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SUMMARY

This paper investigates the transient a:titude performance
of a gravity gradient satellite. Dawmping is provided by a pair of two-
degree-of-ireedom gyroscopes, First the dynamical equations of motiun
are presented and used to obtain the characteristic equation. The
parameters which optimize the spacecraft's transien. attitude perfor-
mance are determined from the solution of the characteristic equation.
The results are then specialized to the case of an axisymmetric satel-

lite and to the case of an external disturbance due to orbital eccen-
tricity.

RIS L o
¢ RAG LD

L e e

Reproduced vy

NATIONAL TECHNICAL
INFORMATION SERVICE

Sprnaghield. Va  2215%

DISTRIRC TN i AT vIhT A

e -

Approved for padiic release;
Disibuton Urtndied




T
S Hikd

" I AT
v LAY A R Y

KR Oy o
S L

AR

"
)

<

b 15 b IO A b
L

N

S
JRBRR TR

UNCLASSIFIED

Secnnty Classification

DOCUMENT CONTROL DATA-R& D

«Security clasatlication ol title, body of abstrect and indexing annciatics niust be entered when the overall teport Is clussitied)

t ORIGINATING ACTiVIYTY (Compotatle author)

The Johns Hopkins University, Applied Physics Lab.

20. REFORY SECURITY CLASSIFICATYION

Unclassified

8621 Georgia Avenue 5. CROUF
Silver Spring, T. 1

3 REEORTY TITLE

Optimal Parameters of a Satellite Gravitational Siabilization System with
Gyro-Damping

4. DESCRIPTIVE NOTES (Type of repor( and inclusive dates)

8 AU THORIS) (Fitst name, middle nitisl, last name)

V. A, Sarychev and K. V. Lukanin

¢ REPORT DATE

2 December 1971

78, TOTAL NO OF PAGES 75, NO. OF REFS

8. CONTRACYTY OR GRANT NO.

NC0017-72-C-4401

5. PROJECTY NO.

98, OMIGINATONR'S REPORT NUMBER(S}

CLB-3 T-649

0. OTHER AEPORT NOIS) (Any other numbers that may be sssigned
thie report) (any ¥ o

d.

10 DISTRISUTION STATEMENT

This document has been approved for public release and sale;
its distribution is unlimited.

1t SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

NAVPLANTREPO
Naval Ordnance Systems Command

13 ABSTRACT

This paper investigates the transient attitude performance of
a gravity gradient satellite. Damping is provided by a pair of two-degree-of-
freedom gyroscopes. First the dynamical equations cf motion are presented and
used to cbtain the characteristic equation. The parameters which optimize the
spacecraft’s transient attitude performance are determined from the solution of
the characteristic equation. The results are then specialized to the case of an

axisymmetric satellite and to the case »f an external disturbance due to orbital
eccentricity.

DD V.1473

UNCLASSIFIED
T Bacwrity Clasaificetion

Anbpc® e Roz sy




Pl e LS

UNCLASSIFIED

Security Clsssification
e e o

14.
KEY WORDS

Satellite dynamics

Gravity-gradient spacecraft

Spacecraft attitnde control

Requesters: P, M. Bainum
J. M. Whisnant
J. N. Bramhall
N. H. Choksy

UNCLASSIFIED

Security Classification




W B

OPTIMAL PARAMETERS OF A SATELLITE
GRAVITATIONAL STABILIZATION SYSTEM WITH GYRO-DAMPING®)

by

L TR I S A Sl

V. A, Sarychev and K. V. Lukanin

M A0 TS Bt

G B

é d Page
% Introduction ~===ccsccccmccmccncnccrncnnccnncacaa <emcemroccerccccane 1

1. Equation of motion ===--c-ccceccn-co Y b R L et %

2. Method of determining the optimal perameters ~----<s--cce-~cccee- 6 é

3. Optimal parameters of a satellite with arbitrary moments %
of inertia ----~-- cecmmeea R e e L L LR L L D bttt 8 2

4, Optimal parameters of an axisymmetric satellite ----ccccccccccc. 30

5. Eccentricity oscillationg =e--=-vecenemccmcnceneccncccccncocncnon 41

§
=
3
=
=
=2
2
=
=
2
iz

Conclusion =~=~-- creccsccananna  ommon- e L e e L DD Lt 45

References ===cccwucua [ S e T L T L L T T T P P P 48

Introduction

The dynamics of a satellite gravity-gradient stabilization system with
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gyro-damping are examined in this paper. The gyro-damper coensists of a pair of

two-degree-of-freedom gyroscopes; the axes of rotation of these gyroscopes in the
satellite equilibrium position are oriented symmetrically relative to the normal to
the orbital plane. The uatural satellite oscillations bring about precession of
the gyroscope rotors coupled to the damping device, leading to dissipation of the

energy of the system.
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References {1-8] have been devoted to the study of such systems. Insofar
as the range of problems cxamined, the present paper is closest to [1], Thus, with
respect to determination of the maximum speed of response, the results of the present
paper are in a particular case a refinement of the results of [1].

Greatest attention is paid in this paper to determination of the para-

meters with which maximum system response time is achieved. The cases of an axi-~

symmetric satellite and of a satellite with arbitrary distribution of mass are investi-~

gated. 1In the study the values of the optimal parameters were found by the random
search method with subsequent refinement, based on a hypothesis regarding the nature
of the location of the roots of the characteristic system equation at the point of
extremum. In the neighborhood of the optimal parameters, level lines of the degree

of system stability are constructed as a function of two parameters, the remaining
parameters fixed. The dependence cf the degree of system stability and of the optimal
parameters on the amplitude of the satellite eccentricity oscillations is constructed

for an axisymmetric satellite.

1. Equation of Motion

The configuration of a satellite gravitational stabilization system with
gyro-damping is described in detail in [1-3]. The satellite body contains two
two-degree-of-freedom gyroscopes, which are used to provide for damping of the natural
oscillations oF the system and to obtain additional restoring moments.

lzc us define the right rectangular coordinate systems necessary for the
solvrion of the problea.

OXYZ is the orbital coordinate system. The NZ-axis is directed aiong the
radfus-vactor connecting the centers of mass of the earth and satellite-gyroscope
system. The (X-&xis ccincides with the transversal to the plane of orbit, the 0Y-

axis with the normal.

Oxyz §s a ccondinate system iinked to the satellits body. The Ox-, Oy-,
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Oz~axes are the principal axes of inertia of the satellite-gyroscope system. O is

t!.xe ceater of mass of the svstem.

0, xyz and O;xyz are coordinate systems whose axzs are parallel to the axes
Oxyz; O; and U, are the centers of mass of the gyroscopes.

The axes of the gyroscope gimbal suspensions, a‘b’ and a”b” (Fig. 1), are
parallel to each other, are located in the planes x0, z and x0,2, resp., and form the
angle Ag with the axes 0,z and O;z. The axes of rotation of the gyroscopes in the
equilibrium position in circular orbit form the angle 60 with the zxes 0,y and O,y.

The location of the satellite~linked coordinate svstem relative to the
orbital coordinate system is defined by means of the augles @ (pitch), 8 (yaw) and

vy (roll) (Fig. 2). The elements of the direction cosine table
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are sxpreased in terms of these angles in the following manner:

Qy = €C2u 251,

iy = Surizt S(.'::; S LLEASLn rub‘_}’ .

Qyp = SLicalonf e EOSASERB 50 g,
.7” z S0.7,3

Qyp = L (C‘SJ .

Qyy - f.‘(.sl-i .\H‘l({.

By = -t 805 A,

Dge 7 (L ASig » SUTASLNPA D3 g
a”e - :tt':;-n‘; - s‘.u.uf."ﬂ S ‘l' .

(1)

In {2] the equatiors of motion of the satellite-gyroscope system were
derived in an exact formulation without resorting to the precession theory. Assuming

that the characteristic rate of gyrcescope rotation is high and, consequently, that
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the coments of inertia of the gyroscopes
,t”“——m for a finite value of the kinetic moments
of the gyroscopes are small compared to
the moments of inertia of the satellite,
the moments of inertia of the gyroscopes
can he neglected in the equations of mo-

tion. Such a simplification is equiva-

lent to resorting to the precession
theory of gyrosacopes. The equations of
motion will be written below using this
simplification.

We introduce the fo:.owing notation:
A, B, C are the principal central moments

of inertia of the satellite about the

Ox-, Cy-, Oz-axes; H Is the kinetic

moment of each gyroscope; i; is the
damping coefficient of the gyrodamper;
Fig. 1. Diagram of the satellite- -

gyroscope system. and K; is the spring coefficient of the
gyrodamper. In writing the equations of

motion it is convenient to change uvver

to the dimensionless narameters

and the dimensfonless time T = wot - Here

W * /0/p®, where [ 18 the gravitational

constant and P {8 the orbit semi-major

4 a&xis,
- 2 Fig. 2. Relationzhip between the

= trihedron Oxyz and the
orbital ccordinate system.
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Then the equations of motion of a satellite with gyroscopes has the

form [ 2]

8,p =//(p;d;, 'ﬁZAi)ozlﬁgeH(p;,ep;,)]-
~9[8.2 oH{ﬁ;,vﬁ:,y-.?(f’etasz’)’(/-ec)0',30’,, ,
. § = H(padiopad ) pfce e Hip« fin )] -
-2[G,pe Hfls:,o;:,y* 3(1+ecosv)l6,-6.)ay ay, |
8.8 = H(B e prbeie glGp o Hlpn + prs )] -
> - Flg+ Hlpaye pu)] - 3(1-ecosv)li-6,) @y, a,e

X, J’ :-/(‘é;OHSiﬂd:, - //{,qp;, '?ﬁ;g e ?j’;z ],

k':é;z='*3‘st'”5"”6;"q(/7ﬂ;'9/3:z"3/3::)- ()

j;
3
3
4
1%;:
:
3
:
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3
3
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Here the dot denotes differentiation with respect to dimensionless time T,

ﬁrla' CDSAn “’5{6;’6‘:), p,:-ws/l. CCS(-J',‘ fg,).

,,3" = COSA.? Si”{d;”c'/\, /5:1 == 0S /{p S[I?(’ 8.‘8: }

SR A O S SR S L

r;r = ‘c’"”l/é‘o . 8, ,\' . ﬁ:, = Sll.'(- O,. * é-. i,
P 05(8y0d.), Pou cos(- 40 85). ;
ﬁ;l"s‘”"c cos(6,+d,), ,@; == 5inA, cos(-élo&_, J. Sj
_I!;‘ = 5inA, senfd, &) p:, s stnd, seaf-&0 S, ), _%
(3) 5
3

P> 9, T are the projections of the absolute angular velocity of the satellite onto
the axes of the coordinate system Oxyz, §; and §; are the angles cf deviation of

the gyroscope rotational axes relative to their equilibrium positions i» a circular

orbit, v is the true anomaly and e is the orbital sccentricity.

The relationship between the projections of the absolute angular velocity

of the satellite (p,q,r) and the angles 3, 8, v is given by the formulae [ 2]}
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where

s (ieecasit ), (5)

In the circular-orbit case the system of Eqs.(2)-(4) has the solution

x =B xy=§ =8 sp=_ 0, q=1, which corresponds to a satellite which has

no. mo* >d with respect to the orbital cuerdinate system. The system equaticns of

wotfon {- a8 ircular orbit, lineari.ed 1n the neighborhood of this equilibrium posi-
tion, ..- :Ir ¢ribed in the following manner, after introducing the notation By, =

H sin 0gs Hy = H cos 8ps K = K + Hy:
&+ 3i6,-8)ol - H(6- 6, )= 0.

2H,d v 0,(8,-8, )} e #(8,-8,)= 0, (

B ae[2H- 3,20 -1)] y+[2H,+(1-8,)]p
o de \:’.A‘ LA, ‘/"(d‘ J’\-b»A =0,

6§ - (2 ~(8, 8- o280 401 8 -
E ~h’,(6‘*6‘)cosA ~Hy (8,48, )sinn A, =0,
F- ~2H, psind,+ 2%, ,aa:s,i 2Hy ycos A,

3 v2Hy psun A, >k, (4, 6')¢ w(d,¢8,)~ 0. (N

2. Method of Determining the Optimal Farameters

e of the criteria for the quality of stabilization systems is the time

raquired for transisnt processes to take place in them. Tu the present pager it

was assuoed that the trassient response time is defined by the variabie I, which is

the distance betwesn .he rightmoat root of the characteristic equation of the system
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(6)-(7) and the imaginary axis. The characteristic equation of system (§)-(7) is

written in the form of the product of the third- and fifth-degree equations

3 /N IR
Po(f o2 8)03(6,-0) 4+ 3(6,-8)% < 0; ®

.V‘
A At o N 0 e

s 2 '}
¥ _2H, )" 3 ¥ H, 2
*’(E'O»‘;%)““"'("'-z*fceyf)il .

e
Here
. 2
. sin A cos'A
a,s zk. + 9‘“ .

- g [2H (-3 g;[i?;/t ~4(1-B, )]+ [2H, - (8, +6, - ﬂ‘,
L

o 28,4 B 1)=2H, - (4~ 56, ) sin’ A+ (1-28,) cos’A,
e, - Pk 340 :
a G

N IREN AR Y
8a 6.

a,- 242 l0-8,)5in'dg= 40178 )cos’A,
6,6 (10)
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The variable 7 depends on the seven dimensioniegs parameters I %e» H,

Wi wa

K, K&, 50 \0. The problem consists in determining the values of these parameters

at which £ reaches maximum value ° . These parameter values will be said to be optimai.
the present paper we are studyiang nct only a satellite with arbitrary moments of

,2 ; inortia, but also the case of an arisymmetric satellite %A = 1).

: The investigation was carried aut in two steps. The first step consisted

in determining £, and the correspchading optimal parameters by the random search

. method. In the second step, the parameters we fourd were determined more exactly

g % on the basis of a hyposhesis as to the form of the roots of the characteristic equa-

P tion at the point of extremum.

3

& 1 The essence of the random search method is as follcws. We begin with a

TREEAY!

E: point p, in the parameter space of the gystem. From thjsa point we take the random
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step Apy . If g(po +4p) > E(po), then the point Py + Ap, is taken as the initial
point for the next random step. If #(pg + 8p) < g(po), then we take the randor
step Hp, from the point Pg- The point p, was cengidered to be the extremal point 2
if the variable £ did not increase in m random steps from this point.

The value of £ was calculated with the prescribed accuracy by the method

of successive approximation. The zero approximation, the interval containing the

AA R Tkt R AL

1

¥

rightmost root of Eqs. (8)-(9), was determined by the formula propesed in [1]. The

subsequent refinements were carried ocut by the Routh scheme. Routh's scheme is

e €W Y T

constructad for equations obtained from (8)-(9) by right-displacement of all of
their roots by a value equal to the distance between the centerpoint of the interval
containing 2 and the imaginary axis. A detailed description of the process of cal-
culating = is given in[1] .

In the process of determining 2, by the random search method, it was

it i B A B BEAD L Wt VR A

discovered that if the valuzs of I, obtained at the end of optimization from various

initial points differ by several percent, the scatter over the parameters themselves g
turns out to be considerably greater. §

The difficulties involved in precise determination of the optimal para- §
meters are due primarily to the great size of the parameter space and to the high %
degree of the characteristic equation. Moreover, as the investigation showed, & %
not insignificant part is played by the nature of the extremum itself, near which 5

the derivatives of 2 with respect to several directions in oaramete:r spave differ

substantially in value. This is explained by the fact that the real parts of the
roots of the characteristic equation beccme equal near the extremum; as a conse-
quence, the function 2 tirns out to he non-analytic at the extremal point.

3. Optimal Parameters of a Satellite with Arbitrary Moments of Inertia

The satellite parameters were optimized by the randcm search method for

fixed values of the angle );. As mentioned above, the values of I obtained at




the end of optimization from various initial points differ by several percent, while
the scatter over the parsmeters turns out to be much greater. Given in the table
are the maximum values obtained for tm for each of the fixed values of Ags @s well

k)

as the corresponding roots cof characteristic equations (8)-(9).
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In this table y;, yz, ys are the roots of Eq. (8), X, X3, Xa» X¢, X are the roots
of Eq. (9).

i{'rom the table it can be seen that the real parts of the rcots y,, va,
Xo, X35 X4s X3 become approximately equal in the neighborhood of the extremum 2,
and with 34 = 0°, 30°, and 6G° the root x, also becomes equal to the real parts of
these roots. The {nvestigation was begun with the most complex case RG = 90°,

Let us advance the following hypothesis as to the nature of the roosts- at

the point of the real extremum = with \g = 90° the roots of the characteristic

equations (8)-(9) have the form

.k,"dy‘ yg.’:’dtl.w,, I,‘-d,. J‘,,,c—d?tw¢

;- L :-dticy,, dpsd, dysd.
3 (11)

The variables d, d;, d;, W, W, Wy are subject to determination, Naturally, of
greatest interest is the parameter 4, since, by construction, d = gm.

The characteristic equations with roots (l1) have the form




Kefeaod ) ofit’ o) e2 o4y Ae dft a*) < 0. (12)

A4 (Uds cty JA's [l 02) + 4ctety + 6] A%

s [2ded, Xes e w)) + 6 ety + 4] A+ [dldl 20, Nuy + 05) +

W, s~ 4, + ' JA o g, [d 0w} ) e i + 2] = 0. 13)
let us imposc constraints on the pacvameters of Eqs. (8)-(9) so that the roots of
these equations will always have the form of (l1). To do so; we equate the coeffi- .
cients of Eqs. {8)-(9) to the corresponding cocefficients of Egs. (12)-(13), and we

also rewrite the last two ir:quaiities of (11). Then,

J2H
A’, A’ T A= e [
9(6 8) cz 2

clal
38,-6.)- a'/‘.e“ ‘i
% 2 2:"-“ K- TP
asfafews e aan o Lal,
okt .

.2
o IR = (2 Yo i@, JeEd e 4,
&= d{”"a:}l’(‘)z' .n" ‘U:“’;‘ll‘vdc'd'.
X 282 Lot 2 a2 e
i~ Qe Al ) s apan e d Y]

ded . dsd. a6

WhLehdiv ity

From (14) we get the following expressions:

@ = 36,-6.)- d*- 2dd,,
X d{adew!)

% 3(6,-8.)

2K ¥

W 2ded,- -
2K 1 ”
S IENVRAY

S ey = a,-vad, - 52*.
g = Q- dftte 20 Yoo ai )~ 4a G - o ¢
4g:d, da,3d;

(15)
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Here,

e (ededy )2 ey fd' (e cy)s ey + 2,
2 - (4o, ) G+ (2cted, g+ 1)+ 60T, + 44

\9 2 5 3 en'gc ’
D¢ 7(&096)-éd—d(-—‘-?~)—2—-— » ,
3 A \18)

1f relations (15)-(18) hold, the roots of the equations being investigated, (8)-(9),
can be represented in the form of (11).

By imposing constraints (15)-(18), a set containing, by hypothesis, the
optimal parametcrs has been singled ocut in the space of the parameters 9,, Gc, H,
X, Kg, 85. These optimal parameters correspond to the maximum value of d st which
all the variables {n (15)-(18) satisfy the physical meaning. Therefore, in addition
to the purely formal constrajints specified by (15)-(18), it is also necessary to
require fulfillment of Lhe conditions of 20, w8 20, u§ 20, D20, ¥ =9, € 2 0.

It is also necessary to remember that the sum Lf two moments of inertia

is always greater than the third, and therefore Bat e 2 1. Since K > 0 in the

c
case of asymptotic stability, the conditions Hf 0, ag 2 0 reduce to the requirement
2 2
that the quantities -g?, -§§' be non-negative. Moreover, v 2 0, u§ 2 0 and are

real. Consequently,

T 2
6,465 0, a::w;a e, (w:vw:)‘— ‘/a):w: Y/

Thus, In order for the solution of the characteristic equations to exist in form {!1),

it is necessary to require fuifillwent not only of relations (15)-(18), but also

of the inequalities

2 t 4
ofu'l, 2—:&»0, %’ibﬂ. Dso0, (.s:cw:) 7
r e »
Wrw 2D, (Gewl)-Y%may 30, 6,483 i, a9

LA AN A5 LD (B A i




At a fixed value of the angle AO’ expressious (10) for a5, &, A2, &, 4,
depend on the variables QA’ 8cr a3 1y and rp; in (18) aepand on the variables 90
QC’ Hy, d;, d. Therefore, relation (17) can be uged to define d, 1n terms of eA’
%C’ ¥, d. Cornsidering, moreover, tha% d,is calculated by formula (16), we get thac
it is possible to choose four parameters arbitrarily in relations (15)-(18): QA’ s
ly, d. These parameters must be chosen such that, by satisfying inequalities (19),
we get the maximum value of d, equal in this case to “n’

The domains in which inequalities (19) and the incquelities d, 2d, d, > d
are fulfilled were constructed in the plane of the parameters aA, ec (Fig. 3) for
fixed values of H,. The variable d increased steadily until the corresponding do-
main contracted to a point. Plotted in Fig. 3 are the boundaries of the domains
for d = 0.5, 0.52, 0.525. As can la seen from the figure, the domains of existence

of a solution in form (11) for any H, are determined by the curves(uf + 4§)* -

4 484§ = O (curve I), D > O (curve II), d» = J (curve III) and the straight line

act

a2

ofs

ar

as a8s 09 CY
Fig. 3. Domains in which the inequalities ar2 fulfilled for tixed values of I .
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Wt ec = 1. The sign in front of the root in formula (16) for d, has no effect on
the form of the domains; it merely brings about a double value in the definition of
4 . The maximum value d ~ 0.525 is reached when H, ~ 0.19,
A more important result, however, is the fact that for any H, there is a
curve dp = d (curve III) among the curves bounding the domains of existence of roots
s in form (11). Consenuently, the equality d, = d will hold at the real extremal point.
For values of ) = g°, 3C°, 60° this was evident from the results cbtained by the
random search method. Thus, for any LY the inequality d; = d in (11l) can be re-

placed by the eauality d, = d. This makes it possible to choose a total of three

S s A O RN S LD BV S b e st i~

paraseters arbitrarily in formulas (15)-(18): QA’ 9C’ d.

In (15)-(18) we set d; = d. Then relation (17), which contains 20 e
d, Hy, can be used to determine H, for given values of A0 Boo d. From (15) we
find in addition that

»
H

S AL ) kY,
ﬂ’vr PO . i :_\--‘_ -) 2‘? > A':(E) #)
.

wewbe, MV W G agecco: (B (20)
Fcrmulas {20) associate definite valuea of the parameters H, 60, K, , Ky with any

point in the domain of existence of the solution in th2 plane of the independent

pdoeh AR A0 bt 0 MR e Dot SR AL

parameters EA, ec; at the same time, because of the two values in formula (16) the

variables H awd Gq wiil also take on two values. This double-value situation disap-
paars on the ¢urve D = 0. Formulas (20) make it possible to map the boundaries of

the domains of existence of the soiution from the plane of the independent para-

meters %Aec onto the plane of one dependent and one inderendent parameter , e.g..

%t' Such 2 mapping is convenient, in that it gives us some idea of the nature of

. the function ¢ ir the region of its extremun.

A MR R AT st LI D s LA S |

The results obtained for values of A, = 0”, 30°, 60°, 9C° are presented
in Figs. 4-13. As can de seen fron these figures, the domains of existence of

solutions of form (l1) with 4; = d are deterxined by two curves:
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@8 + 48)? - 4 uBuf = 0 (curve 1), D = 0 (II) and, beginning with &
certain value of Aq, the iine eA + ec = 1 (I1I). Because d, is two-valued in its
definition, curves I and III of the plane of GA’GC are wepped into tiie curves I+,
1~, 1Irt, II1” on the planes of 6y, H and 9,, 5,. D =0 on curve II, and therefore
the definition of d. is nut two-valwed. The cross in all the figures denctes points
at which the maximum value d = 2, is reacked. At the optimal poiat, D = 0, and
therefore H and 60 are uniquely determined. From the nature of the curves d = const
it can be secn that in the region of the extremum the function 7 is less sloping
when 14 = 0. With increasing ) the distance between the curves d = const decreases.
The consideratle elongation of the figures described by the curves d = const con-

firms the fact found by the random search that the derivatives of £ with respect to

various dirertions in parameter space differ substantially.
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Fig. 14. The variable *_ and the shape of a satellite in the
¢ timal configuration as a function of ko.
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Shown in Fig. 14-15 is the dependence of gm and of the optimal parameters

AR

n

Sar 3 Ho Ky, Koy Bgondy. 8, > 1 when Ay < 27°, and the optimal satellite con-

figuration is gravitationally unstable, since the condition 1 > eA > ac should be

fulfilled for stability. Stability is achieved by the kinetic moxents of the gyro-

e KA, b AV

scopes. The corner points on the graphs for XO = 35 are explained by the fact that
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when Xy 2 35° the optimal parimeters are found on the boundary §

A + ec = 1. Jn
this case the satellite is & gravitationally stable plate. We note that when xo >
319, the optimal value of the elasticity coefficient ¥, is less than zero. The

maximun value £

n = 0.545 is reacted when )5 = 90°, 5, = 0.857, a, = 0.143, K, =

c
0.238, K,= -0.078, # = 0.476, By ™ 65.78°. A variant of the configuration for A "
90° wsa alsc considered in [1], where A 0.48 was obtained.

The optinmal parameters SA, ec,ﬂ, &, Ky, 60 were sought on a set yielding
roots of form (11) for d, = d. 1n order to prove that the parameter values we
found do indeed yield a local meximum of £, it is necessary to study the neighbor-

hoed of the point of extremum for arbitrary parameter values. The following con-

sideration turns out to be convenient.

We fix four of the six coptimal parameters and in the plane of the remaining

two we cunstruct a regiun within which the degree of stability ¢ is greater than a
given value of go. To do so, we make the exchange \ = T+ o in Eqs. (8)~(9). The
region to be sought is one in which all the Hurwitz deturminants of the character-
istic equations obtained with respect Io p are pusitive, By assigning several
values to Z,, we get a number of regions imbedded in each other with boundaries
yielding level lines of = as functions of $he two chosen parameters for optimal
values of the remaining parameters. The closure of the level lines of = will be a
proof that the parameter values we found do indeed yjeld a local maximum for €.

Constructed in Figs. 16-19 are level lines correspording tc values of
z =0.2, 0.3, 0.4 for all parameter combinations with XG = 90°. The cross denotes
the point of maximum. As can be seen from the figures, all the level lines of £
are closed and encompass the point of maximum,

Figs. 16-19 give an ides of the vehavior of the functior £ in the regium

of the maximum. Thev may turn out to de useful {n a structural realization of the

stabilization system. when it {s difficult to get precise opiimal parameter values.
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4. Optimal Parameters of an Axisymmetric Satellite

Au axisymmetric satellite is defined by the condition = 1. A study

A
made by the réndom search method has shown that in this case the equality d, = d
does not hold Zor all values of Ag- In particular, for )\ = 90°, this is clearly
evident in Fig. 3. 1n fact, if for any H, we decrease d, then for a certain valve
of d the straight line 3p = 1 intersects curves I and II, whereas curve III (d; = d)
: will remain on the left. Tais reasoning forces us Lo seek the optimal parameters

on a set specified by conditions (11). Ia (15)-(18) we set QA = 1. Relation (17),

which contains Gc. Hy, d, d;, can be used once again to determine d;. Then, by

formulas (20), w: find all the remaining parameters. Although in this case the
independent paramseters are 3 and H,, it is only natural not to construct regions
E defined in the plane of these parameters by the inequalities (19) and 4, = d,

d, 2 d, but to proceed immediately to construct, by formulas (20j, a mappiang of the

Aol

boundarfes of these regions onto the planes of one of the dependent parameters H,

b

K, Ko 8 &nd of the independent parameler ec.

The results obtained for values of i, = 0°, 30°, 60° and 90° are shown

in Figs. 20-24. When S = 1, the domains of existence of the solution in form (11)
d sre defined by three curves: (uf + 4§)° - 4 vguf = O (curve I), D = O (curve II),
and ¢, = d (curve III). The nature of the domains changes substantially for various

A 1f, however, for Ay = 0°, 30° it still turne out that d; = d =~ g, at the goint

0
of optimum, then for ko = 60° the curve d; = 4 occurs only when d = 0.42, while

3 the point of optimum is aefinad by curves I and II, and dy > d = Za 8t this point.
:% As in the case of arbitrary values of Sp» when §, = 1 the figures described by the
; curves d = const are seen to be quite elongated.

The dependence of 2. and of the optimal parsmeters ac, H, K, K, 60 on
Ay is plotted in Fig. 25. The maximum valve £ = 0.483 is reached when ), = 9¢°,
g = 0.172, Ky = 0,501, Ko = 0.018, # = 0.703, &5, = 64.6°. The level lines of ~

for this case are shown in Figs. 26-29.
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5. Eccentricitv Oscillations

In an elliptical orbit, due to the non~uniformity of rotation of the
radius-vector connecting the centers of mass of the earth and the satellite, the
stable equilibrium positfon being studied goes over into periodic oscillations, called
eccentricity oscillations. The period of the eccentricity osci{llations is equal to
the p.riod of revolution of the satellite cenler of mass along the elliptical orbit;
the oscillation amplitude is proportional to the magnitude of the orbital eccen-

tricity.

Tue eccentricity oscillations are a particular solution 8 =y ® 0, 5 =
5, 0, a =a(t), 5 - 6z = £(t) of system (2). This particular sclution must be
found in the form of a secies in powers of the ec:entricity e. Limiting ourselves
to first terms in the expansion in e, we find that the amplitude R, of the satellite
eccentricity oscillations is determined by the formula [1,8]

P k,ao- [(g; HeosB, )+ 2H zsined'o ] ¢

2

p = 4 7 rp T}’ *
' e 4‘13(&‘,-&)-’1"‘{(*‘:'”“05"3)13{94' c)-f]—Qh‘meJ,} (21)

The transient response of the satellite-gyroscope system in the case of
a circular orbit is constructed in Fig. 30. The satellite is axisymmetric (6A = 1)
with parameters optima’ sthen KO = 00, The initial values of the angles and velo-
cities were chosen a follows: @ =B =y = 10%, §, =& =4 = b2 =p=1r=0,q=1.
From the figure it can be seen that in two satellite orbital revolutions the oscil-
lation amplitude with respect to 21l angles becomes less than one degree.

The tranaient response of the catellite under the sgame initial conditions
in the case of an elliptical orbit with eccentricity e = 0,02 is given in Fig. 31.
The iritial value of the true anomaly v was chocen tc be zero. Steady-state periodic
motion in pitch with an amplitnde of 3.6° can be seen in the figure. This value
is i zood agreement with formuia (21), which yields R = ;L = 3,06, from which we

get R; = R e = 0.0612 rad = 3.5° for e =~ 0.02.
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fig. 31. Optimal transient process for €, = 1, A\, = 90°, e = 0.02.
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We select the parameters of the axisymmetric satellite being considered
such that maximum £ is obtained for a fixed value of R = Sa . The results obtained
by the random search method are given in Figs. 32-33., From the figures it can be
seen tnar the value of R can bz reduced from three units to two without decreasing
the degree of stability Zm appreciably. When R = 1, the degree of stabiliity gm = (3
here it is easy to show that this will remain valid for a satellite with any desired
value of ko and arbitrary distribution of mass. 1In fact, in seeking minimum R by
formula (21), we get that the minimum value R = 1 is reached when
2

iSLﬁ:d‘c _ i
Ny &

= 0.
In this case, on the basis of the Routh-Hurwitz criterion, for characteristic equa-
tion (8) we find that Sm = 0. The point R = 3,06 corresponds to the optimal satellite
parameters obtained in section 4. The break in the graphs for R = 3,06 is explained
by the differing nature of the roots at which the extremum % is realized, to the
right and left of this point,

Conclusion

The degree of system stability £ is not an amaiytic functiorn at the point
of maximum. This is due to the fact that the real parts of the roots of the char-
acteristic equation being examined become equal at the poiant of maximum 3. Even
though it has negative aspects, this fact permits us to make the optimal parameter
values obtained by various rough numerical methods more prucise by introducing
relations between the parameters obtainable by equating the real parts of the rcots
of the characteristic equation being studied.

As applied to the satellite configuraticn with gyro-damping being considered
here, the following results wera obtained by this method. The maximum value of the
degree of system stability I ™ 0.545 is reached when XO = 9y-, which corresponds
to 'ecation of the gyrcscope gimbal axes along the Ox-axis: in the optimal configu-~

ration, the satellite is & gravitationally steble plate. When \o < 27%, the optimal
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satellite configuration is gravitationally unstable, and systew stability is achieved
by using the kinetic moments of the gyroscopes. When xo > 31°, the elasticity co-
efficient K; < 0. The maximum degree of stability of an axisymmetric satellite is
also reachad when Ag = 90°. 1In this case En = 0.483.

The level lines of €, plotted in two parameters in Figs. 16-19 fo. an
arbitrary satellite and in Pigs. 26-29 for an axisymmetric satelliite, allow repre-
sentation of the functiun £ in the region of the maximum. These figures may prove
to be useful ir the design stage of the system, when it is usually difficult to
get exact parameter values.

The study we made of the dependence of gy O the magnitude of the amplitude
of the eccentricity oscillations R, for an axisymmetric satellite yielded the follow-
ing results for Agy = 90°. With optimal satellite parameter values,R, = 3.06e. It
is possible =0 gpecify parameters for which R; = 2e, and the degree of stability
does not change appraciably. When R; = e we find that & ™ 0, and it is not possible

to get R; < e. This is also trua for a satellite with arbitrary mass distribution

ana any ko.
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