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Introduction

The dynamics of a satellite gravity-gradient stabilization system with

gyro-dampihg are examined in this paper. The gyro-damper consists of a pair of

twi-degree-of-freedoam gyroscopes; the axes of rotation of these gyroscopes in the

satellite equilibrium position are oriented symmetrically relative to the normal to

the orbital plane. The tiatural eatellite oscillations bring about precession of

the gyroscope rotors coupled to the damping device, leading to dissipation of the

energy of the system.

Translated from Ordena Lenina Inst. Prik. Mat. Akad. Nauk SSSR rThe Order-of-
Lenin Appl. Math. Inst., Acad. Sci. USSR', Preprint No. 46, Moscow (1971).

-1-J



References (1-81 have been devoted to the study of such systems. Insofar

as the range of problema examined, the present paper is closest to [11. Thus, with

respect to determination (if the maximum speed of response, the results of the present

paper are in a particular case a refinement of the results of [I].

Greatest attention is paid in this paper to determination of the para-

meters with which maximum system response time is achieved. The cases of an axi-

symmetric satellite and of a satellite with arbitrary distribution of mass are investi-

gated. In the study the values of the optimal parameters were found by the random

search method with subsequent refinement, based on a hypothesis regarding the nature

of the location of the roots of the characteristic system equation at the point of

extremum. In the neighborhood of the optimal parameters, level lines of the degree

of system stability are constructed as a function of two parameters, the remaining

parameters fixed. The dependence cf the degree of system stability and of the optimal

parameters on the amplitude of the satellite eccentricity oscillations is constructed

for an axisymmetric satellite.

1. Equation of Motion

The configuration of a satellite gravitational stabilization system with

gyro-damping is described in detail in [1-3]. The sntellite body contains two

two-degree-of-freedom gyroscopes, which are used to provide for damping of the natural

oscillations of the system and to obtain additional restoring moments.

LIe us define the right rectangular coordinate systems necessary for the

solution of the problem.

OXYZ is the orbital coordinate system. The OZ-axis is directed along the

radius-vector connecting the centers of mass of the earth and satellites-gyroscope A

system. The OX-axis ccincides with the transversal to the plane of orbit, the OY-

axis with the norzal.

Oxyz is a coordinate system I'iked to the satellitt boAy. The Ox-, Oy-,



FtOz-axes are the principal axo of inertia of the satellite-gyroscooe system. 0 is

S~the center of mass of tbho system.

OLxyz and Oaxyz are coordinate systems whose axas are parallel to the axes

Oxyz; OL and Oý are the centers of mass of the gyroscopes. -1

; ~The axes off the gyroscope gimbal suspensions, aeb' and amb" 'Fig. 1), are

Sparallel to each other, are located in the planes xO z and xOz, reap., and form the

angle X0 with the axes Oz and Obz. The axes of rotation of the gyroscopes in the I

equilibrium position in circular orbit form the angle 60 with the axes C~y and 02 y.

SThe location of the sateilltc-linked coordinate system relative to the

orbital coordinate system is defined by means of the aagles a (pitch), • (yaw) and

y (roll) (Fig. 2). The elements of the direction cosine table

parlla,, aa

are exprettsed in terms of these angles in the following manner:

CO~ OS ' 1S3/1 SV

n C, CC's

G,, so_, t 13 s. v,

In £2] the equations of motion of the satellite-gyroscope system were

derived in an exact formulation without resorting to the precession theory. Assuming

that the characteristic rate of gyroscope rotation is high and, consequebtly, that
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the moments of inertia of the gyroscopes

for a finite value of the kinetic moments

of the gyroscopes are small compared to

the moments of inertia of the satellite,

VE athe moments of inertia of the gyroscopes

X •can be neglected in the equations of mo-

b" tion. Such a simplification is equiva-

lent to resorting to the precession

theory of gyroscopes. The equations of

zz motion will be written below using this

simplification.

We introduce the foawing notation:

A, B, C are the principal central moments

of inertia of the satellite about the

Ox-, Oy-, Oz-axes; H 1.s the kinetic

moment of each gyroscope; i, is the

damping coefficient of the gyrodamper;
Fig. 1. Diagram of the satellite-

gyroscope system. and Vv is the spring coefficient of the

gyrodamper. In writing the equations of

motion it is convenient to change over

to the dimensionless parameters

Icz I•Zr and the dimensionless time T - w0 t. Here

WO " •i where ý is the gravitational

'Y constant and p is the orbit semi-major

axis.
Fig. 2. Relationship between the

trihedron Oxyr. and the
orbital coordinate system.
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Then the equations of motion of a satellite with gyroscopes has the

form [2]

- i/,o .H( .,5 ,s,Uqg (/.ecosftO, : ),, a].

' I I 1

4 ,L,• -:.,/G/s ,,6 )- H(o,% 'q,•o (' , •. ,

KA~hfld~h'(p p"9 3;#pa) 2

Here the dot denotes differentiation with respect to dimensionless time T,

'3 gt COS A,. S) . .a.s,. Cos(S, -S;.

Aix C04 A ,. if. if.•,)(e-o,.,).

S -i A COS=MSfl(4.( 3,., .-sin A. s-

(3)

p, q, r are the projections of the absollute angular velocity of the satellite onto

the axes of the coordinate system Oxyz, 6 and 6v are the angles cf deviation of

the gyroscope rotational axes relative to their equilibrit m positions im a circular

orbit, v is the true anomaly and e is the orbital eccentricity.

The relationship between the projections of the absolute angular velocity

of the satellite (pqr) and the angles x, y is given by the formulas t2]

Ee4



fir 9 f;c & 2  r
2 do•,. ,.3 CVSJ' U2,

•: (4)

where

•" U"eco5•r .(5)

In tht circular-orbit case the 3:sten of Eqs.(2)-(4) has the solution

y =62 p 2 -P, q - 1, which corresponds to a satellite which has

no. mo- ,d with rtspect to the orbital coordinate system. The system equations of

f:notinn i," a Ircular orbit, linearized In the neighborhood of this equilibrium posf-

tion, , : cribed in thi followinC manner, after introducing the notation 1k

H sin o0, 2a = cos 60, K o k• + H2 :

2k,• c ,- r,,- 0, o.(6)

0• j_" 1 ' A -::. •9 •'))A, - -0t- d'

-2/ H, ost~,. A' N'•, (6,t) - , A•, .(7- 2A~tA sin A, .A 2: ~~A, + 2H,, cos A.

2. Method of DetermninK the Otil Parameters

ine of the criteria for the quality of stabilization systems is the ti-h

required for transient processes to take place in them. It the present paper it

was assumed that the transient response time is defined by the variable r, which is

the distance betesn ,he rightmoat root of the characteristic equation of the sy~tem



(6)-) and the imaginary axia. The characteristic equation of system (6)-(7) is

written in the form of the product of the third- and fifth-degree equations

2 2
"_ (8 A,

AAe(') HA -3(9, 0,)A 48 0;

- a,- (9)

Here u

s aina' Cos

I
a, 9A * C-O )i4* ( OA- ) 9 1)s'

Cý 9A 01(10)

The variable depends on the seven dimensionless parameters 9 A# ý HI

K1 , K 0, k The problem -onsists in determining the values of these parametersyer

at which I reaches maximum. value -- Those parameter values will be said to be optimal.

the present paper we are studying not only a satellite with arbitrary moments of A~

inertia, but also the case oi an ay'isyiunetric satellite (a A -1).

The investigation was carried nut in two steps. The first step consisted

in determining 0 and the correspoading optimal parameters by the random search

method. In the second ntep, the parametere we foured vere determined more exactly

on the basi& of a hypothesis as to the form of the roots of the characteristic equa-

tion at the point of extremum.

The essence of the randow search method is as follows. We begin with a

poiont pO in the parameter space of -:he system. From thM point we take the tandoa
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step Ap1 . If ý(p0 + Ap1 ) > F(po), then the point pO + Ap1 is taken as the initial

point for the next rauidom step. If F(Po + Aft s !(po), then we take the random

step Ap2 from the point p0. The point p0 was considered to be the extremal point

if the variable ý did not increase in m random steps from this point.

The value of was calculated with the prescribed accuracy by the method

of successive approximation. The zero approximation, the interval containing the

rightmost root of Eqs. (8)-(9), was determined by the formula proposed in [1]. The

subsequent refinenents were carried out by the Routh scheme. Routh's scheme is

constructed for equations obtained from (8)-(9) by right-displacement of all of

their roots by a value equal to the distance between the centerpoint of the interval

containing . and the imaginary axis. A detailed description of the proces:. of cal-

culating 7. is given in [1]

In the process of determining • by the random search method, it was

discovered that if the values of "m obtained at the end of optimization from various

initial points differ by several vercent, the scatter over the parameters themselves

turns out to be considerably greater.

The difficulties involved in precise determination of the optimal para-

meters are due primarily to the great size of the parameter space and to the high

degree of the characteristic equation. Moreover, as the investigation showed, a

not insignificant part is played by the nature of the extremum itself, near which

the derivatives of with respect to several directions in oaramete7 space differ

substantially in value. This i=i explained by the fact that the real parts of the

roots of the characteristic equation become equal near the extremum; as a conse-

quence. the function ! turns out to be non-analytic at the extremal point.

3. Optimal Parameters of a Satellite with Arbitrary Moments of Inertia

The satellite parameters were optimized by the random search method for

fixed values of the angle X). As mentioned above, the values of ým obtained at

-8-4



the end of optimization from various initial points differ by several percent, while

the scatcer over the parmeters turns out to be much greater. Given in the table

are the maximum vplues obtained for r for each of the fixed values of ý0, as well

as the corresponding roots of characteristic equations (8)-(9).

A, X, X .iI
,~ ~ ~~~~0S .. . /V!• . • .•..•

.I. 0 
a._sf" 

,

I .. I,, . 1 4,. .46'.

I

In this table yi, yz, y3 are the roots of Eq. (8), x,, x2 , x., x5 are the roots

of Eq. (9).

krom the table it can be seen that the real parts of the roots y2 , ya,

.2 , N., Y4, . become approximately equal in the neighborhood of the extremum

and with X0 =0, 300, and 60' the root x, also becomes equal to the real parts of

these roots. The investigation was begun with the most complex case 90P.

Let us advance the following hypothesis as to the nature of the roots" at

the point of the real extremum with X0 900 the roots of the characteristic

equations (8)-(9) have the form

.r..,- -a • ,• et , 0'
(11)

The variables d, d1 , d2 , A,, ub, Ub are subject to determination. Naturally, of

greatest interest is the parameter d, since, by construction, d .

The characteristic equations with roots (11) have the form

-9iN=



=d..... ,ftd•+).24,A -4(d'dA cg) o0 (12)

# 6di, ~4d')A'f [aq d )(d4 -Aý.)#

Let us impose constraints on the parameters of Eqs. (8)-(9) so that the roots of

these equations will always have the form of (11). To do so , we equate the coeffi-

cients of Eqs. k8)-(9) to the corresponding coefficients of Eqs. (12)-(13), and we

also rewrite the last two iz.:quaiities of (11). Then,

•,~ ~ W. e.o .C,'

CIS #

A(,a
A' 1- Ofa s d, ,l #d

(15)

Fror-,-4) (16) ettefllwn xpesos

'*2. 2 .d

z'.(2 (A /Co U 'r.d-

d,-. a.d . (14) % -a,

3(,, _ •d* ,dd,,

-19



Here,

d - Y, )* ad 3(wA-Gf. (18)

If relations (15)-(18) hold, the roots of the equatione being investigated, (8)-(9),

can be represented in the form of (11).

By imposing constraints (15)-(18), a set containing, by hypothesis, the

optimal parameters has been singled out in the space of the parameters 9A' nC' H,

-1 , K, 60. These optimal parameters correspond to the maximum value of d at which

all the variables in (15)-(18) satisfy the physical meaning. Therefore, in addition

to the purely formal constraints specified by (15)-(18), it is also necessary to

require fulfillment of Lhe conditions a? z 0, i • 0, 31 k 0, D k 0, Iq Z 0, > 0.

It is also necessary to remember that the sum if two moments of inertia

is always greater than the third, and therefore 9A+ i Since K1 > 0 in the

case of asymptotic stability, the conditions 2 Z: 0, It > 0 reduce to the requirement
21ý 2 W2

that the quantities -K, Kj be non-negative. Moreover, uj z 0, zg > 0 and are

real. Consequently,

Thus, In order for the solution of the characteristic equations to exist in form (11),

it is necessary to require fulfillment not only of relations (15)-(18), but also

"of Zhe inequalities

2Y12 V
0' l-a 0' (19



At a fixed value of the angle X0, expressious (10) for a0 , al, 2, a3, a,

depend on the variables eAs eC' H2 ; r, and r2 in (1.8) oepand on the variables 9A,

H 12, d2 , d. Therefore, relation %17) can be used to define d2 in terms of

%C, I2, d. C)nsidering, moreover, tha' d~is calculated by formula (16), we get thac

it is possible to choose four parameters arbitrarily in relations (15)-(18): 0A' C,

Il, d. These parameters must be chosen such that, by satisfying inequalities (19),

we get the maximum value of d, equal in this case to Tm"

The domains in which inequalities (19) and the in~que.lities d. > d, d2 Ž d

are fulfilled were constructed in the plane of the parameters 0A' A (Fig. 3) for

fixed values of 112. The variable d increased steadily until the corresponding do-

main contracted to a point. Plotted in Fig. 3 are the boundaries of the domains

for d - 0.5, 0.52, 0.525. As can Le seen from the figure, the domains of existence

of a solution in form (11) for any H2 are determined by the curves(ug + ,A)"' -

4 aij= 0 (curve I), D > 0 (curve II), d2  = 4 (curve III) and the straight line

ci

02 02

015

0I

as 4*5 09 a9ss

Fig. 3. Donafns in which the inequalities arm fulfilled for tfxed values of 16.
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"A + eC I. The sign in front of the root in formula (16) for d, has no effect on

the form of the domains; it merely brings about a double value in the definition of

I The maximum 'value d • 0.525 is reached when H2 t 0.19.

A more important result, however, is the fact that for any H2 there is a

curve d2 - d (curve III) among the curves bounding the domains of existence of roots

in form (11). Consenuently, the equality d2 - d will hold at the real extremal point.

For values of 0o 00, 30 , 60 this was evident from the results obtained by the

random search method. Thus, for any \0, the inequality d2 a d in (11) can be re-

placed by the eauality d2  d. This makes it possible to choose a total of three

parameters arbitrurily in formulas (15)-(18): RA, •C d

In (15)-(18) we set d2i d. Then relation (17), which contains •A =C'

d, H2, can be used to determine H2 for given values of 0A' eO. d. From (15) we

find in addition that

Aj:'ýk -"l a c:0()

Formuias (20) associate definite values of the parameters 11, 60, K1 , K2 with any

point in the domain of existence of the solution in ths plane of the independent

parameters A' •C; at the same time, because of the two values in formula (16) the

variables H aui 6 will also take on two values. This double-value situation disap-

pears on the curve D - 0. Formulas (20) make it possible to map the boundaries of

the domains of existence of the solution from the plane of the independent para-

meters •AeC orto the plane of one dependent and one inderendernt parameter , e.g.,

eA" Such 3 mapping is convenient, in that it gives us some idea of the nature of

the function ! ic the region of its extremutw.

The results obtained for -values of X 0o, 300, 60P, 9"G are pyesented

in Figs. 4-13. As can be seen fron these figures, the domains of existence of

solutions of form (11) with da - d are determined by two curves:

-13-
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0.7
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( + + ',)• -4 og ,, 0 (curve 1), D 0 (11) and, beginning with r-

certain value of XO, the line 0A + OC - 1 (III). Because d, is two-valued in its

definition, curves I and III of the plane of 6A,8C are mapped into the curves I+,

I +, III" on the planes of Ok, H and 'A' " D a 0 on curve II, and therefore

the definition of do ts not two-valed. The cross in all the figures denotes points =

at which the maximum vplue d i is reached. At the optimal point, D 0 0, and

therefore H and 60 are uniquely determined. From the nature of the curves d - const

it can be seen that in the region of the extremum the function 9 is less sloping

when - 0. With increasing X0 the distance between the curves, d - const decreases.

The considerable elongation of the figures described by the curves d - const con-

firms the fact found by the random search that the derivatives of = with respect to

various direetions in parameter space differ substantially.

s-5

0.4

03

Of orbit

t..J

060 75 90 AO

Fig. 14. The variable and the shape of a satellite in the

m
c t1mal configuration as a function of X0.
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L 1,

I 0. •

a59

60 [

[ 
H

Shown in F ig. 141 eeiene 1d of C a, of the o p pr0"

i. H, K, a. 6o on )De0 1 ewhen *0 < 270, and the optimal satellote con-

'JAI etH ~,K,6 f ~ 9A > whn <20adth otilsteltec-

figuration is gravitationally unstable, since the condition I > 0 > a should be

fulfilled for stability. Stability is achieved by the kinetic momen'ts oi the gyro-

scopes. The corner points on the graphs for 0 350 are explained by the fact that

-24-
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when %0 > 350 the optimal parrmeters are found on the boundary 9A + C . In

this case the satellite is a gravitationally stable plate. We note that when X0 >

310, the optimal value of the elasticity coefficient K is less than zero. The

maximut, value m 0.545 is reached when X0 - 900, 3A - 0.857, a - 0.143, K,

0.238. K2- -0.078, H - 0.476, 5 - 65.780. A variant of the configuration for

90P wa3 also considered In rl], where ":m a 0.48 was obtained.

The optimal parameters I 9C'CH' KIl, K 0 were sought on a set yielding

roots of form (11) for d2 a d. In order to prove that the parameter values we

found do indeed yield a local maximum of •, it is necessary to study the neighbor-

hood of the point of extremum for arbitrary parameter values. The following con-

sideration turns out to be convenient.

We fix four of the six optimal parameters and in the plane of the remaining

two we construct a region within which the degree of stsbility • is greater than a

given value of •0 To do so, we make the exchange \ - + o in Eqs. (8)-(9). The

region to he saught is one in which all the Hurwitz detVrminants of the character-

istic equations obtained with respect Zo o are positive. By assigning several

values to 0. we get a number of regions imbedded in each other with boundaries

yielding level lines of as functions of the two chosen parameters for optimal

values of time remaining parameters. The closure of the level lines of T will be a

proof that th~e parameter values we found do indeed yield a local maximum for E*

Constructed in Figs. 16-19 are level lines corresponding .c values of

a 0.2, 0.3, 0.4 for all parameter combinations with X 900. The cross denotes

the point of maximum. As can be seen froin the figures, all the level lines of

are closed and encompass the point of maximum.

Figs. 16-19 give an idea of the 1ehavior of the Aunction F in the region

of the maximum. They may turn out to be useful in a structural realization of the

stabilization system. when it is difficult to get precise opcimal parameter valdes.

-25-
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4. Optimal Parameters of an Axisymtetric Satellite

ka axisymmetric satellite is defined by the condition C., 1. A study

made by the random search method has shown that in this case the equality d2 - d

does not hold Cor all values of X0. In particular, for X - 90P, this is clearly

evident in Fig. 3. In fact, if for any H2 we decrease d, then for a certain value

of d the straight line 9A - 1 intersects curves I and II, whereas curve 11 (c2 - d)

will remain on the left. Thip reasoning forces us to seek the optimal parameters

on a set specified by conditions (II). In (15)-(18) we set 9A I. Relation (17),

which contains 6C, H,, d, d2, can be used once again to determine d2. 7hen, by

formulas (20), v2 find all the remalning parameters. Although in this case the

independent parameters are aC and H2, it is only natural not to construct regions

defined in the plane of these parameters by the inequalities (19) and d, Z d,

d2 z d, but to proceed immediately to construct, by formulas (20), a mapping of the

boundaries of these regions onto the planes of one of the dependent parameters H,

K1 , Kv, 6 0 and of the iniependent parameLer eC.

The results obtained for val.ues of X0 = 00, 300, 600 and 900 are shown

in Figs. 20-24. When eA - I, the domains of existence of the solution in form (II)

are defined by three curves: (uj + 3)2 - 4 ujua - 0 (curve I), D - 0 (curve II),

and 2 - d (curve III). The nature of the domains changes substantially for various

X0. If, however, for )0 - 0O, 300 it still turns out that d2 a d E at the point

of optimum, then for X0 - 600 the curve da -4 occurs only when d = 0.42, while

the point of optimum is oefinad by curves I and II, and dg > d m at this point.

As in the case of arbitrary values of 9A1 when SA - 1 the figures described by the

curves d - const are seen to be quite elongated.

The dependence of g and of the optimal parameters 9C. H, K1 , 30 on

X0 is plotted in Fig. 25. The maximum value 0.483 is reached When X0 -960,

4-C - 0.172, K, a 0.501, K a 0.018, H - 0.703, 8 0 U 64.60. The level lines of ]
for this case are shown in Figs. 26-29.
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5. Eccentricity Oscillations

In an elliptical orbit, due to the non-uniformity of rotation of the

[Iradius-vector connecting the centers of mass of the earth and the satellite, the

stable equilibrium position being studied goes over into periodic oscillations, called

eccentricity oscillations. The period of the eccentricity oscillations is equal to

the p riod of revolution of the satellite cencer of mass along the elliptical orbit;

the oscillation amplitude is proportional to the magnitude of the. orbital eccen-
Ei

tricity.

The eccentricity oscillations are a particular solution 8 Y a 0, 61

52 5 0, o - (t), 51 - 62 - f(t) of system (2). This particular solution must be

found in the form of a sezies in powers of the ec antricity e. Limiting ourselves

to first terms in the expansion in e, we find that the amplitude R, of the satellite

eccentricity oscillations is determined by the formula [1,83

~ 4e?i .n
.4 8C -q'/(1Y )L.C-9 _2HwSw'6.cJ' (21)

The transient response of the satellite-gyroscope system in the case of

a circular orbit is constructed in Fig. 30. The satellite is ax-symmetric (eA - I)

with parameters optima' ,hen X a 90c'. The initial values of the angles and velo-

cities were chosen a follow's: a y - 100 , 1 62 = p = r n 0j, q I.

From the figure it can be seen that in two satellite orbital revolutions the oscil-

latlon amplitude with respect to all angles becomes less than one degree.

The tranaient response of the satellite under the same initiel conditions

in the case of an elliptical orbit with eccentricity e - 0.02 is given in Fig. 31.

The initial value of the true anomaly v was chocen to be zero. Steady-state periodic

motion in pitch with an amplit'ide of 3.60 can be seen in the figure. This value

is ia good agretment with formula (21), which yields I e 3.06, from which we
e

get R, = Re - 0.0612 rad 3.50 for e - 0.02.
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We select the parameters of the axisymmetric satellite being considered

such that maximum ý is obtained for a fixed value of R - ý- . The results obtained
I e

by the random search method are given in Figs. 32-33. From the figures it can be

seen tnat the value of R can be reduced from three units to two without decreasing

the degree of stability ým appreciably. When R - 1, the degree of stability Om = 0;

here it is easy to show that this will remain valid for a satellite with any desired

L value of X0 and arbitrary distribution of mass. In fact, in seeking minimum R by

formula (21), we get that the minimum value R = 1 is reached when

In this case, on the basis of the Routh-Hurwitz criterion, for characteristic equa-

f tion (8) we find that 0. The point R - 3.06 corresponds to the optimal satellite

S parameters obtained in section 4. The break in the graphs for R = 3.06 is explained

by the differing nature of the roots at which the extremum P is realized, to the

right and left of this point.

ToConclusion

The degree of system stability • is not an analytic function at the point

of maximum. This is due to the fact that the real parts of the roots of the char-

acteristic equation being examined become equal at the point of maximum ;. Even

Q though it has negative aspects, this fact permits us to make the optimal parameter

values obtained by various rough numerical methods more precise by introducing

relations between the parameters obtainable by equating the real parts of the roots

of the characteristic equation being studied.

As applied to the satellite configuraticn with gyro-damping being considered

here, the following resulta were obtained by this method. The maximum value of the

degree of system stability O - 0.A45 is reached when X 9u-, which corresponds

to location of the gyroscove gimbal axes along the Ox-axis; in the optimal configu-

ration, the satellite is a gravitationally stable plate. When 0 < 27!, the optimal
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satellite configuration is gravitationally unstable, and system stability is achieved

by using the kinetic moments of the gyroscopes. When X0 > 31P, the elasticity co-

efficient K2 < 0. The maximura degree of stability of an axisymmetric satell.ite is

also reached when X . 90. In this case gm - 0.483.

The level lines of 0, plotted in two parameters in Figs. 16-19 ic, an

arbitrary satellite and in rigs. 26-29 for an axisynmetric satellite, allow repre-

sentation of the function 9 in the region of the maximum. These figures may prove N

to be useful ir the desagn stage of the system, when it is usually difficult to

get exact parameter values.

The study we made of the dependence of • on the magnitude of the amplitude

of the eccentricity oscillations R, for an axisymmetric satellite yielded the follow-

ing results for X0 - 900. With optimal satellite parameter valuesRP - 3.06e. It

is possible to specify parameters for which R1 - 2e, and the degree of stability

does not change appreciably. When R. - e we find that Em M 0, and it is riot possible

to get R, < e. This ia also trua for a satellite with arbitrary mass distribution

and any X
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