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ABSTRACT

The merits of two new statistical wind displacement estimators are tested
against a ballistic-meteoroioglcal estimator similar to that currently
utilized for predicting the impact displacement due to the wind effect

on an unguided artillery rocket (M50) during powered flight. Computa=-
tions of the statistical estimators, based on simulated rocket trajectories
using actual wind profiles, are presenied for the 200, 400, and 800 mi
trajectories. Reductions In impact dispersion ranging from 22 to 56%

are afforded by these new estimators over the one currentily used. Seasonal
stability of the statistical estimators is Investigated for data gathered
over a flat desert area of White Sands Missile Range, New Mexico. Season-
al stability was good during daytime hours but more questicnable during
nighttime hours, A comparison of estimator curves calculated from data

col lected at WSMR and foothill terrain at Green River, Utah, revealed
small variations,
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INTRODUCT ION

Ouring the last two years, efforts have been made to reduce the meteoro-
logically induced impact dispersion of tactical unguided projectiles with-
out increasing computational complexity of the manua! fleld prediction
techniques. The compensation errors involved in predicting the impact
point of a speciflc trajectory are categorized as follows: hardware,
environmental, and aiming errors. The meteorological parameters in the
environmental compensation error make a large contribution to the error
budget for the M50 unguided rocket; for this reason, Individual studies
of the meteorological parameters affecting the impact deflection of an
unguided projectile nave been in progress at Atmospheric Sciences Labora-
tory (ASL). Extensive statistical studies of the wind effect on the im-
pact of unguided rockets have already been completed. Effects from at-
mospheric pressure and temperature are presently under investigation.

The current technlque used in compensating for the wind effect during pow-
ered flight on the impact of an M50 rocket assumes a functional form for
the low-level wind In I+s prediction procedures. Some statistical aspects
of this assumed functional form of the wind versus height were studied by
Miller, et all. PResults Indicated that the wind follows a power law form
wilth respect to height, but the power value In the expression varies con-
siderably with time. This raises the possibility that the prediction of
the Impact deflection due to wind during powered flight could be improved
by a least-squares technique applied to impact data. This led to the
development of new estimators? to reduce the existing dispersion in the
predicted Iimpact produced by the current technique.

This study presents computational results of two statistical estimators
derived in an earlier sTudyZ to reduce the impact dispersion of the M50
unguided rocket due *to the low-level wind, For completeness, a brief
treatment of the bal listic technique currently in use and the two sta-
tistical techniques is also presented. To insure valld comparisons be-
tween the statistical and ballistic estimators, all computations were
performed by the ASL five-degree-of-freedom trajectory simulator,

IMlller, W. B., L. E, Traylor, and A, J. Blanco, 1970, "Some Statistical

Aspects of Power Law Profiles," Technical Report ECOM-5303, Atmospheric
Sciences Laboratory, U.S. Army Electronics Command, white Sands Missile
Range, New Mexico.

2Miller, W. B., A, J. Blanco, and L. E., Traylor, 1970, "Impact Deflection

Estimators from Single Wind Measurements," Technical Report ECOM-5328,
Atmospheric Scliences Laboratory, U. S, Army Electronics Command, White
Sands Missile Range, New Mexico.
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A total of 1289 wind profiles collected from a relatively flat desert
area at White Sands Missile Range (WSMR), New Mexico (1230m MSL) In the
spring of 1969 was used to compute the value and to check the stability
of the derived statistical estimators. Values for the estimators tested
are presented for three quadrant elevation (QE) angles (200, 400, and 800
mils) representative of typical M50 trajectories. Reductions of 56% in
the range component and 44% in the cross component of the Impact disper=
sion for a 200 mil trajectory were the highest afforded by the new esti-
mators. One hundred summer and 60 winter wind profiles collected at
WSMR in 1967 are used to investigate the behavior of the statistical :
estimator's stability as compared to the 1969 spring data. Finally, 112
fall of 1967 and 54 summer of 1969 wind profiles collected from foothill
terrain at Green River, Utah (1360m MSL and about 800 km to the NW of
WSMR), are used to check terrain effects on fhe value of the new estima-
tors as compared to the WSMR dafa

I

IMPACT DEFLECTION ESTIMATORS

Only the baslc development of the cross component for the three estima-
tors tested in this study is presented; for complete details see Refer- |
ences | and 2. The powered flight wind correction technique as used with
the Honest John M50 rocket tnvolves two steps, First, a power law profile
for the low=-level wind is assumed; from a single wind measurement the
current technique then predicts a wind profile from the followlng ex-
pression:

z \P
u(z) = Ur (2:

where U(Z) Is the wind speed at height Z, U is the single wind speed
measurement at Z, (the reference height), and p takes on particular values
for daytime and nighttime conditions. Secondly, with fhe wind predicted
up to 183 meters by this power law and assumed constant above 183 meters
to +he motor burnout altitude of the M50, a ballistic weighting technique
is utilized to estimate the impact deflection D as

D = §fw'(2)U(2)dZ
183 p :
D= 6{fu'(2) %—-‘ dZ + [w(Z ) - w(183)] ('85) U
-
Z ri .
D=AU .
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A a{}a?m Poz + T (z,) (18377482, |
= [) + lw -w
'z, (7:) | i

§ Is the unit wind effect, w '(Z) Is the derivative of the cumulative
ballistic weighting curve wl+h respect to height, and

is the predicted wind profilé. The Impact displacement due to the !ow-
level wind can now be expressed as the product of the values for the
current estimator A and the single wind measurement Ur. A is a function
of quadrant elevation, of course. This concept is lncorporaTed into
firing tables so that the artil'leryman need only measure the wind at Z
(currently chosen at 15.2 meters) and obtain launcher settings for com=-

pensa+lbn for the effect of the low-level wind.

The statistical Techniques follow the same form as the balllstic technique
in predicting the impact peoint for an unguided projectile, l.e., D = aUr.
The artilieryman would go through the same mechanics in acquiring the

.launcher settings from a firing table containing the computational re-

sults of the new technique. These new estimators do not assume elther

a functional' form of the wind with respect to height or any knowledge of
a weighting curva, Actual wind profiles are used to calculate simulated
impacts; In turn, these impacts, together with a single wind measurement
at 15.2 meters from the corresponding profiles, are used to compute an
optimal value for the estimator a in the least-squares sense. These new
estimators differ from prior ones in that their construction utilizes
statistical'rather than physical properties, and they possess certain
optimal features. The availability of a ballistic simulator permits a
purely statistical approach to esfimafion of Impact deflection due solely
to wind during powered: fllgh+

The predicted.impacts are represenTed componentwise by the statistical
technique as the sum of the no-wind impact Io and an impact deflection.
The approximation of the actual impact I, by this sum is then developed
by the method of least squares *o compufe the value of the estimator that
will 'best predict the actual Impact for all the profiles in the set of
data utilized.. For the actual cross impact given by one proflle one has

+
I, % Io aUr

R=1I_=(1_+aU)
a (e} r
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where R is the residual. The values of the statistical estimators are
obtained as follows (treating specifically the cross component):

let Di = Iai - Iol' for the ith profile,

Requiring that

2
ot N1
9a
gives
o = ZD[ Url
- »
L U2rl

and similarly for the range estimator B. Together, a and 8 comprise
statistical estimator #1.

In @ similar manner, the second statistical estimator Is derived. This
time the influence of cross wind on range impact displacement and range
wind on cross impact displacement is considered. Let U. and V. be the
cross and range components of the wind speed at the reference height.
The approximation of the actual impact Is now represented as

v

Iy # Io ta 2'r

Uu_ +
a P

!
R = I, - (IO + ay u_+ %, Vr)‘

The value of the statistical estimator with correlation (statistical
estimator #2) Is computed by minimizing the sum of the squares of the
residuals with respect to both cross and range estimators. The derived
optimal estimators for the cross component take the form

? 24 _
3;7 [E(D] = Uy moay V) 1=0
3 24 _
33; [Z(DI - a Url - a, Vri) J-0
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and similarly the range component 8| and By are derived, In summary,
the three low-leve! estimators of impact displacement considered are
of the following form:

(1Y (AU, BV Ballistic

r' r
{(2) (aUr, BVr) Statistical #I

(3) (alur + uzvr, Blvr + BZUr) Statistical #2

EXPERIMENTAL PROCEDURE

Date utilized In this study conslsted of met tower data and pilot balloon
(pibal) data obtalned from T-9 radar tracks. The tower data were taken
from the Atmospheric Sciences Laboratory 152.4m meteorological research
tower (instrumented at eight levels) located In a relatively flat desert
area at White Sands Missile Range, New Mexico, and from a simllar met
tower |ocated in a foothi!l area at Green River, Utah. Table | identi-
fles all the reduced tower wind profiles taken from both locations.

At WSMR, wind speed and direction were measured simultaneously at heights
of 7.6, 15.2, 38,1, 53,3, 68.6, 91.4 121.9, and 152.4 meters, converted
electronically to component form, oriented with respect to true North,
and transmitted analog to a NAVCOR A/D converter, where the data flow was
sampled at one-second intervals. The data were ‘then passed through the
Kineplex data modem and transmitted through range communlcations to a
statlion where the date were taped and compressed ready for input to a
UNIVAC 1108, The data were collected at WSMR over certain two-hour
periods: 0930-1130, 1330-1530 local daytime and 0300-0300, 1900-2100
local nighttime during March and early April 1969. These spring data,
after being subjected to a visual editing technique, were averaged over
I-, 2-, or S5-minute intervalis (each Interval being a profile) to conform
to the electronic average obtained by the AN/MMQ-1B. The AN/MMQ-1B

is the windset used for measuring the wind (in component form U, Vr) to
supply the single wind measurement for the low~level wind correction of
the M50. Tower proflles were also collected during June, July, and
December 1967, but this time they were reduced visuaily from strip

charts and averaged over one-minute intervals. The data were collected

5
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at lIdentical heights except for the second level which was set at
22.9 Insteau of 15.2 meters.

At Green River, wind tower data were reduced in a similar manner as the
Spring 1969 WSMR data; however, these measurements were collected from
heights of 12.5, 21.0, 32.9, 46,3, 63.1, 85.9, 112,2, and 139.3 meters
on the Green River meteorological tower. All Green River data were
ccllected during nighttime conditions in support of the Athena Project

for firings during August, September, and October 1967 ard June 1969 and
1 were averaged over one-minute intervals.,

For testing the new estimators at higher quadrant elevation angles, pilot

~ balloons were released at approximately 10-minuic Intervals throughout
E each two-hour period sampled at WSMR during the Spring of 1969, The pibals
4 f were tracked by a T-9 radar to obtain a profile from 152,4 meters to

burnout altitude of the M50 launched at the higlier quadrant elevations.
Wind data were sampled at one-second intervals and stored on magnetic
tape, transformed to a true-north-oriented cartesian coordinate system
identical to that used by +he tower data, and averaged over three-second
intervals giving approximately |5-meter layers. Table || shows the
total number of tower and pibal wind profiles matched to cover the high
Q.E. burnout altitudes.

COMPUTATIONAL RESULTS

Comparison of the impact dispersion for the three estimators tested was
accomplished by means of the ASL simulator., The ballistic weighting
functions together with the value of p used to compute M50 firing table
corrections, 0.2 daytime and 0.4 nighttime. were employed to tabulate
the estimator (A,B). Measured wind profiles were used as input to the
simulator to calculate the actual impacts; these Impacts, together with
the corresponding wind speed at 15.2 meters, were utilized to compute
the value of the statistical estimators (a,8) and (a', an; BI’ Bo)s

M50 trajectories were computed for 200, 400, and 800 mils quadrant ele~

vations at WSMR, New Mexico (1230.5 meters MSL). All simulated impacts

were computed using the MSL elevation from the area of wind profile col-

lection as the launcher MSL position and with firing azimuth due North.

The estimator values computed for WSMR are illustrated in Table 111,

I+ should be emphasized thar these values do not include the low-level

wind effect from ihe surface to 7.6 meters, the height of the first level

on the met tower. The 90 five-minute averaged daytime (0930-1130) wind i
profiles were extrapolated to include *the missing 7.6 meters of wind

data; the computed values for the three estimaters increased as a result :
of the added wind included in the calculation of the simulated impacts.

The values for the 400 mils ballistic (A,B) and statistical (a,B) esti-
mators were as follows:
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(A,B) (a,B)
from 7.6 meters (62,=33) (54,-28)
from surface (69,=37) (61,-32)

Since the type of extrapolation applied to the actual wind profiles may
also contribute to the increase in estimator value, to avoid data con-
tamination the principal part of this study was performed with the low-
level wind effect beginning from the first height on the WSMR tower
(7.6m) to burnout altitude.

The standard deviation of impact and mean miss distance given by the new
estimators were then compared to those from the ballistic estimators.
Table |V presents the reduction in rms miss distance afforded by the new
estimators, and the statistical quantities are listed in Table V. As
expected, the statistical estimator with correlation (aj, az; By, B2)
shows the smallest impact dispersion, but only slightly. Aftention will
therefore be focused on the less complex |inear estimator (a,B). This
estimator was checked for stability by dividing the data into sets and
computing the estimator value. The results shown In Table VI indicate
that the estimator retains its approximate value from data set to data
set with only slight dependence on the data, The nighttime conditions
illustrate the largest variation in estimator values. For the 200 mils
trajectory, comparing the estimator value for the total 240 profiles and
the last 50-profile set, there is a variation of 5% In both the cross and
range components, For the 800 mlls trajectory, a similar comparison be-
tween the 140 profiles and the 62 profiles yields a variation of 26% in
the cross and 6% in the range component, Even with this maximum spread
in estimator value between the different wind profile sets, the new sta-
tistical estimator produces a smaller impact dispersion than the ballistic
theory = p profile estimator. By reviewing Table {1l and recalling that
the predicted impacts are calculated from the sum of the no-wind impact
and the product of the reference wind speed and the estimator value, one
can show that If (a,B) are the optimal estimators calculated by the least-
squares method, then variation from («a,B) will produce an increase in the
rms miss distance, and the ballistic values for nighttime, 800 mils, are
considerably different from any of the statistical estimators.

The next phase was to investigate seasonal variability of the linear sta-
tistical estimator. The statistical estimators computed from the 84
daytime and 140 nighttime profiles collected during the Spring of 1969 at
WSMR were compared with estimators computed from 100 daytime Summer of
1967 and 60 nighttime Winter of 1967 profiles collected from the same
location. In acquiring the different data it was impossible to obtain
data collected at the same heights on the meteorological tower. Since
the summer and winter data did not have u wind measurement at 5.2 meters,
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TABLE VI
H STATISTICAL IMPACT DEFLECT{ON ESTIMATOR STABILITY (m/MPH)
DAYTIME _ NIGHTTIME
# of Profiles Cross Range # of Profiles Crozs Range
200 MILS
90 23,09 -16.88 78 26.36 =~17.58
H 94 22,86 -17.00 62 26.34 -18,04
' 90 + 94 = |84 22,94 -16,93 78 + 62 = 140 26.36 -17.79
50 22.99 -16.57 50 26.22 -17.79 ‘_
{ 50 22,76 ~16.61 50 25.00 -18,96
i 50+ 50 = 100 22.86 ~16.59 50 + 50 = 100 26.04 =-18.19
184 + 100 = 284 22,91 -16,80 140 + 100 = 240 26,23 =18.02
400 MILS
90 53.56 -27.85 78 69,22 -28,73
94 53.67 -28.43 62 59.94 -30.73
t 90 + 94 = |84 53.63 -28.09 78 + 62 = 140 67.80 -29.63
é 71 53.52 -27.0I 46 64.72 -28.33 ;
4 |
i 80O MiLS :
' 90 117.78 =31.07 78 156.22 =30.55
' 94 120,57 «33,23 62 110.5} =-33,99
90 + 94 = |84 119,61 =31.94 78 + 62 = 140 149,21 -32,08 : .
I_‘
i
J X
; 3
]
r |
A .
|
¢}
-
{
i‘
; i ]
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estimator values were computed for the first three levels on the met tower. !
Figures | and 2 present the behavior of ballistic and statistical esti-

mators for the 200 mil trajectory as a function of helght in both daytime

and nighttime conditions. The reference height becomes an Iimportant para-

meter because In the ballistic technique (if p remains constant) the esti-

mator value becomes a simple power function of the refarence height

A = -‘Sp- fu'(2)ZPdz.

zr

In the statistical technique the estimator value depends on the charac-

teristics of the wind sn . at the selected reference height
ID.U
5 = I ri
zUrl

Figure 3 shows the estimator values at 7.6, 15.2, and 38.!| meters for the

184 daytime spring wind profiles versus the values at 7.6, 22,9, and 38.1|

meters for the |00 daytime summer wind profiles. For nighttime conditions

the estimator values for the 140 spring wind proflles and 60 winter wind i
proflles are similarly compared. The statistical estimator values for

spring and summer were virtually identical In daytime conditions at the ¢
relatively flat desert area. For nighttime conditions, the estimator

values for spring and winter were somewhat different, which may be due

In part to the small sample of winter profiles and the quality of the 60

wind profiles. By comparing Figures | and 3, one can see the seasonal

variance of the statistical estimator curves versus the constant (with

season) balllistic estimator curves. The statistical estimator for the

daytime conditions shows merit for it indicates that the ballistic esti-

mator Is overestimating in both seasons.

Another investigation concerned the behavior of the statistical estima-
tor with respect to terrain. The flat desert area statistical estimator
curves were compared to estimator curves from a rough semi-mountainous
terraln at Green River, Utah. All Green River tower wind profiles were
collected during nighttime conditions and at different heights than those
on the WSMR met tower. The first lsvel on the Green River met tower was
set at 12.5 meters above the surface. To compare the estimator curves
from the dilfferent terrains, 4.9 meters of wind profile were needed for
the Green River profiles to lnclude the low-level wind effect from 7.6
meters above the surface to burnout altitude. Linear extrapolation of
the Green River wind proflles down to 7,6 meters above the surface was
performed, The extra low~leve!l wind effect was then added to the Impact
calculation from the ASL simulator, and the statistical estimator values
for the first three (i2.5, 21.0, and 33.9 meters) levels on the Green

14
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River tower were computed. Figure 4 |llustrates the statistical est|-

mator curves for a flat desert area and a semi-mountalnous terraln at

different seasons. The change in MSL elevation between the two sites

has |ittle effect In changing estimator values because the unit wind

effects for the two sites are virtually ldentical. The variance in

estimator curves may be due to difference in terraln, small number ot

wind proflles from Green River, and the different seasons in which the

profiles are co!lected. The range estimator curves in Figure 4 indicate

a strong possibility that there may not be an estimator difference from :
terraln effects. By comparing the fall and summer estimator curves for 3
: the semi-mountainous terrain, one can see seasonal variance of the esti-

; mator values similar to spring and winter estimator curves for the flat

| desert area,

SUMMARY AND CONCLUSIONS ‘

Reductions In Impact dispersion (rms miss distance) due to wind during

powered flight ranging from 22 to 56% were afforded by the new statistical

estimators developed for the 200, 400, and 800 mils M50 trajectories.

The maximum percentage reduction occurred in the 200 mil short range tra-

Jectory. Figures 5 through 7 summarize the Iimprovement presented by the

stailstical estimator in the reduction of both the mean miss distance and

impact standard deviation, The new estimator derlved from measured low-

level wind profiles appears to be stable between different independent ‘
sets of profiles In the same season for the same terrain. The pilot ' ;
study In seasonal stabillty indlcated that spring and summer estimators
may be identical, while spring and winter estimators may differ. The
results from Investigating the terrain effects on the estimator revealed ;
; some variation but also indicated a possibility that the estimators may

\ be stable between the relatively flat desert and foothills terrain by the

close agreement between the range estimator statistical curve from the

54 summer Green River wind proflles and the analogous curve from the 140

@ spring WSMR wind profiles. Overall, the statistical estimator curves ‘
! were always below the ballistic estimator curve, indicating the presence <
of a blas. :

L]

The percent reduction in rms miss distance due to low-level winds is
signiflicant. For the range impact deflection, the low-level wind has a
] minor effect as compared to the other atmospheric parameters. In the

i intermediate range (400 mils) and daytime cases, about |1% of the total
range probable error is due to the low-level wind. Results from this
study Indicate a reduction of 7% in the totai prubacle érror. For the

; cross Impact deflection, however, the low-level wind has a major effect,
3 ! contributing 56% of the total probable error. The statlistical technique
( has afforded a 29% reduction in. the total cross probable error. With this
y in mind, a more complete study of terrain and season estimator variation
g is needed to ascertain more accurately the degree of stability exhibited
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by the statistical estimators, |f the estimators are not stable, they
could be classifled as to general terrain and season. On the other hand,
1f they are proven to be nearly constant, no changes in field operational
methods are necessary to acquire the significant reduction in impact
dispersion.
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