A NOTE ON ESTIMATING PROPORTIONS BY LINEAR REGRESSIONS

Alvin A. Cook, Jr.

October 1971
The estimation of the parameters of a linear regression model in which the dependent variable is a fraction or proportion frequently occurs in statistical analyses. This proportion reflects some specific activity such as the proportion of income spent on some good and is related to a number of exogenous characteristics. The estimation of a proportion relationship is not always performed in isolation. The relationship of the exogenous variables to the remainder of the population, or complementary proportions, is usually of equal interest.

An example of such an analysis has been performed by McCall in studying the movements of people into and/or out of various income classes over time. In one part of his study McCall calculates a first order Markov transition matrix of peoples' movements into, out of, or remaining in income classes. Each cell contains a transition probability reflecting the propensity of individuals to move out of a given income class or remain in it. The changes in the transition probabilities for each cell are then related to changes in GNP for the period.
from 1958 to 1966. In each matrix the probabilities sum to one and each cell will undoubtedly be affected differently by changes in GNP.

In McCall's analysis and in many analyses, the probabilities or proportions across all cells sum to one in the raw data. For prediction purposes it is desirable that the estimated proportions always sum to one as well. In this note we show that the estimated proportions sum to one and no constraint is needed on the proportions if the parameter estimates are BLUE. If the parameters are not, then a constraint can be constructed using Zellner's technique of Seemingly Unrelated Least Squares (SULS) to ensure that the estimated proportions sum to one. It is further noted that the results can be generalized to any system of equations containing the same exogenous variables in each equation and specifying an exact linear constraint on the dependent variables for all observations in the raw data.

UNCONSTRAINED LEAST SQUARES

Assume that there are z proportions p_i and n observations on each p_i such that $\sum_{j=1}^{n} p_{ij} = 1$, for every $j = 1, \ldots, n$. Each regression equation can then be written

\[p_i = X \beta_i + e_i \quad i = 1, \ldots, z \]

where each p_i is a $1 \times n$ vector of observations (p_{i1}, \ldots, p_{in}), $X = (1, X_1, \ldots, X_s)$ where each X_k is an $n \times 1$ vector of observations, β_i is an $(s+1) \times 1$ vector of regression coefficients, $e_i \sim N(0, \sigma^2)$.

\[E(c_iX_k) = 0 \text{ for all } i \text{ and } k, \ E(c_i^j c_{i'j'}) = 0, \ \sum_{i=1}^{z} p_{ij} = 1 \text{ for all } j, \]
and \(0 \leq p_{ij} \leq 1\), all \(i, j\).

The equations in (1) represent actually \(z-1\) independent equations and \(\sum_{i=1}^{z} p_i = 1 - p_z \). Thus \(p_z\) can be easily calculated, but the separate effects of the exogenous variables on \(p_z\) are omitted. To ensure that \(\sum_{i=1}^{z} p_i = 1\) and to obtain the separate coefficients \(\hat{\beta}_{ik}\) for all \(i\) and \(k\), it is not necessary to use a Lagrangean constraint. Estimation of (1) by Ordinary Least Squares (OLS) yields the unbiased estimate

\[\tilde{\beta}_i = (X'X)^{-1}X'p_i, \quad i = 1, \ldots, z \]

and

\[\tilde{p}_i = \tilde{X}\tilde{\beta}_i, \quad i = 1, \ldots, z. \]

By summing the estimated proportions over all \(i\), we obtain

\[\sum_{i=1}^{z} \tilde{p}_i = \sum_{i=1}^{z} \tilde{X}\tilde{\beta}_i = \sum_{i=1}^{z} X(X'X)^{-1}X'p_i \]

\[= \sum_{i=1}^{z} p_i = 1. \]

Therefore OLS ensures that the \(\tilde{p}_i\) sum to one regardless of variances of each estimate as long as the \(\tilde{\beta}_i\) are unbiased. Similarly the variance of the sum of the estimated proportions is zero using the above result:

\[\text{Var} \left(\sum_{i=1}^{z} \tilde{p}_i \right) = E \left(\sum_{i=1}^{z} \tilde{p}_i - \sum_{i=1}^{z} p_i \right)^2 \]

\[= E \left[\left(\sum_{i=1}^{z} \tilde{p}_i \right)^2 + \left(\sum_{i=1}^{z} p_i \right)^2 - 2 \left(\sum_{i=1}^{z} \tilde{p}_i \right) \left(\sum_{i=1}^{z} p_i \right) \right] \]

\[= 0. \]
IMPLICIT CONSTRAINTS ON THE REGRESSION COEFFICIENTS

The fact that the proportions sum to one implies a constraint on β_{ik} across all i equations. If the β_i are BLUE (and the X_k are fixed or independently distributed), then $\sum_{i=1}^{Z} p_i = 1$ implies $\sum_{i=1}^{Z} \hat{\beta}_{ij} = 0$ for all j. Consider

\begin{align*}
\frac{d}{dx} \left(\sum_{i=1}^{Z} p_i \right) &= \sum_{i=1}^{Z} \frac{d}{dx} p_i = \sum_{i=1}^{Z} \frac{d}{dx} \left(\frac{\hat{p}_i}{\sum_{i=1}^{Z} \hat{p}_i} \right)
= \sum_{i=1}^{Z} \frac{\hat{p}_i}{\sum_{i=1}^{Z} \hat{p}_i} \frac{d}{dx} \hat{p}_i
= \sum_{i=1}^{Z} \left(\frac{\hat{p}_i}{\sum_{i=1}^{Z} \hat{p}_i} \right) \frac{\hat{p}_i}{dx} - \sum_{i=1}^{Z} \left(\frac{\hat{p}_i}{\sum_{i=1}^{Z} \hat{p}_i} \right) \frac{\hat{p}_i}{dx}
= (\hat{\beta}_{11} + \ldots + \hat{\beta}_{zl}) \frac{dx_1}{dx} + \ldots + (\hat{\beta}_{1s} + \ldots + \hat{\beta}_{zs}) \frac{dx_s}{dx}.
\end{align*}

Considering a total change in the summation of the p_i due to a total change in any exogenous variable, say X_j, yields

\begin{align*}
0 &= (\hat{\beta}_{11} + \ldots + \hat{\beta}_{zl}) \frac{dx_1}{dx} + \ldots + (\hat{\beta}_{1s} + \ldots + \hat{\beta}_{zs}) \frac{dx_s}{dx}
= (\hat{\beta}_{1j} + \ldots + \hat{\beta}_{zj}) \frac{dx_1}{dx} + \ldots + (\hat{\beta}_{1s} + \ldots + \hat{\beta}_{zs}) \frac{dx_s}{dx}.
\end{align*}

But $\frac{dx_i}{dx_j} = 0$ for $i = 1, \ldots, s; i \neq j$. By considering total changes in $\sum_{i=1}^{Z} p_i$ due to dx_j, $j = 1, \ldots, s$, we obtain the result that $\sum_{i=1}^{Z} \hat{\beta}_{ij} = 0$ for every j. The summation of intercept terms, however, does not equal zero:

\begin{align*}
\hat{\beta}_{10} &= \hat{p}_1 - \sum_{j=1}^{Z} \hat{\beta}_{1j} \hat{x}_j.
\end{align*}
and

\[
\sum_{i=1}^{\ell} \hat{\beta}_{10} = \sum_{i=1}^{\ell} \hat{P}_1 - \sum_{j=1}^s \sum_{i=1}^{\ell} \hat{\beta}_{ij} \bar{x}_j
\]

\[= 1 - \sum_{j=1}^s \left(\sum_{i=1}^{\ell} \hat{\beta}_{ij} \right) \bar{x}_j.
\]

Based on the above result of \(\sum_{i=1}^{\ell} \hat{\beta}_{1j} = 0 \) for every \(j \),

\[
\sum_{i=1}^{\ell} \hat{\beta}_{10} = 1.
\]

It is immediate from (4) that an exact linear constraint on the dependent variables in the raw data implies the same exact linear constraint for the estimated dependent variables across the \(\ell \) equations.

Further, the results of Eqs. (6) to (10) imply that the \(\hat{\beta}_{1j} \) sum to zero across \(i \) and the \(\hat{\beta}_{10} \) sum to the value of the constraint if an exact linear constraint exists on the dependent variables. Moreover, as will be seen below, the parameters may be constrained to ensure the exact linear constraint on the dependent variables if the parameters are not unbiased.

ESTIMATION WITH THE COEFFICIENT CONSTRAINT

If the parameters are not BLUE, the \(\hat{p}_i \) and \(\hat{\beta}_{10} \) may not sum to one, nor may the \(\sum_{i=1}^{\ell} \hat{\beta}_{1j} \) sum to zero for every \(j \). These conditions can be

Another proof of these results was pointed out to me by B. Efron. Let \(e_i \) represent the \((j \times 1)\) vector of ones. Write all \(\ell \) equations \(\hat{p}_i = X \hat{\beta}_i \) side by side to obtain \(\hat{p} = X \hat{\beta} \) where \(\hat{p} \) is \(n \times \ell \), \(X \) is \(n \times (s+1) \), and \(\hat{\beta} \) is \((s+1) \times \ell \). It is then \(Pe = X \hat{\beta} e \), but \(Pe = e_\mathbf{n} \) by equation (4) and \(X \cdot (1,0,\ldots,0)' = e_\mathbf{n} \) by definition. This implies that \(e_\mathbf{n} = (1,0,\ldots,0) \) which contains the above results.
forced on the system however by treating the z equations as a system of seeming unrelated regressions as developed by Zellner. Rewrite (1) as

\[
\begin{bmatrix}
\mathbf{p}_1 \\
\vdots \\
\mathbf{p}_2
\end{bmatrix} =
\begin{bmatrix}
\mathbf{X}_1 \\
\mathbf{0} \\
\mathbf{0} \\
\end{bmatrix}
\begin{bmatrix}
\mathbf{0} \\
\mathbf{X}_2 \\
\vdots \\
\mathbf{X}_s
\end{bmatrix}
\begin{bmatrix}
\mathbf{B}_1 \\
\vdots \\
\mathbf{B}_s
\end{bmatrix} +
\begin{bmatrix}
\mathbf{e}_1 \\
\vdots \\
\mathbf{e}_s
\end{bmatrix}
\]

(11)

where each \(\mathbf{X}_i \) is a vector of independent variables \((1, \mathbf{X}_{i1}, \ldots, \mathbf{X}_{is})\) and each \(\mathbf{B}_i \) a vector \((\mathbf{B}_{i0}, \mathbf{B}_{i1}, \mathbf{B}_{i2}, \ldots, \mathbf{B}_{is})\); Eq. (10) can be simplified as

(12)

\[
\mathbf{p} = \mathbf{X}\mathbf{\beta} + \mathbf{u}.
\]

Application of least squares yields the BLU estimator,

(13)

\[
\mathbf{\hat{\beta}} = (\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{p},
\]

where \(\mathbf{\Sigma} \) is estimated by the disturbance variance-covariance matrix.\(^4\)

By further constraining the \(\mathbf{B}_{ij} \) to sum to zero across all \(i \) equations for every \(j \) and the \(\mathbf{B}_{i0} \) to sum to one, we obtain simultaneous constraint estimates\(^5\)

(14)

\[
\mathbf{\hat{\beta}} = \mathbf{\hat{\beta}}^* + (\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{Q}'[\mathbf{Q}(\mathbf{X}'\mathbf{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{Q}'^{-1}]^{-1}(\mathbf{W}-\mathbf{W}^*).
\]

The estimate $\tilde{\beta}$ satisfies the constraint $Q\tilde{\beta} = W$, where Q is a matrix specifying the combination of the $\tilde{\beta}_{ij}$ and W is a vector describing the constraint. For the constraints above the intercepts sum to one and the slope coefficients across each X_j sum to zero, therefore $W = (1, 0, \ldots, 0)$, a $1 \times (s+1)$ vector. Thus all constraints may be forced in the event that unconstrained OLS is not consistent with the implied constraints on the $\tilde{\beta}_{ij}$.