)17 compounds serious
consideration, and especially, we must consider the Sm-Co-Fe alloys as
very promising candidates for second-generation rare earth permanent
magnets.

Early attempts to produce high coercivity in fine powders of
szCo17 by grinding did not have encouraging results. The highest MHc
values achieved were only between 1000 and 2000 Oe. But it seems that by
properly applying the present knowledge about the liquid-phase sintering of
RCo5 compound magnets, it should be possible to bring about intrinsic
coercive forces which are a substantial fraction of the anisotropy field

and thus high enough to exploit the liigh energy-product potential of the

2-17 phases.

E. THE PROSPECTS FOR Rz(Co. }S‘e)17 MAGNETS

We have conducted some preliminary experin.znts trying to sinter
ball milled szC 017 powders to which the commonly used 60% Sm/40% Co
alloy was added as the sintering aid. In these experiments we have used as
the guiding hypothesis the concept that, during sintering, epitaxial shells of
a compound richer in the rare earth can form around the core of th» base
metal alloy, and that effective domain wall pinning can take place in these

(12)

epitaxial layers. While the concept was first invented to explain some

23



observations during the sintering of PrCo_ with a praseod)?mium-rich

5

sintering‘aid, it can certainly be applied also to the systém in which

szCo is the base metal. If a samarium-rich sintering aid is used, the

17

first epitaxial shell to form would be SmCo has the highest

Since SmCo

5° 5

anisotropy known. any imperfections in this shell should be very effective
pinning sites. We were most encouraged to find intrinsic coercive forces
up to MHc = 9600 Oe in these initial, and very unsystematic, experiments.
We take these results as strong encouragement that, eventually, it should

indeed be possible to produce permanent magnets from 2-17 alloys which

will have energy products in excess of those of the RCo_. magnets.

5
While it is very desirable for many applications to have intrinsic

coercive forces (MHc' in Oe) in excess of the value of the residual magneti-

zation (Br' in G), energy products near the theoretical limit of (BSIZ)2 can

in principle be achieved with coercive forces which are only slightly in excess

17° which has a saturation of 4« Bs = 12 kG,

a coercivity MHc >6 kOe should be sufficient to permit energy products

of Bs/2. For the example of Sm,Co

approaching 36 MGOe, provided all other factors can be optimized.

In view of the favorable experimental results reported above, we
are encouraged to indulge in some speculations about the energy products one
may hope to achieve with magnets based on the 2-17 phases. Let us first
consider Figure 11 which shows the room temperature saturation values
for all Binary RzCo” and RzF‘e17

of the RCos. We can see that the maximum values which occur for

compounds and, for comparison, those

24
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Figure 11. Saturation induction values at room temperature for the

compounds RZCo”. RZFe”, and RC05.

25



R = Pr and Nd, are Bs = 14 kG. Even the lowest values of any R‘?'Co17

!'compounds, those for R = Gd, Tb and Dy, are still near 7 kG. Let us
remember that this high saturation is combinec'i with high Curie temperatures
near 900°C, a very desirable situation indeed. The saturation values for the
R,Fe, . Phsen TvaIot Be attractively high (Fig. 11), but their Curie
temperatures are quite low, pa.mellvy Tc < 180_°C. |

We have seen tha’t mixéd phases of.the coml[—)o;ition of Rlz(Co1 -xFex)17
. exisf: for all light rare earths and for all v.alues of x. We have ail'lso“seen
that in the systems in which R = Y, Ce, Pr, Sm, and MM, the introduction
of some iron in the lattice induces eq.s;r-axis anisotropy and thus creates
favol,ra.ble conditions forl. hard magnetic behavior. Let us also remember that
we found earlier during the work under this contract that the introduction of
iron.i;‘l these phases in qu.antities up tox & 0.5 does nlot significantly depress
Tc' | The Curie points remain above 600°C up to this compositioh in all the
allojvsystems of interest.

!

| Tﬁe theorelt!ic.lal limits for the energy product of these mixed phases
are even higher than for the corresponding binary R2C°17 compémnds. It
is well vknc;wn that "Col_xFex alloys with x 2 0. 5 have the highest room-
temperature saturation values of any known substance, higher than those of
either iron or cobalt (See Fig. 12). The same behavior carries over into

the mixed quasi-binary phases Rz(Co Fex) as is also illustrated in

l-x 17

Figure 12 for the example YZ(Col-xFex)lT The higher saturation values
in the middle of the quasi-binary system correspond to higher potential

energy products.

26



R

—
-
@
b [ S
oA
= nia]

o

INTRINSIC INDUCTION, 4 vMg —
o

n
o

!
g

51— -
"SATURATION" AT 20°C
ob—t 1 1 1 4 4 4 1 1 |
0 0.2 04 0.6 (o 1.0
X ——
Figure 12. Composition dependence of the room-temperature saturation

in the systems Co-Fe and Y2C°17 - YzFe”.

27



Finally, in Figure 13, we show how the potential static energy
'_pr(;'Qucté of several of the 2-17 phases compare with the highest energy
product_s available in present commercial magnet types and the best

laboratory samples of SmCo,. The upper-limit (BH) . curve shown for

5 x ¥

&

is based on preliminary saturation data measured on

Sm,(Coy _yFediq

‘ aligned powder sam”ﬁles; Thisuhc;ulrvejef~ reaches a peak of over 60 MGOe for

x = 0.4, “In the ].:’.lg"?.(Co1 system, even higher values should be

xFex)17
possible, but reliable magnetizé't‘ion data are as yet l.acking. Afhong the
2-17 phases even those of the heavier rare earths promise rather high energy

produc:ts. This ‘;‘is i_ll_ustrate& by the easy-axis type binary cobalt compounds

17

. RCos, one,could at least tolerate substantial quantities of heavy rare earths

ErZCo Consequently, in contrast to the situation with

and ,.,"I:mZC o1 7°

in RZ(C;::"O’ vFe).”w.magne't alloys.

It will indeed be a challenging task for the coming years to ‘aj_ttempt
the pra;cti;:al realization of these hopes and to develop even better rare
earth-iransition metal magnets thanﬂ thos?. vavailable at the present time.

The ne;xt step toward this p;;;tiéal ollb._li“ective must be by systematic sintering

studies .aifned at.creating coercive forces of . H >Bs/2 without sacrificing
. -’ " C

M
too much of the saturation. The statements made above suggest also that
the present investigation of the magnetic properties of ternary R-Co-Fe

alloys of the 2-17 type should be expanded to include some phases of the

- heavy rare earth metals.
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SECTION II
METALLURGICAL AND MAGNETIC PROPERTIES

OF SOME Nd R Co_ ALLOYS
l-x"x" 75

A. INTR oDzU'c:rfo'N

"NdCo, h?s the highest saturation magnetization of all of the RC Og
phases, and al hiéh Curié te“rlnper'a:t‘ur'.e. Mloréover,l neodymium is one of the most
abundant of the rare earth metals. NdCo,5 displays an easy c-a.v..:c.is and high
magnetocrystalline anisotropy, but only when heated appreciably above room
temperature,

We are studying the effect of alloying additions of the type
Nd1 -xRxCOS (when R is any of several of the other rare earth metals) on the
t;'ansition point of NdCo5 from easy basal plane to easy c-axis anisotropy.

We are also studying the effect of these alloying additions on other pertinent

magnetic and metallurgical properties.

B. ALLOY PREéARATION (Leasure, Ray)

The alloys were prepared by arc melting the elemental constituents.
Many of these were given subsequent homogenization heat treatments. The
same arc melting ar;d homogenization procedures used for RZC 017 alloys
were employed. Thesle have been described in a previous report(l3). In

each case, the weights of the rare earth elements required to produce

R Co5 alloys were increased by 2.0 wt. % to

nominally stoichiometric Nd
: l-x x

compensate for the oxygen present in the elemental constituents. Initial sets
of alloys were prepared with R = Ce, Pr, and Y and x-values of 0. 25, 0.5

and 0. 75 for each set.
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C. THERMAL ANALYSIS (Biermann, Ray)

Differential thermal analyses (DTA) were performed on at least
one member of each set. The observed melting or peritectic temperatures
and Curie points are tabulated in Table III. The melting or peritectic
temperatures of the ternary alloys appear to be linear functions of composition,
as _il}ustrated in ?igure 14. These melting curves were used to determine
the maximum annealing temperatures to optirhize grain growth conditions
for preparing large crystals of the mixed phases.

In contrast to the melting and peritectic temperatures, the Curie
temperatures observed by DTA for the Ndl—xRxCOS phases do not appear to
be ‘monotonic functions of composition. Whether this is actually the case

will be checked by the more sensitive TMA measurements.

D.. LATTICE CONSTANTS (Geis, Harmer, Ray)

Lgttice constants were determined from powder x-ray diffraction
patterns obtained with a General Electric XRD-6 diffractometer and Type 700
detector system. The diffraction patterns were obtained with V-filtered
Cr Ka radiation. Lattice constant data were refined by the Vogel and
Kempter method(14) with the aid of the RCA Spectra 70/40 computer.

Lattice constants for Nd xRxCOS phases with R = Ce and Pr and

1-
x =0, 0.25, 0.5, 0.75, and 1.0 are given in Table IV. The lattice constants

of the mixed Nd phases do not appear to vary smoothly with

1 -xRxC o5

composition. This may be because the single phase fields for these alloys

are relatively wide and the alloy-to-alloy variations in the total rare earth to

31
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Figure 14. Melting and peritectic temperatures for Ndl-xRxCOS alloys.
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cobalt ratios (Nd+R/Co) are as significant as the variations in the intra-
rare earth ratios (Nd/R). The i;'regular variation of the Curie temperatures
discussed previously may also be due to differences in rare earth to cobalt
ratios.
E. PREPARATION OF SINGLE CRYSTALS

(Shanley, Leasure, Kraus, Ray)

Irregularly shaped single crystals of NdCos, CeCos, PrCos.
and several mixed Nd xCexC o, and Nd xPero

phases measuring from

1- 1- 5

1.5 to 3.0 mm in diameter have been obtained by long-term annealing of the
arc melted alloys. The slightly rare earth-rich alloys were wrapped in
tantalum foil and annealed in vacuum for one week (168 hours) at temperatures

50°C to 100°C below the peritectic melting temperatures of the RCo_ phases

5
as determined by DTA. The critical anneali.ng range for rapid grain growth
appears to lie between the RCoS and RzCo_’ (or R5C°l9) peritectic decompo-
sition temperatures for the individual alloys. If the alloy is slightly rare
earth-rich, then, in this critical temperature range, the small amount of
liquid that will be present in the alloy will speed up the diffusion processes
markedly. Typical results of the annealing treatment are illustrated in
micrographs of a Ndo. SCeo. SC o alloy (AR-978). Figure 15 shows the
alloy in the as-cast condition under bright field illumination. This alloy is
slightly rare earth-rich. The gray phase is the RCos phase and the lighter
phase is either an R5C°l9 or an RZC07 phase. The gradation of the gray

color of the RC o phase from dark at the centers to light at grain boundaries
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suggests '"coring" has occurred. The initial portion of the RCoS phase to
solidify has a slightly different composition than the last. Figure 16 shows
the alloy after a homogenization heat treatment of 168 hours at 1170°C.
Extensive grain growth has taken place. In this case, the micrograph was
taken under polarized light to reveal the magnetic domain patterns in the
individual grains or crystals.

The annealed alloys were friable to the extent that the alloys could
be broken up either by hand or with a needle used as a pick to fragment off
small sections. Single crystals were obtained by selecting the most
promising appearing.fragments as evidenced by their cleavage fractures.
Laue x-ray diffraction patterns were taken to confirm that the selected
fragments were indeed single crystals and to orient the crystals for magnetic
measurements. Figure 17 is a Laue photograph of a PrCoS crystal oriented
with its c-axis parallel to the x-ray beam. The diffraction spots correspond
closely with the size and shape of the crystal.

F. MAGNETIC CURIE TEMPERATURE MEASUREMENTS
(Hartings, Mildrum, Strnat)
The composition dependence of the Curie temperature for the systems

Nd _xCexCo and Nd Pero was determined using a.c. thermomagnetic

1 5 l-x 5
analysis (TMA). Ags usual, we took as the Curie point the temperature of
the point of inflection of the steep drop in the curve which follows the

Hopkinson maximum on the high-temperature side. Heating and cooling cycles
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Figure 15. Slightly rare earth rich Ndg, 5Ceq, gCog alloy (AR-978)
as-cast. The gray phase is either an RgCojq or RpCoq
phase. Bright field illumination.

Figure 16. Ndg_ 5Ceq, 5Cog alloy (AR-978) homogenized for 168 hours
at 11700C. Extensive grain growth is evident. Polarized
light was employed to reveal the magnetic domain pattern
within the large grains.
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Figure 17.

]
s,

Laue photograph of a PrCog crystal oriented with its c-axis
parallel to the x-ray beam. The diffraction spots correspond
closely with the size and shape of the crystal fragment.
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were performed in each case at rates of temperature change of ~0. 5°C per
minute. At this rate, the points of inflection of the heating and cooling
curves generally differed by less than l°C

Figure 18 shows the results.for the quasi-binary system

Nd, Ce Co
-x X

1 The replacement of neodymium by cerium depresses the

5
Curie temperature slightly faster tﬁan“ "c‘mre would eg:p'ect from a linear inter-
polation between the end [;oints. | The results qbtained ’f;ogn this series of
alloys, which was specifically prepared for this investigation using the same
batches of rare earth metals throughout, are nicely consistent. However,
significant discrepancies are observe/d between the Tc values reported here,
particularly that for CeC Og) and what we believe to be the best literature

values. In the case of CeCo5 we now measure Tc = 460°C. while an invect:

gation done several years ago by L. Salmans at the Air Force Materials

(15)

Laboratory under the supervision of one of the present authors gave

Tc = 374°, Salmans' value was approximately 50° and 90° lower,

respectively, than the two Curie point determinations reported in the

(16,17)

literature before the data of his measurement. In preparing the

f"“CeCos alloy for Salmans (his material was supplied by the University of

Dayton) care had been taken to use the purest cerium metal available. Since

the Curie point of CeCo5 is very much lower than that of any other RCo5

(including the immediate neighbors of CeCo., namely, LaCo. and PrCo

5 5 5)

the presence of any rare earth impurity in the cerium used would have the

effect of increasing the Curie point. Thus, we may attribute the higher
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'I'C measured now to the presence of relatively large amounts of rare earth

drel oo q 1, Y

impurities, most likely lanthanum, in f};e cerium metal use.d in the hpresent
investigation.

| In i_nte:pretipg thle extraordinarily low value measured by Salmans
a@ tfhel time, we hz;.d ;uggésted a different explanation. It ié well lknowr_l th;.t
in CeCoE; --_;.s% in othgrceri.um co%npounds -~ Ithe rﬁagnetic order is strongly
enb:al;lced by relativeiy moderate applied d. c fields of only several kOe,
and thérefore ‘thel ap.par.ent Curie temperature is shifted upward rather

s.trongly by such fields. Since the earlier literature values for Tc of CeC05

-had been derived from magnetization vs. temperature curves measured in

d.c. fields on the order of 10 kOe, we had thought that the proper extrapola-

tion to zero‘ field had been neglected and the Curie temperature therefore
overestimated. While this may indeed have been the case, this argument
cann?t be used to explain the hi.gh Curie point of Tc = 460°C obtained in our
p;'esent ‘series of measurements, since we used the same technique as
Salmans, applying only very small a.c. fields of the order of 1 Qersted.

a To shed some light on this puzzle, TMA was performed on a sample
of. stlill Llanot%ler CeC05 alloy (A-103) which had been obtained from the
Th QOIdschmidt Company in Germany as a raw material for the experimental

fabrication of permanent magnets. TMA of this alloy yielded a value of

i

Tc = 378°C, in close agreement with the number reported by Salmans and

i

80° lower than our other value. Apparently the Goldschmidt alloy was

prepared from high purity cerium, while the cerium used in the preparation

of our own alloy series was contaminated with other rare earth metals.
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Unfortunately, it is typrcal to find this kind of 1mpur1ty variation in the
\ 1‘5};:.":" eif [ BN ".'"\.' 3 oy ":.';~(‘;.. 9 : 4 i 1
commerc1ally traded rare earth metaxs regardless of the pur1ty c1a1ms made

o
¥

by the producer. ,

A S1m11ar, although much less severe, dtscrepancy was found for the

NdCo In th1s case, we measured T 652 C while Salmans had reported

5’

oot ; T

640 C Agam, we performed TMA on two other alloys which had prev1ously

been prepared a.t the Un1verS1ty of Dayton from neodymium of different

orfgin. The results were T 625 C and T = 623° C, about 25° lower than
our 1n.1t1al value Iand somewhat below the value reported by Salmans et al.
Here,ll it is hkely that our present neodymlum is of higher purity relative

to otfher:lrare earths than that used by Salmans or in our own older alloys.
The rare earth imlpurities most likely to be fou#d in Nd metal are Pr and
Ce, =Ia.l.nd:s.incel the 1-5 compounds of both of these have lower Curie points
than NdCoS, the1r presence would tend to depress T .

‘ . r"he results of the Curie point measurements in the system NdC 0g-
PrCoSIare}ishown in Figure 19. Here, we find a value of T = 619°C for
pure PrCos, compared with 616°C reported by Salmans and 620 °C measured

i

by us on another older PrC og alloy which had been prepared from different
raw material .for a different purpose. These relatively small discrepancies
are agam attributable to the different impurity content of the rare earth
component used Fr.om'the rather incomplete data shown in Figure 19 it
a.plpearlsﬁtha:t; thefl"substitution of Pr for Nd in NdC oy causes the Curie point

to drop fai'rly rapildly at first so that the measured Tc values fall substantially
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below the .straight line connecting the end points for NdCo5 and PrC05.
However, it must be noted that the point for x = 0. 25 is far out of line for
reasons unknown. We have to repeat this measurement and fill in points
for other values before {i:'m conclusions can bé drawn.

Since the cormuuercial rare earth mixture traded under the name
didymium (Di) is normally a mixture of 75% Nd and 25% Pr, we decided to
make a thermomagnetic analysis on an alloy DiC o prepared with didymium
obtained from the Ronson Metals Corporation. The Curie point of this alloy
fell about.30o below the expected value; it was Tc = 609°C. This could
indicate the presence of substantial amounts of cerium as an impurity in this
commercial didymium,

Table V lists all the RCo_ alloys on which thermomagnetic analysis

5
was performed, together with the heat treatment each alloy was given before
TMA. Where known, the origin of the rare metal used in alloying is identified,
and the identification code assigned each alloy at the University of Dayton is

also listed to facilitate future cross reference with other measurements

which are now in progress and will be"reported later.
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SECTION III

METALLURGY OF THE RSC019 PHASES

A, INTRODUCTION

In Technical Report AFML-TR-?I-ZIO,(())

we reported a new phase
in the praseodymium-cobalt alloy system containing between 79 and 80 at.% Co.
Prior to his return to the Centre d'Etudes Nucleaires de Grenoble,

Dr. J. Schweizer determined that the stoichizmetry of this phase is PrSCo19
and that it exists in two crystallographic modifications: hexagonal with

3 ex © 5.053 & and Chex = 32. 47 & and rhombohedral with a, = 5.053 &

and Ch- 48.71 £ In 1959, Cromer and Larson(ls) suggested that

MSX19 phases might exist and correctly predicted the crystal structure ot
these phases. PrSCo19 has been associated with the higher of two closely
spaced thermal events at 1124°C and 1118°C in the Pr-Co phase diagram.
Since similar thermal events in the same composition ranges are observed

(19)

in the Ce-Co and Nd-Co phase diagram, it seemed likely that the phases

Ce5C019 and N':ISCO19 also exist.

B. PREPARATIO& OF THE ALLOYS (Leasure, Ray)

Three each cerium-cobalt and neodymium-cobalt alloys containing
79.0, 79.5, and 80.0 at.% Co and two praseodymium-cobalt alloys containing
79.2 and 79.5 at.% Co were prepared by arc melting. The stoichiometric
amounts of Ce and Nd required were increased by 2 wt.% and the Pr by

1 wt.% to correct for oxygen present in the rare earth metals. All eight.
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alloys were wrapped in Ta foil and heated at 1050°C for 24 hours. This heat
treatment was sufficient to homogenize the Ce-Co and Pr-Co alloys, but
the three Nd-Co alloys required an additional 72 hours at 1100°C to 2=hieve

homogeneity.

C. RESULTS (Biermann, Harmer, Kraus, Shanley, Ray)

The lattice constants, Curie temperatures, peritectic temperatures,
and inetallographic results are given in Table VI. Lattice constant
‘measurements indicate small soluhility ranges extending into the Ce-rich
and Pr-rich sides ¢f C'es'(:o19 and PrSColg. respectively. Evidence
concerning a solubility range for Nd5C019 is inconclusive. The heat treat-
ments given these alloys resulted in stabilizing the rhombohedral form of
the R5C°l9 phases. In most of the x-ray diffraction patterns, however, a
lew faint and diffuse lines were observed which could be assigned to the
hexagonal form of R5C°l9° It seems likely that CeSC°l9' PrSColg. and
Nd_}Co19 exhibit the hexagonal form only at temperatures very close to the
peritectic decomposition temperatures and that the rhombohedral form ‘s

stable at lower temperatures. The x-ray powder patterns for the three

R5C°l9 nhases are listed in Table VII,
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TABLE VII

POWDER X-RAY DIFFRACTION PATTERNS FOR

CcSCo

19’ PrSCo

19’

AND Nd_Co

519

(V-Filtered Cr l(‘l Radiation)

" CeSCo” PrSColq NdSCo”
Int d, X Int d, X Int d, X
0,0,12 vw | 4.062 w_ B - W 4.072
0,0,15 vw | 3.249 -l =-- IR
1,0,13 M | 2816 w | 2846 w 2. 847
1,0,14 M| 2.701 w | 2726 w 2.729
110 S 2. 472 M| 2s2 M 2.531
201 S 2.137 M| 2181 M 2. 181
1,1,12 S 2. 111 s 2,145 S 2. 146
0,0, 24 S 2.028 M | 2030 M 2.037
1,1,15 M | 1.965 w |1.993 w 1.993
2,0,11 M| 1.927 e Moo vw | 1.961
1,0, 23 w | 1.898 vw | 1.909 vw | 1.910
0,0, 27 w | 1.8027 w | 1.8096 w 1. 6050
1,1, 24 vw | 1.sers | -w | 1.s828 w 1. 5824
2,1,13 w | 1.4829 R w 1.5137
21,14 w | 1.4688 - mil == w 1.4947
1,1,27 M | 1.4567 w | 1.4698 M 1. 4675
300 M| 1.4266 M | 1.4596 M 1. 4601
2,0, 25 w | 1.4400 = (== w 1. 4536
2,0, 26 w | 1.4092 vw | 1.4236 w 1. 4227
3,0,12 vs | 1.3452 S 1. 3736 M 1. 3728
220 S 1. 2348 s 1. 2635 M 1. 2638
1,1, 26 S 4 11.1933 M | 11913
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