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ABSTRACT

The Fast Field Program (FFP) was developed to provide rapid,
accurate, propagation-loss predictions for a generalized environ-
mental model. This report demonstrates the utility of the FFP, in &
different capacity, as a research tool to investigate the sound atten-
uation in a water column. Hudson Bay was selected as the area of
application because the results of propagation experiments conducted
there during August 1970 were available and interesting. The experi-
mentally detecrminedvalues of the attenuation coefficient for the fre-
quency band 315 to1600 Hz were found to exceed the values that would
be predicted from existing formulss based on empirical relationships.
The possibility that this anomalous behavior could have been due to
energy leakage into the bottom is examined, and the values of the
attenuation coefficient determined from the FFP analysis are com-
pared with experimental results,
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THE FAST FIELD PROGRAM (FFP)
AND ATTENUATION LOSS IN HUDSON BAY

INTRODUCTION

SOLARGLS Sty aia o R R G R LTSIt

The increased interest, following World War II, in the propagation
characteristics of lower frequency sound waves led to the discovery of two
regimes of excess attenuation in sea water. The first occurred below 100 kHz,
where the results of experiments conducted by numerous investigators1 ex-
hibited an increase in the attenuation coefficient of sea water over that of fresh
water by a factor of approximately 20, This anomalous behavior was later

identified with a relaxation process related to the MgSO, content of the sea
water.

:
E’
%

As the trend toward lower frequencies continued, a second anomaly was
discovered, below 1 kHz. Although many explanations regarding the mechanism

for this anomaly have been advanced, conclusive supporting evidence for any
is lacking.

In 1965 Thorp2 summarized the experimental results with the empirical
formula

4

a= r2.75 12 x 1077, (1)

.1f2+ 40f2
1+f2 41001'-12

The attenuation coefficient « is given in dB/kyd and the frequency f in kHz.
The first term is identified with the unexplained anomaly below 1 kHz, the sec-
ond with the MgSO,4 relaxation process, and the last with viscous absorption.

The analysis contained in this report is concerned with the appearance of
a third regime of excess attenuiation, for frequencies below 1 kliz, which was
found in Hudson Bay.
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SNYOPSIS OF THE EXPERIMENTAL RESULTS

In August of 1970, Browning et al,3 conducted a lorig-range propagation
experiment in Hudson Bay. The values of the attenuation coefficient deter-
mined from that experiment were found to be considerably higher than the
values that would be given by Eq. (1), Thorp's formula, A graphic comparison
of the two results is provided in Fig. 1. Browning obtained his results byuti-
lizing the assumed expression for propagation loss

k
Nw(f)-—lo log R +H0+fR+afR,

in which the terms are

Total me‘asured = Spreading loss + Channel leakage + Attenuation loss.
propagation loss

The difference between the measured and assumed spreading losses was
analyzed by means of linear regression. Assuming that leakage out of the
channel was nugatory, the slope of the resulting regression line was set equal
to a. It canbe seen in Fig. 2, however, that the water depth over ..ost of the
tract was 600 feet, which results in an extremely weak sound channel. These
facts lead to the conjecture that the low frequency anomaly shown in Fig. 1 may
be due in part to the leakage of energy into the bottom. In order to gain addi-
tional insight into this aspect of the problem, the Fast Field Program (FFP)
was utilized because both attenuation and bottom loss are incorporated into it
transmission-loss predictions.

TFP FOR HUDSON BAY*

In Ref. 4 it is shown that, for a monochromatic point source at depth zg,
the field ¢, at some depth z and range ry, is given by the discrete Fourier
Transforn:

1/2 it,r, N-1
-~ 2 e "0'n 2rimn/N
¢(Z,rn) = Af(’;r-i') ";-175— E Em e ’ @)
n m=0 .

wheren=0, 1, ..., N-1,

*Inasmuch as the analysis required in this section is an extension of the work
reported in Ref. 4, only the essential aspects of the approach are noted here.
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Equation (2) can be evaluated directly by means of the Fast Fourier

" Transform (FFT), which gives the value of the field at each of the N discrete
ranges, The; input to the ¥FT is found to be

E_ "G(z, » E ) E1/2 1mr0A£

&)

where fm is the discrete value of the horizontal component of thé wave num-
ber, Eo is the starting pomt in the sampled wave number space, and rg is

© the starting range value. The distance Af between samples in the wave num-

ber domain is related to the corresponding range samplmg distance Ar by the
relation 2

At = 2x/NAr,

where N, the order of the FFT, is 2 raised to some integer power.

[

I
The function G is the depth dependent Green's function, which must
simultaneously 'satisfy both the differential equation

d BJ 2 '2 A
, 5 +[ 5 - (Em - 21aks)] ﬁj =0 zj <z s Zj+1 4
dz cj (z) .

t

t

and the agsociated boundary conditions. The value for kg is arbitrariiy de-
termmed from the depth of the Sovrce, and & is the abbreviation for the at~
' tenuation coefficient in the water column in nepers/foot

‘An efficient algorithm for the numerical evaluation of £q. (3) results if

the specd of sound is allowed to vary exponentially with depth within strata
accerding to

i

+ (45 -2;)/Hj
e(z)=c, (2)e 1) z <z w2, _.
J( i J",l( J) I S L

- The solution of £q. (4) is then found to be

— i .
£y(2) =y, 7))

g




TR 4253

that is, in terms of cylindrical functions of complex order,
v, [ H -iAH]
B m j J

and the real argument is

wH, -
7;(Z1) = r—é_; e+(Zi-Zj)/HJ .
-1

An excellent fit to the velocity profile shown in Fig. 2 is obtained by
utilizing three strata having break points at the depths 2z = 52, z,, = 80, and

4= 600 ft and having associated scale factors Hjy =8 x 104, Hy = -2 x 108,
and Hg= 24 x 104,

The depth~1:pendert Green's function, G(z,zc,;'Em), for the case in
which the sourcs: and receiver are in the third layer is then given by

TmH_IH iwp H
31 3.3 3 R 3 R S 4 w 3.4 S 4
5 4Y2P,,3(”./3,73) R‘,3(73,73) Q,,3(73.73, 2 Y4P,,3(73,73)
Y Y,
3 , 3
H iwe H H_H -
3.3 3 4 “Py3 4 3.4 3 .4 . 2.4°8°3 3 4
3 Vo Qua(grTg) +—m= Y Ryg (79,7 g) =Sug(15, Vo) =iwp Yo Xy =55 Py (73, Ty)
7 Y Y.
3 3 33
ZosZs Z s
and
i {H . jwr H
3]78.3 3 S 3 S R 4 w 3.4 R .4
3 3 _
H iwp H H.H
3.3 3 4 w3 4 3 4 3 4 . 2.473°3 3 4
— — 77y - - —
3 Yy Qv oY o)t Y Ry (75, 9 =80 (00 ) ~leop Y, ¥, 3 74P"3(73’73’
3 T3 3'3
zsszsz4,
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where the admittance of the first layer evaluated at zo is given by

and the admittance of the second layer at 2z, is found, from the continuity
conditions, to be

H
2 2 2 2 3
—Y -8 1
Y Y
3__2 2
'Y2 = —— H .
2 2 2 3 2 3
S - R 'y
To

The bottom is assumed to consist of M fluid layers, each having a con-
stant velocity and constant density. The admittance that the bottom presents to
the water column is then found to be®

jtL ]
. Y: . - K, tanh(A,
v = [ #oj (J)

i o jtl ]
K.~ Y . tanh(A.
[ i il ( J)

where j=4, 5, ..., M +4, andthe argument of the hyperbolic function is
=id (k ).
J(kZ)J

with d denoting the thickness of the j-th layer. The vertical component of
the wave number is abbreviated as

i - 2_ 2 AL
&), ‘/kj £ vadyk

*The definition of the products of eylindrical functions is given by Ref, 4,
Eq., (11).

5
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. ,A and the characteristic plane wave admittance is abbreviated as
. K. = (k) /wp.
. I R
. 3 where k; and p; represent the wave number and density, respectively, in

the botloln layer.

The attenuation in each boitom layer was arbitrarily set equal to the
same parameter QB for convenience.

ENERGY LEAKAGE INTO THE BOTTOM

Determination of whether or not energy leakage into the bottom had a
significant effect* on acoustic propagation for frequencies above 315 Hz' in
Hudson Bay is hampered by the lack of hottom-loss information for the desired
frequency range — a lack not uncommon to determinations of this type. There-
fore, the approach utilized was to fix the value of attenuation in water at some
reasonabie value and allow the bottom admittance Yﬁ to vary, which was ac-
complished by changing the velocity, density, attcnuation, or layer thickness
of the subbottom strata.

Inasmuch as the limited bottom information available suggested a layer of
mud overlying bedrock, the primary model was assumed to consist of two fluid
layers. This model admits the phenomena associated with intromission and
total reflection, and it yields a frequency-dependent bottom loss. A core anal-
ysis would certainly show considerably more stratification than could be ac-
commodated by two layers, but the total bottom loss may be substantially the
same for either case due to frequency dependence. The assumed bottom-loss
model is not a complete representation of the detailed subbottom structure,
but it is felt to be adequate for evaluating the effect of energy leakage into the
bottom.

The parameters describing the bottom were varied to produce substan-
tially different bottom-loss cases, The resulting FFP transmission-loss
estimates were then examined for salient differences, This process was

*For this study, a "significant" effect means one that alters the slope of
the analytical propagation-loss prediction curve.
315 Hz was selected as the low -frequency limit because no experimental
data for lower frequencies were available.
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started at 315 Hz and repeated for additional higher frequencies. For fre-
quencies 315 Hz or higher, the influence of the bottom could only be detected
at close range, A typical example of this analysis is provided in Fig, 3. An
examination of the associated bottom parameters listed in Table 1 reveals that
the layers are identical except for the values of bottom attenuation, but the dif-
ference is sufficient to cause the bottom~loss values shown in Fig. 3A, Case A
is a very-low-loss bottom, and an average of about 6 dB loss is found forcase B,
The propagation-loss predictions for both cases have been superimposed to
facilitate visual comparison, It is seen that beyond 10 kyd the two results are
practically indistinguishable; there were no significant effects of bottom influ-
ence for the higher frequencies investigated.

The same procedure was then repeated for progressively lower frequen-
cies below 315 Hz, As expected, the influence of the bottom graduzlly became
more pronounced as frequency decreased, It is apparent in Fig, 4 (Table 2
refers) that at 100 Hz the bottom has a more pronounced influence at longer
ranges than was found at 315 Hz; this same bottom structure results in a sig-
nificantly different transmission loss prediction at 50 Hz, Figure 5 (Table 3
refers) shows typical effects of changing bottom parameters at 50 Hz, It is
evident from these cases that, even if experimental data were available below
315 Hz, it would be very difficult to make a determination regarding attenuation
without detailed subbottom information, The assumption of a fluid bottom
would also be suspect at lower frequencies because it could not account for the
transverse waves that exist in a solid bottom. I is felt that in the frequency
region about 315 Hz, however, bottom types were examined in sufficient vari-
ety to conclude that energy '=2akage does not have a gignificant effect in the
determination of attenuatior coefficients.,

ATTENUATION IN THE WATER COLUMN

The attenuation coefticient was determined by finding a value that pro-
duced a close comparison between transmiss?on losses (at each frequency) of
the FFP predictions and the experimental data, However, before the results
of the comparative process are discussed, it iz worth noting the essentially
different elements of the two sets of datz,

The distance between the experimental data points was 3 nautical miles,
whereas the corresponding distance for the F¥P was about 50 yards, The FFP
thus shows the interference pattern in considersbly more detail than the exper-
imental data,

1
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? Table 1
%: BOTTOM PARAMETERS AT 315 Hz
¥ 2
3 Case | Layer !Velocity Attenuation | Layer Thickness | Density Ratios
E (ft/sec) | (dB/ft) (£t)
E{: e { =
? A 5,000 0.4 ! 10 pl/pw 1.5
% 12, 000 0.4 | w o /o, =0.077
: B 5,000 r_ 0.0 ! 10 p/p = 1.5
: Py
K w - .
?: 12,000 0.0 pl/p?, 0.077
£ Table 2
% BOTTOM PARAMETERS AT 100 Hz
5 Case Velocity | Attenuation | Layer Thickness | Density Ratios
% (ft/sec) (dB/1t) (ft)
:: < L) / = .
E A 5,000 0.0 10 Py P 1.5
s . - A - 0.
% 12,000 0.0 1/p2 0.077
8 B 5,000 0.0 100 111/49W = 1.5
{ 12,000 0.0 w p./p, = 0,077
t 172
g Table 3
g BOTTOM PARAMETERS AT 50 Hz
Case | Layer | Velocity | Attenuation | Layer Thickness | Density Ratios
(it/sec) {(dB/ft) (ft)
A 5,000 0.0 10 pl/pw = 1.5
12,000 0.0 o0 Pl/pz = 0.077
B 5,000 0.0 10 pl/pw = 1,5
o =
8,000 0.0 IJl/p2 2. 077
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It was originally thought that it would be helpful in comparing the results
if, having removed the trend of 10 log R, the analytical values were fitted by
a linear regression analysis. As the frequency increases so does the numher
of allowable modes and a greater fluctuation in the transmission-loss values
results; the regression analysis should then be most useful at the higher fre-
quencies. An example of this analysis is provided in Fig. 6 at a frequency of
1000 Bz, Although considerable fluctuation is evident, the overall slope of the
FFP curve is well behaved, as evidenced by the fact that input value for the
attenuation coefficient agrees to the first two decimal places with the slope of
the regression line. It was therefore decided that a subjective comparison
could be satisfactorily accomplished without the need for regression analysis.

Another consideration was the comparison of single-frequency FFP esti-
mations with the 1/3-octave averages of the bomb-chot data. In Figs. 7 and 8,
the FFP results are plotted for the end-point frequencies of the 1/3-octave
band about 1000 Hz. The predictions at the center frequency and the average
of the three cases are shown in Figs. 9 and 10, respectively. As might be ex-
pected, the averaged result shows less fluctuation than any of its components.
It is also evident that the slopes of the curves in Figs. 9 and 10 are in good
agreement. Inasmuch as the 1/3-octave bandwidths diminish with decreasing

frequency, it was decided that a center-frequency prediction would be adequate
for this analysis.

The last consideration was the effect of a change in the input value of
attenuation on the FFP transmission-loss predictions. Although it would be
mathematically correct to utilize a complex wave number, in normal mode
calculations the wave number is usually assumed to be a real valued function.
Attenuation is then accounted for through the ancillary term or with r being
the horizontal distance. The introduction of an attenuation loss into theoretic
ray calculations can be accomplished either in the same fashion or by account-
ing for the loss along the ray paths.® The wave number is assumed to be com-
plex in the FFP analysis, and the ar term is not used in computing transmis-
sion loss. Irom the viewpoint of normal mode theory, this would be equivalent
to rotating the singularities away from the axis of integration, thereby causing
each mode to be attenuated by a different amount. In Fig. 11, the FFP trans-
mission-loss values are plotted, using three different input values for the
attenuation coefficient for a frequency of 315 Hz, Except for the noticeable
sharpening of the mode interference pattern, the difference in slope between
each of the cases is proportional to the difference in attenuation values. This
happy state of affairs will not persist, however, for an excessive ratio of the
input values for «, such as approximately 20 to 1.7 Accounting for attenua-
tion on the basis of path length in ray calculations should produce substantially

O OV




T A <
B M aa s 1208 M R R
R TR TR TR T R ™
e RAR W ARy S R

T R

TR 4253

the same result as the ar term for the source and receiver on the axis of
minimum velocity of sound. The greatest deviation between the horizontal
separation of source and receiver and the path length would be for high-angle
rays, and the spreading loss associated with these rays would be generally
greater than that of the nearly axial rays.

In comparing the FFP with the bomb-shot data, the input value of the
attenuation coeificient ultimately selected was that value which allowed the
experimental results to bisect the FFP interference pattern. This procedure
was repeated for each center frequency, and the comparisons are shown in
Figs. 12 through 19. The variations in both experimental data and FFP pre-
dictions introduce some uncertainties in subjectively selecting the best [its,
This is readily evident in Fig. 20, where the transmission losses for two
slightly different input values of attenuation are plotted against the bomb-shot
data. An effort was made to determine the minimum and maximum values of
a which could be used and still produce a reasonable fit. The result of this
judgment is represented by the dashed lines in Fig. 21; the dots within the
envelope are the values considered to produce the best comparison with the
experimental data. Finally, in Fig. 22, Browning's initial estimates of the
excess attenuation in Hudson Bay are compared with the values determined by
FFP analysis. The agreement between the two is quite good, except at the
lowest frequencies where Browning's values show a trend towards higher
values of attenuation,

DISCUSSION

The results of this analytical study agree with Browning's initial esti-
mates of excess attenuation in Hudson Bay. Since the attenuation is excess
with reference to Thorp's formula, it is worth noting that the data used by
Thorp were mostly from deep water, whereas Hudson Bay would have to be
considered shallow by comparison. Furthermore, Hudson Bay is relatively
cold and low in salt content (surface salinity 26 parts per thousand)., When the
attenuation values from Hudson Bay are compared with those from a more
closely related environment, as shown in Fig. 23 for the values Marsh and
Elam* found for the Gulf of Maine, both are found {o exceed Thorp's reference
by about the same amount. In order to determine if this anomaly is unique * »
shallow water, an additional experiment is planned for Baffin Bay, which is
cold water but considerably deeper than either the Gulf of Maine or Hudson Bay,

*Personal communication with H, W, Marsh, 1971,

10
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