ENERGY LOSS IN SURFACE WAVE SPECTRA DUE TO DATA WINDOWING

by

MELBOURNE G. BRISCOE

Reproduced by
NATIONAL TECHNICAL INFORMATION SERVICE
Springfield, Va. 22151

1 MAY 1972

This document is unclassified. However, the information it contains is published subject to the conditions of the legend printed on the inside cover. Short quotations from it may be made in other scientific publications if credit is given to the author(s) and to SACLANTCEN; requests for other reproduction, except in official NATO publications, should be addressed to the Director, SACLANTCEN.
This document is released to a NATO Government at the direction of the SACLANTCEN subject to the following conditions:

1. The recipient NATO Government agrees to use its best endeavours to ensure that the information herein disclosed, whether or not it bears a security classification, is not dealt with in any manner (a) contrary to the intent of the provisions of the Charter of the Centre, or (b) prejudicial to the rights of the owner thereof to obtain patent, copyright, or other like statutory protection therefor.

2. If the technical information was originally released to the Centre by a NATO Government subject to restrictions clearly marked on this document the recipient NATO Government agrees to use its best endeavours to abide by the terms of the restrictions so imposed by the releasing Government.
ENERGY LOSS IN SURFACE WAVE SPECTRA DUE TO DATA WINDOWING

by

Melbourne G. Briscoe

1 May 1972

APPROVED FOR DISTRIBUTION

Ir M.W. van Batenburg
Director
TABLE OF CONTENTS

ABSTRACT

INTRODUCTION 2

A NUMERICAL CONFIRMATION

CONCLUSIONS 7

REFERENCES 8

List of Figures

1. Sample Sea-Wave Record Before and After Cosine Windowing 3
2. Wave Spectra of the Signals in Fig. 1 without and with the 8/3 Correction Factor 4
3. Histogram of 101 Empirical Correction Factors obtained from Sea-Wave Records 6
ENERGY LOSS IN SURFACE WAVE SPECTRA DUE TO DATA WINDOWING

by

Melbourne G. Briscoe

ABSTRACT

Windowing or tapering of surface-wave time-series is often performed prior to spectral analysis. The loss of variance due to the windowing is theoretically a factor of 8/3 (for cosine windows), but this factor may vary in practice due to the non-white nature of wave spectra. A numerical experiment on 101 wave spectra has shown that although 8/3 is a good correction factor in the mean, corrections on individual records may vary from less than 2 to almost 4.3. Since rarely in geophysical studies are sufficient records available to allow one to approach some theoretical value in the mean, i.e. 8/3, correction of individual records is recommended.
INTRODUCTION

Figure 1 shows a typical geophysical stochastic process, namely a record of sea surface-wave displacement, in its original form (upper) and with a cosine window applied (lower). The reasons for windowing are discussed for example in Ref. 1 and, especially in relation to discrete calculations, in Ref. 2.

It is clear from Fig. 1 that the windowed record has suffered a loss of variance.

The energy spectra of the two records are shown in Fig. 2. In the upper part of the figure the spectra are presented exactly as they are calculated, but in the lower part the spectrum from the windowed record was multiplied by the factor 8/3 to increase the total variance up to about the level of that of the unwindowed record. Heuristic confirmation of the 8/3 factor comes from the observation that the average level of a squared cosine window is precisely 3/8.

With the help of some additional manipulations, the detailed reason for the factor 8/3 is rigorously but implicitly developed in Ref. 2. Essentially, the factor obtains as the normalization of the filter in the frequency domain that corresponds to the cosine window in the time domain. That is, multiplication of the time series by a cosine window is equivalent to convolution in the frequency domain of the Fourier transform of the time series with the three-point smoothing filter $-\frac{1}{4}, +\frac{3}{4}, -\frac{1}{4}$. The normalization factor is the reciprocal of the square root of the sums of the squares of the coefficients of the smoothing function, i.e. \(1/(6/16)^{\frac{1}{2}}\). However, as the energy spectrum is proportional to the square of the filtered (smoothed) Fourier transform, the desired factor is 8/3.
Interestingly, the smoothing function $+\frac{1}{4}, +\frac{1}{2}, +\frac{3}{4}$ (called Hanning smoothing) is often applied to a raw spectral estimate to reduce the variability of the estimate; this same function could be applied to the Fourier transform as well with exactly the same reduction of energy as in the previous example. In fact, the time series is still undergoing a cosine window but one that is unity at the two ends of the record and zero in the middle, thus giving no useful effect from the windowing.

Fig. 1 Sample sea-wave record before and after cosine windowing
FIG. 2 WAVE SPECTRA OF THE SIGNALS IN FIG. 1 WITHOUT AND WITH THE 8/3 CORRECTION FACTOR
A NUMERICAL CONFIRMATION

That the use of the factor 8/3 is appropriate in the mean, at least for sea wave data, consider Fig. 3. To prepare this histogram, the variance for each of 101 different wave records was calculated directly from the time series, compared with the variance of the windowed record and the set of obtained empirical correction factors plotted. The mean value of the distribution lies at 2.74 and the standard deviation is about 0.53. A Student's-t test (valid for normal distributions but hoped to be usefully valid here as well) at the 0.05 significance level shows that the mean of the empirical correction factors is (with 95% confidence) not different from the theoretical factor of 8/3. The distribution is slightly bimodal and positive skew.

There was no apparent correlation of empirical correction factor with record variance (unwindowed), but it seems reasonable to suppose that the skewness of Fig. 3 toward values larger than 8/3 is because of the non-white, peaky nature of wave spectra.

* Each record was 204.8 seconds long and was based on 10 Hz sampling of a Waverider buoy signal. The variances of the 101 records varied from about 100 cm² to more than 3000 cm².
FIG. 3 HISTOGRAM OF 101 EMPIRICAL CORRECTION FACTORS OBTAINED FROM SEA-WAVE RECORDS
CONCLUSIONS

If non-rectangular windowing of a time series occurs, there is a need to correct the variance of the record. For cosine data windows, corresponding to $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$ smoothing in the frequency domain, the theoretical correction factor is $8/3$.

A numerical experiment on 101 sea surface-wave records has yielded empirical correction factors (for cosine windows) from 1.98 to 4.28 with a mean value of 2.74, statistically indistinguishable from the $8/3$ theoretical value. The distribution is, however, positive skew and somewhat bimodal, so empirical correction of individual records is recommended if high accuracy is important.

I expect that this recommendation for correction of individual records will be less important for time series whose spectra are more "white" than those of sea waves, and more important for records shorter than those used here, i.e. about 60 times the modal value of the spectral peak.

The variability in the correction factor may account for some of the variability in certain wave parameters, such as the Phillip's equilibrium constant.
REFERENCES

[NOTE: Some references to SACLANTCEN documents quote numbers allocated by the U.S. Defense Documentation Center (AD numbers) and/or the U.S. National Aeronautics and Space Administration (N numbers). Copies of "AD" and "N" documents can be obtained from the U.S. National Technical Information Service, Springfield, Va 22151. Copies of "N" documents can also be obtained from ESAO/ELDO Space Documentation Service, 114 av. de Neuilly, 92, Neuilly/s/s, France.]
Open Literature Sources

1. BIBLIOGRAPHY

2. Open Literature Sources

Sources Containing Extensive Bibliographies (various languages)

9. ibid., Ivanova, V. S., and Veitman, M. B., "Increasing the Fatigue Strength of Steel Kh18N9T by Mechanical-Thermal Treatment", 625-626.

Sources in Russian

ibid., Gursvich, S. E., and Maryanyanovskaya, T. S., "Relation Between the Damage Criteria of a Metal Subjected to Thermoplastic Strengthening and the Fatigue Strength", 58-62.

ibid., Kopaleishvili, V. P., "Effect of Deformation Rate During High-Temperature Thermo-Mechanical Treatment on the Mechanical Properties of Chromium Steel 50KhPA", 55-66.

