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FOREWORD

This investigation was conducted by the U. §. Army Engineer Water-
ways Experiment Station (WES) under the sponsorship of the Office, Chief
of Engineers, Department of the Army, as a part of Project LA061102B52E,
"Evaluation of the Damping Capacity of Soils Under Dynamic Loads,"

Task 01, Work Unit 012.
The investigation was conducted by Drs. B. Rohani and G. Y.
Baladi during the period April-June 1971 under the general direction of
Messrs. J. P. Sale, Chief, K. G. Ahlvin, R. W, Cunny, and Dr. L. W.
Heller of the Soils Division. The report was written by Dr. Rohani
who wishes to acknowledge the assistance and suggestions of Dr. Baladi.

Director of WES during the preparation and publication of this

report was COL Ernest D, Peixotto, CE, Technical Director was

Mr. P, K. Brown.
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SUMMARY

To establish basic definitions and to serve as a reference for
future theoretical and applied research efforts, the fundamental con-
cepts of the theory of continuous mass media are reviewed, and the
mathematical foundations of constitutive equations for isotropic and
homogeneous materials are presented. ‘The results are restricted to de-
formation for which isothermal behavior prevails and displacement gra-
dients are small., Seven types of mathematical material models are dis-
cussed that can te used to describe the stress-strain-time behavior of
physically nonlinear materials. The models are given in three-
dimensional tensorial representation,

The energy-dissipation properties of engineering materials are
discussed within the framework of the above-mentioned mathematical
maeterial models, and the damping models used in engineering analyses of
vibratory systems are sumarized.

Preceding page blank
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DAMPING CAPACITY OF SOIL DURING DYNAMIC LOADING

REVIEW OF MATHEMATICAL MATERTAL MODELS

PART I: INTRODUCTION

Background

1. A great number of enginecring materials exhibit hysteretic
effects under cyelic or near-cyclic loading conditions, even when
undergoing smell defomnation. A prime example is seil, The eanergy-
dissipation characteristics of soil can he observed, for example, from
the attenuvation of the stress pulse during one-dimensional wave nropa-
gation teste or from the formation of 2 hysteretic loop during a load-
unload cycle of diformation. The hysteretic character of the stress-
strain behavior of soil plays an important role in the determination of
the response of soil to dynamic loads and must be incorporated in the
formulation and solution of soil dynamics boundary-value problems.

2. The "term damping is often used, in a general sense, to de-
scribe the energy-dissipation properties of engineering materials; and
various mathematical material models have been devised to represent
such rienomena, The gpproach used to formulate most of these models is
based on the methods of continuum mechanics, which disregard the atom-
istic details of the material and congider its gross behavior only.

The models are, therefore, phenomenologizéd in nature. In fact, no
satisfactory explanation of damping mechanism on the atomistic level is
available at the present Hime, although seversl hypotheses have been
set 2 rth in recent yearx. TFor the solution of many engineering prob-
lems, however, a matrematical mojdel o6f damping that is based on the
concepts of continuum wechanics is quite sufficient and useful. Such a
model must, of course, be genersl enough to desceibe the energy-
dissipation properties of the materizi under verious svates of stress
egnd deformation.

3. To date, two alteruate procéﬁuigs nave been employed to

1
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describe the hysteretic behavior or the energy-dissipation properties
of soil. Both procedures &re based on the methods of continuum mechan-
ics. In the first procedure. Jhe hysteretic behavicr of soil is ac-
counted for by using three scts of time-independent stress-strain rela-
tions: one set for initial loading, one Zor unloading, and one for
subsequent reloading. The mathematical expressions for the stress-
strain relations are usually derived from cyclic or near-cyclic experi-
mental data by curve-fitting techniques. A set of criteria or logics
is also specified to determine whether the material under consideration
is being loaded, unloaded, or y loaded so that the proper stress-strain
relations can be used. The theory of plasticity is the outcome of this
procedure. In the second procedure, & time-dependent mathematical
model is postulated, and the hysteretic behavior of soil is accounted
for by the appearance of the time derivatives (deformation rate) in the
model. The theory of viscoelasticity is the outcome of this procedure.
4. Both of these techniques have been used extensively in the
formulation and solution of soil dynamics boundary-value problems. The
mechanism of energy dissipation in the first procedure, however, is
different from that in the second procedure. At the present time, it
is not clear which procedure is the more correct one, and the available
experimental information on the stress~-strain behavior of soil under
dynamic cyclic loading is not conclusive enongh to favor one or the
other. For reasnns of practicability or mathematical simplicity, and
depending on the type of problem being considered, some investigators
use the first procedure while others use the second. A subsequent re-
port (Report 2) will review current laboratory methods of determining
the damping capacity of soil; it will describe specific techniques used
to evaluate hysteretic effects within the framework of both the time-

independent and the time-dependent mathematical material models.

Purpese

5. The purpose of this report is to review and document various
mathematical material models that can be used to describe the
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stress-strain~time behavior of physically nonlineer, isotropic, and
homogenecus materials. Emphasis is placed on the material models that
exhitit hysteretic effects under cyclic iloading. These models will
serve as Yuses for tuture work for the evaluation of damping capacity

of soils under dynamic loads.

Scope

€. Since the mathematical material models presented in this re-
port are based on the methods of continuum mechanics, a brief discus-
sion of the fundeamental concepts of the theory of continuous media is
given in Part II. Part IIT contains a summary of the available mathe-
matical material models in their general functional representation. In
Part IV, various types of demping models commonly used in engineering

analyses of vibratory systems are presented.
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PART Ir: CONCEPLS FRCM CONTINUUM MECHANICS

Basic Principles

7. 1In engineering practice it is convenient, and often reason-
able; to disregev , the atomistic details of mabter and consider its.
gross behgvior . .1y, It is also customary to:adopt the hypothesis that
metter can be replazed bty a mathematical model whose kinematic or dy-
namic variables are piecewise .continuous furictions -of spatial coordi-
nates and time, ©Svch.a medium is often referred to as a continuum.

The mobtion of any continuum in a Galilean frame of reference is .gov-
erned by the following laws:

Conservation of mass

Conservation of energy

Balance of linear momentum

-

Balance of angular momentum

o 12 10 | P

Principle of inadmissibility of decreasing eniropy

These leaws constitute the basic axioms of continuum mechanics.l If me-
chanical energy is the only form of energy to be considered in & prob-
lem, the above principles will lead to the continuity equation¥

a,
56 * (vy) 5= 0 (1)
and the equations of motion
035,59 * P(F; -8;)=0 (2)
where
p = mass density
vy = components of velocity vector

* 1Indices take on values 1, 2, or 3, A repeated index is tr be summed
out over its range. Comma in the subscripts represents a derivative,
Quantities are referred to rectangular Cartesian coordinates Xi .

4
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symmetricel stress tensor

Q
vz e
i 1]

components of body force

a, components of acceleration vector

8. Equations 1 and 2 constitute four equations that involve ten
uzknown functions of time and space: the mass densit» p , the three
velocity components ) and the six independent stress components
Gij .

celeration components a; are expressible in terms of the velocity

The body force components Fi are known quantities and the ac-

components v o Obviously equations 1 and 2 are inadequate to deter-
mine the motion or deformation of & medium when subjected to external
disturbances such as surface forces and/or displacements. Therefore,
gix additional equations relating the ten unknowvn varisbles p , vy o

and .., are reguired. I the field of continuum mechanics, such re-

lation:jaru stoted by constitutive equations, whieh relate the stress
tensor dia 1o the deformation and time rate of deformation., The dif-
ference between the constitutive equations and the field equations
(equations 1 and 2) is that the latter are applicable to all materisle,
vwhereas the former represent the intrinsic response of a particwlar ma-
teriel. Furthermore, o constitutive equation provides a mathematical
description or definition of an idegl material rafrher than a statement
0T a universal l1law,

S, The general form of a constitutive equation for isothermal
conditions may be expressed by the functional form

gmn(p’vk’oij) =0 (3)

relating the ten unknown varigbles p , Ve and uij . HEquation 3
can be written in n more definite form relating the stress tensor to

the strain tensoyr and the deformation-rate tensor, i.e.,

Ui:j = fij(emn’drs) ()
where

strain tensor

m
L1}

fiited

drs deformacion~rate tensor

St St bai ot
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If the displacement gradients are small, the strain tensor can be ex-
pressed in terms of the components of the displacement vector uy by

the following relation

i~ é'(um,n * un,m) (5)
The deformation-rate tensur is related to the components of the veloc-

ity vector Voo i.e.
=L g
d = 5 (Vr s + v ) (6/

The mass density p can be related to drs or €. through equations
1, 5, and 6. Equations 1, 2, and k4, therefore, constitute ten equa-
tions in ten unknowns and will lead, in: conjunction with the kinematic
relations given by equations 5 and &, to a complete description of the
boundary-value problem, In addition ‘to the above-mentioned equations,
boundary conditions in terms of boundary displacements and/or surface
tractions must also be specified to- define the particular problem of

interest.

Requirements for Constitutive Equations

10. In order for the constitutive equation (equation 4) to de-
scribe a physical material adequately, the response function fij must
be form invariant with respect to rigid motion of spatial coordirates.
This requirement <tems from the fact that the response of a materiel is
independent of the motion of the observer. Furthermore, fij must be
expressed in tensor language to ensure that the constitutive equation
is invariant to coordinate transformaticns., 1In addition to the above-
mentioned invariance principleé, the response funcetion fij must be
consistent with the general principles of conservation or balance of
mass, momentum, and energy. If it is assumed that the material under
consideration is isotrepic and elastic (linear or nonlinéar), every

prineipal axis of strain must also be a principal axis of stress, i.e.,
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if €10 = e23 = €3l =0 ) fij must show that O35 = 023 = 031 =0 .
Also, to avoid stress-induced anisotropy for an isotropic elastic
medium, fij must ensure that a zero state of strain corresponds to a

zero or a specified scalar state of stress.

The General Form of Isotropic Constitutive Equation

11. The general form of the response functizn fij satisfying
the invariance principles and the requirements of isotropy was derived
by Rivlin and Ericksen.2 Tunctions satisfying these conditions are
called hemitropic functiony of their arguments. A hemitropic poly-
nomial F of two symmetric second-rank tensor variebles A and B

admits a representation of the form
F(A,B) = BT + B.A + B A% + BB + B,B% + §.(AB + BA) + B (A°B + BAZ)
W0 1 2 3 4 5 " 6
v (087 + B°0) + Bo(a%® + 8%%) (1)

in which I = Sij = the Kromecker delta ; and the coefficients ¢6 s ey
¢8 are scalar-valued functions of the ten joint invariants of A and

R .3 The ten joint invariants of A and B are given by

tr(A) tr(A%) tr ()
tr(B) tr(Bz) tr(B3)
2 2 (8)
tr(AB) tr(A"B) tr(B°A)
tr(%8%)

where ©tr = trace of , indicating the sum of the diagonal terms of a

square mabrix,
12. According to equation 7, the admissible form of the isother-

mal constitutive equation (equation }4), or fij , takes the following

form
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e




{
.+
O35 = NoPi5 * M5 o8 M2y T Mg 7ls(ea'.mdmj * dimeﬁj)
+
T]6(€:Lm mndng dimemnenj) (elmdmndng * dimdmnenj)
* 8 napTps * L Cpps) (9)
The response coefficients Mg » v+ 5 Ng are scalar-valued functions of
the ten joint invariants of the strain tensor and the deformation-rate
tensor. In view of equations 5, 6, and 8, the ten joint invariants of
the strain tensor and the deformation-rate tensor take the #ollowing
representation:
Il = Css Il = dss
Tp = €4sst Iy = digdsy,
= ¢ €€ I,=4 a a 10
" I3 ts srrt 3 ts sr rt (10)
M = €tsdst R= €tsdsrdrt
V= ey sCardet Q= epsCardkrdrt

i ‘ These response coefficients trke various forms for different materials
and must be determined from experimental observation. There is, how-
ever, no & priori reason for requiring that all response coefficients
appear in the constitutive equations for all materials. Some of the
responge- coefficients may vanish for séme materials. Accordingly, a
constitutive equation with two response coefficients, such as Hooke's
law, is as valid and significant as a constitutive equation that in-
cludes the nine possible response coefficients Mg » +-+ 5> Tg The dif-
ference between the two equations is in their range of application.
13. It should be pointed out that equation 9 is not based on
thermodynamic considerations and the response coefficients are not, in
general, related to a single potential function. A special form of
equation 9 based on thermodynamic considerations was also developed

[ TR
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by Schaperyu and has been used extensively for stress analysis of visco-
elastic materials.

1. Presently there are several forms of isotr 'ic constitutive
equations available that can be used to deécribe the stress-strain.-time
response of various materials. They are all derived from equation 7

or 9 and are presented in the following part.
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PART III: REVIEW OF ISOTRCPIC CONSI'ITUTIVE EQUATIONS

General

15. The theoretical foundation of isotropic constitutive equa-
tions is based on the Rivlin-Ericksen equation presented in Part II (eque-
tion 7). Various classes of constitutive equations have been developed
in recent years utilizing equation 7 or 9. A summary of these equations

is presented in the following sections.

Elastic Materials

16. TFor elastic materials, the state of stress is a function of
the current state of strain, i.e.

0., = f, (11)

id 1j(€mn)
The response function fij has the same form as equation 7 where
A= ¢ and B = 0 . Accordingly, the constitutive equation for elas-

mn
tic materials becomes

= +
U3 = %% * 1ty * Plintng (2)
Equation 12 is often referred to as the Cauchy elastic constitutive
equation.l The response coefficients ¢6 R ¢i , and ¢2 are func-

tions of the three strain invariants I I, , and I3 given by equa-

b
tion 10, Equation 12 can describe the iechanical behavior of various
types of elastic materials by properly selecting the forms of ¢6 s
¢i » and @, . For example, if ¢é =0, ¢i =21, and g, = M,
equation 12 degenerates to Hooke's law, where pu and A are the Lamé
constants. For a second-order elastic stress-strain relation, the re-
spose coefficients take the forms Qé =D, Qi = 2n + CIl, and
¢6 = xrl + AIi + BI, where A, B, C, and D are material con-

2
stants. Therefore, a second-order elastic stress-strain law, based on

10
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equation 12, involves six material constants. Paralleling tﬁe above
procedure, higher order and more complicated elastic stress-strain re-
lations can be developed.

17. The counterpart of equation 12, which is derived from the
conservation of energy and is referred to as the hyperelastic constitu-

tive equation, is given as

_ U U U
%13 % uy * B 3T, ‘45 " 3 3T “in‘ny (13)

vhere U = U(Il,12,13) is the strain-energy density function.5 Com-~
parison of equation 13 with equation 12 indicates that hyperelastic
materials are special forms of the Cauchy elastic materials, where

) AR | VR | |
9’0-5-1'1',%—253;,(52—3@ (1h)

Consequently, a Cauchy elastic material is hyperelastic if the response
coefficients ¢b , ¢i , and ¢2 are related in the following marmer

o o
) _ 0 (158)
—= 2
dIl 512
B¢i 2 \-é (1
_2 5b)
T,
ETI AT
3
For linear elastic materials
U=A1® 41 (16)
2 W

ard voth equabtions 12 and 13 yield the same results. The effect of the
thermodynamic restrictions, therefore, is not evident when considering
linear elastic materials. However, the effect of thermodynamic
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restrictions becomes very pronounced when considering higher order
stress-strain laws. For example, a second-order elastic stress-strain
law formulated from the Cauchy elastic constitutive equation involves,
as was shown previously, six material constants. On the other hand, a
second-order elastic stress-strain lew based on the hyperelastic con-
stitutive equation (equation 13) involves only five material con-
stants,  since the strain energy function for second-order hy, <relastic

materials takes the form U = g-Ii + u12 + A I3 + B.I.I + C,I, where

171 17172 173
Al 5 Bl , and C. are material constants. The effect of thermodynamic

restrictions, inlthis case, is to reduce the number of material con-
stants from six to five., However, the physical implications of this
reduction in material constants is not clear at the present time.

18. The inverse forms of the Cauchy elastic and hyperelastic con-

stitutive equations, resulting in strain-stress laws, are given as

€35 OPsy * 0105 * 00y (17)

for the Cauchy elastic materials, and

_ oV oY oY
1j = & By * 2 37, i3 *3 375 %1%y (18)

€

for hyperelastic materials. The response coefficients qo ’ Ql

Qg » as well as the complementary-energy density function V¢ , are

, and

functions of the following stress invariants

Jl = s
Ip = O4e0st (19)
J3 = 0‘csosrcrt

For linear elastic materials, the complementary-energy density function
is given as

RSO

s -t 2y e ABT g, s

(i o g el %y

[V~ ST,




(20)

i
=le

C.y
o

<
1
ot
=
ny
{0

where E and v are Young's modulus of elasticity .and Poisson's ratio,

respectively:. If equation 17 is utilized to derive the strain-stress

law for linear elastic materials, the response coefficients take the
L+ Vv :

forms 62 =0, 91 = =5 and 90 = - E-Jl . égaln, as expected,

both the Cauchy elastic and hyperelastic constitutive equations yield

the same strain-stress laws for linear elastic materials.

Hypoelastic Materials

19. The theory of hypoelasticity was formulated by Truesdell.7

The theory is formulated in terms of rates of both stress and deforma-
tion aind is intended to describe the mechanical behavior of path-
dependent materials, As was pointed out in the previous section, the
state of stress for an elastic material is a function of the current
state of strain and is independent of the path followed to reach that
state. For real materials, earth materials in particular, the final
state of stryss is a function of the final state of strain as well as
the stress path used to reach the final state. Hypoelastic taeory pre-
dicts this type of behavior and may be used to model the stress-strain
behavior of soil,

20. The basic constitutive equation of hypoelastic materials is

expressed in the form

8 = £(a,s) (21)
where
G.
8 = nondimensional stress flux tensor = Zi%
- a.
8 = nondimensional stress teasor = éﬁl
313 = gtress flux tensor

d = deformation-rate tensor (equation 6)

Jaumann's form of stress flux tensor is given ’mrl

13

-

[




da, .
A 1
= + -
oij ot Gij,kvk * oikwkj ijwik (22)

where

oo =3, -V, ) (23)

r,s S,1

is the Eulerian spin tensor. This definition of stress flux is not
unique, and various other forms developed by Truesdell and Oldroyd are
available,l which differ from Jaumenn's form in the terms containing the
spin tensor. However, at the present time there is no a priori reason
for utilizing any specific form of the stress flux tensor; additional
physical postulates, or experimental information. are reouired in order
to determine a preferred form of this tensor. For static problems or
for dynamic ‘problems with nearly irrotational d.splacement fields, the
stress-rate tensor {the first term on the right side of equation 22)
may be used instead of the stress flux tensor.

21. The hypoelastic response function f(d,s5) is of the same
form as equation 7 where A=d and B =5 . Accordingly, the hypo-
elastic constitutive equation (equation 21) becomes

Az + + 2 - =2 - . =
§= oI+ oqd +ad” + g8 + o 87 + as(ds + 8d)
~ -2 - -2 - _nn

+ ag(das + 5d°) + a (ds2 + §d) + og (des2 + 5ad%) (o)
where Oy » *r* s QB are scalar-valued functions of the ten joint in-
variants of d and § (Jjoint invariants of 4 and § are obtained
from equation 8 by substituting 4 and § for A and B , respec-
tively). The response coefficients Oy » +++ > Og are further re-
stricted by the first hypothesis of hypoelasticity: "No constitutive
coefficients of a hypoelastic material shall carry a dimension inde-

pendent of the dimension of stress."

The consequence of this hypothesis
on the hypoelastic constitutive equation is that all terms containing
second and higher powers of d must vanish. Thus, the response coef-
ficients Og = Qg = 0, = 0 07 s 05 , and oy must be indecpendent of
d ana functions of § alone; and Jy 2 a3 , and oz,+ must be of degree

e in ¢ . Imposing the above restrictions on the response coefficients
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in equation 2L, the hypoelastic constitutive equation reduces to

B
A 2 = boroe o2y Lt -2
S = IlaOI + ald + Ilszs + EB3I + = (ds + 5d) + Ilﬁss

g
+ERB +TFBI + O (a5° + 5°4) + BB 5° + B, § + FB..52 (25)
6 LT3 9 10 11

in which Bo s ve are dimensionless functions of the three prin-

11
cipal invariants of § only, and E and T are defined as

E

1

§mr.d'nm
(26)
F= §mn§npdpm

22, From equation 25, it is apperent that the constitutive equa-
tions of hypoelasticity are coupled differential equations of first or-
der. Furthermore, the differential equations are homogeneous in time.
To obtain a unique solution to these equations, some initial conditions
that sre consistent with the invariance principles must be prescribed.
The integration of the differential equatiors, for a given stress path,
leads to stress-strain relations. Thus,. a relatic: between stress and
strain is the outcome of the theory.

23. Truesdeil7 has defingd various classes of hypoelastic mate-
rials that are characterized by tue highest degree of § appearing in
equation 25, If the right side of equation 25 is independent of ¥
the material is called hypoelastic material of grade zero, In this
case equation 25 reduces to

3

8 = IlBoI + Bld (27)

which is directly similar to the constitutive equation for a linear,

isotropic, elastic material if 50 = g%- and Bl =1, ie.

= xakks + 2ud (28)
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If the right side of equaticn 25 contains up to the first power of
stress, the material is called hypoelastic of grude one and so on.

24, In establisning the constitutive equation of hypoelastic
materials, no assumptions were made in regerd to the magnitude of
stresses and streins involved; hence, the theory is applicable for all

motions.

Hygrosteric Materials

25, The term hygrosteric is used for materials having & consti-

wutive equation of the form
s = £(d,s,p) (29)

where the response function f is a polymomial in 4 and s with co-
efficients depending on the density p . Due to the scalar character
of the density p , the formulation of constiti rve equations for hygro-
steric materials is the same as for the hypoelastic materials except
that the response coefficients appearing /n equation 25 may be con-
sidered functions of p or the dimensionless ratio p/bo where Po

is the initial mass density of the raterial.

Stokesian Fluids

26, Stokesian fluids are characterized by the constitutive equa-

tions of the following form

o..=*f. (da ) | (30)

ij ij’ rs

The state of stress, therefore, is a function of the current rate of

deformation. In view of equation 9, equation 30 becomes

055 = MoPig T g%y * MyGindng (31)
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» and ) are funchions of the three deformation-rate

where Mg » n3
Equation 3L can descrive the hehavior

invariants given by equetior. 10.
of various fluids by proper selection of the résponse cuvefficienbs o 3
= ﬂP + A i

ng s and m) . For example, if 1) = 0., n, = &, and o v

where p, and lv are the shear and dliatatl sl viscosity coefficients,

respectively, and P is pressure, equation 31 degenerates to thé con=

stitutive equation of linear viscous fluidss, t.e.

i3 i3 ¥ N0

iy

Viscoelastic Materials

27. The constitutive equation of viscoelastic materials is ex~

pressed by

Oij = fij (Gmn’drs) (33)

where the isotropic function fij is given by equation 6. Equation 33
reduces to the Cauchy elasti¢ constitutive equation (equation 12) if de-
pendence on drs disappears. Various classes of viscoelastic mate-
rials can be described by equation 33 (or equation 9) by proper se) c-
tion of the response coefficients Ny 5 +++ 5 Mg For example, i

- T = = 92 = = = = 1y

= AL, + Il ’ T\l 2y ’ 7\3 ‘-“'v > and 712 ﬂh 1\5 . 1\6 n'(;

o 17 My
=g = 0 , equation 9 reduces to the constitutive equation of the

Kelvin-Voigt material, i.e.
055 = lIlﬁiJ + lelaij + 2p€id + 2“vdij (34)

Equation 34 is the three-dimensional representation of the parallel

spring-dashpot model used in the theory of vibration. Teking n5 = n6
= n7 =g = 0 in equation 9, a second-order viscoelastic constitutive

model, often referred to as the nonlinear Kelvin solid, can result, i.e.
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O35 = Mo%is * Mm%y MaCim®my T M3%5 ¥ MGindny (35)
Equation 35 includes tensorial as well as scalar nonlinearities and can
no longer be presented by a simple parallel spring and dashpot model.
Many complex aspects of the physical behavior of real materisls, such
as shear-dilatancy phenomenon and the Poynting effect,l can be de~
seribed by equation 35.

28. Viscoelastic constitutive equations can also be formulated
in integral forms, e.g.

t b
oij=f)\(t-'r)§;—'rl-ﬁijd'r*2[p(t—'r)d-%irid'r (36)
0 0

where X and pu are referred to as relaxation meduli or memory func-
tions and (t - ) is an elapsed time. Other forms of viscoelastic con-
stitutive equations, e.g., series forms with daifferential operators as
arguments, are also available that can be used to characterize various
viscoelastic materials.l Viscoelastic constitutive ejuations that are
expressed in the form of equation 9 (e.g., equations 34 and 35), how-
ever, possess a certain mathematical simplicity that makes them more
attractive for engineering analyses than other forms of viscoelastic
constitutive equations.

Viscoplastic Materials

29. To describe the mechanical behavior of rate-dependent mate-
rials that are compactible, i.e., exhibit time-independent as well as
time-dependent hysteretic effects, constitutive equations of the fol-
lowing form are oftten used:

O35 © fi,j (6pq’emn’drs) (37)

where &pq are the components of the stress-rate tensor. The iso-
tropie response function fij is a hemitropic function of ¢

and drs and taskes the following representution:

oq ? €mn9
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%3 7 PoPi3 T A% T f2%m%my T 3%y T utimmg T P

= A8, +AG, . +AG. G +Ae..+,A-e.e.+Ad A6dlmm3

A (Ulmema * eimomj) A8(61m mj dimoﬁj) * A9Gim€mn°nj
* A 0%im%mn®ng T A11%m %y 21280 ndn; (38)

The response coefficients Ao s e s A12 are scalar functions of fif-
teen joint invariants of qu > Sun 2 ana drs . Equation 38 reduces

to the Cauchy elastic constitutive equation (equation 12) if dependence
on ¢ and drs disappears. If depenidence on & a and €n dis-
appears, equation 38 will reduce to the constitutive equation of the

Stokesian fluid (equation 31). If dependence on 6pq
tion 38 will reduce to the constitutive equation of the nonlinear Kel-

vin solid (equation 35). Equation 38 is, therefore, very general, and

disappears, equa.-

by proper selection of the response coefficients Ao s s s A12 , 1t
can be used to describe the mechanical behavior of many complex

materials.

Summary of Constitutive Equations

30. In summary, seven basic types of isotropic constitutive equa-
tions that can be utilized tc describe the mechanical behavior of real
materials have been discussed. These constitutive equations are all
expressed in general functional forms., The specific forms of the func~
tionals, for any particular material, must be determined through exsper-
imental observation or by physical postulates. The constitutive equa-

tions are:
a. Cauchy elastic materials (equation 12)
b. Hyperelastic materials (equation 13)
c. Hypoelastic materials (equation 25)
d. Hygrosteric materials (equation 29)
e. Stokesian fluids (equation 31)
f. Viscoelastic materials (equation 9)
g. Viscoplastic materials (equaticn 38)

19
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Equations 12 and 13 are used to describe the behavior of elastic mate-
rials (linear or nonlinear). Equations 25 and 29 arzs used to describe
the behavidor oY rate-independent hysteretic (or plastic) materials.
Equation 3L is used to describe the behavior of various fiuids. Equa.~
tion 9 is used to describe the behavior of various rate-dependent (visco-
elastic) materials. Equation 38 is used to describe the behavior of

rate-dependent hysteretic (viscoplastic) materials.

31. 1In the case of hysteretic materials, the constitutive equa-

tions must be accompanied by a set of criteria (or logics) defining

IS

initial loading, unloading, and subsequent reloading of the material.
These criteria must be stated in terms of the invarionts of the stress
and/or strain tensors in order to remain invariant with respect to
rigid motion of spatial coordinates, The hysteretic behavior of the
material is then taken into account by using different sets of consti-
tutive eguations for loading, unloading, and reloading. There are sev-
eral criteria for defining loading, unloading, and reloading that are
presently being used in the solution of two-dimensional boundary-value
problems for hysteretic materials. These criteria are not necessarily
conclusive and although they yield satisfactory results for certain
well-detrined stress paths, they might lead to unrealistic material be-
havior under more complex loading conditions. A swumary of these cri-

teria is given in the following section.

o Lorlaw

Criteria for Initial Loading, Unloading, and Reloading

32, One common criterion for differentiating among initial load-
ing, unloading, and reloading is based on the time-rate (or increment)
of the first invariant of the stress tensor &ss . According to this
ceriterion, 688 > 0 defines loading and 6ss < 0 defines unloading.
Whenever éss >0 bhut Ocq is less than its previous maximun value, the
material is assumed to be reloading. A similar criterion based on the
time-rate of the first invariant of the strain tensor éss can also be
used to define various loading conditions. Both of these criteria, how-

ever, will lead to wnrealistic material behavior during a load-unload
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cycle where the medium simultaneously experiences loading in shear and
unloading in pressure or vice versa.

33. Another criterion is based on the time-rate of the octa-
hedral shearing stress %oct . According to this =riterion, %oct >0
defines loading and %oct < 0 defines unloading. The material is as-
sumed to be reloading whenever %oct >0 and Toot is less than its
previous meximum value. The condition %oct = 0 is referred to as a
neutral state of loading. The %oct ceriterion is less controversial
than the 6ss or éss criterion.

34. In an attempt to overcome some of the theoretical and exper-
imental problems that can arise through the use of the %oct or 6SS
criterion, a combination of the two is often utilized that séparates
the deformation into the hydrostatic and the deviatoric components.
The 688 criterion is used for the hydrostatic part of the deforma-

tion, and the = criterion is used for the deviatoric components.

oct
In this manner, it is possible for the material to unload in shear

while loading in pressure or vice versa.

35. The rate of work Oijéij is also used as a criterion for
defining various loading conditions in a cyclic test. According to
this criterion, oijéij > 0 defines loading and reloading; Oijéij <0
defitizs unloading; and the conditinn UiJéij = 0 1is referred to as a
neutral state of louding. 'The rate of work criterion and the %oct
eviterion are used extensively in the theory of plasticity, and they are
essentially the same if the constitutive equation associated with them
is linear from the tensorial point of view.

36. The neutral states of loading associated with the % or

oct
oijéij criterion impose certain restrictions on the ma“erial constants
in the constitutive equations for loading and unloading and require
specieal considerations. The material constants must be chosen so that
the loading and unloading constitutive equations become identical when-
cver %oct =0 or “ijéij = 0, i.e, neutral lcading. This require-
ment must be met in order to obtain a unique solution for a given

boundary-~value problem involving cyclic loading conditions.
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PART IV: SUMMARY OF DAMPING MODELS USED IW
ENGINEERING ANALYSES OF VIBRATORY SYSTEMS

37. Most of the damping models used in engineering analyses of
vibratory systems stem from one-dimensional representation of the iso-
tropic constitutive equations presented in Part III and, therefore, are
limited in their application. The models can be divided into two gen-
eral categories: viscous damping models and hysteretic damping models.
Various forms of these models are discussed in the following sections
and are given in their three-dimensional representation for a broader
application and utilization. Appendix A gives a bibliography of source
material related to the model category and form.

Viscous Damping Models

38. The viscous damping models are frequently répresented in
terms of rheological models consisting of linear springs and viscous
elements or dashpots. The viscous elements account for the energy-
dissipation properties of the material, while the springs represent the
elastic behavior of the material. Three types of such models are com-
monly used in engineering: Kelvin-Voigt, Maxwell, and standard-linear
solid models. The Kelvin-Voigt model has be:n used more extensively
due to its mathematical simplicity. The three models are presented in
the order of increasing complexity.

Kelvin-Voigt model

39. The rheological model of Kelvin-Voigt meterial consists of a
linear spring and a dashpot in parallel and corresponds to & one-degree-
of -freedom damped system in the theory of vibrations. The constitutive

equation of Kelvin-Voigt material is given by

055 = (I + A 1)) 8, + 2uey s + 2u.d, (39)

Equation 39 involves four material constants, A, Av s i, and By o

that must be deterwined experimentally. The one-dimensional
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representation of equation 39, which is most commonly used in engineer-

ing application, can be obtained by allowing €p = €13 = 623 = 622

= €33 = d12 = d13 = d23 = d22 = d33 = 0 , Accordingly, in view of
equations 5, 6, and 10, the one-dimensional representation of equation
39 becomes
de de
- Y Y
Oy = Myt Ay g ey 2, (0a)
de
G = Reyq * A ik (40b)

a2 11 v dt

where €13 is the strain in the direction of motion in s uniaxial
strain qpnfiguration and Onp is the lateral stress required to pre-
vent lateral strain. Equation l4Oa can be writien in a more compact
form by collecting terms, i.e.

aey,
opp = (M + 2ueyy + (A + 2u)) 5= (41)

The terms X + 2y and kv + 2pv correspond to the elastic modulus M
and the distributed viscosity 1 , respectively, associated with the
conditions of uniaxial strain, 1In view of the above terminology, equa-
tion 41 becomes
= Me.. + 1 —it
Opp = Mepy T (k)
Equation 42 is the counterpart of the differential equation of motion

for the free vibration of a one-degree-of -freedom damped system with
equivalent spring constant keq and damping coefficient ceq given by

- M
keq =3 (43a)
Coq = %? (43v)

where & and h are area and length, respectively. In practice, &

corresponds to tl.» cross-sectional area of a continuous system
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(a column) and h corresponds to the grid spacing of a discrete system
(a lumped-parameter model) that is mathematically equivalent to the con-
tinuous system.

40, Various nonlinesi forms of Kelvin-Voigt constitutive equa-
tions are also available that can be used to describe the stress-strain-~
time behavior of soil under various states of stress and deformation.
The basic forms of these models are the same as eqaation 9. The con-
stitutive coefficients, M , Kv s, B, and o however, are no
longer constant. One of the more general nonlinear versions of the
Kelvin-Voigt constitutive equation that is particularly suited for soil

9

has the following representation:

oy = {(oo + oB) [exp(aIl)] - OB}Sij

bo{(do + op) [exp(aIl)] - oB}bl <€ij - %1- 613)

1+ %g (312 - Ii)l/a{(oo + oB)[eXp(aIl)] - cB}bfl
. ey '
. "c{“[l +3 (- Ii)l ]} (dia' - Ez% 513) (1)

LG, - 1)

where Op > 9g 5 &5 bo s bl , O, M, > and n are material con-
stants that must be determined experimentally. Equation L4 was derived
for cohesionless materials and includes the following material
characteristics:

Nonlinear pressure-volume behavior

Wonlinear shear stress-shear deformation behavior

Effect of pressure on shear resistance

Plastic failure

le & jo o Ip

Nonlinear viscous effects
A similar copstitubive equation was also formulated for cohesive

9

materisals.
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Maxwell model
il. Tne rheological model of the Maxwell material consists of a

linear spring and a dashpot connected in series. The constitutive equa-
tion of Maxwell material is given by

635 = (o7 * A T;) 85 * 2B 05y * 2w 8y (457 4

where o lm s Bm > end u  are material constants that mugt be

determined experimentally. The one-dimensional representation of equa- g
tion 45 can be obtained by setting dyp = d13 = 623 = dyy = d33 =0, :
Accordingly, in view of equations 5, 6, and 10, the one-dimensional rep- §

resentation of equation 45 becomes

deyq e q ;
3 = E + —t
1 = &J) A TE s TRt Ay, T (46a)

. 0eq;
922 © Oth N Km at ¥ 2ﬁm°22 (46p)
where, as before, €91 is the strain in the direction of motion in uni-
axial strain configuration and Opo is the lateral stress required to
prevent lateral strain. Equations 46a and L46b describe the motion of a
Maxwell material in a uniakial stirain condition. These equations are

coupled differential equations and must be integrated in order to ob-

tain stress-strain-time relations for the maverial.

Standard-linear solid
42. The rheological model of the standard-linear solid consists

of a Kelvin-Voigt element and a linear spring connected in series. The
constitutive equation of the standard-linear solid may be expressed as

6i5 = (xsxl * NI+ ad) By * 2By, * 2nd, QpSGij (47) !

whera xs s xs s Oy HE , and g 8are material constants that must be
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determined experimentally. Equation 47 can also be expressed in one-
dimensional form similar to the Kelvin-Voigt and Maxwell models.

Combined models

43. Various other combinations of spring and dsshpot models can
be constructed by combining, for example, Kelvin-Veigt elements with
Maxwell elements in series. It should be pointed out, however, that
the Kelvin-Voigt, Maxwell, 2ud stendard-linear solid models, or othar

combinations of these models, are special forms of equations 9 and 3C

Hysteretic Damping Models

kh. The hysteretic damping models are generally formulated in
terms of isotropic incremental elastic-plustic constitutive equations.
The nonlinear behavior is incorporated into such constitutive equations
by making the elastic moduli functions of the strain and/or stress in-
variants. Hysteretic behavior is taken into account by using different
values of moduli for loading and unloading. Classical plasticity is
often incorporated into the model by specifying a yield criterion that
effectively serves to limit the maximum stress deviators in the mate-
rial. As mentioned previously, a set of logics or criteria must also
be specified for the hysteretic damping models to define various lsad=
ing conditions. Several forms of hysteretic demping models are pre-
sently being used in stress analysis studies of hysteretic materials.
As mentioned above, most of these models have evolved along the lines
of isotropic incremental elastic-plastic constitutive equations. A
brief discussion of the mathematical formulation of isotropic models is
given in the f'ollowing paragraph.

Isotropic incremental
elastic-plastic models

45. In the incremental theory of plasticity, the incremental

strain tensor deij is assumed to be composed of the plastic strain incre-

ment tensor defj and the elastic strain increment tensor degj s i.e,

= b + e
deij deij deij (18)
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The basic postulate of the plasticity theory is the existence of a
yield function or yield criterion F , so that the material wields when

F(cij) =0 (%9)
In the sbsence of any further constraint, the material would then flow
plastically, undergoing plastic as well as elastic strains. When the
stresses are less thaen those required to satisfy equation 49, the mate-
rial will undergo elastic strains only, i.e., tie material behaves as a
linear elastic solid. WNo stress state that exceeds the yield criterion

is allowed. These conditions are summarized as

~ = _e .
ar,y = acj, if F<O
de,. = de°, + ae®, if F=0 (50)

ij ij ij

T >0 not admissible

46, The elastic relation of stress and strain was stated pre-
vionsly in terms of the strain energy functions U and V¥ (equations
16 and 20)., In terms of stress and strain, the elastic relaticon

becomes

g, 9, . (51)

e 1+ v v
€ = Se—— -
ij T F Y95y " F by (52)
The plastic strain increment tensor is derived from the yield function
(equation 49) by utilizing the concept of the plastic potential,lo i.e.

y oF
d%j-Aagg (53)
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in which A is a positive fector of proportionality that must be
determined from the condition that the stresses must not violate
equation 49, Consequently, A is not unique and has different forms,
for various yield functions. 1In view of equations 52, 53, and 48, the
total strain increment tensor takes the following form

_Lltw v OF ,
de, . = Aoy, - g Aoy d, 4 A 55;; liSh).

ij B ij E

Equation Sk, in conjunction with the conditions given by equation 59,
constitutes the incremental stress-strain relation of the theory of
plasticity.

47. The most widely used incramental elastic-plastic model iin
engineering is the Prandtl-Reuss constitutive equation, which utildizes

the well-known von Mises yield condition given by

1 = b
JEs 8=k (55)

components of stress deviator tensor

where

Sin

k = material constant
48. 1In view of equation 55, the yield function F for Prandtl-

Reuss material becomes
F=%S S - X (56)

Employing equation 56 in equation 53, the plastic strain increment ten-

sor becomes

degj = AS;, (57)

From equation 57, it follows that

P _ _
deg; = ASy; = O (58)
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indicating that no plastic wvolume change can cccur in the plastic range
for the Prandtl-Reuss material. The proportionality factor A for the

Prandtl-Reuss material is given by

A=—5 (59)

where W is the rate of work done in shear or the increment of inber-
nal energy due to distortion.11 Accordingly, in view of equations 59,

57, and 54, the strain increment tensor becomes

=LtV -y .
degy = T dogy =g Ao Byt - 54 (60)

Equation 60 is the Pranditl-Reuss constitutive equation; it epplies in
the plastic range wher W0 and equation 55 holds. If W<o 5 une
loading is teking place aud the behavior of the material is governed by
the elastic eanstitutive equation in the incremental form, i.e. equa-
tion 52, If W= 0 » the leading is said to be neutral, and equations
52 and 60 become identical. %he above results can be summarized in the
following form:

4 ;JET——‘—__"
3 Bunfm <K

=Y a5 s when (61a)
E elastic loading
L

1
=
w
2

=k
mn mn
l+v \ N
<d€ = do,, - = 40,8, , + —s S, . when| (61b)
ij E I ORS  B EEY
W<o
1L+ v A%
de;j == do1J - 5 dokksia when (61e)

elastic unloading

From equation 61, it is apparent that the Prandtl-Reuss material ««-
hibits energy dissipation In shear. However, in view of equation 58,
the material behaves elastically during hydrostatic deformation.

49, Other forms of elastic-plastic constitutive equations are
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also available that are more general than the Prandtl-Reuss material.

For example, by utilizing the Drucker-Prager yield condition
ao + 28 8 =k (62)
kk 2

in equation 53, and utilizing the ﬁ criterion, a more general consti-
tutive equation can be formuwlated that can account for energy dissipa-
tion in shear which is accompanied by volume expansion., It is also
possible to formulate a work-hardening plastic model by constructing a
yield function that is dependent on the plastic strain tensor, i.e.

Ffo.. a¢?. V=0 6
(015, 13) (63)
The yield function then changes or moves as plastic strain takes place
in order to account for the Qork-hardening behavior of the material.
Variable moduli models

50. The elastic-plastic models fail to reproduce the stress-
strain behavior of highly hysteretic materials such as soil under com-
plex and transient states of stress and, therefore, are limited in
their application. In an attempt to overcome this deficiency, an alber-
nate approach was developed that has led to the formulation cf a series
of constitutive models known as variaeble moduli models.12 Unlike the
elastic~plastic models, there is no explicit yield function or flow
rule associated with the variable moduli models.

51. The basic constitutive relation of the variable moduii model
is given by

- s 1 )
do;; = Kdey B, 5 + 2u (dei j "3 ded (64)
where d = an incremental change in stres:s or strain ari K = the bulk
modulus . Equation 64 can also be writcen in terms of the deviatoric
and spherical components of deformation, i.e.

1

as, 5 = 2u (aeij -5 dekkﬁij) (652)
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b

dckk = 3Kd€kk (650)

Nonlinear behavior can be incorporated in the model by meking K and
n  functions of strain and/or stress invariants. The hysteretic be-
havior of the material is taken in%o account by using different values
of X and p on loading and unloading.

52. To date, in constructing various variasble moduli models, it
has been assumed that volumetric strains are caused only by changes in
pressure, i.e., that there is no coupling between volumetric strain and
the components of the deviatoric stress tensor. Consequently, the bulk
modulus is only related to pressure or the volumetric strain and is
independent of stress deviations.

53. From equation 64 (or equation 65), it is apparent that the
constitutive equations of variable moduli models are a set of first-
order differential equations. The integration of the differential
equations, for a given stress path and initial conditions, leads to
stress-strain relations. Therefore, a relation between stress and
strain is the outcome of the theory, but it depends completely on the
stress path used to reach the final state as well as the initial state

of the material.

54. The most recent version of a variable moduli model was de-

veloped by N'elson.12 The load/unload criterion associated with the

model is composed of the %oct criterion for the deviatoric part of

deformation and bkk for the hydrostatic part.
55, Tor initial loading, the bulk modulus tekes the form

2
K=Kn=K *K (ekk) + K, (ekk) (66)
and for unloading and reloading

K= Kym = Ko * K1uP (61)

where LD = loading , UN = unloading , RE = reloading and p =
pressure. The parameters Ko s Kl s Ké s Kbu , and Klu are
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material constants that must be determined experimentally. The
unloading/reloading bulk modulus is used whenever the pressure is de-
creasing or whenever pressure is increasing, but its magnitude is less
than the maximum previous pressure.

56. The expressions for shear modulus consist of two parts. At

low pressure levels, i.e, for p less than some critical pressure P, >

- o= X 2

Bpp = Ho * T\5 SynSpn T 4P * 0P (68a)
o as [T 2

Mo = Pou T %0V S SpnPan * P t %P (66b)

For p> P, > the shear modulus becomes independent of pilessure and is

a function of % Smnsmn only. Accordingly, in view of equation 68

T (69)

) 1% - [T
Fp S Mo TR G T % VZ Smn®m (70a)
" , %
= - 1
g\uUN “Hum TR o t %a VE S (70b)

As indicated by equations 69 and 70, the expressions for Mo and pUN
are continuous at p = P, + The parameters Mg Ez‘l s O, O,
oy alu s Oy o and oy, Pre material constants that must be de-
termined experimentally. The loading shear modulus is used whenever
oot > 0 during both initial Joading in shear and subsequent reloading
in shear. The unloading shear modulus is used whenever "ro ot S0 -

The model, therefore, mekes no distinction between initial loading and

subsequent reloading in shear. This logic, however, results in exces-

T

sive strains during eyelic lrading., To overcome this deficiency, one
possibility would be to use the unloading shear modulus whenever

3

T < 0 or whenever Toot = 0 but the magnitude of Toct is less

oct
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than its previous maximum valve. This logic is analogous to the logic
used for bulk modulus. Another possibility is to use a linear combina-
tion of ML “and Hun for reloading in shear. The reloading problem,
in general, is not well defined, and additional cyclic deta or theoret-
ical ccngiderations are necessary to explain this phenomenon.

57.. The variable moduli models dissipate energy under both the
deviatoric and the hydrostatic stress conditions and have the capabil-
ity of matchiug experimental data quantitatively. There is, however,

& Lasic theoretical objection for their utilization in the solution and
formulation of boundgry-value problems for hysteretic materials under
cyclic loading conditions. This objection stems from the load/unload
criterion for shear associated with these models and the neutral load-
ing conditions defined by %oct = 0, As was pointed out previously,
whenever %oct = 0 , the constitutive relations for inicial loading
and unloading must become identical in order to have unique solutions
for the boundary-value problems of interest. TFrom eguation 68, it is
cbvious that the expressions for shear modulus do not become identical
whenever %oct = 0 and one can use either Krp ©F Mgy at such a
load/unload interface. Tnis theoretical objection for the use of vari-
able moduli models has led to the development of a series of elastic-
plastic work-hardening constitutive models that satisfy the dontinuity
conditions associated with neutral loading and at the same time match
the experimental data quantitatively.l3

58. The constitutive equations of Prandtl-Reuss material and the
varisble moduli models are only special forms of the hypoelastic con-

stitutive equation (equation 25).1h
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PART V: DISCUSSION AND RECOMMENDATIONS
Discussion

59. The hysteretic character of the stress-strain behavior of
earth materials can be described by phenomenological constitutive + .a-
tions using two alternate procedures. In the first procedure, the hys-
teretic behavior of earth materials is accounted for by using different
sets of constitutive relations for loading and unloading, in conjunc-
tion with a set of criteris that define various loading conditions, i.e.
initial loading, unloading, and reloading. The constitutive equations
in this case are time-independent. In the second procedure, a single
constitutive equation is specified and the energy-dissipation proper-
ties of earth materials are accounted for by the appearance of the time
derivatives in the constitutive equation, which in this case is time-
dependent.

60. TEither of the above-mentioned procedures can be used to
solve soil dynamics boundary-value problems and will yield stress-strain
curves that exhibit energy-absorbing hysteretic behavior. The mecha-
nisms of energy dissipation in the two procedures, however, are differ-
ent. Additional experimental dynamic data and thecreticai studies in
the areas of nonlinear viscoele:ticity and plasticity are required in
order to determine which of the two procedures is more appropriate for
describing the stress-strain behavior of earth materials. A%t the pres-
ent time, for reasons of practicabilily and depending on the type of
problem being considered, some investigators use the first procedure
while others prefer the second. A subisequent report (Report 2) will
review the current laboratory methods of determining the damping capac-
ity of soil; it will describe specific techniques used to evaluate
hysteretic effects by both the time-independent and the time-dependent

approaches.

Recommendations

61. Research efforts presently under way at the U. S. Army
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Engineer Waterways Experiment Station and elsewhere are aimed at devel-
oping material models that exhibit energy-absorbing hysteretic behavior
for use as input to ground motion calculation computer codes. The
technique used for formulating the constitutive equations follows the
procedure for constructing hysteretic damping models. The constitutive
equations are, therefore, time-independent and do not manifest viscos-
ity effects. Very little effort has been expended in recent years to
formulate mathematical material models that account for the energy-
dissipation properties of the earth materials through viscosity mecha-
nisms. These types of time-dependent material models are highly desir-
able for the solution of boundary-value problems involving steady-state
cyclic loading conditions. Moreover, they have the added adventage of
being able to account for strain-rate effects.

62. 'Thus, it is recommended that research efforts to develop
time-dependent constitutive equations for earth materials for the for-

mulation and solution of soil dynemics bouwndary-value problems continue.

Such relations shoudld be capable of qualitatively and quantitatively

matching the salient nonlinear and hysteretic response characteristics
of earth materials, not only as determined in the one-dimensional. con-
figuration but also under a variety of other laboratory test-boundary
conditions. In the author's opinion, such efforts should be governed

by the following criteria:

a. The constitutive equations must teke into account non-
linear pressure-volume behavior, nonlinear shear stress-
shear deformation behavior, effects of hydrostatic
stress on shear deformation, shear fracture, spalling,
and plastic failure of earth materials.

b. The numerical values of the various coefficients defin-
ing the constitutive models should have physical signif-
icance in terms of compressibility, shear strength,
ete., so that when extrapolating date for the different
materials, rational engineering judgments can be made as
to the relative megnitudes of the constitutive coeffi-
cients based on geologic descriptions, mechanical
properties, and other conventional indices. The consti-
tutive coefficients should not be merely a set of
numbers generated through a trial-and-error, black box
routine to fit a given set of data.
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63. The constitutive models must be used to obtain analytical or
closed-form solutions to special problems, e.g. one-dimensional wave
propagation, in order to study the dissipation characteristics of the
models as well as the theoretical implications of the new phenomena
they present, such as the requirements imposed by uniqueness and con-
tinuity considerations.

6L. The nonlinear Kelvin-Voigt model discussed by Rohani (equa-
tion Ult), or an exiension of this model, can be used as a starting

point for suenh an undertaking.
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