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ABSTRACT

This paper treats the buckling and postbuckling behavior of circular
arches and rings under constant directional pressure., New exact and
approximate solutions are given for the linearized eigenvalue problem.

It is clearly demonstrated that the assumption of inextensibility is
quite reasonable for the asymmetric buckling of steeper arches and of

F rings. Asymptotic analyses of early postbuckling behavior are given,
based on the theory of Koiter and the formalism of Budiansky and

‘ Hutchinson. The postbuckling behavior is shown to be stable, and un-

affected by the assumption cf ..nextensibility.
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NOMENCLATURE

perturbation solution parameters defined by Egs.{40) and
{37)

displacement coefficients, dimensionless

displacement coefficient, dimensional

*
displacement coefficient (= 2L

h
extensional strain
Young's modulus
arch thickness
thickness parametex
moment of inertia
curvature, diwmensionless
differential operatoxs
moment resultant, dimensionless
stress resultant, dimensionless
potential cnergy functionals
lozd per unit length of arch
extensibility parameter defined by Eq. (16)
arch radius
nonlinear extensional strain
tangential displacement, dimensionless

tangential displacement, digsnsioniess




- II% =~

half angle of arch vertex
gixst order variation
perturbation parameter
axch coorxdinate

arch loading,dimensionless

rotation of normal to arch centerxlines, dimensionless
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1. INTRODUCTION

This paper treats the buckling and the postbuckling behavior of
pinned arches, under constant directional ("d:rad") pressure, where the
arch radius of curvature is a constant. A linearized treatment of this
problem has been given by Chwalla and Kollbrunner [1]*, who assumed that
the arch was inextensible during buckling. Kammel [2] has shown that
extensibility did not have a great effect on the buckling loads, a result
confirmed by the preseat study. Also, Levy {3] and Carrier [4] have
given "closed form" solutions for the postbuckling of inextensional
circular rings in terms of (implicit} elliptical integrals. Ik is also

worth noting the recent contribution of Singer and Babg 7 who

Aiscuss the relationship of semi-circular arches under dead pressure tc

/—-

tnat of complet: rings, pointing cut the need to account for ricid bedy

displacements.

The present work treats tbe linearized buckling problem both exactly,
within che framework of ring theory, accounting for extensibility, and
approximateiy, extending Trvy's approximation for zincs to arches of varions
vertex angles. A qualitative mcasure of the midplane extension is also

provided from cthe new exact solution,

Two asymptotic analyses of the early postbuckling behavior are presented,
both based on the theory advanced by Xoitex [S]. The first makes use of the

formalism expounded by Budiansky and Hutchinson [7,8,9], and is carried

* jumbers in bracaets refer to entries in the list of References.




out to include t2rms in the displacement expansion of order 62, where ¢
is the small buckling deflection parameter. It is shown that the post-
buckling behavior of the arch following asymmetric buckling is stable,
and it is not appreciately effected, qgualitatively or quantitatively, by
the inextensibility assumption. Further, it is shown that the inclusion
of the second oxder terms in the displacements has no appreciable effect

on the guantitative outccme.

Finally an anlysis based directly on Koitex's approach is presented,
-

ax . 2 T
also accurate in the displacement expansion to order & . Theresults are

identical, for this prnhlamv-%e—thUSE'SSEEIEEE using the Budiansky-

PP

O

- g

Hutchinson formalism, and serve to confirm the iGea that (at least for
"simple" problems) accurate guantitative information can be obtained wvsing
only the buckling mode shapes in the }wstbuckiing analysis. Koiter has
previously considexed the elastica [6, and a two-bar frame [10] using only
the buckling mode, while Haftka and Nachbar [11] have conpared results of
a "one-term"” solution with an exact solution, and the comparison was quite

goad.
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2. GENERAL EQUATIONS

The equations used to describe the arch behavior are those of ring

theory, which are also a one-dimensional subset of the nonlinear shell

equations of Sander [1 3 Sionless form they apmear as follows.
i_______,,_— e stress and moment resultants are

—-1; .J:.2

N = a (e + > x7) (1a)
.4

M = a6 {(1b)

where e wnd Y are the linear in-plane strain and the rotation,
respectively, which when expressed in terms of a tangential displacement

v and a radial displacement w tazke the form

—é!- —d—l’- 4 >
e=35 "W %= 30 + v {2)

The displacements and the circumferential axch coordinate ¢ have been
nondimensionalized with respect to the arch radius R, wnile the stress
and moment resultants have been rendered dimensioniess by dividing by
(EI/RZ) and (EI/R), vrespectively. This results in the thickness ratio

being introduced in equation (la), i.e.,

_L b2
H=iz ) (3)

A:in_ 4)

vhere q is the load (uniform hexe) per unit length of arch. The geometry

L



ig pictured in Figure 1.

Now the (dimensionless) total potentiai energy of the transversely

lgaded aroirmay bE wWritten down as

P = BT (U + V)
. a a «
=3 fle+2xD%8 + £E52 8- 24 5 wae (5)
H o 2 I ~a

In ejuation (5) the first integral represents the (linear and nonlineax)

strain enerqv.z dle surface extension, the secopnd integral is the

bending contribution to the energy, while the {inal term i3 the potential

of the applied load.

From equation (5) one can deduce the potential energy corresponding

to the linearized buckling pzoblem (S=e Eqns. (47)of Sectica 5), dernoted

A
here as 92 :
a c dy a
P; = J ezdé + J (__}02 as -\ f x2d¢ . té)
H - i -a 4ad - 1

The subscript one will, throughout this paper, denote a buckling dis-
placement or stress quantity. The Euler-~Lagrange equaticns of the gquadratic

functional (6) are gtzraightforwardly obtained as

Llwl ¥ szl = 0 (7a)

L3w1 + lel = 0 (7b)

where the Li are the differential operators




! 3
i d d
L S Swwmewn g (1 - AH) ——
1 d¢3 d¢

dz
Lz-(1+n)--§—+}m (8)
4aé

it is inmediately of intereat to nowva that equations (7) car be uncoupled

to yield & aingle equatlion in vy s OX the identical squation in vy alone.
Furthermorae, that-single equaticn is identically that given by Chwalla and
Xollbrunner[ll, which they derived by assuming inextensibility in the buckling
state, i.e., el = 0. That equation is, ohtained hexe with no assumption
regaiding the extensibhility;

_ .2 = vi | iv ] - -
(L3L2 Ll) vy =R (2 + A)vl + (1 + 2.\)v1 * Avl 0 (9)

The prime superscripts in equation (9) correspond to Gifferentiation with
respect to toe arch coordinate., The question of inextensibility will ke

raised again in the sequel,

For completeness the natuzal {in terms of stress resultants) and gso-

metric boundaxy conditions for the linearized proslem are also noted:

Either Nl - Ml =0 or vy is preegcribed
dM1
Either 5;— - Axl =0 or Wy is prescribed (1C)
dw1
Either Ml =Q or 33_' is prescribed

The boundary conrditions are applied at ¢ = % a, whare 2a is the
arch vertex angle (Figurxe l). Results for the complete ring arxe ol tain-

ed by setting a = %- [5]).

i i - . .
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3. LIMEARYZED (BUCKLING) SOLUTIOWNS

A solution to the eigenvalue problem represented by the differential

o)

equation (3) has been given by Chwalla and Kollbrunner {1} for a simply
supported arch, using the boundary conditions {reflecting the inextensibility

conditizon)

=0 at =t o (11)

v, = ¥, = Vv
® 1 1 1
Some of the resulting eigenvalues, corresponding o a solution that is

asymmetric with respect $t0 ¢ = O, are shown in Table 1.

An approximate solut:.on for a semi-circular arch {~ /2 < ¢ < 7/2) has
been given by Lévy {31, and recently it has Leen generalized by Babcock and
Singer [S] to properly account for the vanishing of the displacement v1 at
the arch ends. This approximation, which assumes an incompressible arch, is

here generalized for arbitrary vertex angle 2, to take the form:

= A cin J¢ = -9 Ll
w = A sin —, Vi =" % {1 + cos = ) (12)

It is ezasily veraified that the solution {12) satisfies the inextensible pin
conditions at ¢ = £ a. Then the linearized potesntial encrgy (&) can be
easily converted into a Rayleigh Quotient to obtain (inextensible) apiroximate

critical loads, i.e.,

a dy
f<-3§~ ? a
-0
Acz = = ; 113)
I3 X as
-

Substitction of the agssumptions (12) into the quotient (13) yields
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Some numerical values of lc, are given in Table 1. The agreement is

obvious™y quite good. 1150, it is noted bere that for the case % = ¥/2,
i.e., a ccmplete ring, the mode shape represented by Egs. (12) has been
shown to be essentially identical to that obtained by Cunsalla and Kollkrunner

in their analysis [5].

Finally, in an attempt to assess the effect of the inextensibiiity
assumption on the buckling load (see the work of x;mmel [2]) and to lay the
groundwork for the studv of the effects of inextensibility on the post-
buckling behavicr, an eaecct soluticn to the differentizl equations (7) ana
the boundary conditions (10) is now given, The asymetric solution to

*
equations {(7) is

E . .
W, = B, sin JA $ + A, sing + Ay¢ cose

(15)
M
vy = —\j—:)..-’cos -f?@ + (QA3 - AjJcosé + A0 sing
where
o= 1+ i) -1 (16)

i =8B(-1
and the Ai are constants, determined to within an arbitrary factor by

satisfaction of boundary conditions.

* This solution is not valid for A = 1, However for 0 < ¢ < =/2, thi. is
of no concern here, as A > 3.
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U3ing the results (135), the axact in-plane strain and rotation formulae

{for buckling) can ke written as:

(L ~09Q) A, sind (17a})

®
ot
[}

xf (W- l’ﬁ:)alcos{ﬂ ¢+ (1L + Q)A3cos¢ (17b)

The eigenvaluee (buckling loads) are obtained after satisfying the following

poundary conditions:

E
dy
E E )4 1
% = e -y t
Wy =V =0, M;_' =0 at ¢=ta. (18)

The resylting transcendental equation from which the buckling load is calculated

is found to be:

2
b _ (1 + 0)sin"a
AL tancrfa- (1 + 20 - )2Q)sinacosa + a(l ~ AJ (19)

For the sake of comparisor, the eigenvalue equation obtained by Chwalla and

Kollbrunner is also given.

J:'tanﬁa = 2 sin’ (20)

(3 - A)sinacosa + a{l ~ 1)

It is seen that Ecs. v19) and (20) are identical when Q = 1, which corresponds
to inextensional deformation (Eq. (17a)). Numerical values for the buckling
pressures given by Eq. (19) are presented in Table 1, and again the agreement

is excellent.

It is Worth noting at this juncture 2 few featurus of the extensional
strain ei: resulting from the exact solution. First, considering the co-
efficiert on the right hand side of Eq. (17a), and the definition of Q (Eq.

{14Y), 1t can be seen that
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2H(A - 1)

1-9=-TThR0-D

<<

"
(™

. (21)

rroportional to the square of the thickness-to-raius of the arch, and

1s thus quite small.

Secondly, it can be observed from Eg. (17a} that the extensioral

strain is an odd function of the arch coordinate, i.=.,
E E
e (-9 = - e1(¢) (22)

Also, it turns out that there exists another uncouprling of the exact

differentisl equations (7) that yields the result

+ e =0 (257

Thus, in addition to the odd function represented by the sinusoid al-
ready obtained, there is another sclution to the equations for which
w1(¢) and ef(é) are even functions of ¢ , tl= latrer being a cosinusoid.
This solution is not considered at all in the present work as attention is
restricted ornly to arches steep enough for as;mmetric(biturcation) buckling

to take place,
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4. POSTBUCKLING: TIHE BUDIANSKY-HUTC.iIINSON APPROACH

In this secticr. the early postbuckling behavior of the arci: will be
obtained, following the asymptotic analysis outlined in the very lucid
exposition of B: “iansky [9). As with the buckling aralysis, only asym-
metri- buckling of steeper arches is considered here. For very shallow
arches syrmetric buckling can take place at lower pressures [13]. how-
ever this snap type of buckling cannot be analysed with the Koiter theory.
The starting point is the virtual work (or variatioral) statement of the
full nonlinear problem:

a

I v Se+uxy 6y +M6&K~-2ASwldd = 0 (24)
-

In addition to the nomenclature defined in the previous section, the

curvature K has been introduced in EZq. {24). Then

H=K=l-g-)é’- (.)5)

The variational equation (24) must hold for any kinematically consistent
£ displacement variatione &v and 8w, with corresponding strain

P
DTw W

field variations ¢e, &8y and 3K.
The following expansions are now introduced:

vadv + Ev, + ezv + veee

o 1 2
W= Awo +oewy + ezwz L
e = leo + ce, ¢ czez + .00
¥ = Axo + exy + czxz + oLeee
XK= €KX vezx  eeee

1 2
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+

N = eM, + €M (26)

Here € is a small parameter such that when € + O, then A + lcr’
the biturcation buckling pressure. The cuxvature and moment expansions
hagin vith terms of order € to denote that the pze~buckling state
{zeroth order terms in Eqgs. (26)) is a membrane stase. In fact, as it
is easily demonstrated that a nonlinear membrane state cannot exist for
this problem, the quar tity xo shall be hencefcrth taken as zero, and

thus only a linear membrane pre-buckling state is considered.

For the "unvaried’ quantities in Eg. (24) the expansions (28) are
substituted. After rearrangement by increasing powers of € , the following

new variational equation results:

a
I I- Hoﬁe - Abw }do
-

a
+ € {a {Nlée + M15K - N Xy ox]dd
a

2
+ e J [NSa + My + fw v a u
-2‘3 2 1A

Xaor
- (27)

[+ 3
3 Ad - -
€ . -
+ J-a [x¢3oe + M35K + (ulx2 + Nle Nox3)6xjd¢

+ coe0e = 0.

The pre-buckling state is defined by the vanishing of the zeroth

order variation. After a simple calculation that state is found to be
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=~-H w =K v =0 (25)

With the vanishing of the zeroth order term in Eq. (27), an € may
be divided through, ani thus the buckling state itself is now found to

be, recalling that € -+ 0 implies X -+ Acr:

a
-i [ulée + 8K - Acrxléx]dé =0 (29)

The Euler~Lagrange equations of this variational equation are:

daN aMm
dad * Acrxl - ° (30a)
dxl dZMl
1 A 'az— + —3 = 0 {30b)
cr d¢’

Expressed in terms of displacements, Egs. (30) are identical to the

linearized equations (7) given earlier.

It was pointed out earlier that the set of displucement variations
constantly alluded tc need only be kinematically consistent, and since
the buckling displacements rost surely are such a set, they can be
appropriately insertcd inte Bg. 129} to vield the Rayleigh Quotient

(Budiansky's "energy equation") for the critical load,

a

I (Nlel + MlKl)d¢

-&
Acr = 3 {31}

2
f(x,) aé

The same substitution in the more complete variational statement 427}

must be equally valid, and noting the quotient (31), it is found that

2l
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(lcr - A) Xy d¢
~0
MK 2 d
+ff [l‘ae # MK+ N - Axgx,Jde (323

2 -
f[§3 1 ¢ MK 4 hl (%p * Boxy - Axixsldé =0

At this peint the relationship between (A - Acr’ appears tou be ta.sing
shape. However, it appears that egeations of the third order will have to
be solved in order to obtain the roefficient of 62 above. In ordesr tc

i
avoid this difficulty, an orthogonaliiy condition is introduced as follows :

[+
_i [ulem + z—slxm}dé =0; n=2,3,4..... (33)

It fnilows from Egs., {(33) and (29), since the mth order mod2 shapes nust

be kinematically admissible, that
Ix,x, 43 =9; n=2,3,4..... (34)
-u >

in order te apply the ocrthogonaliry condition {337 and 1is conseguence
(32) successfully, the following consequencos of constitutive linearity

and geometric noniinearity must e noted:

* The precise meaning of this crthogonality condition has not been
establishel and is the subject of some discussion; see Reissner
[14].
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3 Ne = NS = NS =N{e + —-xz);
1 271 271 172 172 2 7L
E Nje, = N;§ = N5, = Nl(e3 t Xy X5)7 (35)
< le(l = HlKB: H3Kl = MlK3;
. In Egs. (35). si has been used t2 denote the total nonlinear strain of

order €+ s which is made up in part of lowsr order terms due to the

E geometric nonlinearity. Then notings Egs. (35), (33) and (34), the

variational equation (32) can be put into the very simple form:

SR a'c + b'ed +.... (36)
{ o
1 ' where p; lei as
2 -(t
! = = —————
3 a 3 « (37a)
J Xy d¢
. -t
F a 2
< )
: Ny xg + Nyxg a¢
bt = a (37b)
J Xy dé
-
Since
S A . 5 2,2
BieE5 "y Mg S st (38)
the result (36) can be written in its final form:
%——-= 1+ ac + bcz + eaes (33)
cxr
o
where felX? s
a' 3 o S
2T >‘cx: ) Qmcr g 2 (o)
fxl ds

-0
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a 4
I[Zelxlxz rex T -;l]dé
1] s
b = ;’ = Hi ~Q {40Db)

Recall that accoxding to the \leory, it & # O, then the stracture will
be in an unstable state in the poutbhuckiing range, and it will also be im-
pexfection sensitive. If a =0, " # 0, then the postbuckling stability

and the imperfection sensitivity varzy as the arithmetie s.gu of b.

In the present result it appes~s at first glance that the exastence of
a stable or unstable equilibrium state in the pcstbuckling range depends on
whether or not inextensircility is assumed. For frum eguation (40a’), 1i
e1(¢) is non-zero, then the coefficient 2 might be. However, recalling
Eq. (225, it is ciear that the coefficient 1in question will always vanash
for asymmetric buckliny! Thus the exclusion (or inclusior) of the arch
extensibility can at best cnly influence the quantitat.ve nature of the post~

buckling equilibrium state, and not 1i%s qualitative nature.

It has already been shown that for asymmetric buckl.ng the buckl.ng

extensibility e, is gquite small in magn:ztude, with no appreciabiz effect

on the buckling load. With thig in mind, as well as the discussion of the

previous paraqraph, it seems quite reasonable to stipulete that

= = O {4
e1 0 and e2 Q {41}

In this instance the <oefficient b reduces to

2 4

-J:; Xl d‘?‘

b = T . P (42)
J Xy di

-a
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Using the excellent approximate solution (12), with its critical load
defined b  Eq. (14), it is then a straightforward matter to calcula%e

the postbuckliag relationship:

nz 3 n2 2
2 [l+3(’7-l)+§'(—2-1)] %
. a a Q €A .2 (43)
A= Acr + (12) (“2) 3 " =
2+ -v7]
a

(In writing this result cognizance has been taken of the fact that the co-

efficient A in Eq. (12) was nondimensionalized with respect to the radius
*

R, i.e. B=2-, and of the definition (3)).

It is clear from Eg. (43 that A :-Acr' and thus the postbuckling

behavior is always stable, and that the arch (or ring if a = %ﬁ will not

be sensitive tO imperfections ‘in its bahavior.

TR 3 - ! o BT T ar— e -
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5. POSTBUCKLING: KOITER'S APPROACH

In order to examine the stability of the bifurcation poin* and of
the postbuckling behavior vsing Koiter's approach directly, the total
potential energy is first divided into the prebuckling contributions,
and into the texms due to the buckling and prebuckling behavior. If
the prebuckling behavior is again linearized, the "expansions" ({44) are

now introduced, i.e., let

e = Je + e

°
w o= Awo + W (44)
X = X

2R _1 22 _ .2
BT (U+V) = I -é (A e° 2A wo)d¢
a
l \ -
+ T ! (2naoe » 2AHW)A$
-a
2 2 1 4
+ H._é [e” + Ae X" + ex” + T X Jdé
T ax2
+ f (d¢) dé (45)

-a
In view of the prebuckling results obtained earlier, the total potential

energy due to deformation beyond the prebuckling state can be written as
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A 2R 2 A A A A
P = 5 (U +V) +2aHA" = pl+p2+p3+p4 (45)
4 where
i
g A X
i By = -2\ [ (e+wdd (47a)
] "
a a Q
: PP s Lo Zas - s x%as o+ r8%%, (47b)
2 H dé
) -a -a -a
3 a
p 1 2
f P3 = 5 J ex"ds (47¢)
-Q
< a
A 1 4 .
= 4
Pa = ag I x (474)

.

A il

Now, by the definition of e(d4) it is clear that

o

PR

Ao av _ = - - ' (
91 = 2x.£ (d¢ w + w)dd 245(0) v(-&B 48)
Hence, for a supported arch, Pi £ 0. Thus the potential enezgy change

during and after buckling is simply

P\ = P + 2] + P} (49)

where Pé, Pg and ?2 are given by eaquations (47b, c,d).

Recall that the behavior of interest takes place at loads very close to

mervans fenaddam e amaesane
rﬁvnmm\—&\‘ll LI "IIGL’,

ar
0
2}

functionals (47) can be expanded in Taylor series about the point A= Acr'

Ag P3' 94 do not (for this problem) explicitly depend on A, they appear

only as constants, while

A dp
P27 %2 * A= Agy) d\ A=A+
Cr cr LR 4

A
2

——

L}
P, + (A - Acr)P2 + ... {50)
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where
a o V]
p.=> Jefas-r . S xas+ 1 %0 (51a)
2 H cr ag
-Q -a -a
¢ 2
P! ==~ § ¥a¢ (51b)
2
-Q
Then the total energy change is
p)‘=p + (A=A )P +P, +7P (52)
2 cr’ "2 3 4
A A
where P3 = P3 and P4 = P4 .

Now the following displacement and strain expansions are introduced:

2
w=Eeu, +ew, + ...

1 2
v = €vl + ezvz + ..
{53)
e =€ + 52e +
= el 2 cee
X = €%, + €2x + ..
1 2 *

where € is the same small parameter used previously. Introduction of the

expansions (53) into the energy functionals yields, to order 64:

2 .1 a ., e ., a dax, .
= = “3d - - [ (—)° }
Py =€ (5 Sfejad - A, Sxja+ £ (g ae)
- ~-Q -
3 1 « a 41 dxl dx2
+ 2€ {;{- I e1e2d¢ - )‘cr f x1x2d¢ + f T as—-dé} {54a)
- -0 -Q
[+ [ad
4,1 , 2 2
+ € (;; _i (e; + 2e,e,)d¢ - Av _i (x5 + 2x;X,)d¢
o dy day, dx
2.2 1 3
oIl 2 g gy Jaed
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| 2 $ 2 3 ¢ 4 S 2 .
P, =~ &° [ x:dd- 2¢” S x.x,d¢ - ¢ S, + 2x,%,}8¢ (54b)
2 1 172 2 173
-( -0t -
a a
21 41 2
P3 =g E.—a lxleé + e _i [ele + 2e1x1x2]d¢ (54c)
a
41 4
94 =g ZE-I xlu¢ {L44)
-a

Then the same orthogonality conditions applied in the Budiansky-
Hutchinson formalism are applied again (written entirely in terms of
kinematic quantities) to tne functionals (54). These functionals are then

greatly simplified and take the form:

o a «a dx

2,1 2 2
= = 4~
B, =€ { 5 ! ejdd - A X389 + f 35 T ) d¢}
-a -0
(SSa)
(11 & e dx
+ @ s das - T as + S y2ag}.
H o 2 cr ¢
- -
M 4 % 2
pr =~ ¢ f x dé - ¢ [ x.ad (55b)
2 « 2
- -a
31
P3 =e g f elx1 as {55¢)
a
41 2,0
te u -i[ele + ~91X1X2]d¢
2
4 1 4 ~
P, = T ‘! X, d¢ 1554)
Note that the term of order 62 in P2 is simply the Rayleigh
quotient, and thus it vanishes identically. Further, the term of order

1}
e’ in P, wili be multiplied by (\ - A according to equation (52).
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Since it ivs expe:ted that for this problem that (A ~ Acr) will be of
1}
oxrder 82, the terw= of order 54 in 92 may be deleted as being of

higher order. Thus the fina® form of the energy change is:

a a
2 2 31 2
F = - () - Acr) -i xld¢ + 5 -i e X dé

4 (1 2 1 4
+ € {ﬁ-_i [ele + 2e,X,X, + Z'xll dé (56)
a a a dy
l 2 2 2.2
+ 2 _i e dé - A _é X,89 + -i (g5 a¢ }

The ragemblance between the present approach and the Budiansky~Hutchinson
approach is now more visible, However, it appears that there will be some

diffexrence due to the term

a a a dy
1 2 2 2. 2
P2 [wz,vzl = -ﬁ ezd¢ - lcr -‘f; deé + -i (as") 4%, (57)

in the expression of order 64 in Eq. (56). Terms of this type do appear
consistentlyv in Xoiter's original analysis (see, for exampie, Section 3° of
Ref. [6].), although they do not appear in analyses using the Budiansky-
Hutchinson formalism (see, for example, Ref.[9].). For the present work,
under the well established assumption of inextensibility, the terms
Pz[wz,vzl will be shown to yiel@ no contribution to the xesult, and the

results will be identical to those already obtained.

The cecond order displacements, v, and Wy are ohtained as the

solution of the variational equation
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c « ¢ dx,
]
H —a 2 cr o 2

a
1 2
+ = f {ele + 20 ¥

., — 4 =
il 1M * ‘.1]d¢} o (58)

In carrying out this variation all terms of first order are of course

considered as knvun or given quantities. If inextensibility of the axch

is ascuned, € =e," ¢, then the variational cyuation is just

o dx a
6(: (-—-) d‘ I xzdr:-} =0 (59)
- -1t

b

Thus the variational equation leads to set of horogeneous eguativas that

*
can have only a trivial solution . Ilence, for the inestensible arch, it

is poscible to take as solutions for the second order displacements the

trivial ones, i.e.,

wz = vz =0 (60)

Hence the energy Zunceional reduces to (recalling ey = O again):

(+1 4 «a
X 2 2 (4 3
o - - . s B 14
P e (3 }cr) ~i X4 de 4 T -; ¥ {61)

I3 k3 > - * 3 » -
Using the approximate solution (12), with A = i /R, it is a r _uight-

A
forvard maLtor to voapite the cnergy clanze P as

3 2 * 5 2 2
A Cu 2a T 2 ;) a
N 2[z+ - 1) ](ACr - A) + ‘T’ ) [ ( 1) m -1)41]
7 a ‘T x.
(62)

* A soluticn lincarly depeindent on the Lbuckling solution in rulcd out by

the orthogonality condition.
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At the cxiticasl lead, Y = ) , 1t is sesn thar E° O, and thes ile

cr :
bifurcation (critical) state is itself stable. The .nitial postbuckling

*
load-deflection relationship is deterxmin:=d by the condit. n

A

dp
*
da(ea )

from which it follows that
>

L+ 3—-1 g - b7

2 .
A=+ (12) 35 = A=, (64)
cr 72 o2 2 h
2+ (= ~1)
7
a

This is exactly the result (43) obtained previsusly.

. . ok
* fThis is an approximation to ¢P =0
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6. DISCUSSION ANL CONCLUSIONS

The present paper has considered the buckling and postbuckling
behavior of circular arches {(and rings) under constant directional
lozding. For arches steep enough so that asvmmetric bifurcation
buckling is c¢ritical, it has been demonstrated that the arch inextensi-
bility is a negligible quantity in magnitude, in its effect on the buckling
load, and in its effect on initial postbuckling behavior. In addition an
approximate solution for the linearized eigenvalue problem was presented
that duplicated almost precisely the buckling pressures obtained from the

2xact solution.

The numerical results for the eigenvalue problem as solved by Chwalla
and Kollbrunner and as given by the present approximate and exact sclutions
have been given in Table 1. It is worth pointing out that the approximate
{inextensible) eigenvalues are always greater than or equal to Chwalla and
Kollbrunner's {(inextensible) results, in accord with Rayleigh's Principle.
The results when the extensibility is accounted for are always less than the
inextensible results. This is in direct contrast to the analysis of Kammel
[2] which indicated that the buckling pressures would increase if extensi-

»
bility were accounted for . As it has already been pointed out, the

* Singer and Babcock [5] have already pointed out that Kamel's resnlt was
also erroneous in arriving at the coefficient Acr = 4 for constant

directional pressure, assuming inextensible deformations.
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differential equation solved by Cuwalla and Kollbrunner, assuming in-
extensibility, is identical to that solved here, without that assumption.
The difference is in the boundary conditions, where the inextensibility
assumption provides less freedom {greater stiffness). Hence it is quite
proper that the inextensible eigenvalues be upper bounds to the (freer)

extensible eigenvalues.

It is also worth pointing out that the results given in Table 1 for
the Chwalla-Kollbrunner eigenvalues are not precisely those given in the
original paper {1]. Rather they were calculated (using a digital computer)
directly from the transcendental eguation (20). There ar> some dis-

crepancies, although they are very small. For example:

Chwalla and Kollbrunner [1] Chwalla and Kollbrunner
Eg. (20) -~ Digital Computer

a= -} 8.725 8.727
kil
a= = 3.265 3.271

It is easily verified that the original Chwalla and Kollbrunner results satisfy
Eq. (20) to within the precision of limited-accuracy trigonometric tables and

slide rule accuracy that must have governed calculations in the early 193C's.

The postbuckling behavior for the constant-directionally arches ard rings
has been shown to be guite stable, and thus imperfection sensitivity is not
an issue here. &lso it has been shuwn, under the reasonable assumption of in-
extensible buckling and postbuckling deformation, that the second oxder dis-
placement solution does not change the results that would be obtained if

only first order (buckling) displacementswere used in the calculations.

el o T R T TR e T e T T T TR T e . e T TR TN, TR e ey T o g T T
AT e - - P it 7/ St ]
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- Fanaliy it has been shown that, ror the special circumstances of

this problem, the approach of Koiter as originally given and the veriatjon

ol

proposed by Budiansky and Hutchinson lead to identical results.
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TABLE 1 : ASYMMETRIC BUCKLING PRESSURES FOR CIRCULAR ARCHES; A = qR?/EI.

Solution of Chwalla Present Present Exact
and Follbrunner Approximation Result Eq., (19)
Eq. (20) Eq. (14) th/R = 1/10)

-;—5 99.979598 99.979598 99.979541

g— 63.967766 63.967766 63.967676

-2- 35.941318 35.941320 35.941151

1;:- 15.853006 15.859031 15.858590

% 3.271245 3.272727 3.260233

e e
SR
[R—
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