CONVERSION OF MICOM, TIME-PHASED, LIFE-CYCLE, COST-ESTIMATING MODEL FROM COBOL TO FORTRAN IV

Wayne S. Copes

March 1972

Approved for public release; distribution unlimited.

U.S. ARMY MATERIAL SYSTEMS ANALYSIS AGENCY
Aberdeen Proving Ground, Maryland
DISPOSITION

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

WARNING

Information and data contained in this document are based on the input available at the time of preparation. The results may be subject to change and should not be construed as representing the AMC position unless so specified.
CONVERSION OF MICOM, TIME-PHASED, LIFE-CYCLE, COST-ESTIMATING MODEL FROM COBOL TO FORTRAN IV

Wayne S. Copes

March 1972

Approved for public release; distribution unlimited.

RDT&E Project No. 1P765801MM11

U.S. ARMY MATERIEL SYSTEMS ANALYSIS AGENCY
ABERDEEN PROVING GROUND, MARYLAND
CONVERSION OF MICOM, TIME-PHASED, LIFE-CYCLE, COST-ESTIMATING MODEL FROM COBOL TO FORTRAN IV

ABSTRACT

LICEM is a computer model which may be used to generate Time-Phased Life-Cycle Cost Estimates (LCCE) for personnel or materiel systems. The input to this model is in a form compatible with the Army Materiel Command's Improved Cost Estimating Project, Phase III (ICE-III).

The cost for a system can be computed for as many as thirty equal increments of time, and can be summarized in up to nine levels of complexity. The model estimates a system cost for each time increment as well as the total cost over the life of the system.

The model is written in FORTRAN IV specifically for the Ballistic Research Laboratories' Electronic Scientific Computer (BRLESC).
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>2. IMPROVED COST ESTIMATING (ICE-III)</td>
<td>7</td>
</tr>
<tr>
<td>3. DESCRIPTION OF ICE-III CODES AND INDEXING STRUCTURE</td>
<td>8</td>
</tr>
<tr>
<td>4. THE MODEL</td>
<td>11</td>
</tr>
<tr>
<td>5. SUMMING UP PROCEDURE</td>
<td>11</td>
</tr>
<tr>
<td>6. DISCUSSION OF THREE PROGRAM SEQUENCE</td>
<td>15</td>
</tr>
<tr>
<td>6.1 Data Check and Input Tape Preparation Program</td>
<td>15</td>
</tr>
<tr>
<td>6.2 Main Processing Program</td>
<td>16</td>
</tr>
<tr>
<td>6.3 Report Preparation and Summarization Program</td>
<td>16</td>
</tr>
<tr>
<td>7. DESCRIPTION OF INPUT CARDS</td>
<td>17</td>
</tr>
<tr>
<td>7.1 Summarization of Card Types and Their Uses</td>
<td>17</td>
</tr>
<tr>
<td>7.2 Description of Input Cards by Type</td>
<td>20</td>
</tr>
<tr>
<td>7.3 Further Explanation of "G" and "H" Cards</td>
<td>28</td>
</tr>
<tr>
<td>8. MISCELLANEOUS POINTS</td>
<td>32</td>
</tr>
<tr>
<td>8.1 Ease of Parameter Change for Sensitivity Analysis</td>
<td>32</td>
</tr>
<tr>
<td>8.2 Omission of Original Data Sort</td>
<td>33</td>
</tr>
<tr>
<td>8.3 Special Use of "A" and "B" Cards</td>
<td>33</td>
</tr>
<tr>
<td>8.4 "B-D-F" Cards (Options)</td>
<td>34</td>
</tr>
<tr>
<td>8.5 Use of Previously Made Data Decks for MICOM's Model</td>
<td>34</td>
</tr>
<tr>
<td>8.6 Summary of Card Combinations and Their Uses</td>
<td>35</td>
</tr>
<tr>
<td>8.7 Description of Tapes Produced</td>
<td>36</td>
</tr>
<tr>
<td>8.8 Compilation Time</td>
<td>37</td>
</tr>
<tr>
<td>9. EXAMPLE PROBLEM</td>
<td>38</td>
</tr>
<tr>
<td>9.1 Preparation of Input</td>
<td>39</td>
</tr>
<tr>
<td>9.2 Output - Data Check and Input Tape Preparation Program Sorter.</td>
<td>39</td>
</tr>
<tr>
<td>9.3 Output From Report Generator Program</td>
<td>39</td>
</tr>
<tr>
<td>APPENDIX - FLOW CHARTS AND PROGRAM LISTINGS</td>
<td>55</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>87</td>
</tr>
</tbody>
</table>

Next page is blank.
1. INTRODUCTION

The Cost and Analysis Division of the U.S. Army Missile Command (MICOM) developed a Time-Phased, Life-Cycle, Cost-Estimating Model which has gained wide acceptance throughout the Army Materiel Command (AMC) and its subordinate commands for assessing the life cycle costs of Army Systems (Reference 1). The model is especially useful in that the input format corresponds with that described in AMC's Project ICE (Improved Cost Estimating) Phase III.

The program was originally written in the COBOL computer language. Because of a need for this model in the Systems Methodology and Resource Studies Office (SM&RSO) of the U.S. Army Materiel Systems Analysis Agency (USAMSAA) and the lack of COBOL capability on the Aberdeen Research and Development Center's (ARDC) computer, the model was converted to FORTRAN IV.

This memorandum describes the FORTRAN IV version of MICOM's Time-Phased, Life-Cycle, Cost-Estimating Model.

There are many cost measures which can be associated with an Army weapon/support system. Examples are procurement costs, operating costs, life-cycle costs, etc. The life-cycle cost estimate, associated with each system, describes the cost of that system from its R&D status through its operational phase and to its retirement, and therefore provides the most comprehensive portrayal of the cost of the system.

Realizing that life-cycle costs were playing an important role in its acquisition process, the Army recognized the need to standardize the procedure for determining these life-cycle costs. This procedure was defined in the Improved Cost Estimating Study (ICE-III)(Reference 2).

2. IMPROVED COST ESTIMATING (ICE-III)

Army Regulation 37-18 "...establishes a set of cost categories and elements to be used by weapon/support system cost analysis activities... These categories and elements will be used for life-cycle

analyses of existing and proposed weapon/support systems, to establish a uniform basis for cost analysis... and are to be used in life cycle costs analyses for cost effectiveness and decision oriented studies... The objective of this regulation is to improve cost... estimating procedures within the Department of Army through the use of uniform categories and elements for weapon/support system costs." (Reference 3).

AR 37-18 defines Cost Categories as: "The major divisions of weapon/support systems' cost from inception to retirement of the system." (Reference 3). The following cost categories are defined in detail in AR 37-18:

- Research and Development
- Investment Non-Recurring
- Investment Recurring
- Operating

Cost Elements are defined as "The subdivision of cost categories related to work areas or processes performed in developing, producing, and operating a weapon/support system." (Reference 3).

A complete breakdown of the cost structure associated with weapon/support systems is given later in this report. The cost structure proposed in AR 37-18 forms the basis for the rationale used in this cost estimating model.

3. DESCRIPTION OF ICE-III CODES AND INDEXING STRUCTURE

The chart on the following page describes the ICE-III codes and indexing structure. These are used to create codes for each level of data that are input to the life-cycle cost model. A summary of these codes is now given:

<table>
<thead>
<tr>
<th>Pair of Digits</th>
<th>Represents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The system under consideration</td>
</tr>
<tr>
<td>2</td>
<td>Cost Category</td>
</tr>
<tr>
<td>3</td>
<td>Cost Element</td>
</tr>
<tr>
<td>4</td>
<td>Type of Cost</td>
</tr>
</tbody>
</table>

ICE-PHASE III AND AR 37-18 CODES AND INDEXING STRUCTURE

<table>
<thead>
<tr>
<th>1st Pair of Digits</th>
<th>2nd and 3rd Pairs of Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Represent System</td>
<td>Represent Cost Category and Element</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>01 Development</th>
<th>02 Inv. Non-Recur.</th>
<th>03 Inv. Recur.</th>
<th>04 Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Engineering</td>
<td>01 Adv. Prod. Eng.</td>
<td>01 Engineering</td>
<td>01 Personnel-Crew</td>
</tr>
<tr>
<td>02 Tooling</td>
<td>02 Tooling</td>
<td>02 Tooling</td>
<td>02 Personnel-Maint.</td>
</tr>
<tr>
<td>03 Prototype Prod.</td>
<td>03 Prod. Base Supp.</td>
<td>03 Quality Cont.</td>
<td>03 Cons-Non-Rep Parts</td>
</tr>
<tr>
<td>04 System Test & Eval.</td>
<td>04 Data</td>
<td>04 Manufac.</td>
<td>04 Cons-Rep Parts</td>
</tr>
<tr>
<td>05 Data</td>
<td>05 Non-Site Const.</td>
<td>05 Purch. Equip.</td>
<td>05 Cons-Ammo.</td>
</tr>
<tr>
<td>06 Total Sys. Mgt.</td>
<td>06 Inst'r Tng-Crew</td>
<td>06 Mat. Overhead</td>
<td>06 Cons-Pol</td>
</tr>
<tr>
<td>07 Construction</td>
<td>07 Inst'r Tng-Maint</td>
<td>07 Data</td>
<td>07 Cons-Elec.</td>
</tr>
<tr>
<td>08 Training</td>
<td>08 Total Sys. Mgt.</td>
<td>08 Sub-contract</td>
<td>08 Integ Log. Sup.</td>
</tr>
<tr>
<td>04 Operating</td>
<td>09 Init. Trng-Crew</td>
<td>10 Init. Trng-Maint.</td>
<td>09 Data</td>
</tr>
<tr>
<td>01 Personnel-Crew</td>
<td>10 Init. Trng-Maint.</td>
<td>11 Init. Prov-Spares</td>
<td>10 Equip. Trans.</td>
</tr>
<tr>
<td>04 Cons-Rep Parts</td>
<td>16 Total Sys. Mgt.</td>
<td>17 Site Construction</td>
<td>18 Integration</td>
</tr>
<tr>
<td>05 Cons-Ammo.</td>
<td>17 Site Construction</td>
<td>18 Integration</td>
<td></td>
</tr>
</tbody>
</table>
The code associated with each level of data contains N pairs of digits where N ≤ 9. For illustrative purposes we will now describe levels of data, and assign their associated level codes from the indexing structure.

Example 1: Suppose a level in which we are interested is the RDT&E costs of direct labor, of in-house engineering in the development cost category. The associated code would be as follows:

Code: 01 01 01 02 01 01

Pair No.: 1 2 3 4 5 6

Pair 1: System code
Pair 2: Development cost category
Pair 3: Engineering-cost element
Pair 4: Type of cost-in-house
Pair 5: Sub-element-direct labor
Pair 6: Appropriation-RDT&E costs

Example 2: The level code for the MPA costs of Direct Labor under contract for crew initial training is:

Code: 01 03 09 01 01 04

Pair No.: 1 2 3 4 5 6

Pair 1: System code
Pair 2: Cost category-investment Recurring
Pair 3: Cost element-initial training crew
Pair 4: Type of cost-contract
Pair 5: Sub-element-direct labor
Pair 6: Appropriation-MPA

In this manner the codes are assigned to each individual level of data. Notice that no codes were given for the work breakdown structure, since it will be peculiar to each system under consideration.
This code and indexing structure allows a great deal of latitude in the amount of detail which is to be used in the model. This level of detail is to be defined by the individual analyst and will be dependent upon his time and resource constraints on data acquisition.

4. THE MODEL

The manner in which the life-cycle costs are derived in LICEM is easily understood once the cost breakdown is defined by ICE-III and AR 37-18. The data are stratified in as many as nine levels of complexity, with the greatest complexity occurring at the work breakdown structure level, and the least complexity occurring at the total systems cost level. Since a code is associated with each level of data, the final cost associated with a particular level is the sum of the costs associated with its sublevels. In this manner the data are "summed up" until the total system cost is determined.

The costs for each level of data are entered into the model through a set of input cards. There are seven distinct types of cards which could be used to calculate the cost associated with a level of data. The description of these cards, their use and format, will be presented in Section 9.1, Preparation of Input.

5. SUMMING UP PROCEDURE

As stated previously, due to the "summing up procedure," only nine levels of data are needed for storage in core during the operation of the processing model. See Figure 1 for visual description of storage matrix used in Main Processing Program. The nine levels in storage, one for each of the nine possible pairs of digits in the level code, represent the latest level of data entered, composed of 1,2,3,...,9 pairs of digits, respectively. As a new level of data (whose code is composed of N(N<9) pairs of digits) is entered and its attendant costs calculated, they will replace the current data in the Nth row of the storage matrix. But before this transfer can take place, the "summing up" procedure must be performed. This procedure can best be explained by example, and one is given in this section. Before the example is given, however, a few words on how the "summing up" procedure works in general would be useful. One can think of all the sublevels of one level (super level) as being nested, or contained within the super level. The summing up procedure then totals the contributions of all nested sublevels, in turn giving the total for each sublevel in the set, as well as the total for the super level.
These nine possible degrees* of data are all that need to be kept in memory at any one time. Once a level and its sublevels, if any, have been calculated and placed in the matrix, they are added upward and then written on an output tape, thus clearing those rows for the introduction of new data.

For illustration purposes, suppose our life-cycle cost is composed of five levels of data, covering a period of 2 years, that are in the first column of Figure 2. The times, noted along the left margin correspond to the entrance of the next level of data. The STORAGE MATRIX and OUTPUT TAPE columns are snap-shot views of how the matrix and tape appear during each stage of this processing example.

TIME=0: this level is used merely to show the levels of data that are to be entered, and that the storage matrix and tape are initially blank.

TIME=1: enter the first level of data. Note that these data go directly to the storage matrix. Also, nothing will be placed on the

*The degree of a level of data is the number of pairs of digits present in its level number, i.e., 0102030501 is of degree 5.
Level Data To Be Entered	**Storage Matrix Code Costs**	**Output Tape Code Costs**
01 10 15 | LEV1 | "Blank"
0101 8 9 | LEV2 | "Blank"
TIME=0 010101 5 6 | LEV3 | "Blank"
010102 4 8
0102 10 8

Enter 1st Level of Data

TIME=1

LEV1 01 10 15
LEV2 "Blank"
LEV3 "Blank"

Enter 2nd Level of Data

TIME=2

LEV1 01 10 15
LEV2 0101 8 9
LEV3 "Blank"

Enter 3rd Level of Data

TIME=3

LEV1 01 10 15
LEV2 0101 8 9
LEV3 010101 5 6

Enter 4th Level of Data

TIME=4

LEV1 01 10 15
LEV2 0101 13 15
LEV3 010102 4 8

Enter 5th Level of Data

TIME=5

LEV1 01 27 38
LEV2 0102 10 8
LEV3 "Blank"

At this time all data have been entered,

The final summation procedure yields

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>010101</td>
<td>5 6</td>
</tr>
<tr>
<td>Final Form of</td>
<td></td>
</tr>
<tr>
<td>Output Tape</td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>17 23</td>
</tr>
<tr>
<td>0102</td>
<td>10 8</td>
</tr>
<tr>
<td>01</td>
<td>37 46</td>
</tr>
</tbody>
</table>

Figure 2 Level Data, Storage Matrix, and Output Tape For Example of Summing Up Procedure
output tape until one level replaces another in the storage matrix, and the "summing up" procedure is performed.

TIME=2: enter the second level of data. This level code 0101, composed of two pairs of digits is placed directly into the second row of the storage matrix.

TIME=3: enter the third level of data. This is placed in the third row of the storage matrix. At this point no "summing up" has been done.

TIME=4: enter the fourth level of data, 010102; note that this replaces 010101 in the storage matrix; hence 010101 must be added up and written on the output tape. The adding up is evident from the values in 0101 in the storage matrix, which are now 13, 15. These values are the sum of 0101's original values 8 and 9 and the values 5 and 6 from 010101. Finally 010101 and its original values (5,6) are written on tape.

TIME=5: enter the fifth level of data, 0102, which will replace 0101 in the storage matrix. Several things need be done here.

- All sublevels of 0101, (which is 010102) must be "summed up" and included in 0101. Note in the output tape that this yields a final total for 0101 of 17 and 23.

- After being summed up, these sublevels of 0101 must also be written on the output tape. Note that level 010102 with costs 4 and 8 appear on the image of the output tape.

- Before 0101 is written on tape, its final values must be summed to level 01, given 01 values of 27 and 38 in the storage matrix.

- Finally 0102 replaces 0101 in the second level of the storage matrix.

TIME-FINAL: At this time all levels have been entered. "Summing up" the costs of 0102 to 01, giving totals of 37 and 46, and writing these final two levels onto the output tape completes the process.

The coding structure of ICE-III makes possible the use of this "summing up" procedure. This procedure permits the life-cycle cost estimate to include as many levels as desired, since regardless of the length of the input only nine levels of data need to be stored in memory at any one time.
6. DISCUSSION OF THREE PROGRAM SEQUENCE

A sequence of three programs is used to determine the time-phased life-cycle cost estimates. The three programs are:

- Data check and Input Tape Preparation Program;
- Main Processing Program; and
- The Output Preparation and Summarization Program.

These programs and their functions are described below in more detail.

6.1 Data Check and Input Tape Preparation Program

The functions of the first program are:

- To prepare a tape of data which will be used as input to the Main Processing Program;
- To give a print-out of data by card type, which will facilitate the location of format errors;
- To check for discontinuities in the data. A discontinuity is a difference of two or more degree levels between any level and its initial sublevel (e.g., 01 and 010101 with no 4-digit code such as 0101 in between).

It is important to note here that the "summing up" procedure, which is used in the main processing program, will work correctly only if the level data are ordered in an increasing degree of complexity. The function of ordering the level data, according to the above rule, has not been included in this program, due to excessive sorting time for large samples and the fact that the data need not be sorted for each new run. Thus, an optional program is provided which will order the input data and provide a tape of the ordered data for input to the main processing program.

Listing and flow charts of this optional program are given in the appendix. The input for this program assumes that the data are in the following order:

- The three "L" cards, in order;
- The function cards, in any order;
- A card with 10 asterisks following the function cards;
The level data, in any order; finally

Two blank cards and a PROB card.*

6.2 Main Processing Program.

This program is the heart of the cost-estimating model; its functions are:

• To read the tape prepared by Input Tape Preparation Program, or the optional program;
• To process these data and obtain the life-cycle cost estimates of the weapon/support system by level and time interval;
• To write an output tape containing the results of the above levels, which will be used as input to the Report Preparation and Summarization Program.

6.3 Report Preparation and Summarization Program.

This is the final program in the sequence; its functions are:

• To read as input, the tape prepared by the Main Processing Program;
• To sort this tape, by level, into order of increasing complexity of level number;
• To give standard output of the calculated costs by level number;
• To provide an option for obtaining three standard summaries of the cost data by:
 • major cost category;
 • appropriation; and
 • cost category by appropriation.

It should be noted here that the three program sequence will function correctly as long as the input cards are in correct form even though specific level numbers are not associated with ICE-III. However,

*If the level data are not correctly ordered the optional sorting program must be used.
if this is the case, the three standard summaries, described above, will not preform correctly, since in the ICE format cost categories and appropriations have been given specific codes.

Figure 3, gives a flow diagram of the three program sequence, and the necessary steps in obtaining a life cycle cost estimate.

7. DESCRIPTION OF INPUT CARDS

There are nine card types which may be used as input to the life-cycle cost-estimating model. Card types A, B, C, D, E, G, and H are used to associate data with a specific level of data or group of levels. The L cards carry information pertinent to the introduction of the entire study. The F cards enter function data, which can be used by any data level or group of levels.

7.1 Summarization of Card Types and Their Uses.

- "A" used to associate a name with each specific level number. A card type "A" must be present with each distinct level number. Two cards can be used.*

- "B" used to enter cost or quantity data into the data tables. Each set can contain as many as five cards depending upon which of three input forms is used.**

- "C" used to reference "functions" which are to be associated with the specific level number. From one to five function tables can be referenced on each card, and as many as nine "C" cards can be used at each level.

- "D" used to enter data into a special function table FN98. The data are stored here until a new set of "D" cards are encountered. Each set contains from one to five cards depending upon which of the three formats are used. (Later references on "C" card to FN98 will recall the values previously defined in "D" cards).

*The second "A" card would be a continuation of the first "A" card.

**There are three distinct forms of "B" and "D" cards. The forms may be combined when defining data for a specific data level.
Figure 3 Pictoral Description of 3 Program Sequence.
"E" used to form a new special function, FN99, through the addition of one through five separate function tables. These "E" cards should be used only when the derived function table is related to only one specific level number. Data are retained in this table until another set of "E" cards is encountered. (Later references to FN99 on "C" card will recall values defined in "E" cards).

"F" used to generate from 1 to 97 different function tables. Each set contains from one to five cards depending upon which format is used. "F" cards are not read or associated with any specific level number, and can be referenced through "C" cards from any level.

"G&H" must be used together. "G" cards contain cost data and "H" cards contain quantity data. "G" cards are used to generate cost data based upon learning curve calculations.

"L" used as report header and beginning and ending year of the study. There are three distinct "L" cards used with each run, and are located at the very beginning of the data deck.

The general format of data cards A, B, C, D, E, and G is:

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Variable Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-18</td>
<td>Level 1(1)</td>
<td>18I1</td>
<td>The level number associated with this particular set of data</td>
</tr>
<tr>
<td></td>
<td>I=1,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>CARDNO</td>
<td>I1</td>
<td>The number of the card which is associated with this type for this level number</td>
</tr>
<tr>
<td>20</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Card</td>
<td>A1</td>
<td>The letter designating the card type</td>
</tr>
<tr>
<td>22-80</td>
<td>Variable</td>
<td></td>
<td>These columns contain the data, in different formats for distinct card types, which are to be used in the calculation of this level cost</td>
</tr>
</tbody>
</table>
7.2 Description of Input Cards by Type.

As was stated previously columns 1 through 21 contain the same data for card types A, B, C, D, E, G, and H. These cards vary only in Columns 22-80, and so the following description of the card types will be concerned only with these columns.

"A" Data Card Format: Used to associate a name or description with each specific level of data. At least one "A" card must be used with each level, while up to two are allowed.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-80</td>
<td>INAME1(I), I=1,6</td>
<td>A9,5A10</td>
<td>Contains the name of this data level</td>
</tr>
</tbody>
</table>

If two "A" cards are used the only difference would appear in Column 19, where a 2 would be placed to represent that this was the second "A" card used for this level, and Columns 22-80 would contain INAME1(I), I=7,12.

"B" Data Card Format: Used to enter data into tables which will be used in the calculation of the cost pertinent to this level of data. The three types of "B" cards discussed below, enter the data into an array, where each member is associated with a given interval during the time frame of the study.

B-TYPE I: If the data for this level are constant for each time increment over the period of the study, the B-TYPE I card should be used.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-24</td>
<td>Constant</td>
<td>A3</td>
<td>The word "ALL"</td>
</tr>
<tr>
<td>25</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>26-32</td>
<td>Value</td>
<td>F7.3</td>
<td>The value here will be placed in the BDATA array for all time increments during the study</td>
</tr>
</tbody>
</table>

B-TYPE II: If the data to be entered through the "B" card are constant over some period during time frame of the study, then a B-TYPE II card would be used to enter the data for this period.
<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-25</td>
<td>Constant</td>
<td>A4</td>
<td>The word "FROM"</td>
</tr>
<tr>
<td>26</td>
<td>Blank</td>
<td>1X</td>
<td>Initial year of period during which the data are constant</td>
</tr>
<tr>
<td>27-28</td>
<td>IYR1</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Blank</td>
<td>1X</td>
<td>The word "TO"</td>
</tr>
<tr>
<td>30-31</td>
<td>Constant</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>33-34</td>
<td>IYR2</td>
<td>I2</td>
<td>Final year of period during which the data are constant</td>
</tr>
<tr>
<td>35</td>
<td>Blank</td>
<td>1X</td>
<td>Value which is to be entered into the data tables from IYR1 to IYR2</td>
</tr>
<tr>
<td>36-42</td>
<td>Value</td>
<td>F7.3</td>
<td></td>
</tr>
</tbody>
</table>

B-TYPE III: If the data to be entered with "B" cards vary from year to year, then TYPE III would be used.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-23</td>
<td>IYR(1)</td>
<td>I2</td>
<td>Period during study which will have the value given in the next field</td>
</tr>
<tr>
<td>24-30</td>
<td>Value(1)</td>
<td>F7.3</td>
<td>Value to be placed in B table for IYR(1)</td>
</tr>
<tr>
<td>31-32</td>
<td>IYR(2)</td>
<td>I2</td>
<td>Same definitions apply for IYR(I), Value(I), I=1,6</td>
</tr>
<tr>
<td>33-39</td>
<td>Value(2)</td>
<td>F7.3</td>
<td></td>
</tr>
<tr>
<td>40-41</td>
<td>IYR(3)</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>42-48</td>
<td>Value(3)</td>
<td>F7.3</td>
<td></td>
</tr>
<tr>
<td>49-50</td>
<td>IYR(4)</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>51-57</td>
<td>Value(4)</td>
<td>F7.3</td>
<td></td>
</tr>
</tbody>
</table>
"C" Data Card Format: Used to reference functions containing factors to be used in the calculation of cost data for this level. From one to five functions may be referenced on each "C" card and a maximum of nine "C" cards may be used with any one level.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-23</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>24-25</td>
<td>IFN(1)</td>
<td>I2</td>
<td>Number of the 1st function which is referenced</td>
</tr>
<tr>
<td>26-27</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>28-29</td>
<td>IFN(2)</td>
<td>I2</td>
<td>Number of the 2nd function which is referenced</td>
</tr>
<tr>
<td>30-31</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>32-33</td>
<td>IFN(3)</td>
<td>I2</td>
<td>Number of the 3rd function which is referenced</td>
</tr>
<tr>
<td>34-35</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>36-37</td>
<td>IFN(4)</td>
<td>I2</td>
<td>Number of the 4th function which is referenced</td>
</tr>
<tr>
<td>38-39</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>40-41</td>
<td>IFN(5)</td>
<td>I2</td>
<td>Number of the 5th function which is referenced</td>
</tr>
</tbody>
</table>

"D" Data Cards: Used to enter either cost or quantity data, used in the calculation of costs pertaining to a specific level. There are three types of "D" cards, and they have exactly the same format and interpretation as the three types of "B" cards.* Therefore, they will not be given here. "D" cards also have another particular use. The data

*With the obvious exception that a "D" would appear in Column 21.
entered by these cards are placed in special function 98, and will be stored there until another set of "D" cards is encountered. Hence, these data can be used many times subsequent to their appearance on "D" cards by referencing function 98 on either "C" or "E" cards.

"E" Data Cards: Have a use which is similar to that of "C" cards. Recall that "C" cards reference functions which are used as factors in the calculation of a particular level's cost data. "E" cards also reference functions. The functions referenced are added by year or time increment and in essence form a new function. This new function is then used as a factor in the calculation of costs for the level.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-23</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>24-25</td>
<td>IFN(1)</td>
<td>I2</td>
<td>Number of 1st function referenced</td>
</tr>
<tr>
<td>26-27</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>28-29</td>
<td>IFN(2)</td>
<td>I2</td>
<td>Number of 2nd function referenced</td>
</tr>
<tr>
<td>30-31</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>32-33</td>
<td>IFN(3)</td>
<td>I2</td>
<td>Number of 3rd function referenced</td>
</tr>
<tr>
<td>34-35</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>36-37</td>
<td>IFN(4)</td>
<td>I2</td>
<td>Number of 4th function referenced</td>
</tr>
<tr>
<td>38-39</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>40-41</td>
<td>IFN(5)</td>
<td>I2</td>
<td>Number of 5th function referenced</td>
</tr>
</tbody>
</table>

"E" data calculated in this manner are stored in special function 99 until a new set of "E" cards are encountered. Thus, the data can be entered once then recalled by referencing function 99 on a "C" card.

"F" Data Cards Format: Used to enter data into the function Tables 1 through 97. (Recall that "D" and "E" cards enter data into functions 98 and 99 respectively. Data input on "F" cards should not be placed in either special function 98 or 99.) The data entered into the function tables are not associated with a specific level but can be used as factors in calculating the costs pertaining to any level.
Three types of "F" cards are used to enter data into function Tables 1 through 97. The uses of the three types of cards are the same as those for "B" and "D" cards.

TYPE 1 is used when all values in the function are to be a single constant.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-14</td>
<td>Blank</td>
<td>14X</td>
<td>The letters "FN"</td>
</tr>
<tr>
<td>15-16</td>
<td>Constant</td>
<td>A2</td>
<td>Number of function into which we are placing data</td>
</tr>
<tr>
<td>17-18</td>
<td>Function Number</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>CARDNO</td>
<td>I1</td>
<td>Number of card pertaining to this function</td>
</tr>
<tr>
<td>20</td>
<td>Blank</td>
<td>1X</td>
<td>The letter "F"</td>
</tr>
<tr>
<td>21</td>
<td>Constant</td>
<td>A1</td>
<td>The word "ALL"</td>
</tr>
<tr>
<td>22-24</td>
<td>Constant</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>26-32</td>
<td>Value</td>
<td>F7.3</td>
<td>Value to be placed in all entries of this function</td>
</tr>
</tbody>
</table>

TYPE 2 is used when the value in the function remains constant over some interval of years, less than the entire period of the study. Columns 1-21 are the same as Type 1.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-25</td>
<td>Constant</td>
<td>A4</td>
<td>The word "FROM"</td>
</tr>
<tr>
<td>26</td>
<td>Blank</td>
<td>1X</td>
<td>Beginning FY of period</td>
</tr>
<tr>
<td>27-28</td>
<td>IYR1</td>
<td>I2</td>
<td>Final FY of period</td>
</tr>
<tr>
<td>29</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>30-31</td>
<td>Constant</td>
<td>A2</td>
<td>The word "TO"</td>
</tr>
<tr>
<td>32</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>33-34</td>
<td>IYR2</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>36-42</td>
<td>Value</td>
<td>F7.3</td>
<td>Value to be placed in the function table for this period</td>
</tr>
<tr>
<td>43-80</td>
<td>Blank</td>
<td>38X</td>
<td></td>
</tr>
</tbody>
</table>
TYPE 3 is used when the values to be placed in the function table vary from year to year. Columns 1-21 are the same as Type 1.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-23</td>
<td>IYR(1)</td>
<td>I2</td>
<td>Period during study for which this function's value will be specified in next field</td>
</tr>
<tr>
<td>24-30</td>
<td>VAL(1)</td>
<td>F7.3</td>
<td>Value given this function for period given in preceding field</td>
</tr>
<tr>
<td>31-32</td>
<td>IYR(2)</td>
<td>I2</td>
<td>Definitions same as above</td>
</tr>
<tr>
<td>33-39</td>
<td>VAL(2)</td>
<td>F7.3</td>
<td></td>
</tr>
<tr>
<td>40-41</td>
<td>IYR(3)</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>42-48</td>
<td>VAL(3)</td>
<td>F7.3</td>
<td></td>
</tr>
<tr>
<td>49-50</td>
<td>IYR(4)</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>51-57</td>
<td>VAL(4)</td>
<td>F7.3</td>
<td></td>
</tr>
<tr>
<td>58-59</td>
<td>IYR(5)</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>60-66</td>
<td>VAL(5)</td>
<td>F7.3</td>
<td></td>
</tr>
<tr>
<td>67-68</td>
<td>IYR(6)</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>69-75</td>
<td>VAL(6)</td>
<td>F7.3</td>
<td></td>
</tr>
</tbody>
</table>

"G&H" Data Card Format: Used to generate cost and quantity data for a specific level. An "H" card must be used each time a "G" card is used. The "G" card contains the cost data, and references a function which contains the quantity to be procured or developed. The "H" card contains further specifications concerning quantities. These variables are then used in "learning curve" calculations to determine the costs for this level during each time increment. The uses of the "G" and "H" cards will be explained in more detail in a later section.

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-30</td>
<td>A</td>
<td>F9.0</td>
<td>First unit cost for the item described in this level</td>
</tr>
</tbody>
</table>
31-36 B F6.6 The value of B in learning curve formula
37-38* BPR I2 Slope, which is equal to - log B/ -log 2
39-44 IQTY1 I6 Starting quantity for the calculations
45-46 FN A2 Constant
47-48 NUM I2 The number of the function which contains the quantity data pertinent to this level

"H" Card Format

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-25</td>
<td>UNIT(1)</td>
<td>I4</td>
<td>The number of the unit which describes the beginning of the first quantity category</td>
</tr>
<tr>
<td>26-31</td>
<td>QTY(1)</td>
<td>F6.3</td>
<td>The factor to be multiplied by each member of the above referenced function, which lies between UNIT(1) and UNIT(2)</td>
</tr>
<tr>
<td>32-35</td>
<td>UNIT(2)</td>
<td>I4</td>
<td>The number of the unit which describes the end of the first quantity category and the beginning of the second quantity category</td>
</tr>
<tr>
<td>36-41</td>
<td>QTY(2)</td>
<td>F6.3</td>
<td>The factor to be multiplied by each member of the above referenced function, which lies between UNIT(2) and UNIT(3)</td>
</tr>
<tr>
<td>42-45</td>
<td>UNIT(3)</td>
<td>I4</td>
<td>Same definition as previous unit variables</td>
</tr>
</tbody>
</table>

*This entry is superfluous but was included due to its presence in MICOMS card description.
"L" Data Card Format: Contains header information and the beginning and ending fiscal years of the study. There are three cards, and all must be present for each model run.

L-1:

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-16</td>
<td>Blank</td>
<td>16X</td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "LA"</td>
</tr>
<tr>
<td>19</td>
<td>Constant</td>
<td>I1</td>
<td>The number "1"</td>
</tr>
<tr>
<td>20</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Constant</td>
<td>A1</td>
<td>The letter "L"</td>
</tr>
<tr>
<td>22-80</td>
<td>Report Name</td>
<td>A59</td>
<td></td>
</tr>
</tbody>
</table>

L-2:

<table>
<thead>
<tr>
<th>Card Columns</th>
<th>Variable</th>
<th>Format</th>
<th>Description of Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-16</td>
<td>Blank</td>
<td>16X</td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td>Constant</td>
<td>A2</td>
<td>The letters "LA"</td>
</tr>
<tr>
<td>19</td>
<td>Constant</td>
<td>I1</td>
<td>The number "2"</td>
</tr>
<tr>
<td>20</td>
<td>Blank</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Constant</td>
<td>A1</td>
<td>The letter "L"</td>
</tr>
<tr>
<td>22-50</td>
<td>Report Name</td>
<td>A29</td>
<td></td>
</tr>
</tbody>
</table>
Further Explanation of "G" and "H" Cards.

The "G" and "H" cards, as stated previously, are used to determine the costs associated with a level of data through learning curve calculations. Some additional explanation is necessary here to make clear the use of these card types.

The learning curve function has the form:

\[Y = AX^{-B} \]

- **A** = first unit cost of the item being produced
- **B** = slope of learning curve
- **X** = quantity being produced
- **Y** = cost of the Xth item
The total cost of units X_1 through X_2 would be

$$\text{Total Cost} = \sum_{X=X_1}^{X_2} AX^{-B}.$$

However, for large numbers of items ($N \geq 30$), LICEM uses the integral approximation:

$$\text{Total Cost} = \int_{X_1-1}^{X_2} AX^{-B} \, dx = \frac{A}{1 - B} \left\{X_1^{-B} \right\}^{X_2}.$$

The function referenced in Columns 47 and 48 of the "G" card contains the procurement quantities for the time increments during the study. These quantities coupled with the quantity to start (Columns 39-44) are sufficient to calculate the costs associated with each time period.

If one is calculating costs associated with the unit quantities referenced in the function in Columns 47 and 48, the "H" card must still be used, but it is really of little value. For example, suppose that function 5 is referenced, and contains the number of airframes to be procured during the time increments of the study, the "H" card for this example would then be:
This can be interpreted as the procurement of one airframe for each total missile to be procured.

Suppose now that in another level the costs of the fins to be placed upon each missile are to be calculated and that there are to be four fins/missile. In addition, five extra fins are required for testing. Function 5 would still be referenced in this level, since this function contains the number of missiles to be procured during each period. (The other entries on the "G" card would be changed to reflect the different learning curve parameters associated with the production of missile fins.) The "H" card in this example would be:

| COL 22-25 | 0001 |
| COL 26-31 | 000001 |

These data have the following interpretation:

Associated with units 1-5 of the missiles referenced in function 5, we are using five fins/missile. (These five extra fins are those desired for testing.) Missile units above 5, have four fins/missile associated with them.

The use of the "H" card is now obvious, because through its use the quantities of each part of the work breakdown structure need not be stored in the function tables. As long as the number of each component used in a single unit is known, only the number of complete units needed must be stored in the function tables. This greatly reduces the amount of data which needs to be stored in core during a case.

Having described the cards and their functions we are now ready to describe the order of input cards for this model. Figure 4 pictorially describes the necessary order of input. Note the order:

1st - 3 "L" cards

2nd - All function card data

3rd - Card with 10*'s in 1st 10 columns (used to separate function cards from level data)
PROB CARD SIGNIFIES THE END OF DATA FOR THIS RUN (A BLANK CARD SHOULD FOLLOW THE LEVEL DATA & SEPARATE IT FROM THE PROB CARD)

CARDS FOR EACH LEVEL OF DATA INCLUDED IN THE STUDY. THIS DATA INCLUDES A, B, C, D, E, G, AND H CARDS.

SEPARATOR CARD SIGNS THE END OF FUNCTION DATA & THE BEGINNING OF LEVEL DATA.

F-CARDS — ENTER DATA INTO FUNCTION TABLES 1-97 AS NEEDED

L-CARDS PRESENT REPORT HEADER INFORMATION, DATE OF STUDY, ETC.

Figure 4 Order of Input Cards
4th - Level data, where all levels are ordered in increasing level complexity.

5th - Blank card

6th - Prob Card (signifies end of problem)

8. MISCELLANEOUS POINTS

Several additional points, not logically falling within the classification of any of the other sections, should be discussed. These points, to be discussed in the following sections, are:

- Ease of parameter change for sensitivity analysis
- Omission of original data sort
- Special use of "A" and "B" cards
- "B-D-F" card options
- Use of previously made decks for MICOM's COBOL version
- Summary of card combinations and their uses
- Tape requirements for three program sequence
- Description of tapes produced by the input tape preparation and the main processing programs
- Compilation and running times for the three program sequence

8.1 Ease of Parameter Change for Sensitivity Analysis

The formats in which the data are entered into this life-cycle cost model are especially suited to the performance of sensitivity analyses. If the parameter to be investigated is stored in the function tables, a change of at most five cards is all that is necessary to change the variable value.

Also, if the variable of interest lies in only one portion of the life-cycle cost estimate, say the operating cost category, it is not necessary to recompute the costs for the other cost categories. This can prove to be a time and money saving feature on extensive studies.
8.2 Omission of Original Data Sort.

In the original COBOL version of this LCCE model, tasks are sorted into three programs. In the initial program, similar to our Input Tape Preparation Program, a sorting routine ensures that the data are sorted and input in correct order.

In this FORTRAN version of the model, users are provided with two options. These are:

a. Data Check and Tape Input Preparation Program assumes that the data are in correct order with three main functions;
 - to prepare a tape containing input for LCCE model.
 - to list data, by card type, so that a visual check can be made for format errors.
 - to check for discontinuities in the data.

b. Sorter assumes that the data deck is out of order; this program has two main functions;
 - to put the data into correct order for input to LCCE model.
 - to prepare a tape for input to LCCE model.

These options eliminate the need for a complete sorting each time a deck is run. The sorting procedure is time consuming and unnecessary when a data deck is to be run more than once.

8.3 Special Use of "A" and "B" Cards.

It may be that the costs associated with some level of data may already be known and no calculation is necessary to determine them. In this case there are only two card types necessary for the cost description of this level. These are:

- "A" - Card(s): to describe the level.
- "B" - Card(s): to enter costs for this level.

When this configuration of cards is used to describe a level of data, the model assumes that the costs entered on the "B" cards are entered in millions, even though the same format (F7.3) is used to enter the number.

As an example, if a "B" card was to be used to enter already known costs, then $1,500,000.00 would be entered as bbb1500, the decimal point would be assumed to lie between the 1 and 5.
8.4 "B-D-F" Cards (Options).

Note that there are three ways that data can be entered through the "B," "D," and "F" cards. These ways can be classified as "ALL" cards, "INTERVAL" cards, and "YEAR by YEAR" cards. "ALL" cards place the specified value into each year of the period. "INTERVAL" cards place the specified value into each year between and including the specified endpoints, and the "YEAR by YEAR" cards specify a new value for each year.

The order in which these cards appear is not commutative. That is, the same cards in different orders will not give the same results, as is seen in the examples below. (The example uses "F" cards, but the same caution applies to "D" and "B" cards.)

Example 1*

FN011 FALL-1000
FN012 F732000

This combination will have the following results:

<table>
<thead>
<tr>
<th></th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>2000</td>
<td>1000</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

If the two cards were reversed however, the results would be:

<table>
<thead>
<tr>
<th></th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

This result caused by the fact that the "ALL" card overlays its value on top of the 2000 entered by the previous card.

Consequently, there are many ways of entering a data set into storage correctly, but one must keep in mind that later cards overlay their values on those previously defined.

8.5 Use of Previously Made Data Decks for MICOM's Model.

Data decks which have been prepared for use in MICOM's life-cycle cost model, although written in COBOL, can be used as input to LICEM with the addition of one card in the data deck. This additional card contains 10 asterisks in the first 10 columns. It is inserted to separate function cards from level data.

*Assume time frame is 1970-1975.
8.6 Summary of Card Combinations and Their Uses.

In the following discussion, there is always an "A" card associated with the level under consideration:

<table>
<thead>
<tr>
<th>Cards Present</th>
<th>Resulting Computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>"B" only</td>
<td>No computations made; assumed values on "B" cards are expressed in MILLIONS of dollars.</td>
</tr>
<tr>
<td>"B&C" or "C&D"</td>
<td>Multiplies those values in the "B" or "D" cards by the values present in the function(s) referenced on the "C" cards.</td>
</tr>
<tr>
<td>"B&C&D"</td>
<td>Multiplies the values on "B" cards by function(s) referenced on "C" card, and multiplies that product by values present on "D" card.</td>
</tr>
<tr>
<td>"B&E" or "D&E"</td>
<td>Multiplies the values in "B" or "D" cards by the sum of the functions (>2) referenced on the "E" card.</td>
</tr>
<tr>
<td>"B&D&E"</td>
<td>Multiplies the values in the "B" and "D" cards and multiplies this product by the sum of the functions referenced on the "E" cards.</td>
</tr>
</tbody>
</table>
| "G&H" | Used to make standard learning curve calculations of form

\[
C = \sum_{x=x_1}^{x_1} AX^{-B}
\]

| "G&H&B" or "C" or "D" or "E" | Makes standard learning curve calculations and multiplies results by data in "B" or "D" or by functions referenced in "C" or by the sum of the functions referenced in "E." |

This list is not meant to be exhaustive but it does represent the basic card combinations used for obtaining costs in a given level.

Two Binary Coded Decimal tapes (BCD) are needed for the operation of the three program sequence. One tape is mounted on tape unit 1 and the other on tape unit 2. Following is a schematic diagram of how these tapes are utilized.
8.7 Description of Tapes Produced.

1. The tape produced by the Input Tape preparation program consists of 80 column images of the card deck input. The arrangement and format is as follows:

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 1</td>
</tr>
<tr>
<td>L 2 Cards</td>
</tr>
<tr>
<td>L 3</td>
</tr>
<tr>
<td>Block of Function Cards</td>
</tr>
<tr>
<td>10*'s & 70 Blanks</td>
</tr>
<tr>
<td>Level Data Including All Card Types</td>
</tr>
<tr>
<td>80 Blanks Marks End of Data</td>
</tr>
</tbody>
</table>
2. The tape produced by the Main Processing Program is in the following form:

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>I4, 2X, I4</td>
</tr>
<tr>
<td>A9, 5A10, A9, 2A10, 5X</td>
</tr>
<tr>
<td>I2, 2X, A9, I4</td>
</tr>
<tr>
<td>A10, A8, A9, 5A10, A9, 2A10</td>
</tr>
<tr>
<td>(10F12.3/10F12.3/10F12.3)</td>
</tr>
</tbody>
</table>

8.8 Compilation Time.

The compilation and running time for the three program sequence are given below: (run times are for example problem).

<table>
<thead>
<tr>
<th>Compilation Time</th>
<th>Run Time</th>
<th>Storage Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorter</td>
<td>.47</td>
<td>.20</td>
</tr>
<tr>
<td>LCCE</td>
<td>.90</td>
<td>1.03</td>
</tr>
<tr>
<td>Report Generator</td>
<td>.47</td>
<td>.21</td>
</tr>
</tbody>
</table>

Having all the concepts necessary to use the model, we are now ready to work through an example from input preparation to a description of the final output.
9. EXAMPLE PROBLEM

In this section, the time-phased, life-cycle cost estimates for the fictional X-4210 vehicle will be derived.

The FORTRAN coding sheets used to obtain the necessary input cards to LICEM are shown in Figures 6, 7, and 8. Note again the order of cards, "L" cards followed directly by the "F" (function) cards, a card with 10 asterisks, data by level (sorted into order of increasing complexity), a blank card, and finally a PROB card, which signifies the end of data deck.

First, note in our data set that each level begins its data with an "A" card, and that some levels have only "A" cards. When this is the case, the particular level, having only "A" card identification, will be the sum of the costs associated with all its sub-levels.

The normal type of calculation that will be required by the data will involve "B," "C," and "D" cards. When combinations of "B" and "C" or "C" and "D" cards are used, the data (cost or quantity) present on the "B" (or "D") card is multiplied by the data stored in the functions referenced by the "C" cards. Note that it is permissible to reference a function more than once in a "C" card. This has the effect of taking that function to a power. (See levels 010103010101 and 010103010102 for examples of these calculations).

Another commonly used calculation involves the "B" or "D" and "E" cards. In this case the data (cost or quantity) stored in the "B" or "D" card are multiplied by the sum of functions (by year) referenced in the "E" card. As in the "C" card, a function can be referenced more than once on an "E" card. This has the effect of multiplying the values in the function by the number of times it is referenced. (See level 010202 for example.)

The last standard calculation involves the "G" and "H" cards. These are used to perform learning curve calculations. (See level 010305 for example.) It is understood that the function referenced in the "G" card contains the quantities for the learning curve calculations.

This example can also help to make clear the definition of a discontinuity in the data. As defined earlier, a discontinuity in the data is a difference of two or more level degrees between a level and one of its initial sublevels. To paraphrase the definition, a level which contains N pairs of digits cannot be followed immediately by a sublevel containing N + 2 pairs of digits. This input error will cause the "summing up" procedure in the main processing program to operate incorrectly, and erroneous results will be given.
If discontinuities do exist in the data, SORTER will print out a statement indicating the level numbers between which the discontinuity exists.

9.1 Preparation of Input.

Notice in this example that the most detailed level of data contains only 12 digits. This level of detail was sufficient to illustrate the important functions of the program. The factors governing the level of detail for a user are amount of detail available and amount desired. Note that the last three pairs of digits are reserved for the work breakdown structure of the item being costed, and are not used in this example.

9.2 Output - Data Check and Input Tape Preparation Program (SORTER).

Having described the input for our example case we can now discuss the output as obtained from the three program sequence.

The objective of the print out from this sorter program is to help the user spot errors in his input data which could cause errors in the main processing model execution. Except for the "L" cards, all other card types are listed on separate pages at the top of which is an image of a correctly formatted card, to help spot errors. Notice in cards "B" and "D" and "F" where numbers are to be entered three decimal places are assumed and no decimal point need be placed in the field. Figures 9 through 23 contain the output from program SORTER.

9.3 Output From Report Generator Program.

Note that the only output of the Main Processing Program is the tape it produces for the Report Generator and Summarization Program.

The output of the Report Generator and Summarization Program is divided into two portions:

a. (Listing of levels input and their associated costs over each period during the time frame of the study.) The levels are in the order in which they were input to the model. (Increasing order of Complexity). In addition to the cost by year, the total cost attributable to the level is printed on the right hand side of the output.

b. Optional Summaries (obtained by placing a 1 in column 1 of the first data card for the Report Generator and Summarization Program).

(1) Summary by Major Cost Category, where these cost categories include Development, Investment Recurring and Non Recurring, and Operating (Figures 24-25).
(2) Summary by Appropriation, where possible appropriations are RDT&E, PEMA, O&M, MPA, MCA, ASF, FHMA. For this summary all levels, which are included in any appropriation, are summed, (regardless of the cost category in which they fall) to obtain the total for that appropriation. If any appropriation has a total of 0.0, no print out is given for that appropriation.

From our example the RDT&E present in the summary by appropriation is merely level 010103010101, since it is the only RDT&E level present.

The PEMA entry in this summary however is the sum of the costs of levels 010103010102 and 01040101010102. At the top of the page, under SUMMARY by APPROPRIATION, is given the total of the RDT&E and the PEMA costs are below (Figure 26).

(3) Finally the summary of all appropriations within each cost category is given (Figure 27).

It is possible that users might desire other summaries. For this reason the format of the output tape produced by the main processing program is given in the Miscellaneous Points Section. Once this format is known the extraction of any summary desired is relatively easy.
<table>
<thead>
<tr>
<th>FORTRAN Statement</th>
<th>Identification Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA1</td>
<td>SAMPLE CASE TIME PHASED LIFE CYCLE COST ESTIMATING MODEL</td>
</tr>
<tr>
<td>LA2</td>
<td></td>
</tr>
<tr>
<td>LA3</td>
<td>L69 88</td>
</tr>
<tr>
<td>FN011</td>
<td>FALL 1000</td>
</tr>
<tr>
<td>FN021</td>
<td>FALL 2000</td>
</tr>
<tr>
<td>FN031</td>
<td>FFROM 69 TO 78 500</td>
</tr>
<tr>
<td>FN032</td>
<td>FFROM 79 TO 88 800</td>
</tr>
<tr>
<td>FN041</td>
<td>F69 10 70 20 71 30 72 40 73 50</td>
</tr>
<tr>
<td>FN042</td>
<td>FFR0M 74 TO 88 100</td>
</tr>
<tr>
<td>FN051</td>
<td>FALL 50</td>
</tr>
</tbody>
</table>

Figure 6 Sample Problem Input
<table>
<thead>
<tr>
<th>STATEMENT</th>
<th>ACTION</th>
<th>CODE</th>
<th>FUNCTION</th>
<th>CODE</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>010202</td>
<td>1</td>
<td>A</td>
<td>TOOLING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010202</td>
<td>1</td>
<td>BALL</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010202</td>
<td>1</td>
<td>EFN01</td>
<td>FN02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0103</td>
<td>1</td>
<td>A</td>
<td>INVESTMENT RECURRING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010303</td>
<td>1</td>
<td>A</td>
<td>QUALITY CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01030302</td>
<td>1</td>
<td>A</td>
<td>IN-HOUSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0103030201</td>
<td>1</td>
<td>A</td>
<td>DIRECT LABOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0103030201</td>
<td>1</td>
<td>BALL</td>
<td>9000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0103030201</td>
<td>1</td>
<td>CFN05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0103030202</td>
<td>1</td>
<td>A</td>
<td>MATERIALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0103030202</td>
<td>1</td>
<td>BALL</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0103030202</td>
<td>1</td>
<td>CFN01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010305</td>
<td>1</td>
<td>A</td>
<td>PROCUREMENT COSTS OF VEHICLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010305</td>
<td>1</td>
<td>G</td>
<td>9000, 1.5</td>
<td>FN04</td>
<td></td>
</tr>
<tr>
<td>010305</td>
<td>1</td>
<td>H</td>
<td>1, 2.0, 25, 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0104</td>
<td>1</td>
<td>A</td>
<td>OPERATING COSTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010401</td>
<td>1</td>
<td>A</td>
<td>PERSONNEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010401</td>
<td>1</td>
<td>A</td>
<td>IN-HOUSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01040101</td>
<td>1</td>
<td>A</td>
<td>DIRECT LABOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01040101</td>
<td>1</td>
<td>BALL</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01040101</td>
<td>1</td>
<td>CFN01</td>
<td>FN03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0104010102</td>
<td>1</td>
<td>A</td>
<td>PEMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0104010102</td>
<td>1</td>
<td>BFRM</td>
<td>69 TO 80</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>0104010102</td>
<td>1</td>
<td>2</td>
<td>BFRM</td>
<td>81 TO 89</td>
<td>800</td>
</tr>
</tbody>
</table>

Figure 7 Sample Problem Input
<table>
<thead>
<tr>
<th>ID</th>
<th>STATEMENT NUMBER</th>
<th>FORTRAN STATEMENT</th>
<th>IDENTIFICATION CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>010401010102</td>
<td>PROB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010401010102</td>
<td>PROB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BELLOW IS THE INPUT NECESSARY TO OBTAIN THE EXTRA SUMMARIES FROM THE REPORT GENERATOR PROGRAM:

* DATA

```plaintext
1
PROB
```

Figure 8 Sample Problem Input
Figure 9 L-Cards From Sample

FNXX1 FALL XXXXXX
FN011 FALL 1000
FN021 FALL 2000
FN051 FALL 50

Figure 10 F-All Cards From Sample

FNXX1 FFROM FY TO FY XXXXXX
FN031 FFROM 69 TO 78 500
FN032 FFROM 79 TO 88 800
FN042 FFROM 74 TO 88 100

Figure 11 F-From Cards From Sample
Figure 12 F-Year Cards From Sample

<table>
<thead>
<tr>
<th>LEVEL NUMBER</th>
<th>LEVEL IDENTIFICATION NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1 A SAMPLE CASE LIFE CYCLE COST ESTIMATING MODEL</td>
</tr>
<tr>
<td>01</td>
<td>2 A X-4210 VEHICLE</td>
</tr>
<tr>
<td>0101</td>
<td>1 A DEVELOPMENT</td>
</tr>
<tr>
<td>010103</td>
<td>1 A PROTOTYPE PRODUCTION</td>
</tr>
<tr>
<td>01010301</td>
<td>1 A PROTOTYPE CONTRACTS</td>
</tr>
<tr>
<td>0101030101</td>
<td>1 A DIRECT LABOR</td>
</tr>
<tr>
<td>010103010101</td>
<td>1 A RDT-E COSTS</td>
</tr>
<tr>
<td>010103010102</td>
<td>1 A PEMA COSTS</td>
</tr>
<tr>
<td>0102</td>
<td>1 A INVESTMENT NON-RECURRING</td>
</tr>
<tr>
<td>010202</td>
<td>1 A TOOLING</td>
</tr>
<tr>
<td>0103</td>
<td>1 A INVESTMENT RECURRING</td>
</tr>
<tr>
<td>010303</td>
<td>1 A QUALITY CONTROL</td>
</tr>
<tr>
<td>01030302</td>
<td>1 A IN-HOUSE</td>
</tr>
<tr>
<td>0103030201</td>
<td>1 A DIRECT LABOR</td>
</tr>
<tr>
<td>0103030202</td>
<td>1 A MATERIALS</td>
</tr>
<tr>
<td>010305</td>
<td>1 A PROCUREMENT COSTS OF VEHICLES</td>
</tr>
<tr>
<td>0104</td>
<td>1 A OPERATING COSTS</td>
</tr>
<tr>
<td>010401</td>
<td>1 A PERSONNEL</td>
</tr>
<tr>
<td>01040101</td>
<td>1 A IN HOUSE</td>
</tr>
<tr>
<td>0104010101</td>
<td>1 A DIRECT LABOR</td>
</tr>
<tr>
<td>010401010102</td>
<td>1 A PEMA</td>
</tr>
</tbody>
</table>

Figure 13 A Cards From Sample
---LEVEL NUMBER---
010202 1 BALL 1500
0103030201 1 BALL 9000
0103030202 1 BALL 500
0104010101 1 BALL 10

Figure 14 B-All Cards From Sample

---LEVEL NUMBER---
010401010102 1 BFROM 69 TO 80 900
010401010102 2 BFROM 81 TO 89 800

Figure 15 B-From Cards From Sample

---LEVEL NUMBER---
010103010101 1 BFY 695000 708000 719000

Figure 16 B-Year Cards From Sample
---LEVEL NUMBER---1 CFNXXFNXXFNXXFNXXFNXX
010103010101 1 CFN01
010103010102 1 CFN01FN02
0103030201 1 CFN05
0103030202 1 CFN01
010401010101 1 CFN01FN03
010401010102 1 CFN01

Figure 17 C Cards From Sample

---LEVEL NUMBER---1 DALL XXXXXXX

Figure 18 D-All Cards From Sample

---LEVEL NUMBER---1 DFROM FY TO FY XXXXXXX

Figure 19 D-From Cards From Sample

---LEVEL NUMBER---1 DFYXXXXXXFYXXXXXXFYYYYXXXXFYYYYYYYYYFYYYYYYYY
010103010102 1 D69 5 70 a 71 3

Figure 20 D-Year Cards From Sample
Figure 21 E Cards From Sample

Figure 22 G Cards From Sample

Figure 23 H Cards From Sample
<table>
<thead>
<tr>
<th>FY69</th>
<th>FY72</th>
<th>FY75</th>
<th>FY78</th>
<th>FY81</th>
<th>FY84</th>
<th>FY87</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>26,494</td>
<td>11,536</td>
<td>11,732</td>
<td>11,694</td>
<td>14,574</td>
<td>14,560</td>
<td>14,550</td>
<td>316,104</td>
</tr>
<tr>
<td>35,559</td>
<td>11,567</td>
<td>11,716</td>
<td>14,606</td>
<td>14,569</td>
<td>14,556</td>
<td>14,547</td>
<td></td>
</tr>
<tr>
<td>26,507</td>
<td>11,756</td>
<td>11,704</td>
<td>14,680</td>
<td>14,564</td>
<td>14,553</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEVELOPMENT

15,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
24,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
15,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

PROTOTYPE PRODUCTION

15,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
24,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
15,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

PROTOTYPE CONTRACTS

15,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
24,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
15,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

DIRECT LABOR

15,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
24,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
15,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

R&T COSTS

5,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
8,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
9,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

PEMA COSTS

10,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
16,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
4,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

INVESTMENT NON-RECURRING

4,500	4,500	4,500	4,500	4,500	4,500	4,500	90,000
4,500	4,500	4,500	4,500	4,500	4,500	4,500	
4,500	4,500	4,500	4,500	4,500	4,500	4,500	

TOOLING

4,500	4,500	4,500	4,500	4,500	4,500	4,500	90,000
4,500	4,500	4,500	4,500	4,500	4,500	4,500	
4,500	4,500	4,500	4,500	4,500	4,500	4,500	

INVESTMENT RECURRING

1,094	1,136	1,332	1,294	1,274	1,260	1,250	24,904
1,159	1,167	1,316	1,286	1,269	1,256	1,247	
1,107	1,336	1,304	1,280	1,274	1,264	1,253	

Figure 24 Standard Cost by Level
<table>
<thead>
<tr>
<th>SAMPLE CASE-TIME PHASED LIFE CYCLE COST ESTIMATING MODEL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY69 FY72 FY75 FY78 FY81 FY84 FY87 FY70 FY74 FY77 FY80 FY83 FY86</td>
<td></td>
</tr>
<tr>
<td>SUMMAR BY MAJOR COST CATEGORY</td>
<td></td>
</tr>
<tr>
<td>26,494 11,536 11,732 11,694 14,574 14,560 14,550</td>
<td></td>
</tr>
<tr>
<td>26,539 11,567 11,716 14,686 14,569 14,556 14,547</td>
<td></td>
</tr>
<tr>
<td>26,507 11,756 11,704 14,564 14,553</td>
<td>316,104</td>
</tr>
<tr>
<td>DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>15,000 0,000 0,000 0,000 0,000 0,000 0,000</td>
<td></td>
</tr>
<tr>
<td>24,000 0,000 0,000 0,000 0,000 0,000 0,000</td>
<td></td>
</tr>
<tr>
<td>15,000 0,000 0,000 0,000 0,000 0,000 0,000</td>
<td></td>
</tr>
<tr>
<td>INVESTMENT-NON RECURRING</td>
<td></td>
</tr>
<tr>
<td>4,500 4,500 4,500 4,500 4,500 4,500 4,500</td>
<td></td>
</tr>
<tr>
<td>4,500 4,500 4,500 4,500 4,500 4,500 4,500</td>
<td></td>
</tr>
<tr>
<td>4,500 4,500 4,500 4,500 4,500 4,500 4,500</td>
<td></td>
</tr>
<tr>
<td>INVESTMENT RECURRING</td>
<td></td>
</tr>
<tr>
<td>24,904</td>
<td></td>
</tr>
<tr>
<td>OPERATING</td>
<td></td>
</tr>
<tr>
<td>5,900 5,900 5,900 5,900 8,800 8,800 8,800</td>
<td></td>
</tr>
<tr>
<td>5,900 5,900 5,900 5,900 8,800 8,800 8,800</td>
<td></td>
</tr>
<tr>
<td>5,900 5,900 5,900 5,900 8,800 8,800 8,800</td>
<td></td>
</tr>
<tr>
<td>147,200</td>
<td></td>
</tr>
</tbody>
</table>

Figure 26 Summary by Major Cost Category
<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>FY69</th>
<th>FY70</th>
<th>FY71</th>
<th>FY72</th>
<th>FY73</th>
<th>FY74</th>
<th>FY75</th>
<th>FY76</th>
<th>FY77</th>
<th>FY78</th>
<th>FY79</th>
<th>FY80</th>
<th>FY81</th>
<th>FY82</th>
<th>FY83</th>
<th>FY84</th>
<th>FY85</th>
<th>FY86</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>SUMMARY BY APPROPRIATION</td>
<td></td>
</tr>
<tr>
<td>RDT-E</td>
<td></td>
</tr>
<tr>
<td>FY69</td>
<td>15,900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.800</td>
</tr>
<tr>
<td>FY70</td>
<td>24,900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.800</td>
</tr>
<tr>
<td>RDT-E</td>
<td>5,000</td>
<td>0.000</td>
</tr>
<tr>
<td>FEMIA</td>
<td>10,900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.800</td>
</tr>
<tr>
<td>FY75</td>
<td>16,900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.800</td>
</tr>
<tr>
<td>FY76</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.800</td>
</tr>
</tbody>
</table>

Figure 27 Summary by Appropriation
<table>
<thead>
<tr>
<th>Sample Case-Time Phased Life Cycle Cost Estimating Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY69 FY72 FY75 FY77 FY81 FY84 FY87</td>
</tr>
<tr>
<td>FY70 FY73 FY76 FY79 FY82 FY85 FY88</td>
</tr>
<tr>
<td>FY71 FY74 FY77 FY80 FY83 FY86</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SUMMARY-COST CATEGORY BY APPROPRIATION</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>15,900 0.000 0.000 0.000 0.000 0.800 0.800 0.800 0.800</td>
</tr>
<tr>
<td>24.900 0.000 0.000 0.000 0.000 0.800 0.800 0.800 0.800</td>
</tr>
<tr>
<td>15.900 0.000 0.000 0.000 0.000 0.800 0.800 0.800 0.800</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DEVELOPMENT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>8.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>9.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PEMA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>16,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OPERATING</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PEMA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0.900 0.900 0.900 0.900 0.900 0.800 0.800 0.800 0.800</td>
</tr>
<tr>
<td>0.900 0.900 0.900 0.900 0.900 0.800 0.800 0.800 0.800</td>
</tr>
<tr>
<td>0.900 0.900 0.900 0.900 0.900 0.800 0.800 0.800 0.800</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 28 Summary of Cost Category by Appropriation
APPENDIX

FLOW CHARTS AND PROGRAM LISTINGS

This appendix contains flow charts and listings of each program in the sequence (see Figures A.1 and A.2).
READ IN DATA - PLACE DIRECTLY ON TAPE

READ IN GOOD COPIES OF 15 DISTINCT DATA CARD TAPES

PLACE THESE DATA IN ICARD ARRAY ICARD (I, 1, K), K = 1, 11

READ IN & PRINT OUT THE THREE "L" CARDS

READ IN FUNCTION CARD

DETERMINE WHICH TYPE OF FUNCTION FORM THIS IS & PLACE IN CATAGORY

BEGIN TO READ IN DATA BY LEVEL

SORT THESE DATA INTO THEIR APPROPRIATE ARRAYS BY TYPE OF CARD

ARE THERE MORE DATA CARDS

PRINT OUT DATA CARDS - SEPARATED BY TYPE

CHECK FOR DISCONTINUITIES OF DATA

REWIND TAPE

GIVE PRINT THAT INDICATES DISCONTINUITIES IF THEY EXIST

GIVE LISTING OF COMPLETE DATA DECK

RETURN

END

Figure A-1 Flow Chart for the Data Check and Imput Tape Preparation Program
READ IN 3 "L" CARDS

WRITE ID CARDS ON OUTPUT TAPE

IO=0

READ FUNCTION CARD INTO IA ARRAY
FORMAT (A10, A6, A2, A2, 6A10)

IS IA(IO,1)=EQASTERISKS

NO

IO=IO+1

YES

IA ARRAY NOW CONTAINS FUNCTION CARDS

CALL SUBROUTINE TO SORT ON CARD NUMBER

CALL SUBROUTINE TO SORT ON FUNCTION NUMBER

NEXT PAGE

Figure A-2 Chart I—Flow Charts for Optional Program Which Sorts Data into Correct Order.

THIS PROGRAM ASSUMES THE FOLLOWING ORDER OF THE INPUT CARDS:
1. THE 3 L CARDS (IN ORDER)
2. THE FUNCTION CARDS (NOT NECESSARILY IN ORDER)
3. A CARD WITH 10 ASTERISKS
4. THE LEVEL DATA (NOT NECESSARILY IN ORDER)
5. A BLANK CARD
WRITE THE SEQUENCED FUNCTION CARDS ON TAPE

WRITE 80 COLUMN IMAGE OF 10 ASTERISTS & 70 BLANKS

IO = 0

READ LEVEL CARD IA(IO, K)
K = 1, 10
(A10, A8, A1, A2, A9, 5A10)

IS IA(IO, I) = EQ. BLANKS

NO IO = IO + 1

YES ALL LEVEL DATA IS NOW IN THE IA ARRAY

SORT ON CARD NUMBER

SORT ON CARD TYPE

SORT ON LAST 8 DIGITS OF LEVEL NUM.

SORT ON 1ST. 10 DIGITS OF LEVEL NUM.

WRITE 80 BLANKS ON OUTPUT TAPE

WRITE SORTED DATA ON TAPE

END FILE

STOP

Figure A-2 Chart II
A listing of the Data Check and Input Tape Preparation Program (Program 1 in the Sequence) Follows. (See Figures A.3 through A.7).
PROGRAM 1

DIMENSION ICARD(14,100,A),ITEMP(8),NCOUNT(14),IZ(18),IZ1(18)

1 FORMAT(A10,A8,A1,A2,A1,A8,5A10)
2 FORMAT(8A10)
3 FORMAT(70X,A10)
4 FORMAT(2A10,2A1,5A10,A8)
5 FORMAT(18A1)
6 FORMAT (1X,A1)
7 FORMAT (1H1)
8 FORMAT (2A1)
9 FORMAT(1H-, 'A DISCONTINUITY EXISTS BETWEEN LEVELS', 3X, 18A1, 3X, 'AND 1', 3X, 18A1)

DATA(ICARD(1,1,K),K=1,4) /', FNXX1 ', 'FALL XXXXX',
1'XX '/
DATA(ICARD(2,1,K),K=1,5) /', FNXX1 ', 'FFROM FY T',
1'O FY XXXXX', 'XX '/
DATA(ICARD(3,1,K),K=2,8) /', FNXX1 ', 'FFYXXXXXXX', 'FYXXXXXXX',
1'YXXXXXXXFY', 'XXXXXXXFYX', 'XXXXXXXFYXX', 'XXXXXX '/
DATA(ICARD(4,1,K),K=1,8) /'-LEVEL N', 'UMBER--1 ', 'A--',
1'-----LEVEL ', 'IDENTIFICATION NAME-- ', '----- ', 4X, '-----/
DATA(ICARD(5,1,K),K=1,4) /'-LEVEL N', 'UMBER--1 ', 'BALL XXXXX',
1'XX '/
DATA(ICARD(6,1,K),K=1,5) /'-LEVEL N', 'UMBER--1 ', 'BFROM FY T',
1'O FY XXXXX', 'XX '/
DATA(ICARD(7,1,K),K=1,A) /'-LEVEL N', 'UMBER--1 ', 'BFYXXXXXXX',
1'FYXXXXXXXF', 'YXXXXXXXFY', 'XXXXXXXFYX', 'XXXXXXXFYXX', 'XXXXXX '/
DATA(ICARD(8,1,K),K=1,5) /'-LEVEL N', 'UMBER--1 ', 'CFNXXFNXXF',
1'NXFNXXFNXX', 'XX '/
DATA(ICARD(9,1,K),K=1,4) /'-LEVEL N', 'UMBER--1 ', 'DALL XXXXX',
1'XX '/
DATA(ICARD(10,1,K),K=1,5) /'-LEVEL N', 'UMBER--1 ', 'DFROM FY T',
1'O FY XXXXX', 'XX '/
DATA(ICARD(11,1,K),K=1,8) /'-LEVEL N', 'UMBER--1 ', 'DFYXXXXXXX',
1'FYXXXXXXXF', 'YXXXXXXXFY', 'XXXXXXXFYX', 'XXXXXXXFYXX', 'XXXXXX '/
DATA(ICARD(12,1,K),K=1,5) /'-LEVEL N', 'UMBER--1 ', 'EFNXXFNXXF',
1'NXFNXXFNXX', 'XX '/
DATA(ICARD(13,1,K),K=1,5) /'-LEVEL N', 'UMBER--1 ', 'GIUNITCOST',
1'BVALUEXXQT', 'YSTRFNX',
1'BVALUEXXQT', 'YSTRFNX',
1'XUN=2XXX', 'XXUN=3XXX', 'XXUN=4XXX', 'XXUN=5XXX', 'XX '/
DATA BLANK/10H/
DATA LANK/10H/
DATA ITAR/10H**********/
DATA STAR/10H**********/
REWIND 1
DO 12 I=1,8
PLANK(I)=PLANK
12 CONTINUE
DO 10 I=1,14
NCOUNT(I)=1
10 CONTINUE
DO 15 I=1,3
READ 2, (ITEMP(J),J=1,8)
WRITE (1,2) (ITEMP(J),J=1,8)
15 CONTINUE
DO 17 I=1,300
READ 2, (ITEMP(J),J=1,8)
IF (ITEMP(1), EQ, ITAR) GOTO 18
WRITE (1, 2) (ITEMP(J), J=1, 8)
17 CONTINUE
18 WRITE (1, 2) STAR, (PLANK(J), J=1, 7)
ISTART=3+1
DO 20 KI=ISTART, 50000
READ 2, (ITEMP(I), I=1, 8)
IF (ITEMP(1), EQ, LANK) GOTO 25
WRITE (1, 2) (ITEMP(I), I=1, 8)
20 CONTINUE
C*****
C ALL DATA NOW WRITTEN ON UNIT 1
C*****
25 WRITE(1, 2) (PLANK(I), I=1, 8)
END FILE 1
REWIND 1
DO 30 KL=1, 3
READ(1, 2) (ITEMP(I), I=1, 8)
PRINT 2, (ITEMP(I), I=1, 8)
30 CONTINUE
DO 100 KL=1, 300
READ(1, 2) (ITEMP(I), I=1, 8)
IF (ITEMP(1), EQ, ITAR) GOTO 110
DECODE(80, 6, ITEMP(3)) CHK
IF (CHK, EQ, 1HA) GOTO 80
IF (CHK, EQ, 1HF) GOTO 50
NCOUNT(3)=NCOUNT(3)+1
N3=NCOUNT(3)
DO 40 I=1, 8
ICARD(3, N3, I)=ITEMP(I)
40 CONTINUE
GOTO 100
50 NCOUNT(2)=NCOUNT(2)+1
N2=NCOUNT(2)
DO 60 I=1, 8
ICARD(2, N2, I)=ITEMP(I)
60 CONTINUE
GOTO 100
80 NCOUNT(1)=NCOUNT(1)+1
N1=NCOUNT(1)
DO 90 I=1, 8
ICARD(1, N1, I)=ITEMP(I)
90 CONTINUE
100 CONTINUE
110 CONTINUE
READ(1, 2) (ITEMP(I), I=1, 8)
DECODE (80, 5, ITEMP(1)) (IZ(I), I=1, 18)
CALL DEGREE(IZ, LEV, I, 18)
DO 500 JKL=1, 50000
DECODE (80, 8, ITEMP(3)) CHK1, CHK2
130 IF(CHK1, EQ, 1HA) GOTO 150
IF(CHK1, EQ, 1HB) GOTO 200
IF(CHK1, EQ, 1HC) GOTO 250
IF(CHK1, EQ, 1HD) GOTO 300
IF(CHK1, EQ, 1HE) GOTO 350
IF(CHK1, EQ, 1HG) GOTO 400
IF(CHK1, EQ, 1HH) GOTO 450
150 NCOUNT(4)=NCOUNT(4)+1
N4=NCOUNT(4)
DO 160 I=1, 8
160 CONTINUE
ICARD(4,N4,I)-ITEMP(I)
160 CONTINUE
GOTO 480
200 IF (CHK2.EQ.1HA) GOTO 210
IF (CHK2.EQ.1HF) GOTO 220
NCOUNT(7)=NCOUNT(7)+1
N7=NCOUNT(7)
DO 205 I=1,8
ICARD(7,N7,I)-ITEMP(I)
205 CONTINUE
GOTO 480
210 NCOUNT(5)=NCOUNT(5)+1
N5=NCOUNT(5)
DO 215 I=1,8
ICARD(5,N5,I)-ITEMP(I)
215 CONTINUE
GOTO 480
220 NCOUNT(6)=NCOUNT(6)+1
N6=NCOUNT(6)
DO 225 I=1,8
ICARD(6,N6,I)-ITEMP(I)
225 CONTINUE
GOTO 480
250 NCOUNT(8)=NCOUNT(8)+1
N8=NCOUNT(8)
DO 295 I=1,8
ICARD(8,N8,I)-ITEMP(I)
295 CONTINUE
GOTO 480
300 IF (CHK2.EQ.1HA) GOTO 310
IF (CHK2.EQ.1HF) GOTO 320
NCOUNT(11)=NCOUNT(11)+1
N11=NCOUNT(11)
DO 305 I=1,8
ICARD(11,N11,I)-ITEMP(I)
305 CONTINUE
GOTO 480
310 NCOUNT(9)=NCOUNT(9)+1
N9=NCOUNT(9)
DO 315 I=1,8
ICARD(9,N9,I)-ITEMP(I)
315 CONTINUE
GOTO 480
320 NCOUNT(10)=NCOUNT(10)+1
N10=NCOUNT(10)
DO 345 I=1,8
ICARD(10,N10,I)-ITEMP(I)
345 CONTINUE
GOTO 480
350 NCOUNT(12)=NCOUNT(12)+1
N12=NCOUNT(12)
DO 395 I=1,8
ICARD(12,N12,I)-ITEMP(I)
395 CONTINUE
GOTO 480
400 NCOUNT(13)=NCOUNT(13)+1
N13=NCOUNT(13)
DO 405 I=1,8
ICARD(13,N13,I)-ITEMP(I)
405 CONTINUE
GOTO 480
450 NCOUNT(14)=NCOUNT(14)+1
N14=NCOUNT(14)
DO 475 I=1,8
ICARD(14,N14,I)=ITEMP(I)
475 CONTINUE
480 READ (1,2) (ITEMP(I),I=1,8)
IF (ITEMP(I),EQ.,LANK) GOTO 510
DECODE (80,5,ITEMP(I))(IZ1(I),I=1,18)
DO 485 K=1,18
IF (IZ(K),NE.,IZ1(K)) GOTO 488
485 CONTINUE
486 DO 487 K=1,8
ITEMP(K)=ITEMP1(K)
487 CONTINUE
GOTO 500
488 CALL DEOREE (IZ1,LEV1,1,18)
NDIF=LEV1-LEV
IF (NDIF,GE.,2) GOTO 490
491 DO 489 K=1,8
ITEMP(K)=ITEMP1(K)
489 CONTINUE
LEV=LEV1
GOTO 500
490 PRINT 9,((IZ(I),I=1,18),(IZ1(I),I=1,18))
GOTO 491
500 CONTINUE
510 DO 600 JK=1,14
PRINT 7
IKNOW=NCOUNT(JK)
DO 550 JOB=1,IKNOW
PRINT 2, (ICARD(JK,JOB,H),H=1,8)
550 CONTINUE
600 CONTINUE
REWIND 1
STOP
END
SUBROUTINE DEOREE (IARRAY,NDEG,ISTART,ISTOP)
DIMENSION IARRAY(18)
DO 10 I=ISTART,ISTOP
IF (IARRAY(I),EQ.,1H) GOTO 15
10 CONTINUE
NDEG=9
GOTO 20
15 NDEG=(I-1)/2
20 CONTINUE
RETURN
END
LIST(STOP)
READ IN L CARDS

IYR1 IS FIRST YEAR OF STUDY
IYR2 IS LAST YEAR OF STUDY

NTOTYR = IYR2 - IYR1 + 1

READ IN FUNCTION CARD

DECODE FUNCTION DATA-PLACE IN FUNC ARRAY

ARE THERE MORE FUNCTION CARDS TO BE READ

YES

NO

WE ARE NOW READY TO BEGIN PROCESSING LEVEL DATA

READ DATA CARD INTO TEMP1 ARRAY

DECODE TEMP1 TO OBTAIN LEVEL NUMBER, AND CARD NUMBER AND TYPE

CALL SUB TO DETERMINE THE DEGREE OF THIS DATA LEVEL (LEV1)

AT THIS POINT THE MODEL BRANCHES TO AN APPROPRIATE SECTION TO PROCESS THE DATA ENTERED ON THIS CARD

READ DATA CARD INTO TEMP2 ARRAY

NEXT PAGE

Figure A-3 Chart I
DECODE THE LEVEL NUMBER OF CARD Whose DATA IS IN TEMP2 ARRAY

ARE LEVEL NOS. IN TEMP1 AND TEMP2 THE SAME

NO

WE HAVE COMPLETED PROCESSING THE DATA FOR THIS LEVEL

CALL SUB TO DETERMINE THIS DEGREE OF NEXT LEVEL OF DATA (LEV2)

HAS ONLY AN "A" CARD BEEN SUBMITTED

YES

ZERO OUT THE FINDAT (I) ARRAY FOR I=1, 30

NO

FOR I=1, 30
FINDAT (I) = 1.

CALCULATE THE MEMBERS OF THE FINDAT ARRAY BY MULTIPLYING IN FACTORS INTRODUCED BY CARD TYPES USED WITH THIS LEVEL

GO TO 1035

NEXT PAGE

GO TO 102

Figure A-3 Chart II
AT THIS POINT THE FINDAT ARRAY CONTAINS THE COSTS FOR THE LEVEL WE HAVE JUST PROCESSED. MUST NOW DETERMINE HOW THIS DATA SHOULD BE STORED BY COMPARISON WITH THE DEGREE OF THE NEXT LEVEL OF DATA.

ADD UP AND WRITE ON TAPE ALL LEVELS OF GREATER COMPLEXITY THAN LEV1, WHICH ARE PRESENTLY BEING KEPT IN STORE MATRIX. THIS MUST BE DONE BECAUSE DATA NOW STORED IN STORE (LEV1, K), K=1, 30, WILL BE REPLACED BY LATEST LEVEL OF PROCESSED DATA.

CALL BACK TO PLACE LEVEL NUMBER INTO IZ(1) & IZ(2)

FOR I = 1, 2
ISTORE (LEV1, I) = IZ(I)

Figure A-3 Chart III
PLACE NAME ASSOCIATED WITH THIS LEVEL INTO THE ISTORE ARRAY

TRANSFER COSTS FOR THIS LEVEL FROM THE FINDAT TO STORE ARRAY

IS KDONE = EQ. 1

IS LEV1 = GE. LEV2

TRANSFER TEMP2 TO TEMP1 ARRAY

LEV1 = LEV2

Figure A-3 Chart IV
BECAUSE THE NEXT LEVEL IS OF LESS COMPLEXITY, WE MUST ADD UP & WRITE ON TAPE ALL LEVELS FROM LEV1 TO LEV1-2 INCLUSIVE

IS LEV2 EQ 1

YES

GO TO 1300

NO

FOR I = 1, 30
STORE (LEV2, I) = STORE (LEV2, I) + STORE (LEV2-1, I)

1300

TRANSFER TEMP2 TO TEMP1 ARRAY

LEV2 = LEV1

GO TO 102

1320

WE HAVE ENTERED AND PROCESSED OUR LAST LEVEL OF DATA

SUM UP & WRITE ON TAPE ALL ENTRIES IN STORE ARRAY WHICH HAVE NOT ALREADY BEEN PLACED ON TAPE

PRINT KTAPE THE TOTAL NUMBER OF LEVELS PLACED ON TAPE

STOP

END

Figure A-3 Chart V
A listing of the Main Processing Program (Program 2 in the sequence) follows. (See Figure A.8)
$\text{COMMENT USES TAPE 1 AS INPUT}$

$\text{COMMENT USES TAPE 2 AS OUTPUT}$

$\text{DIMENSION REPNAM(9),FUNNAT(8),VAL(6),TEMPI(8),TEMP2(8),IFN(5),}$

$\text{ADATA(12),BDATA(30),CDATA(30),DDATA(30),EDATA(30),GDATA(30).}$

$\text{DIMENSION DATLEV(30),T(2),FINDAT(30),LEVEL1(18).}$

$\text{DIMENSION LEVEL2(16),IYR(5).}$

$\text{DIMENSION FNC(99,30),INAME1(12),FN(5),QTY(10),NUNIT(6).}$

$\text{DIMENSION ISTORE(9,15),STORE(9,30).}$

$\text{DIMENSION TTEMP(24).}$

$\text{DATA XFER/10HXXXXX} /$

$\text{DATA BLANK/tOH} /$

$\text{DATA LANK/10H} /$

IFMT(1,10)

$\text{2 FORMAT (6X,12,3X,A1)}$

$\text{3 FORMAT (1X,6(12,F7.3))}$

$\text{4 FORMAT (5X,F7.3)}$

$\text{5 FORMAT (6X,12,4X,12,1X,F7.3)}$

$\text{6 FORMAT (2X,A6,5A10)}$

$\text{7 FORMAT (2X,A9,2A10,12,1X,A9,1X,14)}$

$\text{8 FORMAT (2X,12,2X,12)}$

$\text{9 FORMAT (18R1,A1,1X,2A10)}$

$\text{10 FORMAT (1X,A9,5A10)}$

$\text{11 FORMAT (3X,12,4(2X,12))}$

$\text{12 FORMAT (1X,F9.0,6,6,2X,16,2X,12)}$

$\text{13 FORMAT (1X,5(14,F6.3))}$

$\text{14 FORMAT (1H1,AR,5A10,AR,2A10,/)50X,12,2X,12,2X,12)}$

$\text{15 FORMAT (14,2X,14)}$

$\text{16 FORMAT (1A9,5A10,1A9,2A10,5X,12,1X,A9,1X,14)}$

$\text{17 FORMAT (1A10,122X)}$

$\text{18 FORMAT (1A10,AR,9,5A10,AR,2A10)}$

$\text{19 FORMAT (1NF12,3,/,10F12.3,/,1NF12.3)}$

20 FORMAT (15)

KTAPE=0

$\text{IB=0$IC=0$ID=0$IE=0$IG=0}$

REWIND 1

REWIND 2

REWRIN=99999

$\text{READ (1,1) (TTEMP(I),I=1,8)}$

$\text{READ (1,1) (TTEMP(I),I=9,16)}$

$\text{READ (1,1) (TTEMP(I),I=17,24)}$

$\text{DECODE(80,6,TTEMP(1)) (REPNAM(I),I=1,6)}$

$\text{DECODE(80,7,TTEMP(9)) (REPNAM(I),I=7,9) NDAY, NMTH, NRY}$

$\text{DECODE(80,8,TTEMP(17)) IYR1, IYR2}$

$\text{WRITE (2,16) ((REPNAM(I),I=1,9), NDAY, NMTH, NRY)}$

DO 25 I=1,9

ISTORE(I,3)=1

25 CONTINUE

N=IYR2-IYR2+1

$\text{WRITE (2,15) IYR1,IYR2}$

$\text{50 READ (1,1) (FUNDAT(I),I=1,8)}$

$\text{C***** CARD WITH 10* MUST FOLLOW FUNCTION CARDS}$

$\text{IF (FUNDAT(I),EQ.10H*********) GO TO 90}$

$\text{DECODE (80,2,FUNDAT(2)) NUM, TYPE}$

$\text{IF (TYPE, EQ.1HA) GO TO 70}$

$\text{IF (TYPE, EQ.1HF) GO TO 80}$

$\text{DECODE (80,3,FUNDAT(3)) ((IYR(I),VAL(I),I=1,6)}$

DO 60 I=1,6

70
IF (IYR(1),EQ,10H) GO TO 50
J=IYR(1)-IYR1+1
FUNC(NUM,J)=VAL(I)
60 CONTINUE
GO TO 50
70 DECODE (80,4,FUNDAT(3)) VALU
DO 75 I=1,NTOTYR
FUNC(NUM,I)=VALU
75 CONTINUE
GO TO 50
80 DECODE (80,5,FUNDAT(3)) NSTART,NEND,VALU
11=NSTART-IYR1+1
12=NEND-IYR1+1
DO 85 I=11,12
FUNC(NUM,I)=VALU
85 CONTINUE
GO TO 50
C***** AT THIS POINT WE ARE READY TO BEGIN PROCESSING LEVEL DATA
C*****
90 DO 91 I=1,9
ISTORE(I,3)=1
91 CONTINUE
100 READ (1,1) (TEMP1(I),I=1,8)
102 DECODE (80,9,TEMP1(1))(LEVEL1(I),I=1,18),CARDNO,CARD,TYPE)
CALL DERRTE (LEVEL1,LEV1,1,18)
IF (CARD,FQ,1HA) GOTO 105
IF (CARD,FQ,1HB) GOTO 111
IF (CARD,FQ,1HC) GOTO 138
IF (CARD,FQ,1HD) GOTO 160
IF (CARD,FQ,1HE) GOTO 183
IF (CARD,FQ,1HG) GOTO 200
C***** THIS SECTION PROCESSES A TYPE DATA CARDS
C CARDNO TELLS WHETHER 1ST OR 2ND A CARD FOR THIS LEVEL
C*****
105 IA=1
IF (CARDNO,EQ,1H2) GO TO 110
DECODE (80,10,TEMP1(3))(INAME1(I),I=1,6)
GO TO 1000
110 DECODE (80,10, TEMP1(3)) (INAME1(I),I=7,12)
GO TO 1000
C***** THIS SECTION PROCESSES B TYPE DATA CARDS
C*****
111 IB=1
IF (TYPE,FQ,1HA) GOTO 120
IF (TYPE,FQ,1HF) GOTO 130
DECODE (80,3,TEMP1(3)) ((IYR(I),VAL(I)),I=1,6)
DO 112 I=1,6
IF (IYR(I),EQ,10H)GOTO 1000
J=IYR(I)-IYR1+1
BDATA(J)=VAL(I)
112 CONTINUE
GOTO 1000
120 DECODE (80,4,TEMP1(3)) VALU
DO 125 I=1,NTOTYR
BDATA(I)=VALU
125 CONTINUE
GOTO 1000
71
130 DECODE (80, 5, TEMP1(3)) NSTART, NEND, VALU
 I1=NSTART=IYR1+1
 I2=NEND=IYR1+1
 DO 135 I=1, 12
 DATA(I)=VALU
 135 CONTINUE
 GOTO 1000
C*****
C THIS SECTION PROCESSES C TYPE DATA CARDS
C*****
138 IC=1
 DECODE (80, 11, TEMP1(3)) (IFN(I), I=1, 5)
 IF (CARDNO, NE, 1H1) GOTO 141
 I=IFN(I)
 DO 140 J=1, NTOTYR
 DATA(J)=FUNC(I, J)
 140 CONTINUE
 GOTO 142
141 IFN=1
 DO 145 I=IFN, 5
 IF (IFN(I), EQ, LANK) GOTO 1000
 J=IFN(I)
 DO 143 K=1, NTOTYR
 DATA(K)=DATA(K)*FUNC(J, K)
 143 CONTINUE
 145 CONTINUE
 150 GOTO 1000
C*****
C THIS SECTION PROCESSES D DATA CARDS
C*****
160 ID=1
 IF (CARDNO, NE, 1H1) GOTO 163
 DO 161 I=1, NTOTYR
 DATA(I)=0.
 161 CONTINUE
 163 IF (TYPF, EQ, 1HA) GOTO 170
 IF (TYPF, EQ, 1HF) GOTO 180
 DECODE (80, 3, TEMP1(3)) ((IYR(I), VAL(I)), I=1, 6)
 DO 162 I=1, 6
 IF (IYR(I), EQ, 2H) GOTO 1000
 J=IYR(I)-IYR1+1
 DATA(J)=VAL(I)
 162 CONTINUE
 GOTO 1000
170 DECODE (80, 4, TEMP1(3)) VALU
 DO 172 I=1, NTOTYR
 DATA(I)=VALU
 172 CONTINUE
 GOTO 1000
180 DECODE (80, 5, TEMP1(3)) NSTART, NEND, VALU
 I1=NSTART=IYR1+1
 I2=NEND=IYR1+1
 DO 182 I=11, 12
 DATA(I)=VALU
 182 CONTINUE
 GOTO 1000
C*****
C THIS SECTION PROCESSES E DATA CARDS
C*****
183 IE=1
 IF (CARDNO,NE,1H1) GOTO 184
 DO 186 I=1,NTOTYR
 EDATA(I)=0.
186 CONTINUE
184 DECODE (80,11,TEMP1(3)) (IFN(I),I=1,5)
 I=IFN(I)
 DO 185 J=1,NTOTYR
 EDATA(J)=FUNC(I,J)
 185 CONTINUE.
 DO 190 I=2,5
 IF (IFN(I),EQ,2H) GOTO 1000
 J=IFN(I)
 DO 188 K=1,NTOTYR
 EDATA(K)=EDATA(K)+FUNC(J,K)
 188 CONTINUE.
 190 CONTINUE
 190 CONTINUE
 GOTO 1000

C***** THIS SECTION PROCESSES G AND H DATA CARDS
C*****
200 IG=1
 DECODE (80,12,TEMP1(3)) A,B,IQTY1,IFN
 READ (1,1) (TEMP2(I),I=1,8)
 DECODE (80,13,TEMP2(3)) ((NUNIT(I),QTY(I)),I=1,5)
 DO 210 I=1,5
 IF (NUNIT(I),EQ,10H) GOTO 211
 210 CONTINUE.
 NALL=5
 NUNIT(6)=10000000000
 GOTO 213
211 NUNIT(I)=10000000000
213 CONTINUE
 NTOT1=IQTY1
 DO 215 I=1,5
 J=I+1
 IF (NTOT1,LT,NUNIT(J)) GOTO 218
 215 CONTINUE.
21A ICL=1
 DO 290 IYR=1,NTOTYR
 TRACK=0.
 IQUAN=FUNC(IFN,IYR)
 NTOT2=NTOT1+IQUAN
 IF (NTOT2,LE,NTOT1) GOTO 290
 IF (NTOT2,GT,NUNIT(ICL+1)) GOTO 230
 IF (IQUAN,LE,30) GOTO 225
 CALL WENDELE(A,B,NTOT1,NTOT2,QTY(ICL),TOTAL)
 TRACK=TRACK+TOTAL
 GDATA(IYR)=TRACK
 NTOT1=NTOT2
 GOTO 280
225 NBOOB=NTOT1
 CALL SUMUP(A,B,NBOOB,NTOT2,QTY(ICL),TOTAL)
 TRACK=TRACK+TOTAL
 GDATA(IYR)=TRACK
 GOTO 280
230 DO 250 JJ=ICL,5
 IF (NTOT2,LE,NUNIT(JJ+1)) GOTO 260
 NUMB=NUNIT(JJ+1)-NTOT1
 IF (NUMB,GT,30) GOTO 235

73
NB00B = NTT0T1
CALL SUMUP (A, B, NB00B, NUNIT(JJ+1), QTY(JJ), TOTAL)
TRACK = TRACK + TOTAL
GOTO 240

23b CALL WEDDLE (A, R, NTT0T1, NUNIT(JJ+1), QTY(JJ), TOTAL)
TRACK = TRACK + TOTAL
GOTO 240

NUMB = NTT0T2 - NTT0T1
IF (NUMB GT 30) GOTO 265
NB00B = NTT0T1
CALL SUMUP (A, B, NB00B, NTT0T2, QTY(JJ), TOTAL)
ICL = JJ
GOTO 270

265 CALL WEDDLE (A, R, NTT0T1, NTT0T2, QTY(JJ), TOTAL)
ICL = JJ
270 TRACK = TRACK + TOTAL
GDATA(IYR) = TRACK
280 NTT0T1 = NTT0T2 + 1
300 CONTINUE
GOTO 1000

C......
AT THIS POINT WE HAVE PROCESSED A CARD,
C IF THE NEXT DATA CARD IS OF THE SAME LEVEL WE WILL PROCESS IT,
C IF NOT WE CAN DETERMINE ITS DEGREE, PERFORM THE CALCULATIONS
C ON THE PREVIOUS LEVEL, AND STORE THE RESULT ACCORDING TO HOW
C THE LEVEL DEGREES COMPARE
C......
1000 READ (1, 1) (TEMP2(I), I=1, 8)
DO 1005 I=1,18
IF (LEVEL1(I) NE, LEVEL2(I)) GOTO 1010
1005 CONTINUE
DO 1006 I=1,8
TEMP1(I) = TEMP2(I)
1006 CONTINUE
GOTO 102

C......
IF HERE WE GOTO 102 IF WE ARE STILL PROCESSING DATA FROM THIS LEVEL
C IF WE GO TO 1010 WE HAVE COMPLETED PROCESSING CARDS FROM
C THIS LEVEL AND MUST CALCULATE THE COSTS OF THIS LEVEL
C......
1010 CALL DEGREE (LEVEL2, LEV2, 1, 18)
IF (IB.EQ.0 .AND. IC.EQ.0 .AND. ID.EQ.0 .AND. IE.EQ.0 .
AND. IF.EQ.0 .AND. IG.EQ.0) GOTO 1031
IF (IA.EQ.1 .AND. IB.EQ.1 .AND. IC.EQ.0 .AND. ID.EQ.0 .AND. IE.EQ.0 .
AND. IG.EQ.0) GOTO 1034
DO 1011 I=1, NTT0TYR
FINDAT(I) = 1
1011 CONTINUE
IF (IB.EQ.0) GOTO 1015
DO 1012 I=1, NTT0TYR
FINDAT(I) = FINDAT(I) * BDATA(I)
1012 CONTINUE
1015 IF (IC.EQ.0) GOTO 1020
DO 1017 I=1, NTT0TYR
FINDAT(I) = FINDAT(I) * CDATA(I)
1017 CONTINUE
1020 IF (ID.EQ.0) GOTO 1025
DO 1022 I=1,NTOTYR
 FUNC(98,I)=DDATA(I)
 FINDAT(I)=FINDAT(I)*DDATA(I)
1022 CONTINUE.
1025 IF (IE.EQ.0) GOTO 1030
 DO 1027 I=1,NTOTYR
 FUNC(99,I)=EDATA(I)
 FINDAT(I)=FINDAT(I)*EDATA(I)
1027 CONTINUE.
1030 IF (IG.EQ.0) GOTO 1035
 DO 1032 I=1,NTOTYR
 FINDAT(I)=FINDAT(I)*GDATA(I)
1032 CONTINUE.
 GOTO 1035
1031 DO 1033 I=1,NTOTYR
 FINDAT(I)=0.
1033 CONTINUE.
 GOTO 1035
1034 DO 1037 I=1,NTOTYR
 FINDAT(I)=BDATA(I)*1000000.
1037 CONTINUE.
1036 DO 1039 I=1,NTOTYR
 FINDAT(I)=FINDAT(I)/1000000.
1039 CONTINUE.
 IA=0
 IB=0
 IC=0
 ID=0
 IE=0
 IG=0

C****
AT THIS POINT FINDAT ARRAY CONTAINS THE
DATA FOR THE LEVEL WE HAVE JUST PROCESSED;
MUST NOW DETERMINE HOW THIS LEVEL'S DATA
SHOULD BE STORED BY COMPARISON WITH THE
DEGREE OF THE NEXT LEVEL.
C****
DO 1038 I=1,NTOTYR
 BDATA(I)=0.
 CDATA(I)=0.
 DDATA(I)=0.
 EDATA(I)=0.
 GDATA(I)=0.
1038 CONTINUE.
 IF (LEV2.EQ.0) KDONE=1
 IF (ISTORF(LEV1,3).EQ.1) GO TO 1200
 KTAPE=KTAPE+1
 KOP=9-LEV1+1
 DO 1130 I=1,KOP
 J=9-I+1
 IF (ISTORF(J,3).EQ.1) GO TO 1130
 DO 1126 K=1,NTOTYR
 STORE(J-1,K)=STORE(J-1,K)+STORE(J,K)
1126 CONTINUE
 WRITE (2,18) ((ISTORE(J,K),K=1,2),ISTORE(J,K),K=4,12))
 WRITE (2,19) (STORE(J,K),K=1,NTOTYR)
 ISTORE(J,3)=1
1130 CONTINUE
1200 CALL PACK(LEVEL1(1),IZ,18)
 ISTORE(LEV1,1)=IZ(1)

75
ISTORE(LEV1, 2) = IZ(2)
ISTORE(LEV1, 3) = 0
DO 1205 I = 1, 12
 IJK = I + 3
 ISTORE(LEV1, IJK) = INAME1(I)
 INAME1(I) = LANK
1205 CONTINUE.
DO 1208 K = 1, NTOTYR
STORE(LEV1, K) = FINDAT(K)
1208 CONTINUE.
IF (KDONF .EQ. 1) GOTO 1320
IF (LEV1 .GE. LEV2) GOTO 1220
DO 1210 I = 1, 8
 TEMP1(I) = TEMP2(I)
1210 CONTINUE.
LEV1 = LEV2
GOTO 102
1220 IF (LEV1 .GT. LEV2) GOTO 1250
 KTAPE = KTAPE + 1
WRITE (2, 18) ((ISTORE(LEV1, K), K = 1, 2), (ISTORE(LEV1, K), K = 4, 12))
WRITE (2, 19) (STORE(LEV1, K), K = 1, NTOTYR)
ISTORE(LEV1, 3) = 1
MINUS = LEV1 - 1
DO 1230 I = 1, NTOTYR
STORE(MINUS, I) = STORE(MINUS, I) + STORE(LEV1, I)
1230 CONTINUE.
DO 1240 I = 1, 8
 TEMP1(I) = TEMP2(I)
1240 CONTINUE.
LEV1 = LEV2
GOTO 102
1250 NDIF = LEV1 = LEV2
 J = LEV1
DO 1270 KKK = 1, NDIF
 KTAPE = KTAPE + 1
WRITE (2, 18) ((ISTORE(J, K), K = 1, 2), (ISTORE(J, K), K = 4, 12))
WRITE (2, 19) (STORE(J, K), K = 1, NTOTYR)
ISTORE(J, 3) = 1
DO 1260 K = 1, NTOTYR
STORE(J, K) = STORE(J - 1, K) + STORE(J, K)
1260 CONTINUE.
J = J - 1
1270 CONTINUE.
IF (LEV2 .EQ. 1) GOTO 1300
DO 1280 K = 1, NTOTYR
STORE(LEV2 - 1, K) = STORE(LEV2 - 1, K) + STORE(LEV2, K)
1280 CONTINUE.
1300 KTAPE = KTAPE + 1
WRITE (2, 18) ((ISTORE(LEV2, K), K = 1, 2), (ISTORE(LEV2, K), K = 4, 12))
WRITE (2, 19) (STORE(LEV2, K), K = 1, NTOTYR)
ISTORE(LEV2, 3) = 1
DO 1310 I = 1, 8
 TEMP1(I) = TEMP2(I)
1310 CONTINUE.
LEV1 = LEV2
GOTO 102
1320 J = LEV1
DO 1340 I = 1, LEV1
 KTAPE = KTAPE + 1
WRITE (2, 18) ((ISTORE(J, K), K = 1, 2), (ISTORE(J, K), K = 4, 12))
1340 CONTINUE.
WRITE (2,19) (STORE(J,K),K=1,NTOTYR)
IF (J-1.EQ.0) GO TO 1340
DO 1330 K=1,NTOTYR
STORE(J-1,K)=STORE(J-1,K)*STORE(J,K)
1330 CONTINUE
ISTORE(J,3)=1
J=J-1
1340 CONTINUE
WRITE (2,17) XER
END FILE 2
STOP
END
SUBROUTINE WEDDLE (A,B,I1,I2,FACTOR,TOTAL)
ROT=1.-B
CON=A/ROT
FIRST=(FLOAT(I2))*((1.-B)
SECOND=(FLOAT(I1))*((1.-B)
FORCE=FIRST-SECOND
TOTAL=FORCE*CON*FACTOR
RETURN
END
SUBROUTINE SUMUP (A,B,I1,I2,FACTOR,TOTAL)
TOTAL=O.
IF(I1.LE.0) I1=1
DO 10 I=I1,I2
XI=I
TOTAL=TOTAL+((A*XI)**(-R))
10 CONTINUE
TOTAL=TOTAL*FACTOR
RETURN
END
SUBROUTINE DEGREE (IARRAY,NDEG,ISTART,ISTOP)
DIMENSION IARRAY(25)
DO 10 I=ISTART,ISTOP
IF (IARRAY(I).LE.1.0) GO TO 15
10 CONTINUE
NDEG=9
GO TO 20
15 NDEG=(I-1)/2
20 CONTINUE
RETURN
END
LIST(STOP)
READ IYR1 & IYR2 FROM TAPE

NTOTYR = IYR2 - IYR1 + 1

DETERMINE HOW YEARS ARE TO BE PLACED ON HEAD ON SHEETS

READ IN DATA LEVELS INCLUDING IDENTIFICATION & COSTS

CALL ARRANGI TO ARRANGE DATA INTO INCREASING ORDER OF LEVEL NUMBER

FOR AS MANY PAGES AS NECESSARY—PLACE 9 LEVELS OF DATA ON A PAGE UNTIL DATA EXHAUSTED

ARE STANDARD SUMMARIES DESIRED

YES

SUMMARIZE AND PRINT THE DATA BY MAJOR COST CATEGORY

SUMMARIZE AND PRINT THE DATA BY APPROPRIATION

SUMMARIZE AND PRINT DATA BY COST CATEGORY BY APPROPRIATION

STOP

NO

END

STOP

END

Figure A-4 Flow Chart—Report Preparation and Summarization Program
A listing of the Report Preparation and Summarization Program
(Program 3 in the sequence) follows.
FEB. 7, 72 BRLFSC FORTRAN
SA11WC 392 107 4210 COPES PROGRAM 3

COMMENT TAPE UNIT 2 USED FOR INPUT

DIMENSION ID(9), IDATE(3), NCOUNT(3), NYR(30)
DIMENSION VALUE(100, 43), IT(25), INT(25)
DIMENSION TEMPO(4,7,30), TOTAL(4,7), COSCAT(30), APPR(30)
DIMENSION FMT(6), GHT(4), HMT(4), FMT1(3), GMT1(3), HMT1(5)
DIMENSION IDN(9), IDATEN(3)

1 FORMAT (I4, 2X, I4)
2 FORMAT (5A10, 10X, I2, 1X, A9, 1X, I4)
3 FORMAT (A10, A8, A9, 5A10, A9, 2A10)
4 FORMAT (10F12.3, /, 10F12.3, /, 10F12.3)
5 FORMAT (A10, 'PAGE', 1X, I3)
6 FORMAT (A9, 5A10, A9, 2A10, 5X, I2, 1X, A9, 1X, I4)
7 FORMAT (40X, 'COST DATA IN MILLIONS')
8 FORMAT (I2, 16)
9 FORMAT (IHO, 2X, 'DEVELOPMENT')
10 FORMAT (IHO, 2X, 'INVESTMENT-RECURRING')
11 FORMAT (IHO, 2X, 'INVESTMENT-NON RECURRING')
12 FORMAT (IHO, 'SUMMARY BY APPROPRIATION')
13 FORMAT (I2, 16)
14 FORMAT (IHO, 2X, 'RDT-E')
15 FORMAT (IHO, 2X, 'PEMA')
16 FORMAT (IHO, 2X, 'COST')
17 FORMAT (IHO, 2X, 'MA')
18 FORMAT (IHO, 2X, 'HFMA')
19 FORMAT (IHO, 'SUMMARY BY MAJOR COST CATEGORY')
20 FORMAT (IHO, 'SUMMARY-COST CATEGORY BY APPROPRIATION')
21 FORMAT (IHO, 120X, 'PAGE', 1X, I3)
22 FORMAT (8F10.3)
23 FORMAT (2X, 12, 16)
24 FORMAT (2X, 12, 16)
25 FORMAT (2X, 12, 16)
26 FORMAT (2X, 12, 16)
27 FORMAT (2X, 12, 16)
28 FORMAT (2X, 12, 16)
29 FORMAT (2X, 12, 16)
30 FORMAT (2X, 12, 16)
31 FORMAT (2X, 12, 16)
32 FORMAT (2X, 12, 16)
33 FORMAT (2X, 12, 16)
34 FORMAT (2X, 12, 16)
35 FORMAT (2X, 12, 16)
36 FORMAT (2X, 12, 16)
37 FORMAT (2X, 12, 16)
38 FORMAT (2X, 12, 16)

DATA (FMT(I), I=1, 6) /8H(1H , 2X, 1H , 10H('FY', 12, 6, 3HX), 1H ,
1 10HX, 'TOTAL')/
DATA (GMT(1), I=1, 4) /8H(1H , 3X, 1H , 10H('FY', 12, 6, 3HX))/
DATA (HMT(1), I=1, 4) /8H(1H , 4X, 1H , 10H('FY', 12, 6, 3HX))/
DATA (FMT1(I), I=1, 3) /8H(1H , 2X, 1H , 10H(F9.3, 2X))/
DATA (GMT1(I), I=1, 3) /8H(1H , 3X, 1H , 10H(F9.3, 2X))/
DATA (HMT1(I), I=1, 5) /8H(1H , 4X, 1H , 10H(F9.3, 2X))/
REIND 2
READ (2,6) ((ID(I), I=1, 9), (IDATE(I), I=1, 3))
READ (2,1) IY1, IYREN
NTOTYR=IYREN=IYR+1
NMOD=MOD(NTOTYR, 3)
IF(NMOD.EQ.0) GOTO 110
IF(NMOD.EQ.1) GOTO 120
NCOUNT(1)=NTOTYR/3+1
NCOUNT(2)=NCOUNT(1)
NCOUNT(3)=NCOUNT(1)-1
110 NOD=(NTOTYR/3)
 DO 112 I=1,3
 NCOUNT(I)=NOD
112 CONTINUE
 GOTO 140
120 NCOUNT(1)=(NTOTYR/3)+1
 NCOUNT(2)=NCOUNT(1)-1
 NCOUNT(3)=NCOUNT(2)
140 LOBO=NCOUNT(1)
 MOBO=NCOUNT(2)
 NOBO=NCOUNT(3)
 IF(LOBO.EQ.10) GOTO 141
 FMT(2)=LOBO
 FMT1(2)=LOBO
 GOTO 142
141 FMT(2)=112
 FMT1(2)=112
142 IF(MOBO.EQ.10) GOTO 143
 GMT(2)=NOBO
 GMT1(2)=NOBO
 GOTO 144
143 GMT(2)=112
 GMT1(2)=112
144 IF(NOBO.EQ.10) GOTO 146
 HMT(2)=NOBO
 HMT1(2)=NOBO
 GOTO 147
146 HMT(2)=112
 HMT1(2)=112
147 DO 145 I=1,LOBO
 NYR(I)=IYR1+(3*(I-1))
145 CONTINUE
 L2=LOBO+1
 L3=L2+NCOUNT(2)-1
 J=1
 DO 148 I=L2,L3
 NYR(I)=(IYR1+1)+(J-1)*3
 J=J+1
148 CONTINUE
 J=1
 L4=L3+1
 L5=L4+NOBO+1
 DO 150 I=L4,L5
 NYR(I)=(IYR1+2)+(J-1)*3
 J=J+1
150 CONTINUE
 DECODE(10,36,FMT(2)) NFMT
 NSPACF=117-2-NFMT*10
 ENCODE(10,1,FMT(5)) NSPACF
 DECODE(10,36,HMT1(2)) MFMT
 MSPACF=117-4-MFMT*11
 ENCODE(10,1,HMT1(4)) MSPACF
 NFINAL=11+NTOTYR
 DO 200 I=1,1000
 READ (2,3) (VALUE(I,J),J=1,11)
 IF(VALUE(I,1).EQ.5HXXXXX) GOTO 210
 READ (2,4) (VALUE(I,J),J=12,NFINAL)
200 CONTINUE
210 NUM=I-1
DO 212 J=1,NUM
DEC ODE(R0,34,VALUE(J,1)) (IT(K),K=1,10)
DEC ODE(R0,35,VALUE(J,2)) (IT(K),K=11,18)
DO 211 K=1,18
INT(K)=IT(K)
IF (IT(K).NE.1H0) GOTO 211
INT(K)=0
211 CONTINUE
ENCODE(R0,34,VALUE(J,42)) (INT(K),K=1,10)
ENCODE(R0,35,VALUE(J,43)) (INT(K),K=11,18)
212 CONTINUE
CALL ARANGI(VALUE,NUM,43,100,43)
CALL ARANGI(VALUE,NUM,42,100,43)
C****
NUM CONTAINS TOTAL NUMBER OF LEVELS USED
C VALUF NOW CONTAINS THE ORDERED LEVELS AND DATA
C****
INUM=1
DO 300 IPAGE=1,500
PRINT 5,IPAGE
PRINT 6,((ID(I),I=1,9),(IDATE(I),I=1,3))
PRINT 7
PRINT FMT , (NYR(I),I=1,LOBO)
PRINT GMT , (NYR(I),I=L2,L3)
PRINT HMT , (NYR(I),I=L4,L5)
INUM=INUM+9
DO 250 I=INUM,INUM9
DO 215 J=0,11
IF(VALUE(I,J).NE.1H) GOTO 225
215 CONTINUE
PRINT 10,((VALUE(I,J),J=3,8),(VALUE(I,J),J=1,2))
GOTO 230
225 PRINT 11,((VALUE(I,J),J=3,11),(VALUE(I,J),J=1,2))
230 TO=0.
DO 231 KO=12,NFINAL
TO=TO+VALUE(I,KO)
231 CONTINUE
PRINT FMT1,((VALUE(I,K),K=12,NFINAL,3)
PRINT GMT1,((VALUE(I,K),K=13,NFINAL,3)
PRINT HMT1,((VALUE(I,K),K=14,NFINAL,3),TO)
IF(I.EQ.NUM)GOTO 310
250 CONTINUE
PRINT 14,IPAGE
INUM=INUM9+1
300 CONTINUE
310 CONTINUE
READ 16, NOY
IF(NOY,EQ,0) GOTO 410
C*****
CALCULATION OF SUMMARY 1
BY COST CATEGORY
C*****
IPAGE=IPAGE+1
PRINT 5, IPAGE
PRINT 6,((ID(I),I=1,9),(IDATE(I),I=1,3))
PRINT FMT , (NYR(I),I=1,LOBO)
PRINT GMT , (NYR(I),I=L2,L3)
PRINT HMT , (NYR(I),I=L4,L5)
J=1
I=1

82
312 IF (J.EQ.5) GOTO 325
DECOD (80,16,VALUE(I,1)) ITEST1,ITEST2
IF (ITEST1.NE.J.OR.ITEST2.NE.0) GOTO 320
IER=1
DO 315 K=1,12,NFIAL
TEMPO(J,1,IER)=TEMPO(J,1,IER)+VALUE(I,K)
IER=IER+1
315 CONTINUE
J=J+1
I=I+1
GOTO 312
320 I=1+1
GOTO 312

C*****
 TEMPO ARRAY CONTAINS DATA FOR 1ST SUMMARY
 WILL CALCULATE TOTAL ARRAY AND TOTAL BY
 YEAR, THEN PRINT THE RESULTS.
C*****
325 DO 340 I=1,4
DO 335 K=1,NTOTYR
TOTAL(I,1)=TOTAL(I,1)+TEMPO(I,1,K)
COSCAT(K)=COSCAT(K)+TEMPO(I,1,K)
335 CONTINUE
340 CONTINUE
PRINT 30,
DO 341 I=1,NTOTYR
COSTOT=COSTOT+COSCAT(I)
341 CONTINUE
PRINT FMT1,(COSCAT(K),K=1,NTOTYR,3)
PRINT GMT1,(COSCAT(K),K=2,NTOTYR,3)
PRINT HMT1,(COSCAT(K),K=3,NTOTYR,3),COSTOT
DO 350 J=1,4
GOTO (342,343,344,345),J
342 PRINT 17,
GOTO 346
343 PRINT 18,
GOTO 346
344 PRINT 19,
GOTO 346
345 PRINT 20,
346 PRINT FMT1,(TEMPO(J,1,K),K=1,NTOTYR,3)
PRINT GMT1,(TEMPO(J,1,K),K=2,NTOTYR,3)
PRINT HMT1,(TEMPO(J,1,K),K=3,NTOTYR,3),TOTAL(J,1)
350 CONTINUE
C*****
 CALCULATION OF SUMMARY 2
 BY APPROPRIATION
C*****
DO 348 I=1,4
DO 348 J=1,7
TOTAL(I,J)=0,
DO 348 K=1,30
TEMPO(I,J,K)=0,
COSCAT(K)=0,
348 CONTINUE
COSTOT=0,
DO 370 L=1,NUM
DECOD (80,22,VALUE(L,2)) ITEST1,ITEST2
DO 355 J=1,7
IF (ITEST1.EQ.J.AND.,ITEST2.EQ.0) GOTO 360
355 CONTINUE
GOTO 370
360 IER=1
DO 361 K=1,NFINA1
APPRO(I,ER)=APPRO(I,ER)+VALUE(L,K)
TEMPO(I,J,IER)=TEMPO(I,J,IER)+VALUE(L,K)
IER=IER+1
361 CONTINUE
370 CONTINUE
DO 390 J=1,7
DO 390 K=1,NTOTYR
TOTAL(I,J)=TOTAL(I,J)+TEMPO(I,J,K)
390 CONTINUE
DO 391 K=1,NTOTYR
APTOT=APTOT+APPRO(K)
391 CONTINUE
IF(APTOT.EQ.0.) GOTO 411
IPAGE=IPAGE+1
PRINT 5, IPAGE
PRINT 6, ((ID(I), I=1,9), (IDATE(I), I=1,3))
PRINT FMT, (NYR(I), I=1,LOBO)
PRINT GHT, (NYP(I), I=L2,L3)
PRINT HMT, (NYP(I), I=L4,L5)
PRINT 21,
PRINT FMT1, (APPRO(K), K=1,NTOTYR,3)
PRINT GHT1, (APPRO(K), K=2,NTOTYR,3)
PRINT HMT1, (APPRO(K), K=3,NTOTYR,3), APTOT
DO 410 J=1,7
IF(TOTAL(I,J).EQ.0.) GOTO 410
GOTO (402,403,404,405,406,407,408), J
402 PRINT 23,
GOTO 409
403 PRINT 24,
GOTO 409
404 PRINT 25,
GOTO 409
405 PRINT 26,
GOTO 409
406 PRINT 27,
GOTO 409
407 PRINT 28,
GOTO 409
408 PRINT 29,
409 PRINT FMT1, (TEMPO(I,J,K), K=1,NTOTYR,3)
PRINT GHT1, (TEMPO(I,J,K), K=2,NTOTYR,3)
PRINT HMT1, (TEMPO(I,J,K), K=3,NTOTYR,3), TOTAL(I,J)
410 CONTINUE

C**
C C**
CALCULATION OF SUMMARY 3
C COST CATEGORY BY APPROPRIATION
C**

411 IPAGE=IPAGE+1
PRINT 5, IPAGE
PRINT 6, ((ID(I), I=1,9), (IDATE(I), I=1,3))
DO 420 I=1,4
DO 420 J=1,7
TOTAL(I,J)=0.
DO 420 K=1,NTOTYR
TEMPO(I,J,K)=0.
COSCAT(K)=0.
420 CONTINUE
420 CONTINUE
COSTOT = 0
PRINT FMT, (NYR(I), I=1, L080)
PRINT GMT, (NYR(I), I=1, L3)
PRINT HMT, (NYR(I), I=1, L5)
DO 430 I=1, 4
DO 425 J=1, 7
DO 424 L=1, NUM
DECODE (80, 37, VALUE(L, 1)) ITEST1
DECODE (80, 38, VALUE(L, 2)) ITEST2, ITEST3
IF (ITEST1, NE, I, OR, ITEST2, NE, J, OR, ITEST3, NE, 0) GOTO 424
IER = 1
DO 412 K=12, NFINAL
TEMPO(I, J, IER) = TEMPO(I, J, IER) + VALUE(L, K)
IER = IER + 1
412 CONTINUE
424 CONTINUE
DO 421 K=1, NTOTYR
TOTAL(I, J) = TOTAL(I, J) + TEMPO(I, J, K)
COSCAT(K) = COSCAT(K) + TEMPO(I, J, K)
421 CONTINUE
425 CONTINUE
430 CONTINUE
DO 422 K=1, NTOTYR
COSTOT = COSTOT + COSCAT(K)
422 CONTINUE
IF (COSTOT, EQ, 0.0) STOP
PRINT 32,
PRINT FMT1, (COSCAT(K), K=1, NTOTYR, 3)
PRINT GMT1, (COSCAT(K), K=1, NTOTYR, 3)
PRINT HMT1, (COSCAT(K), K=1, NTOTYR, 3), COSTOT
DO 500 I=1, 4
IPRINT = 0
DO 480 J=1, 7
IF (TOTAL(I, J), EQ, 0.0) GOTO 480
IF (IPRINT, EQ, 0) GOTO 460
IPRINT = 1
GOTO (456, 457, 458, 459, 1)
456 PRINT 17,
IPRINT = 1
GOTO 460
457 PRINT 18,
IPRINT = 1
GOTO 460
458 PRINT 19,
IPRINT = 1
GOTO 460
459 PRINT 20,
IPRINT = 1
460 GOTO (461, 462, 463, 464, 465, 466, 467), J
461 PRINT 23,
GOTO 470
462 PRINT 24,
GOTO 470
463 PRINT 25,
GOTO 470
464 PRINT 26,
GOTO 470
465 PRINT 27,
GOTO 470
466 PRINT 28,
GOTO 470
467 PRINT 29,F
470 PRINT FMT1, (TEMPO(I,J,K), K=1, NT0TYR, 3)
PRINT GMT1, (TEMPO(I,J,K), K=1, NT0TYR, 3)
PRINT HMT1, (TEMPO(I,J,K), K=3, NT0TYR, 3), TOTAL(I,J)
480 CONTINUE
500 CONTINUE
STOP
END
SUBROUTINE ARANGL(IA,N,L,NMAX,LMAX)
DIMENSION IA(NMAX,LMAX)
C
ORDERS LTH ELEMENTS OF ARRAY IA FROM SMALLEST TO LARGEST VALUE
C
THE OTHER (LMAX-1) ELEMENTS OF ARRAY IA ARE CARRIED ALONG
C
ONE TO ONE AS THE LTH ELEMENT IS SEQUENCED
IF(N.LE.1)RETURN
DO 40 J2=2,N $ I1=12-1
IF(IA(I1,L),LE.,IA(I2,L))GOTO 40
DO 10 LL=1,LMAX
IT=IA(I1,LL) $ IA(I1,LL)=IA(I2,LL) $ IA(I2,LL)=IT
10 CONTINUE
J2=I1
20 IF(J2.LE.1)GOTO 40 $ J1=J2-1
IF(IA(J1,L),LE.,IA(J2,L))GOTO 40
DO 30 LL=1,LMAX
IT=IA(J1,LL) $ IA(J1,LL)=IA(J2,LL) $ IA(J2,LL)=IT
30 CONTINUE $ J2=J2-1 $ GOTO 20
40 CONTINUE $ RETURN $ END
* LIST(STOP)
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Defense Documentation Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: TIPCR</td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCDL</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCMCA</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCMS</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCQA</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCRD</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCRD-M</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCRD-R</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCRD-P</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCRD-T</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCSA-PM-MBT</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCCP</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCPM-SA</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20315</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCPM-SA</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal</td>
</tr>
<tr>
<td></td>
<td>Dover, New Jersey 07801</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>MUCOM Operations Research Group</td>
</tr>
<tr>
<td></td>
<td>Edgewood Arsenal, Maryland 21010</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1 | Commanding Officer
U.S. Army Harry Diamond Laboratories
ATTN: Sys Anal Ofc
Washington, D.C. 20438 | 1 | Commanding General
U.S. Army Mobility Equipment Command
ATTN: Sys Anal Ofc
4300 Goodfellow Blvd
St. Louis, Missouri 63120 |
| 1 | Commanding Officer
Frankford Arsenal
ATTN: Mr. George Schecter
Philadelphia, Pennsylvania 19137 | 1 | Commanding General
U.S. Army Munitions Command
ATTN: AMSMU-RE-R
Dover, New Jersey 07801 |
| 1 | Chief, Analytical Sciences Office
USA Biological Defense Research Laboratory
ATTN: AMXBL-AS
Dugway, Utah 84022 | 1 | Commanding General
U.S. Army Tank-Automotive Command
ATTN: AMSTA-CV
Warren, Michigan 48090 |
| 1 | Commanding General
U.S. Army Aviation Systems Command
ATTN: AMSAV-R-X (Mr. Hollis)
P.O. Box 209
St. Louis, Missouri 63166 | 1 | Commanding General
U.S. Army Weapons Command
ATTN: Sys Anal Ofc
Rock Island, Illinois 61202 |
| 1 | Commanding General
U.S. Army Electronics Command
ATTN: AMSEL-PL
Fort Monmouth, New Jersey 07703 | | |
| 1 | Commanding General
U.S. Army Missile Command
ATTN: AMSMI-DA
Redstone Arsenal, Alabama 35809 | | |

Aberdeen Proving Ground
CG, USATECOM
ATTN: AMSTE-TS
<table>
<thead>
<tr>
<th>AD</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPES, Wayne S.</td>
<td></td>
</tr>
<tr>
<td>CONVERSION OF MICOM TO FORTRAN IV: TIME-PHASED LIFE-CYCLE COST-ESTIMATING MODEL FROM COBOL TO FORTRAN IV. REPORT NO. ROYCE-79581-WM1, MARCH 1972</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AD</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPES, Wayne S.</td>
<td></td>
</tr>
<tr>
<td>CONVERSION OF MICOM TIME-PHASED LIFE-CYCLE COST-ESTIMATING MODEL FROM COBOL TO FORTRAN IV: REPORT NO. ROYCE-79581-WM1, MARCH 1972</td>
<td></td>
</tr>
</tbody>
</table>

Trace Index Terms

| Lifecycle costs |
| Learning curves |
| Cost analysis |
| Economic analysis |

Cost analysis

| Lifecycle costs |
| Learning curves |
| Economic analysis |

Economic analysis

| Lifecycle costs |
| Learning curves |
| Economic analysis |
ABSTRACT

LICEM is a computer model which may be used to generate Time-Phased Life-Cycle Cost Estimates (LCCE) for personnel or materiel systems. The input to this model is in a form compatible with the Army Materiel Command's Improved Cost Estimating Project, Phase III (ICE-III).

The cost for a system can be computed for as many as thirty equal increments of time, and can be summarized in up to nine levels of complexity. The model estimates a system cost for each time increment as well as the total cost over the life of the system.

The model is written in FORTRAN IV specifically for the Ballistic Research Laboratories' Electronic Scientific Computer (BRLESC).
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life-cycle costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning curves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>