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ABSTRACT

The mechanical properties of (1) a 7049-T73 bar extrusion, (2) a
7049-T73 integrally stiffened extrusion, and (3) a 7049-T76 bar extrusion
were evaluated. The evaluation encompassed tensile, fracture toughness,
axial fatigue, stress corrosion, and fatigue crack growth testing at several
temperatures from -65oF to 5000F. The tensile properties of the integrally
stiffened extrusion were comparable to 7075-T651 extrusion properties in the
literature, The fracture toughness properties of the -T73 bar and the -T76
bar were superior to the 7075-T651 properties. The -T73 bar and -T73
integrally stiffened extrusions had superior axial fatigue properties when
compared with 7075-T651 extruded panel data in the literature. Failure did
not occur in time-to-failure stress corrosion tents using either constant
immersion precracked specimen or alternate immersion smooth specimen.
The crack growth rate in -T73 bar was similar to that of 7075-T7352 hand
forging and 7075-T6 sheet in the literature.
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Sit CTION I

INTR'O I0 )TU CTfON

Extruded alurninm-n alloys are used cxtetlsively by wca po Q system

manufactureruj as structural members in Air Force sy.ut11SH. l)0 10 t010

reduction in moachining time and coat to produce COinCplicatted structural co-n,-

figurations, extrusions are considcred advantaguouon where thuy can be usCd.

A newly developte'd alunmm.um alloy extrusion in two heat treaatrnient conditions,

7049-1T73 and 7049-T76, is being manufactured by the Kaiser Aluri-inurn and

Checmical Corporation, Because it is expected to have strength levels

cornparable to that of 7075, combined with excellent fracturc toughne.ss and

stress corrosion cracking resistance, the 7049 extrusion is contiicerud a

prime candidate for future aircraft structural applications.

Two 7049-T73 extrusions and one 7049--T7(, extrusion were procured lby

AIML for mechanical property evaluation by the University of ),-yton P,esearch

Institute. Tensile and fracture toughness prop.-;rties at severaltcapcramures

were developed for all three exirusions. hi addition, for the two -T73 extrusions,

fatigue, corrosion, and crack growth properties were developed as materal2

limitations per'mitted0



SECTION Ii

MATZRIALS AND SPECIMENS

The three extrusions received irom Kaiser Aluminum arc shown

from right to left in Figure 1: (a) an-integrally stiffened 7049.-T73 extrusion

measuring 18 1/2 inches long x 11 1/4 inchee wide x 3 inches hih; (b) a

70.9- T76 bar extrusion measur:ing 20 1/4 inches long x 3 1/A inches wide

x 3 1/2 inches high; (c) a 7049-T73 bar extrusion with the same measure-

ments as the 7049-T76 bar extrusion. Tensile properties were generated

for the three extrusions with the specimen configuration shown in Figure 2.

Sp-ecimens were machined from the longitudinal, transverse, and short trans-

verse directions of the extrusions. Compact tension fracture toughness

specimens fronm all three cxtrusioui were tested in the specimen configura-

tions shown in Figure 3. Specimens were again machined from the longitudinal,

,ransverse, and short tra-isver:ae directions of the extrusions. Axial fatigue

properties both smooth and notched (Kt = 3. 0) were developed for the two

extrusions in the -'r73 condition, The smooth fatigue specimen configuration

and the notched fatigue specimen configuration are shown in Figure 4 and

Figure 5 respectively. Only longitudinal fatigue sp'cirmens were tested.

Stu:s-s to'rosion properties of the two extrusions in the -T73 condition were

studied using longitudlnal and short transverse precracked compact tension

constant inmnersion specimen (see Figure 3) and short transverse smooth

tensile alternate immersion snecimen (see Figure 2). Fat-igue crack growth

propertie9 were developed for the -T73 extrusions with tfie rectangular

double cantilever beam configuration .hown in Figure ,.

2J



SECTION III

TEST PROC•EDURES

Tensile and fracture toughness testing was performed on a Wiedemann

testing machine according to ASTM standard testing procedures. The -65 0 F

and 0°F test tenperatures were reached in a styrofoam chamber using dry

ice as a cooling agent, while the ZEO0 F, 350 0 F and 5001F test temperatures

were reached in a split three-zone Marshall furnace. Axial fatigue testing

-was accomplished on an Amsler Vibrophore testing machine with a loading

frequency of 4200 cpm and an "R" ratio (ratio oi minimum fatigue stress to

maximum fatigue stress) of 0. 1. The 250 0 F and 350°F test temperatures were

again reached with a split three-zone Marshall furnace.

Constant immersion stress corrosion testing was performed with pre-

cracked specimens in a 3. 5 percent sod"', chloride solution. The solution

was contained in a Plexiglas tank. Statc lnadninr was a]pplied-e to the specimen

utilizing a Satec creep frame. Time-to-failure was initially planned to bý.'

the output data although failure did not actually occur in the specimens within

the testing period.

Alternate immersion stress corrosion testing was accomplished using

smocth tensile specimens in a 3. 5 percent sodium chloride solution. The

specimens were again statically loaded in a creep frame and the time-to-

failure monitored. A beaker type immersing system was used to keep the

specimen immersed ten minutes and out of solution for fifty minutes Curing

every hour of the test period.

Fatigue crack growth testing was performed in a closed-loop MTS

hydraulic testing system. A sinusoidal wave form was used when loading the

specimen. Crack growth was n-monitored optically on the specirmen surface

with a 3 0 x Gaertner traveling microscope. An "R11 ratio of 0. 1 was employed

for all crack growth testing. Cracks were propagated in the longitudinal and

the short transverse directions of the extrusions having the ..T73 condition.

3



SI'ECTION IV

R•ESUtL.TS AND DISCUSSION

A material's potential usefulness can be ascertained by comparinp its

properties with those of a rnater;al it could possibly replace. It will be

shown shortly that the -T651 heat treatment of the 7075 gives it a strrength

equal to the 7049 strength levels developed in this report. Therefore, when

possible, the data developed in this report will be compared to 7075-T651

extrusion data in the literature, In general, a comparison betwen 7049-T76

or -T73 and the lower strength 7075-T73 would be inappropriate.

The average tensile properties of the three 7049 extrusions are presented

in Figures 7 through 12. The properties from each individual specimen are

shown in the Appendix. The 7049-T76 bar is the strongest of the three extrusions

in the longitudinal direction at all test temperatures with the exception of 500 011

(see Figure 7). The 7049-T73 integrally iiiffened extrusion is the strongest

in the transverse and short transverse directions (see Figures 8 and 9). The v

best overall averag;e strength was exhibited by the 7049-F73 integrally

stiffened extrusion. As can be observed, an acute loss of strength occurred

at the 500OF temperature for all materials. The elongation and reduction of

area was comparable for all three extrusions (sce Figures 10 thrrough 12). 'I'he

tensile p'-operties of the three extrusions are comparable to 7075-'1,651
(1)

extrusion properties presented by Kaufman, et a] (85. 4 KSI and 90, 4 KSI

for the longitudinal ultimate strength of 3-1/2 -inch and 11/1 6-inch extruded

shapes, respectively; similar propcrties for the transverse direction are

77, 3 and 87 KSI). These properties arc somewhat higher than the samne

properties for 7075 extrusions in the T7351 condition also reported by

Kaufman.

()Kaufrnan, et al, "Fractur'e Toughness, Fatigue, and Corrosion Ciharacteristics

of X7080-T7'I;41 and 7178-T651 and 7075-T6510, 7075-T7351, X7080-T7F4Z

and 71 78-T6510 Extruded Shapes, AFML-TPR-69-Z5•0

4



Fracture toughness properties arc presented in Figures 13 through 15.

The -T73 and -T76 bar extrusions exhibited similar longitudinal toughness

values that were significantly better than the same properties for the integrally

stiffened extrusion. The -T73 and -T76 bar extrusions had longitudinal tough-

ness values significantly better than those for 7075-T6510 extrusion rer:3rted

in (1), while the toughness for the integrally stiffened extrusion was equal to

the 7075-T651 longitudinal toughness. For the transverse direction a somewhlat

opposite effect is noted. That is, the integrally stiffened extrusion had transverse

toughness superior to 707;-T651 extrusions (1) while the -T73 and -T70 bars

had toughness equal to or slightly below 7075-T651 extrusion transverse

toughness. It is apparent from n'Figures 13 and 14 that the more homogeneous

toughness properties are po3seased by the integrally stiffened extrusion. Thr.'

war, a 6 percent toss in longitudinal toughness of the -T73 bar due to a change in

tempetlature from room to -65°F. The -T73 bar was also the tougher of the

th-rcc extrusions at roon temperature in 'he short transverse direction.

Axial fatigue properties of the 7049-T73 bar and integrally stiffened

ex8Pusiors are shown in Figures 16 through 21. Composite fatigue curves are

presented in Figui•es ,'Z and 23. In a smooth condition and at room temperature

the *.T73 integrally stiffened extrutiion hbLd the better fatigue pr,)perties of the

two extrusions at the higher stress levels. At thc; lower strei4s l]vels thle

extrusion with the better fatigue properties is dependent on the test temperature.

In the notched conditi, n both extrusions had similar fatigue properties. Both

extrusions were superior in room temperature sm, th axial fatigue to

7075-T6510 extruded panel and 7075-17351 extruded panel. They were also

superior to 7049-T73 forging (see Figure 24). Fatigue limits are presented

in Table I. The fatigue limits of both extrusionswere similar,

Time-to-failure stress corrosion cracking propterties of the -T73 materials

are presented in Table II. Plrecracked compact tension specimens were utilized

in this phase of the te•sting. Neither extrusion was susceptible to cracking in



TABLE I

FATIGUE LIMITS FOR 't049-T73 ALUMINUM

EXTRUSIONS AT 107 CYCLES

Test SMOOTH NOTCHED
Conditio SO

Extrusion
Configuratir R T 25001; 3500 F R T 50F 350 0 FK

Bar 53.0 KSI 37,5 KSI 31.5 KS1 16,6 KS1 15.0 KSI 10,5 KSI,

Integrally 49.0 KSI 4 1.0 KSI 28. 0 KSf 15 . 01KS 6.0KSI 1.0 KSI.001
Stiffened ' " __ __

TABLE II

TIvMF,-TO-FAILURF STRESS CORROSION PROPERTiES
OF 7049 ALUMTTr1UM EXTRUSIONS IN 3. 5%

SODIUM CHLORIDE SOLUTION

Loain IElapsed1
M iLoading K initi al Test

Material Direction I Time Results
(y, ) - (hrs)

7049-T73 Longitudinal Z4.. 7 265.9 No failui c
Integrally 26.7 285.5 No failure
Stiffened

Short 19. 4 0.0 Failed on
Transverse loading

19.4 670.6 No failure

7049-T73 Longitudinal 22. 9 0.0 Failed on
Bar loading

19.2 285.5 No failure
23.9 0.0 Failed on

loading
20.4 353.8 No failure
21.2 287.3 No failure

Short 16.0 330.0 No failure
Transverse 20. 3 330.0 No failure

6A



a corrosive environment for the indicated elapsed test periods. However,
• • xtensive pitting was observed in the precracl-edl region of specinmens during

poat-teut examinations.

Alternate immersion stress corrosion results of the 7049-T73 integrally

"stffened extrusion in the short transverse direction are presented in Table IIJ.

-ilure did not occur at a stress level of 61.7 KSI in the 1000-hour elapsed

,/'test periods using smooth tensile specimens. Since failure did not occur in

- either type of stress corrosion test it appears that the rnatrials tested are

-not susceptible to cracking in a 3. 5 percent salt solution within the reported

time periods. On first observation these results are somiewhat surprising.

:L-J-itial data from the literature show that while the material has good corrosion

resistance it is nevertheless sensitive to corrosive attack above approximately

35 KSI. Because of this discrepancy between the two sets of corrosion tests

-an examination of the microstructure of the specimens tested in this program

was initiated. It was felt that the reason for the apparent insensitivity to

corrosion might have been because the specimens were taken from a somewhat

complicated shape and the possibility did exist of having specimens with their

grain structure oriented other than in the short transverse directi,)n. Since in

aluminum alloys the short transverse grain direction is sensitive to corrosive

attack, any misorientation of the grain structure would cause the test resillts

to be misleading. Each of the alternate immersio,. specimens were mounted,

polished, etched, and photomicrographed. From these photos it appears the

specimens were located with their pull direction parallel to the short transverse

direction. Other nossibilAIta f... thf., d,,-"ere-r iii rebultt are associated with

metallurgical differences, such as grain size, and with specimen size effects.

The specimens used in thi. investigation were 1/4 inch in diameter while those

in the literature were 1/8 inch in diameter. Since it was not possibl.e to check

the grain structure of the specimens tested by the other investigators, no

further comparison was made.

Fatigue crack growth rate data are presented in Figure 25. Although crack

growth tests were planned for both of the -T73 extrusions, crack growth testing

was only p ssible in the bar extrusion because of the arm break-off prolblems

"7



TABLE III

ALTERNATE IMMERSION STRESS CORROSION RESULTS
OF 7049-T73 INTEGRALLY STIFFENED EXTRUSION

IN A 3.5% SODIUM CII:.4ORIDE SOLUTION

Stress Level Test Period ,
KSI (hrs)

30.0 2016 I
40.0 2016

43.0 2016

54. 9 (80% of yield stress) 1000

61.7 (90% of yield stress) 1000

* Specimen Removed from Short Transverse Direction

of Extrusion

' No Failure -:

81

I

II



in the rectangular DCB specimen from the integrally stiffened extrusion

(see Figure 26). This arm hreak-off problemn could bc caused by anisotro]'ic

material properties in the test sample. Fatigue c;.ck grow.tth rate data

similar to the 7049-T73 bar growth data wec olbtained by Brownhill, et al.(2)

for a 7075-T7352 hand forging and by Duhensky for 7075-T6 sheet (sce

Figure Z5). From the limited amount of tests, of which none were duplicates,

it appears the 7049 has the same general crack growth rates as the 7075

mnaterials in the literature. Crack growth tests were performed with cracks

-oriented in the short transverse and the longitudinal directions of the bar

extrusions. Little difference was observed in crack growth zates below

10 mnicroinch/cycle. It appears that above this value the carve for the

specimen with its crack oriented in the ahort transverse direction may behave

-differently than the other specimens. This adds proof to the indication that

the crack growth rates are dependent on grain orientation. Crack growth in

the -T73 bar extrusion shows loading rate sensitivity in the frequency range

of 1200 to 600 cpm. It must be cautioned that these conclusions are drawn

from only a limited number of test s.

( 2 )Brownhill, et al. , "Mechanical Propertius, Inrluding Fracture Toughness

and Fatigue, Corrosion Characterigtics and Fatigue-Crack Prop.,;gLioa

Rates of Stress-Relieved Aluminum Alloy Hand Forgings, " AFML,-TR-

70-10, February 1970.

9- 11



SECTION V

SUMMARY

Three 7049 extrusions of various configurations and heat treatments

were evaluated. A synopsis of the observed mechanical properties for each

extrusion is presented below.

- (a) Thu 7049-T73 bar extrusion studied in this report was determined

to have excellent fatigue, fracture toughness, and corrosion resistarce while

rnaintaining the tensile properties of contemporary aluminum alloys. Because

of these attributes the 7049.,T73 appears to be a likely candidate for future

aircraft systems.

(b) The 7049-T73 integrally stiffened extrusion also exhibited excellent

fati•zi prnpcrtrif while displaying tensile properties on a par with high strength

aluminum alloys used in modern aircraft. However, while fracture toughness

properties were directionally homogeneous, toughness was low in the lonoittidi."_i

direction and slightly high in the transverse and shinirt transverse direction3 as

compared to other high strength aluminum alloys. Again, insensitivity to btress

corrosion cracking was apparent.

(c) The tensile and fLacture toughness properties of 7049-T76 bar were

similar to that of the 7049-T73 bar. Further testing is necessary in order to

fully evaluate the 7049-T76 bar extrusion.

10
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TABLE IV

TENSILE PROPERTY DATA FOR INDIVIDUAL SPECIMENS
TESTED AT -65OF 'A

Ultimate Yield Reduction Elongation
Material Direction Strength Strength of Area in I -inch

(KSI) (KS) (%) (%)M
7049-T73 Longitudinal 89.4 79.7 18.9 10.4
Integrally 87.1 77.8 Z3. 2 10.8
Stiffened 89.3 79.9 23.2 10.2

Avg. 88.6 78. 9 Z1. 8 10.5

Transverse 87.8 77.5 23.1 10.4
87.4 76.9 Z1.6 10.7
88.1 78.0 22.0 10.6

Avg. 87.8 77.5 22.2 10.6

Short Transverse 81.8 73.6 5.6 3.6
8Z.0 72.4 Z.4 3.6
81.9 72.2 3. 2 3.3

Avg. 81.9 72.7 3.7 3.5

7049-T73 Longitudinal 88.8 77.1 ZZ.6 10.1
Bar 87.5 - 23.7 10.5

Avg. 88.2 77.1 23.Z 10.3

Transverse 80.4 68.7 7.1 5.0
82.1 71.9 18.3 9.8

Avg. 81,3 70.3 12.7 7.4

Short Transverse 79.6 68. 0 7. 1 5.4
79.0 66.3 7.1 3.7

Avg. 79.3 67.2 7.1 4.6 f

7049-T76 Longitudinal 87.9 78.1 11.0 ZZ.4
Bar 90.0 81.~2 11.1 26.7...........

Avg. 89.0 80.0 iU.1 24.6

Transverse 83.0 73. 0 23. 2 10. 5
82. 5 72.8 Z3. Z 1.

Avg. 82.8 72.9 Z3. Z 10.8

Short Transverse 8Z. 3 - Z2. 0 11. 0
79.0 66.3 6.3 5.5
80.7 68.7 7.1 .5.5

Avg. 80.7 67.5 11.8 7.3
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TABLE V

TENSILE PROPERTY DATA FOR. INDIVIDUAL 5P-CIMENS
TESTE-D AT OoF

Ultimate Yield Reduction Elongation
Material Direction Strength Strength of Area in 1 -inch

(KSI) (KSI) (%)

7049-T73 Longitudinal 87.4 78.3 19.9 10.7

Integrally 84.9 75.Z Z7.5 12.0
Stiffened 87.5 - 19.1 11.2

Avg. 86.6 76.8 22.2 11.3

Transverse 86.6 76.6 Z3.0 12.7
-• 86.7 76.Z Z3.4 11.6

86.1 76.0 Z5.3 11.5

Avg. 86.5 76.3 23.9 11.9

Sh;rt Transverse 79.4 7Z.7 5.5 3.8 A
78; 70.3 5.4 3.1
78.0 70.5 4.0 2.4

Avg, '18.6 71.2 5.0 3.1

7049-T73 Longitudinal 87.0 77.0 Z5.5 10.7
86.z 77.6 Z7.5 10.9

Avg. 86.6 77.3 z6.5 10.8

Transverse 79.9 68.9 Z3.2 10.1
80.3 70.1 23.2 10.2
80.1 69.7 21.8 10.3

Avg. 80.1 69.6 ZZ.7 10. 2

Short Transverrse 78.6 68.4 7.7 5. 6
76.8 65. 2 7.1 4.4
77.8 65.8 7.7 4.8

Avg. 77.7 U6. 5 7.5 1 4.9

7049-T76 Longitudinal 87.6 77.6 28.1 11.M
Bar 85.6 76.6 27.9 11.4

Av,. 86.6 77.1 28.0 ]1. 3

Trarve e 80.6 70.7 Z1.8 9.6
80.8 70.9 Z4.0 10. 1

0.0 70. 2z. 8 - 10.0

Av-. 80,5 70,6 2Z.5 9.9

Short Transverse 78.4 66.4 11.6 6.6
77.0 65.8 15.3 7.4
'1.0 67.5 30.1 11.4

Avg, 77.5 66.6 19.0 8.5
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TABLE VI

TENSILE PROPERTY DATA FOR INDIVIDUAL SPECIMENS
TESTED AT ROOM TEMPERATURE

Ultimate Yield Reduction Elongation
Material Direction Strength Strength of Area in I -inch

(KSI) (KSI) (%) (%)
7049-T73 Longitudinal 83.4 75.8 34.0 12.0
Integrally 81. 0 73.6 31.0 12.0
Stiffened 8Z. 6 74.9 35.0 12.0

Avg. 82.3 74.8 33.3 1Z.0

Transverse 8Z.6 75.3 28.0 12.0
8Z.9 75.3 28.0 12.0
82.! 74.4 28.0 1z.0

Avg. 82.5 75.0 28.0 12.0

Short Transverse 76.8 68.7 5.0 5.0
76.Z 68.4 3.0 4.0
76.9 68.6 6.0 5.0

Avg. 76.6 68.6 4.6 4.6

7049-T73 Longitudlinal 81.7 74.5 31.0 11.0
Bar 79.7 72,3 30.0 11.0

Avg, 80.7 73.4 30.5 11.0

Transverse 75.8 67.1 45.0 I1.0
76.4 68.2 Z6.0 12.0
76.4 67.7 28.0 IZ.0

Avg. 76.2 67.7 26.3 11.7

Short Transverse 75.Z ,67. 3 27.0 9.0
74. 1 64.7 10.0 7.0
74.1 64.1 7.0 6.0

Avg. 73.9 65.4 14.6 7.3F .... .. 7 L n- -",,,u , , R3. 1 76.3 1 332.0 1 .0

Bar 8z. 1 74.7 28.0 11.0
8z. 8 75.6 32.0 lZ.(

A8vg. Z.7 75.5 31.0 11.6

Transverse 76.8 68.6 26.0 11.0
76.6 68, 6 31.0 1Z.0
76.8 68.7 30.0 11.0

Avg . 76.7 68.(, 299.0 11,3

Short Transverse 76.4 6). 1 31,0 11.0
74.5 64. 3 12.0 7,0
74.5 64.Z 11.0 7.0

Avg. 75. 1 65. 8 18.0 8.3
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TABLE VII

TENSILE PROPERTY DATA FOR INDIVIDUAL. SPECIMENS
TESTED AT Z50 0 F

Ultimate Yield Reduction Elongation

Material Direction Strength Strength of Area in I-inch
_(KSI) (KSI) (%) (0%)

7049-T73 Longitudinal 67.3 64.6 48.0 16. 0
Integrally 68.0 65.6 44.0 16.0
Stiffened Avg. 67. 1 65. 1 46.0 16.0

Transverse 67.8 66.2 42.0 16.0
68.3 65.6 42.0 16.0

Avg. 68.1 65.9 4Z.0 16.0

Short Transverse 65.0 60.4 22.0 10.0
64.0 60.4 20.0 8.0

Avg. 64.5 60.4 Z1.0 9.0

7049-T73 Longitudinal 68.1 64.] 46..0 16.0
Bar 66.5 6z.?Z 44.0 14.0

Avg. 67.3 63.2 45.0 15.0

Transverse 69.0 64.8 41.0 15, 0

64.6 59.2 40.0 15. 0

Avg. 66.8 62.0 40,5 15, 0

Short Transv(. "e 62.8 56.9 21.0 10.0

63.1 55.Z 23.0 10.0
Avg. 62.9 56.0 22.0 10.0

7049- T76 Longitudinal 70.9 64.8 40.0 16, 0
Bar 68.9 64.6 45,.0 17.0

Avg. 69.9 64.7 4Q.5 16.5

"I'ransverse 66.8 0 61.7 42.0 15.0
66.0 61.5 40.0 15,0

Avg. 66.4 61.6 41.0 15.0

Short Transvcrsc 63.8 55.6 24.0 11.0
64.6 56.4 19.0 9.0

Avg. 64.2 56.0 Z2.5 10.0
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TABLE VIII

TENSILE PROPERTY DATA FOR INDIVIDUAL SPECIMENS
TESTED AT 350OF

Ultimate Yield Reduction Elongation
Material Direction Strength Strength of Area in I -inch

___ _____(KSI) (KSI) (%) (%)
7049-T73 Longitudinal 54.1 52.6 61.0 20.0
Integrally 57.9 57.0 57.0 20.0
Stiffened

Avg. 56.0 54.8 59.0 20.0

Transverse 55.7 53.2 49. 0 18. 0
56.4 54.0 47.0 18.0

Avg. 56.1 53.6 48.0 18.0

Short Transverfe 53.5 49. 3 30.0 12.0
52.0 48.5 34.0 12.0

Avg. 52.8 48.9 32.0 12.0

7049-T73 Longitudinal 56.6 55.6 55.0 ZZ.0
a.. r.1 (1

55. 5 54. 0 60.0 Z2.0

Avg. 55.8 54.5 57.7 21.6

Transverse 52.3 50. 1 5Z. 0 20. 0
51.8 49.5 52.0 20.0

Avg. 52.1 49.8 52.0 Z0.0

Short Tra&nsverse 51.4 48.5 40.0 15.0
51.4 48.5 37.0 14.0

Avg. 51.4 48.5 38.5 14.5

7049-T76 Long it-,dnal 57.6 55.4 55.0 Z1.0
Bar 56.1 54.5 58.0 21.0

Avg. 56.9 54.9 56.5 Z1.0

Tranbvw-rwz 54.5 51.9 51.0 20.0
54.9 52.0 49.0 20.0

Avg. 54.7 51.9 50.5 Z0.0

Short Transverse 54.4 50.7 39.0 16.0
52.2 48.5 35.0 14.0

A v-. 53.3 49.6 37.0 15.0
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TABLE IX

TENSILE PROPERTY DATA FOR INDIVIDUAL SPECIMENS
TTESTED AT 500 0 F

Ultimat- Yield Redcuction jElongation
Material Direction Strength Strength of Area in I -inch

• _______(KSI) (KSI) M(%) I o/__

7049-T73 Longitudina 1 19.9 19.4 81.6 30,7
Integrally 27.6 27.4 77.4 23.0
StiffenedS eAvg. Z3.8 23.4 7. 5 26.9

Transverse 21.8 2'.. 5 76.4 25.9

2Z.6 ,22.4 83.8 24.3

Avg. 22.2 ZZ.0 80,1 25.1

Short Transverse 21.3 20.4 71, 3 26.8

7049-T73 Longitudinal 20. 20.2 84. 8 32. 3
Bar

Transverse 20.8 .:0. 3 80. 2 29. 1
21 .7 74.9 27. 9

Avg. 21.7 Z1.0 77.5 28.5

Short Transverse 26.0 25.0 74. 1 25. 8
23.2 22.8 82.3 27.1

Avg. 24.6 Z3.9 78.2Z 26.5

7049-T76 Longitudinal 23.2 22.8 82.3 27. 1
Bar 23.6 Z3.2 80. 7 28. 0

Avg. 23.4 23.0 81. , 77 .5

Transverse 19o3 18.9 82.3 34.4
Z0.3 19.8 80.6 32.0

Avg. 19.8 19.4 81.5 33.2

Short Transverse 20.7 20.2 75.2 27. 8
19.9 19.5 80.8 34.2

Avg. 20.3 19.9 78 0 31.0
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TABLE X

FRACTURE TOUGHNESS DATA FO11 INDIVIDUAL SPECIMENS
TESTED AT -65°F

Material Direction Ki-
_____ ____(KSi ýr -

7049-T73 Longitudinal 25.4
Integrally 23.6 I
Stiffened 25. 2

24. 7 Avg.

Transverse 22.8 3.2v.
?-3.7 • 2

23.2Z Avg. •: -i
Short Transverse 23.3

21.1 =

Z2. Z Avg.

70319-TL71, .ngitudinal•
Bar 32.Z

29.4 : - .,

31.4 Avg.

Transver~ e 20. 8

20. 2918.9 ?

20. 0 Avg. 1 4
Short Transverse ZO.7

7049-T76 Longitudinal 30. 3

Bar 30.5
30.3

30.4 Avg.

Transverseý 19.3
19.0

19.2 Avg.

Short Transverse 19.9
19.3
19.1

19.4 Avg.

40



TABLE XI

FRACTURE TOUGHNESS DATA FOR INDIVIDUAL SPECIMENS
TESTED AT 0°F

Material Direction (S
S(KSI T IN)

7049-T73 Longitudinal 74. 5 1

Integrally 26.8
Stiffened 26. 3

25. 9 Avg,

Transverse Z3.6
,23.8

24.9
24. 1 Avg.

Shoirt 'Transverse 19.8

____._2 1. 1 Avg.

7049-T73 Longitudinal 31.7
i ar 34.2

"33.8
31. 2 Avg.

,,Yransvcr-u 20.4

20.9
' • "20. 6

210. (6 Av,.

Short Transvcrsc 21.8

21. 6
2110

21. A., Avg.
/V49)- I'6 (b iongituwiinal 34, 1

Bar 32.3
32, 9

33. 1 Avg,.

Transverse 2r1.8
P)9. 6

,0, ? Avg.
Short '0'ra'av'_-

, 71.?

20.7
O.H Avg.
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TABLE XII

FRACTURE TOUGHNESS DATA FOR INDIVIDUAL SPEC:MENS
TESTED AT ROOM TEMPERATURE

KIC
-,aerial Direction (KSI CIN

7049-T73 Longitudinal 27. 3
Integrally 28.6
Stiffened 28. 3

28. 1 Avg.

Transverse 24.7
25. 3
25.7

Z5.2 Avg.

Short Transverse 20. 3
20.5
20,.1

20. 3 Avg.

7049-T73 Longitudinal 34.4
Bar 30. 1

3b. I

33. 2 Avg.

TI'ransvrv, j1 22., 4
22.1
21.5

2Z. 0 Avg.

'11011 1 I iiINv,'!HV 22. q

Z 3. H
i: ,6

7 0 4) -'T7, 6I ,, gl Iti ull 1 ,I 34. '
Bar 3i1. 1

3 0. H
3,'. 7 Avg.

'j rl'i~ verme Z0. 0
70.3
1 ). 7

20. 0 Avg.

Short Transverse ZA.9
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