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SUMMARY

To establish basic definitions and to serve as a reference for
future theoretical and applied research efforts, the fundamental con-
cepts of the theory of continuous mass media are reviewed, and the

, Jmathematical foundations of constitutive equations for isotropic and
homogeneous materials are presented. The results are restricted to de-
formation for which isothermal behavior prevails and displacement gra-
dients are small. Seven types of mathematical material models are dis-
cussed that can be used to describe the stress-strain-time behavior of
physically nonlinear materials. The models are given in three-
dimensior~al tensorial representation.

The energy-dissipation properties of engineering materials are
discussed within• the framework of the above-mentioned mathematical
material models, and the damping models used in engineering analyses of
vibratory systems are summarized.
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DAMPING CAPACITY OF SOIL DURING DYNAMIC LOADING

REVIEW OF MATHEMATICAL MATERIAL MODELS

PART I: INTRODUCTION

I Background

1. A great number of engineering materials exhibit hysteretic

effects under cyclic or near-cyclic loading conditions, even when

undergoing small defonpation. AX prime example is soil. The energy-

dissipation characteristics of soil can be observed, for example, from

the attenuation of the stress pulse during one-dimensional wave propa-

gation test2 or from the formation of a hysteretic loop during a load-

unload cycle of diformation. The hysteretic character of the stress-

strain behavior of soil plays an important role in the determination of

the response of soil to dynamic loads and must be incorporated in the

formulation and solution of soil dynamics boundary-value problems.

2. The term damping is often used, in a general sense, to de-

scribe the energy-dissipation pproperties of engineering ma teials; and

various mathematical material models have been devised to represent

such !ienomena. Th~ e approach used to formulate most of these models is

based on the methods of continuum mechanics, which disregard the atom-

istic details of the material and consider its gross behavior only.

The models are, therefore, phenomenologic•d in nature. In fact, no

satisfactory explanation of damping mechanism on the atomistic level is

available at the present tine, although several hypotheses have been

set 4 )rtb in recent years. For the solution of many engineering prob-

Slems, however, a matnew~tical mofei of damping that is based on the

concepts of continuum mechanics is quite sufficient and useful. Such a

model must, of course,, be general enough to deacfibe the energy-

dissipation propertien of the materi• under vwrious svates of stress

and deformation.

3. To date, two aLternate proce&.,•e Itave been employed to

i ' 1



describe the hysteretic behavior or the energy-dissipation properties

of soil. Both procedures &re based on the methods of continuum mechan-

ics. In the first procedure. jhe hysteretic behavior of soil is ac-

counted for by using three skts of time-independent stress-strain rela-

tions: one set for initial loading, one 4or unloading, and one for

subsequent reloading. The mathematical expressions for the stress-

strain relations are usually derived from cyclic or near-cyclic experi-

mental data by curve-fitting techniques. A set of criteria or logics

is also specified to determine whether the material under consideration

is being loaded, unloaded, or r loaded so that the proper stress-strain

relations can be used. The theory of plasticity is the outcome of this

procedure. In the second procedure, a time-dependent mathematical

model is postulated, and the hysteretic behavior of soil is accounted

for by the appearance of the time derivatives (deformation rate) in the

model. The theory of viscoelasticity is the outcome of this procedure.

4. Both of these techniques have been used extensively in the

formulation and solution of soil dynamics boundary-value problems. The

mechanism of energy dissipation in the first procedure, however, is

different from that in the second procedure. At the present time, it

is not clear which procedure is the more correct one, and the Available

experimental information on the stress-strain behavior of soil under

dynamic cyclic loading is not conclusive enough to favor one or the

other. For reasons of practicability or mathematical simplicity, and

depending on the type of problem being considered, some investigators

use the first procedure while others use the second. A subsequent re-
port (Report 2) will review current laboratory methods of determining
the damping capacity of soil; it will describe specific techniques used

to evaluate hysteretic effects within the framework of both the time-

independent and the time-dependent mathematical material models.

Purose

5. The purpose of this report is to review and document various

mathematical mateiial models that can be used to describe the

2



stress-strain-time behavior of physically nonlinear, isotropic, and

homogeneous materials. Emphasis is placed on the material models that

exhibit hysteretic effects under cyclic loading. These models will

serve as bases for !uture work for the evaluation of damping capacity

of soils under dyneaiic loads.

Scope

C. Since the mathematical material models presented in this re-

port are based on the methods of continuum mechanics, a brief discus-

sion of the fundamental concepts of the theory of continuous media is

given in Part II, Part III contains a summary of the available mathe-

matical material models in their general functional representation. In

Part IV, various types of damping models commonly used in engineering

analyses of vibratory systems are presented.

Ii
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PART I1: CONCEPTS FROM CONTINUUM MECHANICS

Basic Principles

7. In engineering practice it is convenient, and often reason-

able, to disregk the atomistic details of imatter and consider its.

gross beriavior .,.Ly. It is alio customary to; adopt the hypothesis that

matter can be replaced by a mathe-natical model whose kinematic or dy-

namic variables are piecewise continuous fidctions-of spatial coordi;-

nates and time, Sch •a medium is often referred to as a continuum.

The motioyi of any continuum in a Galilean frame of reference is gov-

erned by the following laws:

a. Conservation of mass

b. Conservation of energy

c. Balance of linear momentum

d. Balance of angular momentum

e. Principle of inadmissibility of decreasing entropy

These laws constitizte the basic axioms of continuum mechanics. 1  If me--

chanical energy is the only form of energy to be considered in a prob-

lem, the above principles will lead to the continuity eqcuation*

7

S+ (Pv ) o (1)

and the equations of motion

aijj + p - ai) 0 (2)

where

p = mass density

v. = components of velocity vector
1

Indices take on values 1, 2, or 3. A repeated index is to be summed
out over its raige. Comma in the subscripts represents a derivative.
Quantities are referred to rectangular Cartesian coordinates X .
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GiS = symmetricel stress tensor

F. = components of body force
1

ai = components of acceleration vector

8. Equations 1 and 2 constitute four equations that involve ten

unknown functions of time and space: the mass densit- p , the three

velocity components vi , and the six independent stress components

*i6 . The body force components Fi are known quantities and the ac-

celeration components ai are expressible in terms of the velocity

components v. . Obviously equations 1 and 2 are inadequate to deter-
1i I d

mine the motion or deformation of a mediumi when subjected to external

disturbances such as surface forces and/or displacements. Therefore,

six additional equations relating the ten unknown variables p ,v

and aij are required. I., the field of continuum mechanics, such re-

lations art stated by constitutive equations, which relate the stress

tensor a i io the deformation and time rate of deformation. The dif-

ference between the constitutive equations and the field equations

(equations 1 and 2) is that the latter are applicable to all materials,

whereas the former represent the. intrinsic response of a particular ma-

terial. Furthermore, a constitutive equation provides a mathematical

description or definition of an ideal material rather than a statement

"Of d universal iart.

9, The general form of a constitei.ve equation for isothermal

conditions may be expressed by the functional form

relating Lhe ten unknown var:Lab(es P , vk ,and ij . Equation 3

can be written in 'a more definite form relating the stress tensor to

the strain temoo and the deformation-rate tensor, i.e.,

ar j j (e nd)r (1,)°ij fi

where

can = strain tensor

drs = deformci!on-rate tensor

5



If the displacement gradients are small, the strain tensor can be ex-

pressed in terms of the components of the displacement vector ui by

the following relation

rmn 2 mn n,m

The deformation-rate tensur is related to the components of the veloc-

ity vector v. ,i.e.
11

drs =*(Vr's + Vsr) (6,

The mass density p can be related t6 drs or e. through equations

1, 5, and 6. Equations 1, 2, and 4, therefore, constitute ten equa-

tions in ten unknowns and will lead, inm conjunction with the kinematic

relations given by equations 5 and U, to a complete description of the

boundary-value problem. In addition to the above-mentioned equations,

boundary conditions in terms of boundary displacements and/or surface

tractions must also be specified to- define the particular problem of

interest.

Requirements for Constitutive Equations

10. In order for the constitutive equation (equation 4) to de-

scribe a physical material adequately, the response function fiJ must

be form invariant with respect to rigid motion of spatial coordinates.

This requirement tems from the fact that the response of a material is

independent of the mo+ion of the dbserver. Furthermore, f must be
ij

expressed in tensor language to ensure that the constitutive equation

is invariant to coordinate transformations. In addition to the above-

mentioned invariance principles', the response function fij must be

consistent with the general principles of conservation or balance of

mass, momentum, and energy. If it is assumed that the material under

consideration is isotropic and elastic (linear or nonlinear), every

principal axis of strain must also be a principal axis of stress, i.e.,

6



02 f.i must show that = 3 0.

if - 2 3  '3 1 -O Ij 1~2  023 '3:1
Also, to avoid stress-induced anisotropy for an isotropic elastic

medium, fi.i must ensure that a zero state of strain corresponds to a

zero or a specified scalar state of stress.

The General Form of Isotropic Constitutive Equation

11. The general form of the response function fij satisfying

the invariance principles and the requirements of isotropy was derived

by Rivlin and Ericksen. 2 Functions satisfying these conditions are

called hemitropic functioni, of their arguments. A hemitropic poly-

nomial F of two symmetric second-rank tensor variables A and B

admits a representation of the form

F(AB) = yoI + ýlA + ý2A
2 + ý3B + A4B2 + 65(AB + BA.) + A6 (A2B + BA2 )

+ g 7 (AB2 + B2A) + A8 (A2B2 + B2 A2) (7)

in which I = 6ij = the Kronecker delta ; and the coefficients n , ""

ý8 are scalar-valued functions of the ten joint invariants of A and

B .3 The ten joint invariants of A and B are given by

tr(A) tr(A 2 ) tr(A 3 )

tr(B) tr(B2 ) tr(B3 )

tr(AB) tr(A 2 B) tr(B 2 A) (8)

tr (A2 B 2)

where tr = trace of , indicating the sum of the diagonal terms of a

square matrix.

12. According to equation 7, the admissible form of the isother-

mal constitutive equation (equation 4), or f takes the following

form

7



,i V
a.. = T105ij 'ql6l+I 6+ %d. + I d d. +~ d.+ d.c )aj 2• imm 5 imm immj

+ Y6(immndn. + d. 6n + T (7imdmndnj + dimdmn nj)

+ q8('im mndnppj + dimdmlcnpepj )

The response coefficients TO ... ' q8 are scalar-valued functions of

the ten joint invariants of the strain tensor and the deformation-rate

"tensor. In view of equations 5, 6, and 8, the ten joint invariants of

the strain tensor and the deformation-rate tensor take the following

representation:

I, ss I1 =d dss

12 = Cts Cst '2 dtsdst

I3 tsCsrCrt 3 d tsdsrrt (10)

M = ts dst R = tsdsrdrt

N = 6tsesrdrt Q = Cts skdkrdrt

These response coefficients t0"ke various forms for different materials

and must be determined from experimental observation. ,There is, how-

ever, no a priori reason for requiring that all response coefficients

appear in the constitutive equations for all materials. Some of the

response- coefficients may vanish for some materials. Accordingly, a

constitutive equation with two response coefficients, such as Hooke's

law, is as valid and significant as a constitutive equation that in-

cludes the nine possible response coefficients 1 0 .8 The dif-

ference between the two equations is in their range of application.

13. It should be pointed out that equation 9 is not ba&ed on

thermodynamic considerations and the response coefficients are not, in

general, related to a single potential function. A special form of

equation 9 based on thermodynamic considerations was also developed

8 V.



by Schapery4 and has been used extensively for stress analysis of visco-

elastic materials.

14. Presently there are several forms of isotr .ic constitutive

equations available that can be used to describe the stresr-strain..time

response of various materials. They are all derived from equation 7

or 9 and are presented in the folIlwing part.

9I
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PART III: REVIEW OF ISOTROPIC CONSTITUTIVE EQUATIONS

General

15. The theoretical foundation of isotropic constitutive equa-

tions is based on the ,Rivlin-Ericksen equation presented in Part II (equa-

tion 7). Various classes of constitutive equations have been developed

in recent years utilizing equation 7 or 9. A summary of these equations

is presented in the following sections.

*i

Elastic Materials

16. For elastic materials, the state of stress is a function of

the current state of strain, i.e.

oij = f ij (emn) (11)

The response function fi has the same form as equation 7 where
ij

A = emn and B = 0 . Accordingly, the constitutive equation for elas-

tic materials becomes

ij = O0aij + 2l(IJ + 02(im(mj (12)

Equation12 is often referred to as the Cauchy elastic constitutive

equation. 1  The response coefficients 00 1 and 02 are func-

tions of the three strain invariants Il , 12 , and 13 given by equa-

tion 10. Equation 12 can describe the mechanical behavior of various

types of elastic materials by properly selecting the forms of 00

0I ,and 02 - For example, if 02 = 0 , 01 = 2p , and O0  XI 1

equation 12 degenerates to Hooke's law, where [t and ) are the Lame

constants. For a second-order elastic stress-strain relation, the re- I,

sponse coefficients take the forms = D , 0 2P + CI[, and

0= XI+ A + BI2  where A, B, C and D are material con-
stants. Therefore, a second-order elastic stress-strain law, based on

10



equation 12, involves six material constants. Paralleling the above

procedure, higher order and more complicated elastic stress-strain re-

lations can be developed.

17. The counterpart of equation 12, which is derived from the

conservation of energy and is referred to as the hyperelastic constitu-

tive equation, is given as

si U b io + 2 ýU cij + 3 imG G(13
*ij 717* 3,- _I mm

where U = U(IiI 2 ,I 3 ) is the strain-energy density function. 5 Com-

parison of equation 13 with equation 12 indicates that hyperelastic

materials are special forms of the Cauchy elastic materials, where

2 (14)
10 R 3

Consequently, a Cauchy elastic material ia hyperelastic if the response

coefficients 0 ,1 and 02 are related in the following manner

V =2 wo(15a)

61 2 6'02  (15b)

3 2

ý02 3 wo(15c)
1 3

For linear elastic materials

U 2 + 1 ' (6
2 1 2 (6

and both equations 12 and 13 yield the same results. The effect of the A
thermodynamic restrictions, therefore, is not evident when considering

linear elastic materials. However, the effect of thermodynamic

11



restrictions becomes very pronounced when considering higher order

stress-strain laws. For example, a second-order elastic stress-strain

law formulated from the Cauchy elastic constitutive equation involves,

as was shown previously, six material constants. On the other hand, a

second-order elastic stress-strain law based on the hyperelastic con-

stitutive equation (equation 13) involves only five material con-

stants, since the strain energy function for second-orAfer hy.erelastic
materials takes the form U = X 12 + PI + A + B II + C0I where

A1 , B1 , and C1 are material constants. The effect of thermodynamic

restrictions, in this case, is to reduce the number of material con-

stants from six to five. However, the physical implications of this

reduction in material constants is not clear at the present time.

18. The inverse forms of the Cauchy elastic and hyperelastic con-

stitutive equations, resulting in strain-stress laws, are given as

e te) + ea + ea aIj 0 ij l ij 2im° (17)

for the Cauchy elastic materials, and

bi ij +3  4 ai ai (18)

for hyperelastic materials. The response coefficients 0 0 , and

e2 , as well as the complementary-energy density function 4 , are

functions of the followIng stress invariants

J 1 = ss

S 2 =ats t (19)

3 us sr rt

For linear elastic materials, the complementary-energy density function

is given as

12



2-2 ( 2 0)

2E 2 RE 1 20

where E and v are Young's modulus of elasticity-and Poisson's rdtio,

respectively; If equation 17 is utilized to derive the strain-stress

law for linear elastic materials, the response coefficients take the

forms =0 e , and eO= J . Again, as expected,

both the Cauchy elastic and hyperelastic constitutive equations yield

the same strain-stress laws for linear elastic materials.

Hypoelastic Materials.

19. The theory of hypoelasticity was formulated by Truesdell. 7

The theory is formulated in terms of rawces of both stress and deforma-

tion and is intended to describe the Diechanical behavior of path-

dependent materials. As was pointed out in the previous section, the

state of stress for an elastic material is a function of the current

state of strain and is independent of the path followed to reach that

state. For real materials, earth materials in particular, the final

state of strýss is a function of the final state of strain as well as

the stress path used to reach the final state. Hypoelastic thaeory pre-

dicts this type of behavior and may be used to mode,L the stress-strain

behavior of soil.

20. The basic constitutive equation of hypoelastic materials is

expressed in the form

where
A

s= nondimensional stress flux tensor s=

Ss = nondimensional stress tt:ýsor :a

A~211a ij = stress flux tensor

d = deformation-rate tensor (eauation 6)

Jaumann's form of stress flux tensor is given by1

13



J = t + Vij,kvk + .ik'j -'kj'ik (22)

where

"Wrs = (Vr,s "Vs,r) (•3)

is the Eulerian spin tensor. This definition of st'ess flux is not

unique, and various other forms developed by Trnesdell and Oldroyd are

available, which differ from Jaumann's form in the terms containing the

spin tensor. However, at the present time there is no a priori reason

for utilizing any specific form of the stress flux tensor; additional

physical postulates, or experimental information, are reouired in order

to determine a preferred form of this tensor. For static problems or

for dynamic problems with nearly irrotational dLsplacement fields, the

stress-rate tensdr (the first term on the right side of equation 22)

may be used instead of the stress flux tensor.

21. The hypoelastic response iunction f(d,E) is of the same

form as equation 7 where A = d and B = . Accordingly, the hypo-

elastic constitutive equation (equation 21) becomes

s a OI + C1d, + a 2d2 + Cr3B + V4• + Ct5 (d9 + Ed)
+ a6d B a4 2 c (d+d

+ 6 (d2  + d2 ) + (dB2 + B2d) + % (d 2 2 + (2)

where CIO , "" ,8 are scalar-valued functtons of the ten joint in-

var 4 nts of d and s (Joint invariants of d and 9 are obtained

from equation 8 by substituting d and 9 for A and B , respec-

tively). The response coefficients CO ) ... , % are further re-

stricted by the first hypothesis of hypoelasticity: "No constitutive

coefficients of a hypoelastic material shall carry a dimenai!on inde-

pendent of the dimension of stress." The consequence of this hypothesis

on the hypoelastic constitutive equation is that all terms containing

second and higher powers of d must vanish. Thus, the response coef-

ficients (8 =a6= a = O ; ,7 ) a5 and a, must be independent of

d an= functions of B alone; and jo ' a 3 , and a4 must be of degree

:ne in 0 . Imposing the above restrictions on the response coefficients

141



in equation 24, the hypoelastic constitutive equation reduces to

+ EP + 0 4 2
s = + i1d + P ld + I + P 3  + 2 (d0 + ýd) + IP5

+ EP6 9 + FPI + +5 + F 2 (2 5)
7 (a2  2 d f 9  ~ 10 11 25

in which , ... 11 are dimensionless 'functions of the three prin-

cipal invariants of 5 only, and E and F are defined as

E % ' nm (26)

inn np pm

22. From equation 25, it is apparent that the constitutive equa-
tions of hypoelasticity are coupled differential equations of first or-
der. Furthermore, the differential equations are homogeneous in time.

To obtain a unique solution to these equations, some initial conditions
that are consistent with the invariance principles must be prescribed.

The integration of the differential equations, for a given stress path,
leads to stress-strain relations. Thus,. a relaticz between stress and

strain is the outcome of the theory.
23. Truesdell 7 has defined various classes of hypoelastic mate-

,rials that are characterized by the highest degree of 3 appearing in
equation 25. If the right side of equation 25 is independent of ,
the material is called hypoelastic material of grade zero. In this

case equation 25 reCtuces to

\ = i!% I + P1d (27)

which is directly similar to the constitutive equation for a linear,
isotropic, elastic material if 0= and P=i, i~e.

S k6ij + 2pdi3  (28)

15



If the right side of equation 25 contains up to the first power of

stress, the material is called hypoelastic of grade one and so on.

24. In establishing the constitutive equation of hypoelastic

materials, no assumptions were made in regard to the magnitude of

stresses and strains involved; hence, the theory is applicable for all

motions.

Hygrosteric Materials

25. The term hygrosteric is used for materials having a consti-

tutive equation of the form

As =F: ds~p) (29)

where the response function 7 is a pollynomial in d and s with co-

efficients depending on the density p . Due to the scalar character

of the ,density p , the formulation. of constiti jve equations for hygro-

steric materials is the same as for the hypoelastic mateiials except

that the response coefficients appearing &.In equation 25 may be con-

sidered functions of p or the dimensionless ratio p/PO where Po
is the initial mass density of the raterial.

Stokesian Fluids

" 6. Stokesian fluids are character:Lzed by the constitutive equa-
tions of the following form

=fi. (drs (30)
ij 3jr

The state of stress, therefore, is a function of the current rate of

deformation. In view of equation 9, equation 30 becomes

a -ij + bii '3 ,j + 4dd(31)
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where no n T 3 ' and T4 are fct{bon6 of the three deformation-rate

invariants given by equatior, 10. Bquation 31 can dencribe the behavior

of various fluids by proper selection of the r,ýsponsea coefficients, Q

q ,and i4 ' For exmmple, if Tilt = 0 ,; " = and no + X

where and X are the shear and ma.tt1.l -Viscosity coeffizients,V

respectively, and P is pressure, eque~tion 31 degenerates to th con-ý

stitutive equation of linear viscous fluids,' i.e.

ai -Pij + Xvl i j + 21,vdi• (34)

Viscoelastic Materials

27. The constj;tutive equation of viscoelastic materials is exw-

pressed by

Cfij "= fij (e M'd rs) (33) }

where the isotropic function fij is given by equation 9. Equation 33
reduces to the Cauchy elastic constitutive equation (equation 12) if de-

pendence on drs disappears. Various classes of viscoelastic mate-.

rials can be described by equation 33 (or equation 9) by proper se? c-

tion of the response coefficients nI e. " 8 For example, i',ý
=O),I + Xvl 2V•# ) 3 n 2p and - -- = •'

=8 = 0 , equation 9 reduces to the constitutive equation of the

Kelvin-Voigt material, i.e.

Oijj = X11 ij + Xvilij + 2geij + 2tvdij (3d)

Equation 34 is the three-dimensional representation of the parallel

spring-dashpot model used in the theory of vibration. Taking q5 = Q6

= n7 = T8 = 0 in equation 9, a second-order viscoelastic constitutive

model, often-referred to as the nonlinear Kelvin solid, can result, i.e.
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0ij T10j + qigij +r 2eimmj + q3 dij + q4dimd (35)

Equation 35 includes tensorial as well as scalar nonlinearities and can
no longer be presented by a simple parallel spring and dashpot model.

Many complex aspects of the physical behavior of real materials, such
1

as shear-dilatancy phenomenon and the Poynting effect, can be de-

scribed by equation 35.

28. Viscoelastic constitutive equations can also be formulated

in integral forms, e.g.

C f X (t - ) idr +2fB(t 2 ) Iddr (36)
ij I T ij f t T

0 0

where X and V are referred to as relaxation moduli or memory func-

tions and (t - T) in an elapsed time. Other forms of viscoelastic con-

stitutive equations, e.g., series forms witb differential operators as

arguments, are also available that can be used to characterize various

viscoelastic materials. Viscoelastic constitutive equations that are

expressed in the form of equation 9 (e.g., equations 34 and 35), how-

ever, possess a certain mathematical simplicity that makes them more

attractive for engineering analyses than other forms of viscoelastic

constitutive equations.

Viscoplastic Materials

29. To describe the mechanical behavior of rate-dependent mate-

rials that are compactible, i.e. exhibit time-independent as well as

time-dependent hysteretic effects, constitutive equations of the fol-

lowing form are often used:

3ii = fij (pqr`mn'drs) (37)

where a are the components of the stress-rate tensor. The iso-
Pq

tropic response function f.i is a hemitropic function of C n

and d and takes the following representation: 8

rs
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aij =Ao0ij + Al1ij + A2aimamj + A3 ij +A4'im'mj + ij A + A6 imdmj

7(&im'mj + (imamj + A & * + aim mj 9 im mn nj

+AA(+Add+ Ad. & )d A 6a

m+10 im n nj llimMnmnnj (38)

The response coefficients A , ... 12 are scalar functions of fif-

teen joint invariants of 6i , m, and d Equation 38 reduces
pq ma. rs

"to the Cauchy elastic constitutive equation (equation 12) if dependence

on &pq and drs disappears. If dependence on 6pq and :mn dis-

appears, equation 38 will reduce to the constitutive equation of the

Stokesian fluid (equation 31). If dependence on & disappears, equa-Pq
tion 38 will reduce to the constitutive equation of the nonlinear Kel-

vin solid (equation 35). Equation 38 is, therefore, very general, and

by proper selection of the response coefficients A0 ,..., 12 ,it

can be used to describe the mechanical behavior of many complex

materials.

Summary of Constitutive Equations

30'. In summary, seven basic types of isotropic constitutive equa-

tions that can be utilized to describe the mechanical behavior of real

materials have been discussed. These constitutive equations are all

expressed in general functional forms. The specific forms of the func-

tionals, for any particular material, must be determined through exper-

imental observation or by physical postulates. The constitutive equa-

tions are:

a. Cauchy elastic materials (equation 12)

b. Hyperelastic materials (equation 13)

c. Hypoelastic materials (equation 25)

d. Hygrosteric materials (equation 29)

a. Stokesian fluids (equation 31)

f. Viscoelastic materials (equation 9)

•. Viscoplastic materials (equation 38)
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Equations 12 and 13 are used to describe the behavior of elastic mate-

rials (linear or nonlinear). Equations 25 and 29 are used to describe

the behavior o1f rate-independent hysteretic (or plastic) materials.

Equation 31 is used to describe the behavior of various fluids. Equa-

tion 9 is used to describe the behavior of various rate-dependent (visco-

elastic) materials. Equa.tion 38 is used to describe the behavior of

rate-dependent hysteretic (viscoplastic) materials.

21. In the case of hysteretic materials, the constitutive equa-

tions must be accompanied by a set of criteria (or logics) defining

initial loading, unloading, and subsequent reloading of the material.

These criteria must be stated in terms of the invariants of the stress

and/or strain tensors in order to remain invariant with respect to

rigid motion of spatial coordinates. The hysteretic behavior of the

material is then taken into account by using different sets of consti-

tutive equations for loading, unloading, and reloading. There are sev-

eral criteria for defining loading, unloading, and reloading that are

presently being used in the solution of two-dimensional boundary-value

problems for hysteretic materials. These criteria are not necessarily

conclusive and although they yield satisfactory results for certain

well-delined stress paths, they might lead to unrealistic material be-

havior under more complex loading conditions. A summary of these cri-

teria is given in the followinjsg~ection.

Criteria for Initial Loading, Unloading, and Reloading

32. One common criterion for differentiating among initial load-

ing, unloading, and reloading is based on the time-rate (or increment)

of the first invariant of the stress tensor 6ss * According to this

criterion, 6ss > 0 defines loading and &ss < 0 defines unloading.

Whenever os > 0 but aSs is less than its previous maximum value, the

material is assumed to be reloading. A similar criterion based on the

time-rate of the first invariant of the' strain tensor 4 can also bess
used to define various loading conditions. Both of these criteria, how-

ever, will lead to unrealistic material behavior during a load-unload
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cycle where the medium simultaneously experiences loading in shear and

unloading in pressure or vice versa.

33. Another criterion is based on the time-rate of the octa-

hedral shearing stress ÷Oct * According to this criterion, ÷Oct > 0

defines loading and ' oct < 0 defines unloading. The material is as-

sumed to be reloading whenever ' oct > 0 and Toct is less than its

previous maximum value. The condition %oct = 0 is referred to as a
ft neutral state of loading. The oct criterion is less controversial

than the 6., or &ss criterion.

34. In an attempt to overcome some of the theoretical and exper-
imental problems that can arise through the use of the 'Oct or ýss

criterion, a combination of the two is often utilized that separates

the deformation into the hydrostatic and the deviatoric components.

The 6s, criterion is used for the hydrostatic part of the deforma-

tion, and the 'oct criterion is used for the deviatoric components.

In this manner, it is possible for the material to unload in shear

while loading in pressure or vice versa.
35. The rate of work aijij is also used as a criterion for

defining various loading conditions in a cyclic test. According to

this criterion, aijij > 0 defines loading and reloading; aij ij < 0
defines unloading; and the condition , = 0 is referred to as a

neutral state of loading. 'The rate of work criterion and the #oct

r.iterion are used extensively in the theory of plasticity, and they are
essentially the same if the constitutive equation associated with them

is linear from the tensorial point of view.

36. The neutral states of loading associated with the %oct or

a .... criterion impose certain restrictions on the ma:%erial constants
i1 i1

in the constitutive equations for loading and unloading and require

special considerations. The material eonstants must be chosen so that

the loading and unloading constitutive equations become identical when-

ever oct = 0 or o.ij.ij = 0 , i.e. neutral loading. This require-

ment must be met in order to obtain a unique solution for a given
boundary-value problem involving cyclic loading conditions.
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PART IV: SUMMVARY OF DAMPING YDDELS USED IN
ENGINEERING ANALYSES OF VIBRATORY SYSTEMS

37. Most of the damping models used in engineering analyses of

vibratory systems stem from one-dimensional representation of the iso-

tropic constitutive equations presented in Part III and, therefore, are

limited in their application. The models can be divided into two gen-

eral categories: viscous damping models and hysteretic damping models.

Various forms of these models are discussed in the following sections

and are given in their three-dimensional representation for a broader

application and utilization. Appendix A gives a bibliography of source

material related to the model category and form.

Viscous Damping Models

38. The viscous damping models are frequently represented in

terms of rheological models consisting of linear springs and viscous

elements or dashpots. The viscous elements account for the energy-

dissipation properties of the material, while the springs represent the

elastic behavior of the material. Three types of such models are com-
monly used in engineering: Kelvin-Voigt, Maxwell, and standard-linear
solid models. The Kelvin-Voigt model has been used more extensively

due to its mathematical simplicity. The three models are presented in

the order of increasing complexity.

Kelvin-Voigt model

39. The rheological model of Kelvin-Voigt hat-rial consists of a

lineax spring and a dashpot in parallel and corresponds to a one-degree-

of-freedom damped system in the theory of vibrations. The constitutive

equation of Kelvin-Voigt material is given by

ij = (XI1 + Xvil) bij + 2cij + 2Pvd2ii (39)

Equation 39 involves four material constants, X , Xv , , and p ,

that must be determined experimentally. The one-dimensional
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representation of equation 39, which is most commonly used in engineer-

ing application, can be obtained by allowing E12 = C13 = E23 = E22
E3 d2 d' 3 0 Accordingly, in view of
3 d 1312-C d22 *5 33

equations 5, 6, and 10, the one-dimensional representation of equation

39 becomes

de 11 d ell
11• 11 + Xv dt- + 21111 + 21v d-t- (40a)

a22  Aell + l (40b)2 11 v dt

where e11 is the strain in the direction of motion in • uniaxial

strain configuration and a22 is the lateral stress required to pre-

vent lateral strain. Equation 40a can be written in a more compact

form by collecting terms, i.e.

al1 = (X + 2V)E11 + (xv + 2[v) d-• (41)

The terms X + 2p and X + 21v correspond to the elastic modulus M

and the distributed viscosity I , respectively, associated with the

conditions of uniaxial strain, In view of the above terminology, equa-

tion 41 becomes

11- (42)

Equation W2 is the counterpart of the differential equation of motion

for the free vibration of a one-degree-of-freedom damped system with

equivalent spring constant keq and damping coefficient Ceq given by

keq h (43a)

c = (43b) Ieq h

where 9 and h are area and length, respectively. In practice, 9

corresponds to tlh cross-sectional area of a continuous system
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(a column) and h corresponds to the grid spacing of a discrete system

(a lumped-parameter model) that is mathematically equivalent to the con-

tinuous system.

40. Various nonlinear forms of Kelvin-Voigt constitutive equa-

tions are also available that can be used to describe the stress-strain-

time behavior of soil under various states of stress and deformation.

The basic forms of these models are the same as equjation 39,. The con-

stitutive coefficients, X , , , and pv , however, are no
v [V

longer constant. One of the more general nonlinear versions of the

Kelvin-Voigt constitutive equation that is particularly suited for soil

has the following representation:
9

a {(00 + 
'B) [exp(aI)] - a Bb!ij

bo+ +_ .c)o + o B ) leep(ai,)] -a I ,i
3& " ) (aO + OB)[exP(aIl)1

I An + 12 5 l•J
•clý [• (3ý2" - ) 121']1 (dij" 7- _ ,

+ n- (3i2 2 12 (44)

where a0 OB . a , bo0  bl I ' , and n are material con-

stants that must be determined experimentally. Equation 44 was derived

for cohesionless materials and includes the fo3aowing material

characteristics:

a. Nonlinear pressure-volume behavior

b. Nonlinear shear stress-shear deformation behavior

c. Effect of pressure on shear resistance

d. Plastic failure

e. Nonlinear viscous effects

A similar copstitutive equation was also formulated for cohesive

materials.
9
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Maxwell model

41. Tne rhenlýgical model of the Maxwell material consists of a

linear spring and a dashpot connected in series. The constitutive equa-

tion of Maxwell material is given by

a.. = (cmJl + x i) ij + 20m1ij + 2VM d ij (45)

where am X , m and tm are material constants that must, be
m M Omm

determined experimentally. The one-dimensional representation of equa-
tion 45 can be obtained by setting dl2 =__ d13 2= d23 = d22 : '33 = 0.

Accordingly, in view of equations 5, 6, and 10, the one-dimensional rep-

resentation of equation 45 becomes

dcl dcll
0 ,.l+2 (46a)

11. = +mJ1 m dt + L1+ 2 'mdt

dcl

22 l d--+ 2ým22 (46b)
m2 =%l mdt~

where, as before, e11  is the strain in the direction of motion in uni-

axial strain configuration and a22 is the lateral stress required to

prevent lateral strain. Equations 46a and 46b describe the motion of a

Maxwell material in a uniaxidl strain conOiibion. These equations are

coupled differential equations and must be integrated in order to ob-

tain stress-strain-time relations for the maverial.

Standard-linear solid

42. The rheological model uf the standard-linear solid consists

of a Kelvin-Voigt element and a linear spring connected in series. The

constitutive equation of the standard-linear solid may be expressed as

aij =( + -K il + Jl) + 2 j + 2p -j + 2j (47)

where Xs X , a s ' and |is are material constants that must be
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determined experimentally. Equation 47 can also be expressed in one-.

dimensional form similar to the Kelvin-Voigt and Maxwell models.

Combined models

43. Various other combinations of spring and drshpot models can

be constructed by combining, for example, Kelvin-Voigt elements with

Maxwell elements in series. It should be pointed out, however, that

the Kelvin-Voigt, Max-well, and stendard-linear solid models, or other

combinations of these models, are special forms of equations 9 and 33

Hysteretic Damping Models

44. The hysteretic damping models are generally formulated in

terms of isotropic incremental elastic-plastic constitutive equations.

The nonlinear behavior is incorporated into such constitutive equations

by making the elastic moduli functions of the strain and/or stress in-

variants. Hysteretic behavior is taken into account by using different

values of moduli for loading and unloading. Classical plasticity is

often incorporated into the model by specifying a yield criterion that

effectively serves to limit the maximum stress deviators in the mate-

rial. As mentioned previously, a set of logics or criteria must also

be specified for the hysteretic damping models to define various load-

ing conditions. Several forms of hysteretic damping models are pre-

sently being used in stress analysis studies of hysteretic materials.

As mentioned above, most of these models have evolved along the lines

of isotropic incremental elastic-plastic constitutive equations. A

brief discussion of the mathematical formulation of isotropic models is

given in the following paragraph.

Isotropic incremental
elastic-plastic models

45. In the incremental theory of plasticity, the incremental

strain tensor dc.. is assumed to be composed of the plastic strain incre-

ment tensor dc?. and the elastic strain increment tensor dei. i.e.

de.- dcP. + dee 48
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The basic postulate of the plasticity theory is the existence of a

yield function or yield criterion F , so that the material yields when

F(aij) = 0 (49)

In the absence of any further constraint, the material would then flow

plastically, -undergoing plastic as well as elastic strains. When the

stresses are less than those required to satisfy equation 49, the mate-

rial will undergo elastic strains only, i.e., the material behaves as a

linear elastic solid. No stress state that exceeds the yield criterion

is allowed. These conditions are summarized as

d,7.j = de. i if F < 0

dc d- +d if F = 0 (50)

F > 0 not admissible

46. The elastic relation of stress and strain was stated pre-

viously in terms of the strain energy functions IT and * (equations

16 and 20). In terms of stress and strain, the elastic relati6n

becomes

l+v (•ij = E lj - '%kkij (1

from which one obtains the elastic strain increment tensor

e !+ V
de. - di - kkFj (52)14) E E dak8i

The plastic strain increment tensor is derived from the yield function

(equation 49) by utilizing the concept of the plastic potential,l1 i.e.

dE AIt (53)
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in which A is a positive factor of proportionality that must be

determined from the condition that the stresseb must not violate

equation 49. Consequently, A is not unique and has different forms,

for various yield functions. In view of equations 52, 53, and 48, tle

total strain incremenb tensor takes the following foim

deij 1 + v dor L + A _F 1154)

SE ij E dkk ij I

Equation 54, in conjunction with the conditions given by equation 5D,

constitutes the incremental stress-strain relation of the theory of

plasticity.

47. The most widely used incrBmental elastic-plastic model ;in

engineering is the Prandtl-Reuss constitutive equation, which utilizes

the well-known von Mises yield condition given hy

SSmn k (55)

wheie

Smn -- components of stress deviator tensor

k = material constant

48. In view of equation 55, the yield function F for Prandtl-

Reuss material becomes

F=1 Sm~n-k2 (56)

Employing equation 56 in equation 53, the plastic strain increment ten-

sor becomes

deP = AS (57)

From equation 57, it follows that

dE - AS =0 (58)
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indicating that no plastic volume change can occur in the plastic range

for the Prandtl-Reuss material. The proportionality factor A for the

Prandtl-Reuss material is given by

S= (59)
2k

where W is the rate of work done in shear or the increment of inter-

nal energy due to distortion. 1 1  Accordingly, in view of equations 59,

57, and 54, the strain increment tensor becomes

de + Vdo d o i6 + -W S(0

ij E " EV kk ij (60)

Equation 60 is the Prandtl-Reuss constitutive equation; it applies in

the plastic range when >W - 0 and equation 55 holds. If W 0 , un-

loading is taking place and the behavior of the material is governed by

the elastic cinstitutive equation in the incremental form, i.e. equa-

tion 52. If W* 0 , the lQading is said to be neutral, and equations

52 and 60 become identical. 'The above results can be summarized in the

following form:
Sn ran <k

dei iL+ Y Y~l when•[ (61a)
j= E -E ukkiiJ when' Lelastic loading

ii l~v ii kk~ ii F[ S:;Sn = k(6b
de + V doij - d 8 a-•-S when (61b)

2k' I

li+ v v r W <

de =1--d -- do 8 when[ (61c)"1j E ii E kk ij elastic unloading

From equ-ation 61, it is apparent that the PTandtl-Reuss material .x-

hibits energy dissipation In shear. However" in view of equation 58, i -

the material behaves elastically during hydrotatic deformation.

49. Other forms of elastic-plastic constitutive equations are
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also available that are more general than the Prandtl-Reuss material.

For example, by utilizing the Drucker-Prager yield condition

-rs s = k (62)

in equation 53, and utilizing the W criterion, a more general consti-

tutive equation can be formulated that can account for energy dissipa-

tion in shear which is accompanied by volume expansion. It is also

possible to formulate a work-hardening plastic model by constructing a

yield function that is dependent on the plastic strain tensor, i.e.

Pý,ij' dc. =j 0 (63)

I The yield function then changes or moves as plastic strain takes place

in order to account for the work-hardening behavior of the material.

Variable moduli models

50. The elastic-plastic models fail to reproduce the stress-

strain behavior of highly hysteretic materials such as soil under com-

plex and transient states of stress and, therefore, are limited in

their application. In an attempt to overcome this deficiency, an alter-

nate approach was developed that has led to the formulation of a series

of constitutive models known as variable moduli models.12 Unlike the

elastic-plastic models, there is no explicit yield function or flow

rule associated with the variable moduli models.

51. The basic constitutive relation of the vaxiable moduli model

is given by

d1 Kde + de de ) (64)dij = dkk ij +,(dij 3 dkk ii)

where d = an incremental change in stress or strain ai i K = the bulk

modulus . Equation 64 can also be writ+cen in terms of the deviatoric

and spherical components of deformation, i.e.

1
dSi 211 (dei dekkbij) (65a)
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dar -- 3KdEkk (65b)

Nonlinear behavior can be incorporated in the model by making K and

;, functions of strain and/or stress invariants. The hysteretic be-

havior of the material is taken ini;o account by using different values

of K and ýt on loading and unloading.

52. To date, in constructing various variable moduli models, it

has been assumed that volumetric strains are caused only by changes in

pressure, i.e., that there is no coupling between volumetric strain and

the components of the deviatoric stress tensor. Consequently, the bulk

modulus is only related to pressure or the volumetric strain and is

independent of stress deviations.

53. From equation 64 (or equation 65), it is apparent that the

constitutive equations of variable moduli models are a set of first-

order differential equations. The integration of the differential

equations, for a given stress path and initial conditions, leads to

stress-strain relations. Therefore, a relation between stress and

strain is the outcome of the theory, but it depends completely on the

stress path used to reach the final state as well as the initial state

of the material.

54. The most recent version of a variable moduli model was de-
12veloped by Nelson. The load/unload criterion associated witx th..

model is composed of the ýoct criterion for the deviatoric part of

deformation and k for the hydrostatic part.

55. For initial loading, the bulk modulus takes the form

K KLD =KO +Kl (ek) + K2 (ekk)2 (6

and for unloading and reloading

K =KUN/RE= Kou + KuP (67) 7
where LDI loading, UN = unloading, RE reloading and p =

pressure. The parameters Ko , K1 , iK , K0u, and Klu are
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material constants that must be determined experimentally. The

unloading/reloading bulk modulus is used whenever the pressure is de-

creasing or whenever pressure is increasing, Vut its magnitude is less
than the maximum previous pressure.

56. The expressions for shear modulus consist of two parts. At

low pressure levels, i.e. for p less than some critical pressure pc '

I {ItLD PO+l SS+ . p+a•p (68a)

i 0 +a Fl m ~p+C (68b)A=

For p > p ,C the shear modulus becomes independent of pi~essure and is

a function of S S only. Accordingly, in view of equation 68
mnmn

Pc a, " a: u (69)
= 2 (9

and for p > PC ' the expressions for shear modulus become

" 0 I;1: 1 2 (70a)

+ a1  2 _Sma
UN a2

As indicated by equations 69 and 70, the expressions for M and pUN

are continuous at P = PC . The parameters 0 , U1 , 04 , 0,
POu IUlu__ alu , a2u are material constants that must be de-

termined experimentally. The loading shear modulus is used whenever

c > 0 during both initial Ipading in shear and subsequent reloading

in shear. The unloading shear modulus is used whenever oct <0 0

The model, therefore, makes no distinction between initial loading and
subsequent reloading in shear. This logic, however, results in exces-

sive strains during cyclic l'ading. To overcome this deficiency, one

possibility would be to use the unloading shear modulus whenever

%oct <0 or whenever Oct > 0 but the magnitude of Toct is less
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than its previous maximum valv.e. This logic is analogous to the logic

used for bulk modulus. Another possibility is to use a linear combina-

tion of VLD and pUN for reloading in shear. The reloading problem,

in general, is not well defined, and additional cyclic data or theoret-

ical considerations are necessary to explain this phenomenon.

57. The variable moduli models dissipate energy under both the

deviatoric and the hydrostatic stress conditions and have the capabil-

ity of matchiig experimental data quantitatively, There is, however,

a basic theoretical objection for their utilization in the solution and

formulation of boundary-value problems for hysteretic materials under

cyclic loading conditions. This objection stems from the load/unload

criterion for shear associated with these models and the neutral load-

ing conditions defined by ýoct- 0 . As was pointed out previously,

whenever oct= 0 , the constitutive relations for initial loading

and unloading must become identical in order to have unique solutions

for the boundary-value problems of interest. From equation 68, it is

obvious that the expressions for shear modulus do not become identical

whenever oct 0 and one can use either VLD or Ii at such a

load/unload interface. This theoretical objection for the use of vari-

able moriuli models has led to the development of a series of elastic-

plastic work-hardening constitutive models that satisfy the dontinuity

conditions associated with neuttr•l loading and at the same time match

the experimental data quantitatively. 1 3

58. The constitutive equations of Prandtl-Reuss material and the

variable moduli models are only special forms of the hypoelastic con-

stitutive equation (equation 25).14
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PART V: DISCUSSION AND RECOMMENDATIONS

Discussion

59. The hysteretic character of the stress-strain behavior of

earth materials can be described by phenomenological constitutive , ýa-

tions using two alternate procedures. In the first procedure, the hys-

teretic behavior of earth materials is accounted. for by using different

sets of constitutive relations for loading and unloading, in conjunc-*1 tion with a set of criteria that define various loading conditions, i.e.

initial loading, unloading, and reloading. The constitutive equations

in this case are time-independent. In the second procedure, a single
constitutive equation is specified and the energy-dissipation proper-

ties of earth materials are accounted for by the appearance of the time
derivatives in the constitutive equation, which in this case is time-

dependent.

60. Either of the above-mentioned procedures can be used to

solve soil dynamics boundary-value problems and will yield stress-strain

curves that exhibit energy-absorbing hfsteretic behavior. The mecha-

nisms of energy dissipation in the two procedures, however, are differ-

ent. Additional experimental dynamic data and theoretical studies in

the areas of nonlinear viscoelasticity and plasticity are required in

order to determine which of the two procedures is more appropriate for

describing the stress-strain behavior of earth materials. At the pres-

ent time, for reasons of practicability and depending on the type of

problem being considered, some invest5,gators use the first procedure

while others prefer the second. A subsequent report (Report 2) will

review the current laboratory methods of determining the damping capac-

ity of soil; it will describe specific techniques used to evaluate

hysteretic effects by both the time-iadependent and the time-dependent

approaches.

Recommendations

61. Research efforts presently under way at the U. S. Army
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Engineer Waterways Experiment Station and elsewhere are aimed at devel-

oping material models that exhibit energy-absorbing hysteretic behavior

for use as input to ground motion calculation computer codes. The

technique used for formulating the constitutive equations follows the

procedure for constructing hysteretic damping models. The constitutive

equations are, therefore, time-independent and do not manifest viscos-

ity effects. Very little effort has been expended in recent years to
formulate mathematical material models that account for the energy-

dissipation properties of the earth materials through viscosity mecha-

nisms. These types of time-dependent material models are highly desir-
able for the solution of boundary-value problems involving steady-state

cyclic loading conditions. Moreover, they have the added advantage of

being able to account for strain-rate effects.

62. Thus, it is recommended that research efforts to develop

time-dependent constitutive equations for earth materials for the for-

mulation and solution of soil dynamics boundary-value problems continue.

Such relatlu.zz thuuld be capable of qualitatively and quantitatively

matching the salient nonlinear and hysteretic response characteristics

of earth materials, not only as determined in the one-dimensional con-

figuration but also under a variety of other laboratory test-boundary

conditions. In the author's opinion, such efforts should be governed

by the following criteria:

a. The constitutive equations must take into account non-
linear pressure-volume behavior, nonlinear shear stress-
shear deformation behavior, effects of hydrostatic
stress on shear deformation, shear fracture, spalling,
and plastic failure of earth materials.

b. The numerical values of the various coefficients defin-
ing the constitutive models should have physical signif-
icance in terms of compressibility, shear strength,
etc., so that when extrapolating data for the different
materials, rational engineering judgments can be made as
to the relative magnitudes of the constitutive coeffi-
cients based on geologic descriptions, mechanical
properties, and other conventional indices. The consti-
tutive coefficients should not be merely a set of
numbers generated through a trial-and-error, black box
routine to fit a given set of data.
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63. The constitutive models must be used to obtain analytical or

closed-form solutions to special problems, e.g. one-dimensional wave

propagation, in order to study the dissipation characteristics of the

models as well as the theoretical implications of the new phenomena

they present, such as the requirements imposed by uniqueness and con-

tinuity considerations.

64. The nonlinear Kelvin-Voigt model discussed by Rohani (equa-

Stion 44), or an extonsion of this model, can be used as a starting

point for sucn an undertaking.
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